www.cambridge.org/jhl

Research Paper

Cite this article: Muhammad N, Li D-X, Ru S-S, Suleman, Saood D, Alvi MA and Li L (2023). Characterization of the complete mitochondrial genome of *Acanthogyrus* (*Acanthosentis*) *bilaspurensis* Chowhan, Gupta & Khera, 1987 (Eoacanthocephala: Quadrigyridae), the smallest mitochondrial genome in Acanthocephala, and its phylogenetic implications. *Journal of Helminthology*, **97**, e87, 1–9 https://doi.org/10.1017/S0022149X23000561

Received: 25 July 2023 Revised: 13 September 2023 Accepted: 13 September 2023

Keywords:

Acanthocephala; Gyracanthocephala; Quadrigyridae; mitochondrial genome; phylogeny

Corresponding author:

L. Li; Email: liangliangex369@126.com Characterization of the complete mitochondrial genome of *Acanthogyrus* (*Acanthosentis*) *bilaspurensis* Chowhan, Gupta & Khera, 1987 (Eoacanthocephala: Quadrigyridae), the smallest mitochondrial genome in Acanthocephala, and its phylogenetic implications

Nehaz Muhammad^{1,2,6} ^(D), D.-X. Li¹, S.-S. Ru¹, Suleman³, D. Saood⁴, M.A. Alvi⁵ and L. Li^{1,2} ^(D)

¹Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology; Hebei Collaborative Innovation Center for Eco-Environment; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, P. R. China; ²Hebei Research Center of the Basic Discipline Cell Biology; Ministry of Education Key Laboratory of Molecular and Cellular Biology; 050024 Shijiazhuang, Hebei Province, P. R. China; ³Department of Zoology, University of Swabi, Anbar, Swabi, 23561, Khyber Pakhtunkhwa, Pakistan; ⁴Department of Zoology, Abdul Wali Khan University Mardan Khyber Pakhtunkhwa, Pakistan; ⁵Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan and ⁶Biology Postdoctoral Research Mobile Station, Hebei Normal University, 050024 Shijiazhuang, Hebei Province, P. R. China

Abstract

The phylum Acanthocephala is an important group of parasites with more than 1,300 species parasitizing intestine of all major vertebrate groups. However, our present knowledge of the mitochondrial genomes of Acanthocephala remains very limited. In the present study, we sequenced and annotated the complete mitochondrial genome of *Acanthogyrus (Acanthosentis) bilaspurensis* (Gyracanthocephala: Quadrigyridae) for the first time based on the specimens recovered from the intestine of common carp *Cyprinus carpio* Linnaeus (Cyprinidae) in Pakistan. The mitochondrial genome of *A. bilaspurensis* is 13,360 bp in size and contains 36 genes, representing the smallest mitogenome of acanthocephalans reported so far. The mitogenome of *A. bilaspurensis* also has the lowest level of overall A+T contents (59.3%) in the mitogenomes of Eoacanthocephala, and the non-coding region 3 (NCR3) lies between *trn*S2 and *trn*I, which is different from all of the other acanthocephalan species. Phylogenetic analyses based on concatenating the amino acid sequences of 12 protein-coding genes using maximum likelihood (ML) and Bayesian inference (BI) methods revealed that the family Pseudoacanthocephalidae is a sister to the Arhythmacanthidae rather than the Cavisomatidae, and the families Rhadinorhynchidae and Cavisomatidae showed sister relationships.

Introduction

Acanthocephalans of the class Eoacanthocephala mainly parasitize fishes and contain two orders, Gyracanthocephala (including only one family Quadrigyridae) and Neoechinorhynchida (including three families: Dendronucleatidae, Tenuisentidae, and Neoechinorhynchidae) (Amin 2013). However, the monophyly and phylogenetic relationships of the two orders and their included families/subfamilies remain unclear due to the scarcity and inaccessibility of genetic data for some taxa. The family Quadrigyridae contains two subfamilies Quadrigyrinae and Pallisentinae (Amin 2013). However, some previous molecular phylogenetic studies suggested that the family Quadrigyridae and the subfamily Pallisentinae are both non-monophyletic (Song *et al.* 2016; Muhammad *et al.* 2019a, 2020a, b; Ru *et al.* 2022).

Although approximately 250 species belonging to over 30 genera have been described in the class Eoacanthocephala, the mitogenomes of the Eoacanthocephala are currently available for only four species, namely, *Acanthogyrus cheni* Amin, 2005; *Neoechinorhynchus violentum* Van Cleave, 1928; *Paratenuisentis ambiguus* Van Cleave, 1921; and *Pallisentis celatusi* Van Cleave, 1928 (Song *et al.* 2016; Gazi *et al.* 2016; Pan and Nie 2013; Weber *et al.* 2013; Pan and Jiang 2018). Our current knowledge of the mitochondrial genomes of acanthocephalans, especially the class Eoacanthocephala, remains very limited.

The poorly known species A. bilaspurensis Chowhan, Gupta & Khera, 1987 was originally reported from the reba carp Cirrhinus reba (Hamilton) in India (Chowhan et al. 1987; Naidu

© The Author(s), 2023. Published by Cambridge University Press.

2012). Recently, this species was redescribed based on specimens collected from *Cyprinus carpio* (Linnaeus) in Pakistan (Ru *et al.* 2022). In the present study, the complete mitochondrial genome of *A. bilaspurensis* (Gyracanthocephala: Quadrigyridae) was sequenced and annotated for the first time. In addition, in order to assess the phylogenetic relationships of some families or subfamilies in Acanthocephala, phylogenetic analyses were performed using maximum likelihood and Bayesian inference (BI) based on concatenating the amino acid sequences of 12 protein-coding genes (PCGs) of mitogenomes.

Materials and methods

Parasites collection and species identification

Acanthocephalans were collected from the intestine of *C. carpio* in the Indus River, district Swabi (34°07′07.23″N, 72°36′32.38″E), Khyber Pakhtunkhwa, Pakistan. The acanthocephalans were identified as *A. bilaspurensis* according to some previous studies (Ru *et al.* 2022; Chowhan *et al.* 1987).

