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ABSTRACT: Neurofibromatosis type 1 (NF1) was first described in 1882 and is characterized by a 
diverse spectrum of clinical manifestations, including neurofibromas, cafe au lait spots, and Lisch nod­
ules. NF1 is also noted for the higher risk of associated malignancies, making it the most common 
tumour-predisposing disease in humans. Transmitted in an autosomal dominant manner, the NFI gene 
was cloned in 1990, and belongs to the family of tumour suppressor genes. Since then, there has been 
an explosion in our understanding of how the gene product, neurofibromin, functions in normal cellular 
physiology, and how its loss in NF1 relates to the wide spectrum of clinical findings, including NF1-
associated tumours. Neurofibromin is a major negative regulator of a key signal transduction pathway 
in cells, the Ras pathway, which transmits mitogenic signals to the nucleus. Loss of neurofibromin 
leads to increased levels of activated Ras (bound to GTP), and thus increased downstream mitogenic 
signaling. Our understanding of neurofibromin's role within cells has allowed for the development of 
pharmacological therapies which target the specific molecular abnormalities in NF1 tumours. These 
include the farnesyl transferase inhibitors, which inhibit the post-translational modification of Ras, and 
other agents which modulate Ras-mediated signaling pathways. 

RESUME: Neurofibromatose de type I: la solution de l'enigme. La neurofibromatose de type I (NFI) a etfi 
decrite pour la premiere fois en 1882. Elle se caracterise par un spectre varie de manifestations cliniques incluant 
des neurofibromes, des taches cafe au lait et des nodules de Lisch. On sait aussi que la NFI confere un risque plus 
elevd de cancers associes, ce qui en fait la maladie la plus frequente associee a une predisposition tumorale chez 
l'humain. Le gene de la NFI, clond en 1990, est transmis sur le mode autosomal dominant et fait partie de la famille 
des genes suppresseurs de tumeurs. Depuis ce temps, il y a eu une explosion dans notre comprehension de la facon 
dont le produit du gene, la neurofibromine, fonctionne dans les cellules physiologiquement normales et comment 
son absence dans la NFI mene a un large spectre de manifestations cliniques dont les tumeurs associees a la NFI. 
La neurofibromine est un regulateur negatif important d'une voie de transduction d'un signal eld dans les cellules, 
la voie Ras, qui transmet des signaux mitogenes au noyau. Le deficit en neurofibromine provoque des niveaux 
eleves de Ras active (lie au GTP) et done une augmentation du signal mitogene en aval. Notre comprehension du 
role de la neurofibromine dans les cellules a mene au deVeloppement de traitements pharmacologiques qui ciblent 
les anomalies moleculaires specifiques aux tumeurs NFI. Parmi ceux-ci, signalons les inhibiteurs de la farnesyl 
transferase qui inhibent la modification post-traductionnelle de Ras et les autres agents qui modulent les voies de 
signalisation mediees par Ras. 
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Neurofibromatosis type 1: clinical features 

The first published case of neurofibromatosis type 1 (NFI) 
was by von Recklinghausen in 1882,1 whose name was associat­
ed with a diverse group of diseases characterized by multiple 
peripheral nerve tumours. Recent clinical and genetic under­
standing has led to the identification of two separate disease 
entities, termed NFI (the subject of this paper) and NF2, both 
grouped together as von Recklinghausen disease in the past. 
NFI is the result of alterations of the NFI gene on chromosome 
17q, clinically characterized by peripheral neurofibromas, cafe 
au lait spots (CAL), Lisch nodules, and a myriad of other abnor­
malities.2 NF2 results from alterations of the NF2 gene on chro­
mosome 22,3'4 and is characterized by bilateral vestibular 
schwannomas, meningiomas, ependymomas, and astrocytomas.5 

Another point of confusion is the association of NFI with the 

Elephant Man Disease, in reference to the elephant man Joseph 
Merrick who lived from 1862-1890 and suffered from severe 
disfiguring skin lesions. However, recent re-evaluation of 
Joseph Merrick's medical history clearly shows that he did not 
suffer from NFI, but rather suffered from the rare Proteus syn­
drome.6 
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The hallmarks of NFl are the cutaneous neurofibromas, con­
sisting of a mixture of Schwann cells, fibroblasts, and mast 
cells,7 which generally do not appear until adolescence. There­
fore, other defining features arising earlier in childhood are 
often the first signs of NFl. These include CAL, which appear 
during the first year of life and are present in 95% of NFl 
adults.8 Since 3 CAL spots may be present in up to 25% of the 
normal population,9 6 or more CAL spots is considered sugges­
tive of NFl .l0 Freckling in non-sun-exposed regions of the body 
and Lisch nodules (pigmented hamartomas of melanocytic ori­
gin in the iris) are more specific and can be detected early in 
NFl patients.8" While these are the most common clinical signs 
of NFl, a large number of diverse cutaneous, osseous, hemato­
logic, developmental, and nervous system abnormalities are 
often present.2 The number and severity of these clinical abnor­
malities is variable not only between members of different NFl 
families, but between members of the same family, leading to 
occasional confusion in the clinical diagnosis. In an effort to 
standardize diagnostic criteria, which has tremendously helped 
both epidemiological and molecular studies on NFl, the Nation­
al Institutes of Health set uniform diagnostic criteria for NFl, as 
well as a separate set of criteria for NF210 (Table). Despite 
recent advances in our understanding of the molecular basis of 
NFl , these clinical criteria continue to be the most reliable 
means for making the diagnosis.12 

