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Abstract

Objective: Surveillance of healthcare-associated infections is often performed by manual chart review. Semiautomated surveillance may sub-
stantially reduce workload and subjective data interpretation. We assessed the validity of a previously published algorithm for semiautomated
surveillance of deep surgical site infections (SSIs) after total hip arthroplasty (THA) or total knee arthroplasty (TKA) in Dutch hospitals. In
addition, we explored the ability of a hospital to automatically select the patients under surveillance.

Design: Multicenter retrospective cohort study.

Methods: Hospitals identified patients who underwent THA or TKA either by procedure codes or by conventional surveillance. For these
patients, routine care data regarding microbiology results, antibiotics, (re)admissions, and surgeries within 120 days following THA or TKA
were extracted from electronic health records. Patient selectionwas comparedwith conventional surveillance and patients were retrospectively
classified as low or high probability of having developed deep SSI by the algorithm. Sensitivity, positive predictive value (PPV), and workload
reduction were calculated and compared to conventional surveillance.

Results: Of 9,554 extracted THA and TKA surgeries, 1,175 (12.3%) were revisions, and 8,378 primary surgeries remained for algorithm
validation (95 deep SSIs, 1.1%). Sensitivity ranged from 93.6% to 100% and PPV ranged from 55.8% to 72.2%. Workload was reduced by
≥98%. Also, 2 SSIs (2.1%) missed by the algorithm were explained by flaws in data selection.

Conclusions: This algorithm reliably detects patients with a high probability of having developed deep SSI after THA or TKA in Dutch
hospitals. Our results provide essential information for successful implementation of semiautomated surveillance for deep SSIs after
THA or TKA.

(Received 19 May 2020; accepted 18 July 2020; electronically published 28 August 2020)

Healthcare-associated infections (HAIs) are infections acquired as
the result of medical care.1 The most common HAIs are surgical
site infections (SSIs), accounting for >20% of all HAIs.2 SSI inci-
dence depends on the type of surgery: in the Netherlands, 1.5% of
primary total hip arthroplasties (THAs) and 0.9% of primary total
knee arthroplasties (TKAs) are complicated by SSIs, most of which

are deep (1.3% and 0.6% respectively).3,4 This finding is in line with
numbers reported in Europe and the United States.5-7 Deep SSIs
after THA or TKA are associated with substantial morbidity,
longer postoperative hospital stays, and incremental costs.3,8,9

Given the aging population, volumes of THA and TKA and num-
bers of associated SSIs are expected to increase further.7,10,11

Accurate identification of SSIs through surveillance is essential
for targeted implementation and monitoring of interventions to
reduce the number of SSIs.12,13 In addition, surveillance data
may be used for public reporting and payment mandates.14 Inmost
hospitals, surveillance is performed by manual chart review: an
infection control practitioner (ICP) reviews electronic health
records (EHRs) to determine whether the definition for an SSI
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is met. This method is costly, time-consuming and labor intensive.
Moreover, it is prone to subjectivity, suboptimal interrater reliabil-
ity, and the “more-you-look-more-you-find” principle.15-19

The widespread adoption of EHRs facilitates (semi-)automated
surveillance using routine care data, thereby reducing workload
and improving reliability. SSI surveillance after THA or TKA is
particularly suitable for automation because these are high-volume
procedures with a low incidence of SSI; hence, the potential gains in
efficiency are considerable. In addition, treatment of (possible)
SSIs is highly uniform across hospitals, which facilitates algorith-
mic detection.

As a first step toward semiautomated surveillance of deep SSIs
after TKA or THA, a tertiary-care center developed a classification
algorithm relying on microbiology results, reinterventions, antibi-
otic prescriptions, and admission data (Table 1).20 This algorithm
retrospectively discriminates between patients who have a low or
high probability of having developed a deep SSI, and only patients
with a high probability undergomanual chart review. Patients clas-
sified as low probability are assumed to be free of deep SSI. In a
single-hospital setting, this algorithm identified all deep SSIs after
THA or TKA (sensitivity of 100%) and resulted in a reduction of
97.3% charts to review.20

A prerequisite for large-scale implementation of this algorithm is
validation in other centers that may differ in EHR systems, patient
populations, diagnostic procedures, or clinical practice. Therefore,
the main aim of this study was to validate the performance of this
algorithm, defined in terms of sensitivity, positive predictive value
(PPV), and workload reduction, for semiautomated surveillance
to detect deep SSIs after THA or TKA in general hospitals in the
Netherlands. A secondary aim was to explore methods for selection
of the surveillance population (denominator data).