Molecular procedures

The genomic DNA was extracted for molecular studies using Wizard_SV Genomic DNA Purification System (Promega, Madison, USA) following the manufacturer's protocol. The extracted DNA was preserved at -20° C for further molecular studies. The overall mitochondrial DNA of *A. bilaspurensis* was amplified by PCR using the primers shown in Table 1. PCR reactions were conducted in a 50 µl reaction mixture, containing 22.5 µl dd H₂O, 22.5 µl PrimeSTAR Max DNA polymerase, 2 µl DNA template, and 1.5 µl of each primer. Long PCR amplification was conducted with 2 min denaturation at 96°C, then 15 cycles of denaturation at 98°C for 20 s, annealing at 50–65°C for 30 s, and

Table 1. Primers used for amplification and sequencing of the complete mitochondrial genome of *Acanthogyrus bilaspurensis* in the present study

Primers	Sequence (5' \rightarrow 3')	Gene/region	Size (bp)
NSF1	CTAAGGTAGCGTAATCATTTGTC	16S	317
NSR1	GCTCACGCCGGTCTAAACTC		
NSF2	GGTAACAGGGCAATCTTTAGG	16S-nad5	4384
NSR2	CCAGAAAGCCTAGCAGAAAAG		
NSF3	GAGGTTTTGGGTGTTGTTAGG	nad5	281
NSR3	GAATGAACCAAAGAAGACAC		
NSF4	TGGAGTGGATGTTGGGTCTG	nad5-cytb	1720
NSR4	TCGAGACAACCTAACAACC		
NSF5	GCGTTTATGGGGTATGTGTTGC	<i>cyt</i> b	429
NSR5	CTTGATGTGGCTGGGGGTAC		
NSF6	GTTGGTGTACTGATCTGG	cytb-nad1	620
NSR6	CACTACCCCTAGAGTTAGGC		
NSF7	CTCGTAAGGGGCCTAACAAGG	nad1	498
NSR7	CAGACTCCCCCTCTAAGAAG		
NSF8	GACGCCTTTGGTGTTGAGG	<i>nad</i> 1-16S	6075
NSR8	GTCTTTCCGTCTTATCCTAC		

extension at 68°C for 3 to 5 min, followed by 96°C denaturation for 2 min, plus 30 cycles of 96°C for 20s (denaturation), 52–65 °C for 30 s (annealing) and 65°C for 3 to 5 min, and a final extension at 72° C for 10 min. The positive amplified fragments, size up to 2 kb, were cloned in pMD18-T vector, and size above 2 kb were sequenced directly using primer walking strategy.

The mitogenome of A. bilaspurensis was assembled manually in a stepwise manner using DNAstar v7.1 program (Burland 2000). The MEGA v7.0 (Kumar et al. 2016) was used for analyzing the nucleotides composition and codons usage. Protein-coding genes (PCGs) were identified using BLAST and ORF Finder tools by choosing the invertebrate mitochondrial code. The nucleotide alignment was checked against the genomes A. cheni and P. ambiguus. Most of the tRNAs were identified using MITOS web server (Bernt et al. 2013) and ARWEN (Laslett and Canback 2008). Ribosomal RNA genes (rrnL and rrnS) were identified by alignment comparison with other acanthocephalan species. The amino acid sequences of 12 PCGs were obtained using MEGA7, for which invertebrate mitochondrial code was chosen. Codons usage and relative synonymous codons usage (RSCU) for 12 PCGs were sorted out using PhyloSuite v1.1.15 (Zhang et al. 2020). The circular drawing of the mt genome of A. bilaspurensis was drawn out with MTVIZ, an online tool of mitochondrial visualization (available at http://paco sy.informatik.uni-leipzig.de/mtviz/). The RSCU figure was drawn using plugin ggplot2 (Wickham 2016).

Phylogenetic analyses

Phylogenetic analyses were performed based on concatenating the amino acid sequences of 12 PCGs of mitogenomes. Rotaria rotatoria Pallas, 1766 and Philodina citrina Ehrenberg, 1832 (Rotifera: Bdelloidea) were chosen as the out-group. Detailed information of representatives included in the phylogenetic analyses is provided in Table 2. Fasta files of the amino acid sequences of 12 PCGs were extracted from the GenBank, using PhyloSuite. Genes were aligned with MAFFT (Katoh et al. 2002) and integrated in PhyloSuite using normal-alignment mode. PhyloSuite was used to concatenate the generated alignments into a single alignment and then generate nexus and phylip format files for the phylogenetic analyses. The selection of best-fit models and partition strategy was done using PartitionFinder2 (Lanfear et al. 2017). Maximum likelihood analysis was carried out using IQ-TREE (Nguyen et al. 2015) with 50,000 ultrafast bootstraps (Minh et al. 2013). Bayesian inference analysis was generated using MrBayes v3.2, (Ronquist et al. 2012) by running two independent MC3 runs of four chains each for 5,000,000 generations and sampling tree topologies with every 1000 generations. 'Burn-in' periods were adjusted to one million generations following the standard deviation of split frequency value lower than (0.01). The phylograms were observed Using FigTree v.1.43 (Chen et al. 2014) and annotated in Adobe Illustrator. Phylogenetic analyses ranked nodes with Bayesian posterior probabilities (BPP) and bootstrap support values (BS) $\geq 0.90/90$ as strongly supported and $\geq 0.80/80$ and < 0.90/90 as moderately supported.