The two major life threatening complications of NFl are 
hypertension and cancer . 1 3 1 4 Renal artery stenosis and 
pheochromocytoma, which occur at a higher frequency in NFl 
patients, should be excluded as the cause for hypertension, 
although most hypertension is primary in nature.15 Malignancies 
other than neurofibromas and pheochromocytomas noted at a 
higher frequency in NFl patients include malignant peripheral 
nerve sheath tumours (MPNST), astrocytomas (most notably 
optic gliomas), and chronic myeloid leukemias of childhood.16 

In contrast, common adult malignancies such as lung, colon and 
breast cancers are not seen at higher frequency in NFl.17 Most 
NFl-related deaths are thus attributed to either hypertension or 
cancer. In a 12-year prospective population study in Gbteborg, 
Sweden, 22 of 70 NFl patients died, 10 from hypertension and 
12 from malignancies.14 These NFl patients thus demonstrated 
an age and sex-adjusted death rate 4.3 times that of the non-NFl 
Swedish population. Nonetheless, the diagnosis of NFl should 
not be routinely regarded as life threatening, with a majority of 
patients surviving well into their adulthood, with a mean sur­
vival age of 61.6 years in this study.14 

Genetics 

NFl has a birth incidence of 1:2500-1:3000, with a preva­
lence of 1:4000-1:5000.18 The Mendelian inheritance pattern of 
NFl is autosomal dominant.19"21 Although case reports have 
suggested that NFl can skip generations, these cases likely rep­
resent mildly affected individuals.22 About 30-50% of NFl 
patients represent de-novo germline mutations,220 implying an 
extremely high spontaneous mutation rate of the NFl gene. This 
mutation rate has been estimated at 1 mutation per 10,000 alle­
les per generation, a rate 10-100 times higher than the usual 
mutation rate for a single locus.2023,24 Such a high mutation rate 
may be related to the large size of the NFl gene, as the similarly 
large Duchenne muscular dystrophy (DMD) gene25 also demon­
strates a mutation rate of 1/10,000 alleles/generation.26 Howev-

Table: Diagnostic Criteria for NFl.10 

The diagnostic criteria of the National Institutes of Health Consensus 
Conference on Neurofibromatosis (July, 1987) are met by an individu­
al who demonstrates two or more of the following: 

• 6 or more cafe au lait macules of over 5 mm in greatest diameter in 
prepubertal individuals and over 15 mm in greatest diameter in post-
pubertal individuals 

• 2 or more neurofibromas of any type or one plexiform neurofibroma 

• axillary or inguinal freckling 

• optic glioma 

• 2 or more Lisch nodules (iris hamartomas of melanotic origin) 

• a distinctive osseous lesion such as sphenoid dysplasia or thinning of 
the long bone cortex with or without pseudoarthrosis 

• a first-degree relative (parent, sibling, or offspring) with NFl by the 
above criteria. 

er, the size of the gene may not be the full explanation, as evi­
denced by a similar germ-line mutation rate of the much smaller 
NF2 gene, which has a ten-fold lower birth incidence than NFl 
(1/33,000-40,000 live births).5 Germ-line mutations of the NFl 
gene occur preferentially on the paternally-derived allele,26"29 

which has also been noted in achondroplasia, Lesch-Nyhan syn­
drome, and hemophilia A. However, in each of the latter dis­
eases the incidence of new mutations increases with parental 
age,29 implying that paternal bias is related to the high number 
of cell divisions which occurs during spermatogenesis,26-29 a pat­
tern not seen in NFl.2 2 9 The phenomenon of genomic imprint­
ing has been proposed as an alternate explanation for these 
preferential paternal allele mutations.27"31 Classical Mendelian 
genetics assumes that both alleles (maternal and paternal) of a 
gene participate equally in determining the phenotype of the off­
spring. The concept of genomic imprinting has thus been devel­
oped to explain situations where one allele is preferentially 
expressed over the other allele. Hence, genomic imprinting is an 
epigenetic phenomenon, in which non-genetic modifications of 
an allele result in altered expression and phenotype. A common 
mechanism resulting in genomic imprinting involves hyperme-
thylation of the sperm genome;3233 a hypermethylated gene is at 
higher risk for mutations through the spontaneous deamination 
of 5-methylcytosine (methylated cytosine nucleotides) to 
thymine.30 Methylation has also been proposed as a mechanism 
for gene silencing, in which either the maternally- or paternally-
derived allele is active while the other allele does not contribute 
to gene expression. Methylation may thus explain why children 
of affected NFl mothers (mutation of the maternal NFl allele 
with gene silencing of the paternal NFl allele by methylation) 
often demonstrate a more severe clinical manifestation than 
children of affected fathers (in which the mutated paternal allele 
may be silenced by methylation, allowing the non-mutated 
maternal allele to alone contribute to gene expression).34 