Results and discussion

Organization of the mitochondrial genome of Acanthogyrus (Acanthosentis) bilaspurensis

The complete mitogenome of *A. bilaspurensis* is 13,360 bp in size and contains 36 genes, including 12 protein-coding genes (PCGs)

Table 2. Detailed information of representatives included in the present phylogenetic analyses

Таха	Family	Species	Accession nos	Size	AT%	References
Ingroup						
Class Archiacanthocephala						
Oligacanthorhynchida	Oligacanthorhynchidae	Oncicola luehei	NC_016754	14,281	60.2	Gazi <i>et al</i> . (2012)
		Macracanthorhynchus hirudinaceus	NC_019808	14,282	65.2	Weber <i>et al</i> . (2013)
Moniliformida	Moniliformidae	Moniliformis sp. XH-2020	OK415026	14,066	66.2	Dai <i>et al.</i> (2022)
Class Palaeacanthocephala						
Echinorhynchida	Arhythmacanthidae	Heterosentis pseudobagri	OP278658	13,742	62.5	Gao et al. (2023)
	Rhadinorhynchidae	Micracanthorhynchina dakusuiensis	OP131911	16,309	56.8	Gao <i>et al</i> . (2022)
	Pseudoacanthocephalidae	Pseudoacanthocephalus bufonis	MZ958236	14,056	58.4	Zhao <i>et al</i> . (2023)
	Echinorhynchidae	Echinorhynchus truttae	FR856883	13,659	63.1	Weber <i>et al</i> . (2013)
	Cavisomatidae	Cavisoma magnum	MN562586	13,594	63.0	Muhammad et al. (2020)
	Rhadinorhynchidae	Leptorhynchoides thecatus	NC_006892	13,888	71.4	Steinauer et al. (2005)
	Iliosentidae	Brentisentis yangtzensis	MK651258	13,864	68.3	Song <i>et al</i> . (2019)
	Pomphorhynchidae	Pomphorhynchus bulbocolli	NC_060483	13,915	59.9	Unpublished
	Pomphorhynchidae	Pomphorhynchus rocci	NC_060484	13,845	60.7	Unpublished
	Pomphorhynchidae	Pomphorhynchus tereticollis	JQ809451	13,965	56.9	Unpublished
	Pomphorhynchidae	Pomphorhynchus laevis	JQ809446	13,889	57.1	Mauer <i>et al</i> . (2020)
Polymorphida	Plagiorhynchidae	Plagiorhynchus transversus	KT447549	15,477	61.1	Gazi <i>et al</i> . (2016)
	Polymorphidae	Southwellina hispida	KJ869251	14,742	63.9	Gazi <i>et al</i> . (2015)
	Polymorphidae	Polymorphus minutus	MN646175	14,149	64.4	Sarwar et al. (2021)
	Centrorhynchidae	Centrorhynchus clitorideus	MT113355	15,884	55.5	Muhammad et al. (2020
	Centrorhynchidae	Centrorhynchus milvus	MK922344	14,314	54.5	Muhammad et al. (2019
	Centrorhynchidae	Centrorhynchus aluconis	KT592357	15,144	54.5	Gazi <i>et al</i> . (2016)
	Centrorhynchidae	Sphaerirostris picae	MK471355	15,170	58.1	Muhammad et al. (2019
	Centrorhynchidae	Sphaerirostris lanceoides	MT476588	13,478	58.0	Muhammad et al. (2020
Class Eoacanthocephala						
Gyracanthocephala	Quadrigyridae	Acanthogyrus bilaspurensis*	MT476589	13,360	59.3	Present Study
	Quadrigyridae	Acanthogyrus cheni	KX108947	13,695	65.3	Song et <i>al.</i> (2016)
	Quadrigyridae	Pallisentis celatus	JQ943583	13,855	61.5	Pan & Nie (2013)
Neoechinorhynchida	Tenuisentidae	Paratenuisentis ambiguus	FR856885	13,574	66.9	Weber <i>et al.</i> (2013)
	Neoechinorhynchidae	Neoechinorhynchus violentum	KC415004	13,393	59.4	Pan & Nie (2014)
Class Polyacanthocephala	,			,		
Polyacanthorhynchida	Polyacanthorhynchidae	Polyacanthorhynchus caballeroi	KT592358	13,956	56.3	Gazi <i>et al.</i> (2016)
Outgroup						
Bdelloidea	Philodinidae	Philodina citrina	FR856884	14,003	77.7	Weber <i>et al</i> . (2013)
Bdelloidea	Philodinidae	Rotaria rotatoria	GQ304898	15,319	73.1	Min & Park (2009)

*The mitogenome labeled as Neoechinorhynchus sp. (MT476589) in the GenBank actually corresponds to Acanthogyrus (Acanthosentis) bilaspurensis.

(*cox1*–3, *atp6*, *nad1*–6, *nad4*L, and *cytb*, lacking *atp8*), 22 tRNAs and two rRNAs genes (*rrnL* and *rrnS*), plus three non-coding regions (NCR1, NCR2, and NCR3) (Figure 1) (Table 3), which represent the smallest mitogenome of acanthocephalans reported so far (Table 2). All genes are encoded on the heavy strand and transcribed in the same direction. According to the previous

studies, most of the acanthocephalan species lack *atp*8 gene in their mitogenomes, except for *Leptorhynchoides thecatus* Linton, 1891 (Steinauer *et al.* 2005). The nucleotide contents in the complete mitogenome of *A. bilaspurensis* were 17.0% A (2276 bp), 30.1% G (4027 bp), 42.3% T (5652 bp), and 10.5% C (1405 bp) (Table 4). The level of overall A+T contents (59.3%) is lower than that in the

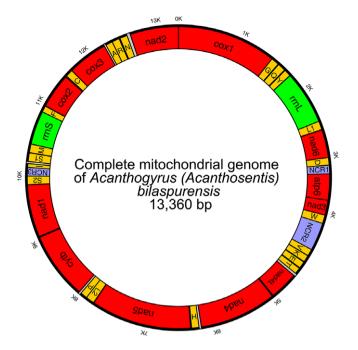


Figure 1. Organization of the complete mitogenome of *Acanthogyrus (Acanthosentis) bilaspurensis.* The 12 protein-coding genes (PCGs) (red), 22 tRNA genes (yellowishbrown), 2 rRNA genes (green), and three non-coding regions (NCR) (purple) shown in different colors. All genes are transcribed in the clockwise direction on the same strand.

mitogenomes of the other Eoacanthocephala species (59.4–66.9%) (Song *et al.* 2016; Pan and Nie 2013, 2014; Weber *et al.* 2013). The low level of overall A+T contents in the mitogenome of *A. bilaspurensis* is due to the low use of A-rich codons in the PCGs, especially in the second and third codon positions, which were only 13.5% and 11.6%, respectively (Table 4).

Protein-coding genes and codon usage

The size of 12 PCGs of A. bilaspurensis is 9,786 bp, containing 3,262 codons excluding termination codons, with average A+T content of 58.6% (Table 4). The size of 12 PCGs varied from 246 bp (nad4L) to 1545 bp (nad5) (Table 3). In the 12 PCGs of the mitogenome of A. bilaspurensis, the high level of T contents (44.2%) is consistent with high frequency of T-rich codons, which has been reported in the other acanthocephalans (Gazi et al. 2016; Muhammad et al. 2020a). TTG for lecine (9.23%) is the most frequently used codon, followed by TTT for phenylalanine (8.22%) and GTT for valine (7.69%), while CGC is the most unfrequently used codon (only 0.03%) (Table 5). Leucine (17.3%) is the most persistent amino acid in the PCGs of A. bilaspurensis (Table 5). The overall codon usage and RSCU for the construction of 12 PCGs are displayed in Figure 2. The highly frequent usage of leucine has also been reported in Cavisoma magnum Southwell, 1927 [16.7%], Sphaerirostris picae Rudolphi, 1819 [14.0%], and Plagiorhynchus transversus Rudolphi, 1819 [15.0%] (Muhammad et al. 2019a, 2020a; Gazi et al. 2016). The most frequent start codon is GTG, used for seven PCGs (cox1, nad6, atp6, nad3, nad4L, cox3, and nad2), whereas cytb and cox2 used ATG as start codon. The remaining PCGs (nad4, nad5, and nad1) used ATT, ATA, and TTG as start codons, respectively (Table 3). The most frequently used complete stop codons are TAG and TAA. The stop codon TAG was used for five PCGs (nad3, nad4L, nad5, nad1, and nad2), while the codon TAA was used for three PCGs (atp6, cytb, and cox2). The remaining four PCGs (cox1, nad6, nad4, and cox3) were

inferred to terminate with incomplete stop codon T. The incomplete stop codon T was also reported in the mitogenomes of some other acanthocephalan species (Muhammad *et al.* 2019a, b, 2020a). The detailed information of codons of 12 PCGs of *A. bilaspurensis* is provided in Table 3.

Ribosomal and transfer RNA genes

Two ribosomal RNAs, rrnL and rrnS, are 879 bp and 591 bp in size, with A+T (61.1%) and (60.2%), respectively. The rrnL lies between *trn*Y and *trn*L1, which is the same as most of the acanthocephalan species reported so far, except for Macracanthorhynchus hirudinaceus (Pallas, 1781) (rrnL lies between trnY and trnL2) (Weber et al. 2013). The *rrn*S is located between *trn*M and *trn*F, which is also the same as most of acanthocephalan species reported so far, except for P. celatus and L. thecatus (rrnS located between trnS1 and trnF) (Muhammad et al. 2019a, b, 2020a; Pan and Nie 2013; Steinauer et al. 2005). In the complete mitogenome of A. bilaspurensis, the size of 22 transfer RNAs ranges from 49 bp (trnQ) to 66 bp (trnI), lacking TWC arm but having TV-replacement loop. The two tRNAs, trnS1 and trnS2, both lack (DHU) arm, and the other tRNAs are predicted to fold into a 'cloverleaf-like' secondary structure (Muhammad et al. 2019a, b, 2020a; Gazi et al. 2016). The size, location, and anticodons of all the 22 tRNAs are presented in Table 3.

Non-coding regions

There are usually two non-coding regions (NCR) in the mitogenomes of acanthocephalans, but A. cheni, Pomphorhynchus laevis (Zoega in Müller, 1776), Polymorphus minutus (Zeder, 1800) and Pomphorhynchus bulbocolli have three non-coding regions in their mitogenomes (Song et al. 2016; Mauer et al. 2020; Sarwar et al. 2021). Paratenuisentis ambiguus and Heterosentis pseudobagri Wang & Zhang, 1987 have only one non-coding region (NCR) (Weber et al. 2013; Gao et al. 2023). Only Neoechinorhynchus violentum Van Cleave, 1928 has been reported with four noncoding regions (Pan and Nie 2014). Present study revealed A. bilaspurensis also has three non-coding regions, the total size of which is 974 bp. The NCR1 is 182 bp in length, located between *trn*D and *atp*6. The NCR2 is 415 bp in length, located between *trn*W and trnV, while the NCR3 is 104 bp, located between trnS2 and trnI. The position of NCR3 of the present species is different from all of the acanthocephalan species reported so far. Details of position and size of NCRs are provided in Figures 1 and 3 and Table 3.

Gene order

The gene arrangement of the mitogenomes can provide useful information for the phylogenetic relationships of metazoans (Song *et al.* 2019; Muhammad *et al.* 2020a). The tRNAs in the mitogenomes of acanthocephalans seem to have more variability in translocation (Song *et al.* 2019; Muhammad *et al.* 2020a). In the mitogenome of *A. bilaspurensis*, gene order of 12 PCGs and 2 rRNAs is in the following pattern: *cox1*, *rrnL*, *nad6*, *atp6*, *nad3*, *nad4L*, *nad4*, *nad5*, *ctyb*, *nad1*, *rrnS*, *cox2*, *cox3*, *nad2*, which is the same as the other acanthocephalans reported so far (Muhammad *et al.* 2019a, b, 2020a, b, c; Zhao *et al.* 2023). However, several tRNAs of the mitogenome of *A. bilaspurensis* (i.e., *trnM*, *trnV*, *trnS1*, *trnS2*, *trnK*, *trnC*, and *trn*R) exhibit variability in translocation (Figure 3).