In addition to the NFl allele, some evidence exists that other 
genetic loci may also contribute to the phenotype of NFl 
patients. Analyses of monozygotic twins and more distantly-
related family members with NFl demonstrate that monozygot­
ic twins have very similar phenotypes, while non-twin siblings 
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and more distantly-related family members (who presumably 
carry identical NF1 mutations) frequently exhibit very differ­
ent phenotypes.35 Such a pattern is suggestive of polygenic 
inheritance, and implies that the expression or mutation of 
non-NFJ alleles is important in determining the phenotype of 
NF1 patients.35 

Cloning the NF1 gene 

The uniform NIH clinical diagnostic criteria led to the identi­
fication of a relatively homogenous cohort of patients and fami­
lies with NF1,'° which in turn played a pivotal role in the 
ultimate identification of the responsible gene. Restriction frag­
ment length polymorphism (RFLP) and linkage studies of NF1 
families suggested the pericentromeric region of chromosome 
17 as the likeliest site for the NF1 gene.3639 Two NF1 families 
with balanced translocations involving 17q ( t ( l ;17) and 
t(17;22)),40-41 helped map the NF] gene to chromosome 
17qll.2,42 a region which harboured three candidate genes.43 

Mutations of the first candidate gene, EV12A, the human homo-
logue of a mouse gene implicated in retrovirus-induced murine 
myeloid tumours, were not found in any NF1 patients, thus rul­
ing it out.44 The second candidate gene was EV12B, also a 
human homologue of a murine gene implicated in retroviral 
insertions, however, it also failed to demonstrate mutations in 
NF1 patients.45 The OMGP gene, encoding oligodendrocyte-
myelin glycoprotein and expressed only in oligodendrocytes and 
Schwann cells, was the third candidate gene,46 but also was 
found not to be mutated in NF1 patients. Subsequent analysis 
has shown that these three genes are encoded within the large 
authentic NF] gene,47 but transcribed off the opposite strand, a 
phenomenon known as "nested genes". The contribution of 
these three nested genes to the NF1 clinical phenotype, if any, is 
not known. 

The authentic NF1 gene was cloned in 1990, largely with the 
help of probes that extended well beyond the previously report­
ed translocation breakpoints (Figure i)J 8,45,48,49 Most of the 
NF1 gene maps to a Notl restriction fragment of approximately 
350 kilobases (kb) in size (all but 15 kb of this fragment is made 
up of NF] genomic DNA), while exon 1 and the 5' untranslated 
region maps to an adjacent 120 kb Notl fragment (Figure l).50 

Due to the evolution of the exon numbering scheme, the exon 
containing the 3' stop codon is numbered exon 49, even though 
the entire gene consists of 59 exons.50 The second-largest intron 
is intron 27b (45-50 kb), which contains the three nested genes 
OMPG, EVJ2A, and EVJ2B described above.50 Exons 21-27a 
encode a 360 amino acid domain in the protein product which 
demonstrates homology with GTPase-activating proteins, and is 
termed the GAP-related domain (GRD).50 The 5' promoter 
region contains a cAMP response element (CRE), AP2 consen­
sus binding sites, and a serum response element (SRE).5' The 
cDNA is 8454 nucleotide base pairs (bp) in length,18 with two 
messenger RNA (mRNA) transcripts (11 and 13 kb), which dif­
fer in the length of their 3' untranslated region.50-52 

Expression of neurofibromin 

Neurofibromin is composed of 2818 amino acids with a 
molecular weight of 220 kilo-Daltons (kDa).18-53-54 While NF] 
mRNA is detectable in most tissues, the expression of the neu­
rofibromin protein is more tightly regulated, with highest levels 
found in neurons, oligodendrocytes, non-myelinated Schwann 
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Figure 1: Schematic representation of the NF1 gene, its mRNA tran­
script, and its protein product, neurofibromin. The NF1 gene is a 
large gene of 350 kb. Its cloning in 1990 was facilitated by the discov­
ery of two NF1 patients with balanced translocations involving chro­
mosome 17q (t(l;17) and t(17;22)). Three attempts at identifying the 
NF1 gene failed to discover the true NF1 gene, instead discovering 
the three nested genes OMGP (O), EV12A (2A), and EV12B (2B), 
which are transcribed off the opposite strand. The mRNA transcript is 
11-13 kb long, depending on the length of the 3' untranslated region. 
Neurofibromin is a large protein, with a molecular weight of 220 kDa. 
The indicated size of the NF 1 mRNA (8454 bp) and resultant protein 
(2818 amino acids) do not include the various tissue- and develop­
ment-specific isoforms, which arise from the insertion of alternatively 
spliced exons 9a, 23a, and/or 48a. 