Table 3. Organization of the mitochondrial genome of Acanthogyrus (Acanthosentis) bilaspurensis

Gene/Region	Position 5' to 3'	Size (bp)	No. of aa	Ini/Ter codons	Anti-codon	Int. seq
cox1	1–1528	1528	509	GTG/T		0
tRNA-Gly (G)	1529–1580	52			тсс	-8
tRNA-Gln (Q)	1573–1621	49			TTG	-9
tRNA-Tyr (Y)	1613–1664	52			GTA	-2
rrnL	1663–2541	879				0
tRNA-Leu (L1)	2542–2598	57			TAG	-4
nad6	2595–3021	427	142	GTG/T		0
tRNA-Asp (D) NCR1	3022–3071 3071-3253	50 182			GTC	182 -1
atp6	3254–3727	474	157	GTG/TAA		0
nad3	3728–4051	324	107	GTG/TAG		0
tRNA-Trp (W)	4052–4112	61			TCA	0
NCR2	4113–4527	415				0
tRNA-Val (V)	4528-4579	52			TAC	3
tRNA-Lys (K)	4583-4632	50			СТТ	-7
tRNA-Glu (E)	4626-4675	50			ттс	_9
tRNA-Thr (T)	4667-4725	59			TGT	37
nad4L	4763–5008	246	81	GTG/TAG		-13
nad4	4996–6220	1225	408	ATT/T		33
tRNA-His (H)	6254–6306	53			GTG	13
nad5	6320–7864	1545	514	ATA/TAG		5
tRNA-Leu (L2)	7870–7927	58			TAA	0
tRNA-Pro (P)	7928–7978	51			TGG	30
Cytb	8009–9076	1068	355	ATG/TAA		12
nad1	9089–9949	861	286	TTG/TAG		-1
tRNA-Ser (S2)	9949–10001	53				0
NCR3	10002-10105	104				0
tRNA-Ile (I)	10106–10171	66			GAT	30
tRNA-Ser (S1)	10202-10264	63			ACT	4
tRNA-Met (M)	10269–10328	60			CAT	-1
rrnS	10328–10918	591				0
tRNA-Phe (F)	10919–10970	52			GAA	_4
cox2	10967–11596	630	209	ATG/TAA		15
tRNA-Cys (C)	11582–11640	59			GCA	1
cox3	11642–12326	685	228	GTG/T		27
tRNA-Ala (A)	12354–12406	53			TGC	1
tRNA-Arg (R)	12408–12468	61			TCG	14
tRNA-Asn (N)	12455–12511	57			GTT	47
nad2	12559–13359	801	266	GTG/TAG		1

NCR: non-coding region, bp: base pair, aa: amino acid, Ini/Ter: initial/terminal codons, Int. seq.: intergenic sequences

Phylogeny

Phylogenetic trees using ML and BI methods have almost identical topologies, which supported the division of the phylum Acanthocephala into three large monophyletic clades (clades I, II, and III), representing the classes Palaeacanthocephala, Archiacanthocephala, and Eoacanthocephala, respectively (Figure 4). The clade I consists of *M. hirudinaceus*, *O. luehei*, and *Moniliformis* sp., all belonging to the class Archiacanthocephala, which further

6

 Table 4. Nucleotide composition of the mitochondrial genome of Acanthogyrus (Acanthosentis) bilaspurensis

Nucleotide sequence	Size (bp)	A (%)	C (%)	T (%)	G (%)	A+T (%)	G+C (%)
Overall	13360	17.0	10.5	42.3	30.1	59.3	40.6
Protein coding genes	9786	14.4	10.3	44.2	31.0	58.6	41.3
Codon position*							
1st	3262	18.2	10.0	37.5	34.4	55.7	44.4
2nd	3262	13.5	13.3	50.7	22.5	64.2	35.8
3rd	3262	11.6	7.7	44.5	36.2	56.1	43.9
Ribosomal RNA genes	1470	25.4	11.9	35.3	27.3	60.7	39.2
Transfer RNA genes	1218	23.0	10.7	38.3	28.1	61.3	38.8
Non-coding region 1	415	29.2	12.5	29.2	29.2	58.3	41.7
Non-coding region 2	104	37.5	3.9	45.2	13.5	82.7	17.3

*Termination codons were excluded.

Table 5. Genetic code and codon usage for 12 PCGs in the mitochondrial genome of Acanthogyrus (Acanthosentis) bilaspurensis

Codon	аа	No.	%	Codon	Aa	No.	%
TTT	Phe	268	8.22	TAT	Tyr	104	3.19
TTC	Phe	28	0.86	TAC	Tyr	35	1.07
TTA	Leu	117	3.59	TAA	*	0	0.00
TTG	Leu	301	9.23	TAG	*	0	0.00
СТТ	Leu	77	2.36	CAT	His	32	0.98
СТС	Leu	5	0.15	CAC	His	9	0.28
СТА	Leu	18	0.55	CAA	Gln	10	0.31
CTG	Leu	46	1.41	CAG	Gln	13	0.40
ATT	Ile	91	2.79	AAT	Asn	32	0.98
ATC	Ile	10	0.31	AAC	Asn	11	0.34
ATA	Met	33	1.01	AAA	Lys	20	0.61
ATG	Met	120	3.68	AAG	Lys	37	1.13
GTT	Val	251	7.69	GAT	Asp	44	1.35
GTC	Val	25	0.77	GAC	Asp	18	0.55
GTA	Val	44	1.35	GAA	Glu	15	0.46
GTG	Val	219	6.71	GAG	Glu	60	1.84
тст	Ser	139	4.26	TGT	Cys	64	1.96
тсс	Ser	18	0.55	TGC	Cys	11	0.34
TCA	Ser	14	0.43	TGA	Trp	22	0.67
TCG	Ser	23	0.71	TGG	Trp	78	2.39
CCT	Pro	39	1.20	CGT	Arg	24	0.74
CCC	Pro	6	0.18	CGC	Arg	1	0.03
CCA	Pro	10	0.31	CGA	Arg	10	0.31
CCG	Pro	16	0.49	CGG	Arg	9	0.28
ACT	Thr	36	1.10	AGT	Ser	48	1.47
ACC	Thr	5	0.15	AGC	Ser	19	0.58
ACA	Thr	9	0.28	AGA	Ser	28	0.86
ACG	Thr	11	0.34	AGG	Ser	83	2.54
·							(Continued)

Journal of Helminthology

Table 5. (Continued)