cells, adrenal medulla, leukocytes and testis.5556 In comparison, 
it is expressed in low amounts in adult astrocytes, myelinated 
Schwann cells, lung and kidney.55-56 Four neurofibromin iso­
forms, which differ in their developmental and tissue expres­
sion, have been identified due to insertions into exons 23a, 48a, 
and 9a (Figure 1). Type 1 neurofibromin was the original iso-
form isolated and lacks any of these insertions. Type 2 isoform 
has an insertion of 63 nucleotides (21 amino acids) in exon 23a 
within the NF1-GRD,57-58 which results in a 10-fold lower Ras-
GAP activity and lower tubulin binding capacity.56-57 Type 1 
neurofibromin is the predominant isoform expressed in neurons 
of the CNS (cerebellum, cerebral hemispheres, and brainstem) 
and dorsal root ganglia, while the Type 2 isoform is predomi­
nantly expressed in tissues derived from the neural crest such as 
Schwann cells and adrenal medullary cells, in addition to glia 
and anterior horn cells of the adult spinal cord.56-59 

Insertion of 54 nucleotides (18 amino acids) in exon 48a near 
the extreme carboxyl terminus results in the Type 3 isoform,60 

which is almost exclusively expressed in skeletal, cardiac, and 
smooth muscle, with little or no expression in brain, spleen or 
kidney.61 This isoform is highly expressed during embryogene-
sis and declines shortly after birth, suggesting a role in muscle 
development.61 Insertion of 30 nucleotides (10 amino acids) in 
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exon 9a, within the NFl-GRD yields the Type 4 isoform, which 
is only expressed in neurons of the CNS, and not in neural crest 
derived tissues62 or in glial cells.63 Within the CNS, there is 
regional variation in the expression of the Type 4 isoform, 
which also likely plays a role in neuronal development, with 
increased expression during late embryogenesis.63 In addition, 
this isoform is highly expressed in medulloblastomas and oligo­
dendrogliomas, while it is found in low levels in astrocytomas, 
meningiomas, and ependymomas.6264 

Neurofibromin function: negative regulator of Ras 

At the time of its cloning, the function of the NF1 gene prod­
uct, since termed neurofibromin, was unknown. Homology 
screening was undertaken to identify genes with known function 
that resembled the NF1 gene, and that would offer clues as to 
the function of the neurofibromin protein. A small region in the 
central portion of neurofibromin demonstrated 30% homology 
with members of the Ras-GTPase Activating Protein (Ras-GAP) 
family, which includes three other mammalian proteins (pl20-
GAP, GAPlm, and GAP1IP4BP) plus two yeast proteins (Iral and 
Ira2).47-65"67 Members of the Ras-GAP family are negative regu­
lators of the key signal transduction protein Ras, as discussed 
below.4767-74 

Ras is a 21 kDa intracellular protein that is involved in the 
transmission of signals from a variety of upstream activators 
such as growth factor receptors, to a large number of down­
stream signaling molecules which eventually alter gene func­
tion in the nucleus. Ras is a member of the small G protein 
family, characterized by being bound to GDP in the basal inac­
tive state, and being activated to the GTP bound state by gua­
nine nucleotide exchange factors, in particular Sos.69-70-75-79 As 
schematized in Figure 2, activated growth factors such as 
platelet-derived growth factor (PDGF) and epidermal growth 
factor (EGF) bind and activate their cognate receptor, with 
receptor activation characterized by autophosphorylation of 
specific tyrosine residues on the intracellular domain of the 
receptor. Specific phosphotyrosine residues on the activated 
receptor are recognized by protein modules, such as SH2 (src 
homology-2) and PTB (Phosphotyrosine Binding) domains, on 
intracellular signaling proteins such as Grb2 and She.75-80'81 

Grb2 and She, through their interactions with the activated 
receptors in turn recruit other proteins such as Sos to the 
receptor in proximity to its substrate (inactive Ras'GDP) at the 
cell surface.76 Sos exchanges Ras-bound GDP for GTP, result­
ing in activation of Ras and initiation of downstream signaling 
pathways, in particular the mitogenic cascade through Raf, 
MAPKK (mitogen-activated protein kinase kinase, also known 
as MEK or ERK kinase), and MAPK (mitogen-activated pro­
tein kinase, also known as extracellular signal related kinase or 
ERK) (Figure 2). 

The importance of activation of the Ras pathway and subse­
quently Raf-MAPKK-MAPK leading to mitogenic signals, is 
exemplified by oncogenic activating mutations of Ras being 
found in approximately 30% of all human cancers.71-8283 In 
addition to oncogenic mutations, functional up-regulation of the 
Ras pathway can also be achieved by increased stimulation from 
upstream activators of Ras (i.e., signals from activated recep­
tors) or decreased inhibitors of the Ras pathway. With regards to 
the latter mechanism, activated Ras'GTP is slowly hydrolyzed 
to GDP by intrinsic GTPase activity in native Ras, a process that 

is rapidly catalyzed by Ras-GAPs, including neurofibromin.47-67-74 

Several pieces of evidence demonstrate that neurofibromin is an 
important mammalian Ras-GAP, other than the homology of the 
GRD domain with other known Ras-GAPs (reviewed above): 1) 
Expression of only the N F l - G R D portion is capable of 
hydrolyzing Ras'GTP to Ras'GDP in vitroM and in vivo.iS 2) 
Expression of the NFl-GRD is able to rescue Iral and Ira2 defi­
cient yeast mutants.86 3) Overexpression of neurofibromin or the 
GRD portion suppresses oncogenic Ras transformed cells.87-91 

Another pivotal discovery that supported the Ras-GAP function 
of neurofibromin was the demonstration that neurofibrosarcoma 
(malignant peripheral nerve sheath tumour) cell lines estab­
lished from NF1 patients not only lacked neurofibromin expres­
sion but had elevated levels of activated Ras'GTP.88-89 We have 
recently adapted a luciferase-based enzymatic assay to quanti-
tate the levels of Ras'GTP in actual tissue specimens from NF1 
patients. We have confirmed that in NF1-associated malignant 
peripheral nerve sheath tumours (MPNST), neurofibromin 
expression is absent and that levels of Ras'GTP are substantially 
elevated.73 Our studies demonstrate that Ras'GTP levels are 
approximately four and fifteen times higher in NF1-associated 
neurofibromas and MPNSTs respectively, compared to schwan­
nomas from non-NFl patients.73-92 

Neurofibromin function: additional functions 

While it is clear that neurofibromin acts as a Ras-GAP, there 
is also a growing body of evidence that this is not its only func­
tion. First, in melanoma and neuroblastoma cell lines levels of 
activated Ras'GTP are not elevated, despite complete absence 
of neurofibromin.93 Second, overexpression of neurofibromin in 
Ras transformed cells revert the tumourigenic phenotype, even 
though the oncogenic Ras mutant is insensitive to neurofi-
bromin's GTPase activity.90 Since oncogenic Ras mutants, like 
normal Ras, can bind neurofibromin (through interactions with 
the NFl-GRD region) but are resistant to its Ras-GAP activity, 
it would suggest that in addition to its Ras-GAP role neurofi­
bromin has other tumour suppressor functions. In fact, overex­
pression of just the NFl-GRD region in these /?as-transformed 
cells is equally successful in reverting the malignant 
phenotype.94 It is not clear what these non Ras-GAP related 
tumour suppressor functions of neurofibromin entail. Neurofi­
bromin does associate with microtubules,95"97 suggesting a 
potential role in linking activated Ras'GTP to changes in cellu­
lar structure. Additional functions may relate to neurofibromin's 
six potential serine/threonine cAMP dependent protein kinase 
recognition sites and one potential tyrosine phosphorylation site, 
which are phosphorylated in response to PDGF or EGF.18-98-99 

Phosphorylation of these residues however has no effect on neu­
rofibromin's Ras-GAP activity.100 

The presence of phosphorylation sites as well as neurofi­
bromin's interactions with the cytoskeleton suggest that it is a 
highly regulated protein. We have investigated how activation of 
Ras might affect the expression of neurofibromin, and demon­
strated that activated Ras'GTP transcriptionally upregulates 
neurofibromin expression.101 For instance, human malignant 
astrocytoma cell lines have increased levels of Ras'GTP due to 
stimulation from growth factor receptors (A. Guha, unpub­
lished results), with abundant neurofibromin expression. 
Inhibiting Ras'GTP levels in these cells, using dominant nega­
tive Ras mutants , reduced NF1 mRNA and protein 
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Figure 2: Schematic representation of the Ras-Raf-MAPK mitogenic signaling pathway. This cascade is activated in normal cells when ligand (a 
growth factor such as platelet-derived growth factor) hinds its cognate surface receptor (STEP 1). Ligand:receptor interaction results in receptor 
dimerization (STEP 2), resulting in transautophosphorylation of tyrosine residues on the intracellular domain of the receptor (STEP 3). This allows 
signaling molecules with SH2 domains (She, Grb2 or the Shc:Grb2 complex) to interact with the phosphotyrosine residues, bringing the nucleotide 
exchange factor Sos in proximity to the cell surface, where it exchanges GDP with GTP, activating Ras. Raf interacts with activated Ras'GTP, phos-
phorylating MAPKK, which subsequently phosphorylates MAPK. MAPK translocates to the nucleus where it participates with other molecules in 
activating the transcription of the transcription factors fos and jun, resulting in the increased transcription of genes involved in cell division and 
other functions (STEP 4). 

expression.101 Neurofibromin expression is also increased in 
reactive astrocytes surrounding regions of focal ischemia,102 

and in juvenile pilocytic astrocytomas.54 These results suggest a 
physiological negative feedback response, whereby activation 
of the Ras pathway increases neurofibromin expression in order 
to downregulate the Ras pathway. 