Codon	аа	No.	%	Codon	Aa	No.	%
GCT	Ala	63	1.93	GGT	Gly	141	4.32
GCC	Ala	19	0.58	GGC	Gly	31	0.95
GCA	Ala	12	0.37	GGA	Gly	16	0.49
GCG	Ala	15	0.46	GGG	Gly	149	4.57

No.: number of copies; *: Stop (termination) codon; aa: amino acid; Average# codons: 3262

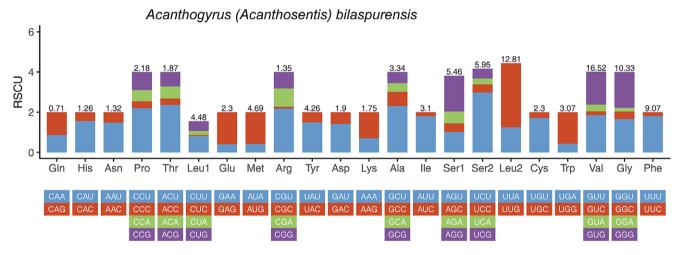


Figure 2. Relative synonymous codon usage (RSCU) of the 12 protein-coding genes (PCGs) of Acanthogyrus (Acanthosentis) bilaspurensis. The codon families are labelled on the x-axis. Values on the top of each bar represent amino acid usage in percentage.

Acanthocephala

Acanthocephala		Family
Macracanthorhynchus hirudinaceus Oncicola luehei		Oligacanthorhynchidae
Moniliformis sp	w d d d d w d w d w d w d w d w w d w d	
		Moniliformidae
Leptorhynchoides thecatus		Leptorhynchoididae
Brentisentis yangtzensis	an <mark>a b b a de la constante de</mark>	
Cavisoma magnum		Cavisomatidae
Micracanthorhynchina dakusuiensis	10	Rhadinorhynchidae
Pseudoacanthocephalus bufonis		Pseudoacanthocephalidae Arhythmacanthidae
Heterosentis pseudobagri	be and a few at the angle of the second be and the second second at the second s	Arnythmacanthidae
Pomphorhynchus bulbocolli		
Pomphorhynchus rocci		Pomphorhynchidae
Pomphorhynchus tereticollis		romphornynemdae
Pomphorhynchus laevis	······································	
Echinorhynchus truttae	······································	Echinorhynchidae Plagiorhynchidae
Plagiorhynchus transversus	an a b b ⊕ b an a b an a b an a b an a b b a b b	Plagiomynenidae
Polymorphus mitutus		Polymorphidae
Southwellina hispida	ant - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	
Centrorhynchus clitorideus	<u>∞</u> 4 4 4 4 4 4 4 6 ∞ 4 6 1 3 1 1 1 1 1 1 1 1 1 1	
Centrorhynchus milvus		
Centrorhynchus aluconis		Centrorhynchidae
Sphaerirostris picae		
Sphaerirostris lanceoides	Sau af af af af an	
Acanthogyrus bilaspurensis	500	
Acanthogyrus cheni		Quadrigyridae
Pallisentis celatus	······································	
Paratenuisentis ambiguus	□ · · · · · · · · · · · · · · · · · · ·	Tenuisentidae
Neoechinorhynchus violentum		Neoechinorhynchidae
Polyacanthorhynchus caballeroi	· · · · · · · · · · · · · · · · · · ·	Polyacanthorhynchidae
Rotifera (Out-group)		Martin Profiles
Rotaria rotatoria		Philodinidae
Philodina citrina	100	

l1-6/nad4L _____ cytb 🔶 rRNAs >> tRNAs ____ NCRs

Figure 3. Linearized comparison of the mitochondrial gene arrangement for 28 acanthocephalan species and two rotifer species. All genes are encoded from left to right in the same direction. The tRNAs are labelled by single-letter code for the corresponding amino acid.

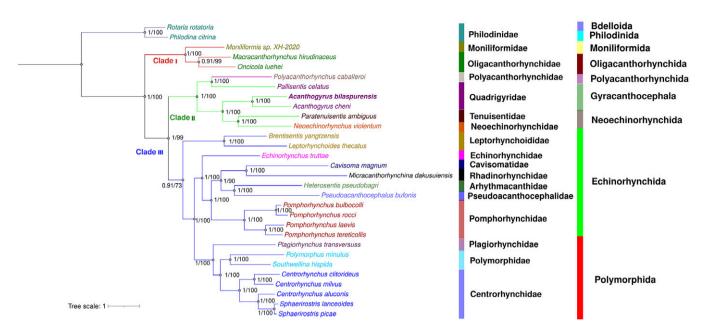


Figure 4. Phylogenetic relationships of acanthocephalans based on concatenating the amino acid sequences of 12 protein-coding genes (PCGs) of mitogenomes using Bayesian inference (BI) and maximum likelihood (ML) analyses. *Philodina citrina* and *Rotaria rotatoria* (Bdelloidea: Rotifera) were used as outgroups. Bootstrap values>90 and Bayesian posterior probabilities values>0.90 are shown in the phylogenetic trees.

confirmed the Archiacanthocephala as a sister to the remaining Acanthocephala. The results are consistent with the previous phylogenetic studies (Gao *et al.* 2022).

The clade II contains representatives of the classes Eoacanthocephala and Polyacanthocephala. Species of the class Polyacanthocephala (including only Polyacanthorhynchus caballeroi Diaz-Ungria & Rodrigo, 1960) nested in representatives of the class Eoacanthocephala, which is accordant with the previous mitogenomic phylogenies (Muhammad et al. 2019a, b, 2020a, b; Gazi et al. 2016; Song et al. 2019; Zhao et al. 2023; Dai et al. 2022). However, some phylogenetic analyses based on 18S, 18S+28S, and 18S+28S +cox1 sequence data supported that Polyacanthocephala is an independent class (Garey et al. 1996; García-Varela et al. 2002; García-Varela and Nadler 2006; Verweyen et al. 2011). Our phylogenetic analyses showed A. bilaspurensis clustered together with A. cheni, which displayed distant relationship to P. celatus in the family Quadrigyridae (Figure 4). The present phylogeny further confirmed the order Gyracanthocephala, the Quadrigyridae, and its subfamily Pallisentinae are not monophyletic, which is coincident with the previous phylogenetic studies based on mitogenomics and nuclear DNA data (Gazi et al. 2016; Song et al. 2019; Muhammad et al. 2019a, b, 2020a, b, c; Dai et al. 2022; Zhao et al. 2023).