Neurofibromin as a tumour suppressor gene 

The concept of the "two hit" hypothesis in tumour suppressor 
genes (TSG) in familial cancer syndromes developed from the 
work of Knudson in the molecular pathogenesis of retinoblas­
toma.103 The first hit involves a germ-line loss of function in one 
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allele present in all cells, with the second hit being a somatic 
loss of function of the remaining allele in selected cells leading 
to tumour formation. NF1 patients bear a germ-line loss of func­
tion in one NF1 allele which is either inherited or a de-novo 
mutation as previously discussed, with loss of function in the 
second allele resulting in complete absence of neurofibromin 
expression and the genesis of tumours. There is evidence that 
this model holds true for a variety of NF1-associated tumours, 
including benign neurofibromas,28-73 pheochromocytomas,104"'06 

malignant myeloid disorders,16 and MPNSTs.73-92107108 

Further evidence to support the hypothesis that NF1 acts as a 
TSG comes from gene knockout studies, in which heterozygous 
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NFJ +/- mice possess a single functional NFJ allele.109 While 
the classical cutaneous and ocular features of NF1 were not 
detected, 75% of these mice succumbed to tumours compared to 
15% in a matched set of wild type animals. Many of the 
tumours encountered (such as lymphoma) are tumours often 
seen in older wild-type mice, but in the heterozygous knockout 
mice these tumours appeared earlier and at a higher frequency. 
Other tumours identified in the heterozygous mice (particularly 
pheochromocytoma and myeloid leukemia) are rare in wild-type 
animals, but are characteristic tumours found at higher frequen­
cy in NF1 patients. It is significant to note that all NFl-like 
tumours (pheochromocytomas and myeloid leukemias) in the 
mice demonstrated loss of the second NFJ allele, consistent 
with the Knudson hypothesis.109 The importance of neurofi-
bromin in cellular growth and differentiation was exemplified 
by the homozygous NF1 -I- knockout mice, which are embryon-
ically lethal between days 12.5 and 14 of gestation.109"0 Sur­
prisingly, the cause of death in all embryos examined was 
severe cardiac vessel developmental anomalies, notably a dou­
ble outlet right ventricle in which the aorta and pulmonary 
artery are joined, which is not a characteristic feature of NF1 
patients.109 The cardiac anomalies are however not surprising, as 
neural crest-derived cells contribute to the development of the 
great vessels."1 Additional anomalies discovered in some of 
these homozygous knockout embryos include liver and skeletal 
muscle hypoplasia (consistent with the proposed role for exon 
48a-containing neurofibromin isoforms in muscle development), 
delayed renal development, hyperplasia of the prevertebral and 
paravertebral sympathetic ganglia, as well as hyperplasia of the 
cells lining the aorta and pulmonary artery.109110 

The creation of NFJ -I- knockout mice109"0 has been 
exploited in gaining further insights into the functions of neu­
rofibromin. Sensory neurons of the trigeminal and dorsal root 
ganglia derived from wild-type mouse embryos are dependent 
on the neurotrophic factor nerve growth factor (NGF) for sur­
vival, while nodose ganglion sensory neurons are dependent on 
brain-derived growth factor (BDNF) for their survival in cell 
culture. Sensory cells derived from NF1 -I- embryos on the 
other hand are capable of surviving and extending neuronal pro­
cesses in the absence of NGF or BDNF."2 This extends previous 
studies in which activated Ras'GTP was able to mimic the sur­
vival-promoting effects of neurotrophic factors,"3 and identifies 
neurofibromin as a major regulator of neurotrophin- and Ras-
mediated neuronal survival.112 Studies on NF1 -I- Schwann cells 
confirmed that neurofibromin is a major negative regulator of 
Ras in these cells, as they demonstrate elevated levels of 
Ras'GTP.114 Furthermore, these Schwann cells take on morpho­
logical characteristics of Ras transformed cells, and are similar 
to Schwann cells stimulated with trophic factors such as the 
neuregulins, which activate the Ras pathway through activation 
of their receptors."4"5 In contrast to Schwann cells, fibroblasts 
from the NF1 -/- mice did not demonstrate elevated levels of 
Ras'GTP, in support of other experimental data previously dis­
cussed that the importance of neurofibromin as a Ras-GAP dif­
fers between cell types, with perhaps Ras activity in some cells 
predominantly regulated by other Ras-GAPs such as pl20-
GAP.114 

Malignant transformation of neurofibromas in NF1 patients 
Benign neurofibromas consist of a heterogeneous population 

of Schwann cells, mast cells, fibroblasts, neuronal axons, peri­
neural cells and endothelial cells.2"6 The dermal neurofibromas 
are generally little more than a cosmetic problem while the larg­
er plexiform neurofibromas, though histologically benign, arise 
in nerve plexuses and present with neurological deficits. Of 
greater significance, the plexiform neurofibromas have a 3-4.6% 
risk for malignant transformation,13117 a figure much lower than 
previously speculated, but one which is much higher than the 
less than 1% risk of malignant transformation in a non-NFl neu­
rofibroma."8"9 Knowledge of these risks for malignant trans­
formation vs. the surgical risks have to be considered for the 
proper management of NF1 patients presenting with peripheral 
nerve tumours. 