The clade III includes species of the class Palaeacanthocephala. Phylogenetic results showed that the order Polymorphida is a monophyletic group, and the families Polymorphidae (including *Southwellina hispida* (Van Cleave, 1925) and *P. minutus*) and Centrorhynchidae (including *Centrorhynchus milvus* Ward, 1956, *Centrorhynchus clitorideus* Meyer, 1931, *C. aluconis* Müller, 1780, *Sphaerirostris lanceoides* Petrochenko, 1949, and *S. picae*) have a more close relationship than the family Plagiorhynchidae (including *P. transversus*) (Figure 4), which agreed well with some previous phylogenetic studies based on the mitogenomic data (Gazi *et al.* 2016; Song *et al.* 2019; Muhammad *et al.* 2019a, b, 2020a, b, c; Dai *et al.* 2022; Zhao *et al.* 2023) but conflicted with these phylogenies using 18S + 28S + *cox*1 data (García-Varela *et al.* 2013; Gazi *et al.* 2015) or some phylogenies based on the mitogenomic data (Muhammad *et al.* 2020a, b, c). Phylogenetic analyses also indicated the order Echinorhynchida is a paraphyletic group. However, the families Pseudoacanthocephalidae (including only *Pseudoacanthocephalus bufonis* Shipley, 1903) and Arhythmacanthidae (including only *H. pseudobagri*) displayed sister relationships, which is inconsistent with the previous phylogeny (Zhao *et al.* 2023).

Authors' contribution. NM and LL designed the study and analyzed mitogenomic data. NM performed the experiment, sequenced data, and wrote the manuscript. LL and RSS identified acanthocephalan specimens. NM and DXL performed the phylogeny. Suleman, DS, and MAA collected specimens. All authors read and approved the final manuscript.

Financial support. This study was supported by the National Natural Science Foundation of China (Grant No. 31872197).

Competing interest. The authors declare that they have no competing interests.

References

- Amin OM (2013) Classification of the Acanthocephala. Folia Parasitologica 60, 273–305.
- Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz M, Middendorf M, and Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. *Molecular Phylogenetics and Evolution* 69, 313–319.
- Burland TG (2000) DNASTAR's Lasergene sequence analysis software. Methods in Molecular Biology 132, 71–91.
- Chen YY, Chen S, Kang J, Fang H, Dao H, Guo W, Lai C, Lai M, Fan J, Fu L, Andrieu JM, and Lu W (2014) Evolving molecular epidemiological profile of human immunodeficiency virus 1 in the southwest border of China. *PLoS One* 9, e107578.
- Chowhan JS, Gupta NK, and Khera S (1987) On two new species of the genus Acanthosentis Verma and Datta, 1929 (Acanthocephala: Quadrigyridae) from freshwater fishes. Research Bulletin of the Panjab University, Science 38, 59–85.
- Dai GD, Yan HB, Li L, Zhang LS, Liu ZL, Gao SZ, and Jia WZ (2022) Molecular characterization of a new *Moniliformis* sp. from a plateau zokor (*Eospalax fontanierii baileyi*) in China. *Frontiers in Microbiology* 13, 806882.

- Gao JW, Yuan XP, Jakovlić I, Wu H, Xiang CY, Xie M, and Ou DS (2023) The mitochondrial genome of *Heterosentis pseudobagri* (Wang & Zhang, 1987) Pichelin and Cribb, 1999 reveals novel aspects of tRNA genes evolution in Acanthocephala. *BMC Genomics* 24, 1–15.
- Gao JW, Yuan XP, Wu H, Xiang CY, Xie M, Song R, and Ou DS (2022) Mitochondrial phylogenomics of Acanthocephala: nucleotide alignments produce long-branch attraction artefacts. *Parasites & Vectors* 15, 1–12.
- García-Varela M and Nadler SA (2006) Phylogenetic relationships among Syndermata inferred from nuclear and mitochondrial gene sequences. *Molecular Phylogenetics and Evolution* **40**, 61–72.
- García-Varela M, Cummings MP, de León GPP, Gardner SL, and Laclette JP (2002) Phylogenetic analysis based on 18S ribosomal RNA gene sequences supports the existence of class Polyacanthocephala (Acanthocephala). *Molecular Phylogenetics and Evolution* 23, 288–292.
- García-Varela M, Pérez-Ponce de León G, Aznar FJ, and Nadler SA (2013) Phylogenetic relationship among genera of Polymorphidae (Acanthocephala), inferred from nuclear and mitochondrial gene sequences. *Molecular Phylogenetics and Evolution* **68**, 176–184.
- Garey JR, Near TJ, Nonnemacher MR, and Nadler SA (1996) Molecular evidence for Acanthocephala as a subtaxon of Rotifera. *Journal of Molecular Evolution* 43, 287–292.
- Gazi M, Kim J, and Park JK (2015) The complete mitochondrial genome sequence of Southwellina hispida supports monophyly of Palaeacanthocephala (Acanthocephala: Polymorphida). Parasitology International 64, 64–68.
- Gazi M, Kim J, García-Varela M, Park C, Littlewood DTJ, and Park JK (2016) Mitogenomic phylogeny of Acanthocephala reveals novel class relationships. *Zoologica Scripta* 45, 437–454.
- Gazi M, Sultana T, Min GS, Park YC, García-Varela M, Nadler SA, Park JK (2012) The complete mitochondrial genome sequence of *Oncicola luehei* (Acanthocephala: Archiacanthocephala) and its phylogenetic position within Syndermata. *Parasitology International* **61**, 307–316.
- Kumar S, Stecher G, and Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution* 33, 1870–1874.
- Lanfear R, Frandsen PB, Wright AM, Senfeld T, and Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. *Molecular Biology* and Evolution 34, 772–773.
- Laslett D and Canback B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. *Bioinformatics* 24, 172–175.
- Mauer K, Hellmann SL, Groth M, Fröbius AC, Zischler H, Hankeln T, and Herlyn H (2020) The genome, transcriptome, and proteome of the fish parasite *Pomphorhynchus laevis* (Acanthocephala). *PLoS One* 15, e0232973.
- Min GS and Park JK (2009) Eurotatorian paraphyly: revisiting phylogenetic relationships based on the complete mitochondrial genome sequence of *Rotaria rotatoria* (Bdelloidea: Rotifera: Syndermata). *BMC Genomics* **10**, 1–13.
- Minh BQ, Nguyen MAT, and Von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. *Molecular Biology and Evolution* 30, 1188–1195.
- Muhammad N, Ahmad MS, Li L, Zhao Q, Ullah H, Zhu XQ, and Ma J (2020c) Mitochondrial DNA dataset suggest that the genus *Sphaerirostris* Golvan, 1956 is a synonym of the genus *Centrorhynchus* Lühe, 1911. *Parasitology* 147, 1149–1157.
- Muhammad N, Khan MS, Li L, Zhao Q, Ullah H, Zhu XQ, and Ma J (2020b) Characterization of the complete mitogenome of *Centrorhynchus clitorideus* (Meyer, 1931) (Palaeacanthocephala: Centrorhynchidae), the largest mitochondrial genome in Acanthocephala, and its phylogenetic implications. *Molecular and Biochemical Parasitology* 237, e111274.
- Muhammad N, Li L, Zhao Q, Bannai MA, Mohammad ET, Khan MS, and Ma J (2020a) Characterization of the complete mitochondrial genome of *Cavi*soma magnum (Acanthocephala: Palaeacanthocephala), first representative of the family Cavisomidae, and its phylogenetic implications. *Infection, Genetics and Evolution* 80, e104173.