Although activating mutations of Ras are not found in benign 
or malignant peripheral nerve tumours, several other TSGs have 
been implicated in the pathogenesis of MPNSTs (Figure 3). 
Loss or mutations of the p53 gene on chromosome 17p has been 
discovered in numerous sporadic and NF1-associated MPN­
STs.120125 Mutations of the retinoblastoma (Rb) gene, found in 
osteosarcomas, appear not to play a role in the pathogenesis of 
MPNSTs.126"128 Cytogenetic analysis suggests that hotspots for 
additional mutations in NFl-associated MPNSTs are located on 
chromosomes 1, 11, 12, 14, and 22.129 Microsatellite instability 
(MI), which represents expansions or compressions of di-, tri-, 
or tetra-nucleotide repeats in a genetic locus, are a frequent find­
ing in NFl-associated neurofibromas, with 8/16 patients mani­
festing alterations at one or more microsatellite loci within the 
tumour.130 However, the definition of what is significant MI is 
evolving, with the current accepted criterion requiring involve­
ment of at least two or more loci.131 When this more stringent 
criterion is applied to NFl-associated MPNSTs, only 1/16 
patients truly demonstrates MI.132 

Applying our understanding of molecular biology to 
improving the diagnosis of NF1 

Despite the identification of the NF1 gene, it has been diffi­
cult to apply genetic techniques to the diagnosis of NFL NF1 
patients frequently request prenatal genetic testing to rule out 
transmission of the defective NF1 gene to their child. Similarly, 
NF1 patients who do not desire prenatal testing may still wish to 
screen their young child for the defective allele, as many pheno-
typic manifestations of NF1 do not appear until late childhood 
or early adolescence. Both of these situations lend themselves 
well to genetic testing, provided that the family NFJ mutation is 
known. As the child can be expected to carry the same mutation 
as the affected parent, genetic testing can be very focussed and 
specific. In situations where the NFJ mutation has not been 
characterized, genetic testing would imply a far more general 
screening of the entire gene. Such testing would thus be identi­
cal to genetic screening techniques applied to patients without a 
family history of NFL A large variety of mutations have been 
discovered in the NF1 gene in NF1 patients, including single 
base mutations, deletions of various sizes including the entire 
gene, insertions, splicing errors, and translocations.50133 Only 
one mutation has been found to be relatively common in NF1 
patients, but this R1947X mutation still only accounts for at 
most 8% of mutations among Japanese patients and at most 2% 
of NFJ mutations among Caucasians.134 Hence, no single specif­
ic alteration in high frequency (mutational hotspot) or signifi­
cant genotype-phenotype correlation (where one can predict the 
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TYPE 1 {NF1 +/-) 
germline mutation 
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SOMATIC MUTATION {NF1 •/•) 
loss or mutation 

of second NF1 allele 

non-17 chromosome 

BENIGN PLEXIFORM 
NEUROFIBROMA (NFl •/•) 

loss or mutation 
in a separate gene 

{not p53) 

non-17 chromosome 

MALIGNANT PERIPHERAL NERVE 
SHEATH TUMOR I.NF1 •/•) 

additional mutations 
(notably p53 locus on 17p) 

Figure 3: Schematic representation of the proposed molecular pathogenesis of benign and malignant NF1-associated peripheral nerve tumours. One 
allele of the NFl gene on 17q is mutated in all cells in NF] patients (germline mutation). Subsequent mutation or loss of the second NFl allele in an 
individual cell (somatic mutation) appears insufficient to result in the formation of a benign neurofibroma, with mutations in one or more additional 
genes required for the development of the benign NFl-associated neurofibromas. Further additional genetic mutations (such as in the p53 locus on 
Up) result in the malignant transformation of a benign plexiform neurofibroma into a malignant peripheral nerve sheath tumour. Dermal neurofibro­
mas do not appear to be subject to the risk of malignant transformation. 

clinical presentation based on the location and type of mutation) 
has been identified.133 The lack of mutational hot spots, large 
size of the NFl gene, high spontaneous mutation rate and lack 
of genotype-phenotype correlation have all contributed to the 
hurdles which still make routine genetic screening impracti­
cal.12135"137 The NIH clinical diagnostic criteria remains the best 
method of detecting new patients with NFl (see Table). 

Applying our understanding of molecular biology to 
improving the clinical management of NFl 

Although our understanding of the molecular events in 
NFl have not displaced the NIH clinical criteria in making 
the diagnosis of NFl (see Table), our expanding understand­
ing of these molecular events has resulted in new efforts to 
treat the variety of symptoms and tumours associated with 
this syndrome. Surgery is not always an option for deep-seat­
ed tumours or in eloquent regions of the central or peripheral 
nervous system. Even when surgery is performed, patients 
with MPNST frequently succumb not to their primary 
tumour but to metastases (L. Angelov, R. Bell, and A. Guha, 
unpublished observations), and all patients dying of malig­
nancy in the Swedish prospective study harboured metas­
tases at the time of death.14 In particular, the pivotal role that 
neurofibromin plays in the regulation of the Ras pathway 
suggests that novel pharmacological inhibitors of Ras path­
way activators may hold great promise for managing a num­
ber of NFl-associated benign or malignant lesions. 

Ras pathway activation has been implicated in 30% of 
human malignancies, on the basis of oncogenic point mutations 
in /fas.71'82-83 Many pharmaceutical companies and academic 
research groups have thus developed inhibitors of Ras or of pro­
teins in the Ras-Raf-MAPK pathway. In particular, farnesyl 
transferase inhibitors (FTIs) have been developed which inhibit 
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the first critical step (farnesylation) in the post-translational 
modification of Ras, a step which is vital for Ras to be recruited 
to the inner cell membrane where it may be activated.138 This 
post-translational modification is catalyzed by the enzyme far­
nesyl transferase (FTase), and involves the transfer of a 15-car-
bon trans, trans-famesy\ moiety from farnesyl pyrophosphate 
(FPP) to the cysteine residue on the CAAX (C = cysteine, A = 
aliphatic amino acid, X = other amino acid) motif at the C-ter-
minal of Ras. This first step is absolutely essential for Ras to 
become activated within the cell, while subsequent steps are not 
critical139 (Figure 4). Although many other cellular proteins in 
addition to Ras are farnesylated, no adverse effects have been 
noted in experimental use of these agents in cell culture and ani­
mal models of human tumours bearing oncogenic Ras muta­
tions.140 

However, most studies to date have involved models of 
human cancer in which oncogenic Ras mutations resulted in 
constitutive activation of Ras, as demonstrated by elevated lev­
els of Ras'GTP. NFl patients do not harbour oncogenic muta­
tions of Ras, and yet the downregulation of activated Ras'GTP 
through hydrolysis of GTP to GDP is slowed in the absence of 
neurofibromin. We had thus hypothesized that Ras*GTP levels 
would be elevated in MPNSTs in NFl patients. We have con­
firmed that levels of Ras'GTP are substantially elevated in NFl-
associated MPNSTs,7 3 with Ras 'GTP levels being 
approximately fifteen times higher in NFl-associated MPNSTs 
than in non-NFl schwannomas.7392 Hence, NFl-associated 
MPNSTs demonstrate activation of the Ras pathway, providing 
additional evidence to support a beneficial effect of FTIs in the 
management of NFl. Indeed, FTIs have been shown to inhibit 
the proliferation of the human MPNST cell line NF188-14 in 
tissue culture experiments.141 
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Figure 4: The post-translalional modification ofRas has been target­
ed in the pharmacological inhibition of Ras pathway activation. Ras 
undergoes three or four post-translational modifications. The first 
step, catalyzed by the enzyme farnesyl transferase (FTase), involves 
the transfer of a 15-carbon trans,trans-/arneiy/ moiety from farnesyl 
pyrophosphate (FPP) to the cysteine residue on the CAAX (C = cys­
teine, A = aliphatic amino acid, X = other amino acid) motif at the C-
terminal of Ras; this first step is absolutely critical for normal Ras 
functioning. Subsequent steps are less critical, and these include the 
cleavage of the terminal three AAX peptides, carboxyl-methylation of 
the now C-terminal, farnesylated cysteine residue and optional palmi-
toylation at cysteine residues upstream of the C-terminal cysteine. 

Additional compounds targeting the Ras pathway are not as 
well developed presently, but include inhibitors of MEK which is 
involved in mitogenic signaling downstream of Ras in the Ras-
Raf-MAPK cascade142 (Figure 2). While such pharmacological 
manipulations of the Ras pathway are still many years away 
from routine clinical use, they represent the progress that can be 
made in clinical treatment based on a solid understanding of 
basic cellular physiology and of the molecular mechanisms 
which result in individual disease processes. Future therapy tai­
lored more specifically to the management of NF1 will benefit 
from further study and understanding of the role that neurofi-
bromin plays in cells, in particular in its non-Ras-GAP func­
tions. Additionally, the clinical management of NF1 will benefit 
from progress made in our understanding of other aspects of cel­
lular physiology and gene regulation, as activity in a host of 
other cellular pathways likely impacts on the function of neu-

rofibromin, through positive and negative regulatory loops. We 
can thus look upon the future with optimism in our goal of 
developing and implementing novel, effective, and safe thera­
peutic strategies for NF1. 
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