- Muhammad N, Ma J, Khan MS, Li L, Zhao Q, Ahmad MS, and Zhu XQ (2019a) Characterization of the complete mitochondrial genome of *Sphaerirostris picae* (Rudolphi, 1819) (Acanthocephala: Centrorhynchidae), representative of the genus *Sphaerirostris*. *Parasitology Research* 118, 2213–2221.
- Muhammad N, Ma J, Khan MS, Wu SS, Zhu XQ, and Li L (2019b) Characterization of the complete mitochondrial genome of *Centrorhynchus milvus* (Acanthocephala: Polymorphida) and its phylogenetic implications. *Infection, Genetics and Evolution* 75, e103946.
- Naidu KV (2012) Fauna of India and the adjacent countries: Acanthocephala. Zoological Survey of India. 1–638.
- Nguyen LT, Schmidt HA, Von Haeseler A, and Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular Biology and Evolution* 32, 268–274.
- Pan T and Jiang H (2018) The complete mitochondrial genome of *Hebesoma violentum* (Acanthocephala). *Mitochondrial DNA Part B Resources* 3, 582–583.
- Pan T and Nie P (2014) The cloning of the mitochondrial genome of *Hebesoma violentum* (Acanthocephala) and the phylogenetic analysis of acanthocephalans. *Acta Hydrobiologica Sinica* 38, 351–361.
- Pan TS and Nie P (2013) The complete mitochondrial genome of *Pallisentis celatus* (Acanthocephala) with phylogenetic analysis of acanthocephalans and rotifers. *Folia Parasitologica* 60, 181–191.
- Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, and Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
- Ru SS, Rehman AU, Chen HX, Khan MS, Muhammad N, and Li L (2022) Morphology and molecular characterization of *Acanthogyrus* (*Acanthosentis*) bilaspurensis Chowhan, Gupta & Khera, 1987 (Acanthocephala: Gyracanthocephala: Quadrigyridae) from the common carp *Cyprinus carpio* Linnaeus (Cypriniformes: Cyprinidae) in Pakistan. *Parasitology International* **90**, 102608.
- Sarwar H, Zhao WT, Kibet CJ, Sitko J, and Nie P (2021) Morphological and complete mitogenomic characterisation of the acanthocephalan *Polymorphus minutus* infecting the duck *Anas platyrhynchos*. *Folia Parasitologica* 68, 1–9.
- Song R, Zhang D, Deng S, Ding D, Liao F, and Liu L (2016) The complete mitochondrial genome of *Acanthosentis cheni* (Acanthocephala: Quadrigyridae). *Mitochondrial DNA Part B Resources* 1, 797–798.
- Song R, Zhang D, Gao JW, Cheng XF, Xie M, Li H, and Wu YA (2019) Characterization of the complete mitochondrial genome of *Brentisentis yangt*zensis Yu and Wu, 1989 (Acanthocephala, Illiosentidae). ZooKeys 861, 1–14.
- Steinauer ML, Nickol BB, Broughton R, and Ortí G (2005) First sequenced mitochondrial genome from the phylum Acanthocephala (*Leptorhynchoides thecatus*) and its phylogenetic position within Metazoa. Journal of Molecular Evolution 60, 706–715.
- Verweyen L, Klimpel S, and Palm HW (2011) Molecular phylogeny of the Acanthocephala (class Palaeacanthocephala) with a paraphyletic assemblage of the orders Polymorphida and Echinorhynchida. PLoS One 6, e28285.
- Weber M, Wey-Fabrizius AR, Podsiadlowski L, Witek A, Schill RO, Sugár L, and Hankeln T (2013) Phylogenetic analyses of endoparasitic Acanthocephala based on mitochondrial genome suggest secondary loss of sensory organs. *Molecular Phylogenetics and Evolution* 66, 182–189.
- Wickham H (2016) ggplot2: elegant graphics for data analysis. 2nd ed. New York, Springer.
- Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, and Wang GT (2020) Phylosuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. *Molecular Ecology Resources* 20, 348–355.
- Zhao TY, Yang RJ, Lü L, Ru SS, Wayland MT, Chen HX, and Li L (2023) Phylomitogenomic analyses provided further evidence for the resurrection Pseudoacanthocephalidae (Acanthocephala: Echinorhynchida). *Animals* 13, e1256.