Methods

Study design

This multicenter retrospective cohort study compares the results of
a surveillance algorithm to the results of conventional manual
surveillance of deep SSIs following THA and TKA. Manual SSI
surveillance, considered the reference standard, was executed
according to national definitions and guidelines set out by
PREZIES; the Dutch surveillance network for healthcare-
associated infections.21,22 SSI surveillance includes all patients aged
≥1 year who underwent a primary THA or TKA (so-called index
surgery); revision procedures were excluded. SSIs were defined
using criteria from the (European) Centers for Disease Control
and Prevention, translated and adapted for use in the PREZIES
surveillance: organ-space SSIs are reported as deep SSIs.21,22 The
mandatory follow-up for THA and TKA SSI surveillance is 90 days
after the index surgery.

This study was reviewed by the Medical Institutional Review
Board of the University Medical Center Utrecht and was consid-
ered not to fall under the Medical Research Involving Human
Subjects Act. Hence the requirement of an informed consent
was waived (reference no. 17-888/C). From all participating hos-
pitals, approval to participate was obtained from the local boards
of directors.

Hospitals

Weselected 10 hospitals (~14%of all Dutch hospitals) based on their
interest in automated surveillance and expected surgical
volume and invited them to participate in the study. Hospitals
had to meet the following inclusion criteria: (1) recent participation
in PREZIES SSI surveillance for THA and TKA according to
PREZIES guidelines; (2) availability of at least 2 years of THA
and TKA surveillance data after 2012 and data on at least 1,000 sur-
geries; (3) ability to select the surveillance population (the patients
who underwent the index surgery) in electronic hospitals systems;
and (4) ability to extract the required routine care data of these
patients from the EHR in a structured format to apply the algorithm.

Data collection from electronic health records and algorithm
application

Hospitals were requested to automatically select patientswho under-
went the index surgeries (denominator data) and to extract the
following data for these patients from their EHR (Table 1): micro-
biology results, antibiotic prescriptions, (re)admissions and dis-
charge dates, and subsequent orthopedic surgical procedures. All
extracted data were limited to 120 days following the index surgery
to enable the algorithm to capture SSIs that developed at the end of
the 90-day follow-up period. Data extractions were performed
between November 18, 2018, and August 16, 2019. Table S1 pro-
vides detailed data specifications.

Analyses

After extraction and cleaning of data, records of patients in the
extractions were matched to patients in the reference standard
(PREZIES database). If available, matching was performed using
a pseudonymized surveillance identification number. Else, match-
ing was performed for the following patient characteristics: date of
birth, sex, date of index surgery, date of admission, and type of pro-
cedure. For each hospital, the method of automated selection of
index surgeries was described as well as the completeness of the
surveillance population (denominator) compared to the reference
population reportedmanually to PREZIES. Subsequently, the algo-
rithm was applied, and patients who underwent THA or TKA sur-
geries were classified as high- or low probability of having had a

Table 1. Algorithm specifications

Category Criteria for Fulfillment

Microbiology ≥1 positive microbiological culture(s) or ≥5 cultures obtained from ≥1 potentially relevant body site(s), i.e. wound cultures, pus, joint
aspirations, prosthetic material, tissue, blood cultures or unspecified material.

Antibiotics ≥14 days of antibiotic exposure, where an “exposure day” is defined as a day with ≥1 prescription for an antibiotic (ATC code of J01).

(Re)admissions Length of hospital stay of the index admission (ie, admission during which the index procedure took place) of ≥14 days or ≥1
readmission(s) for a relevant specialty such as orthopedics, trauma, or surgery.

Reintervention Any orthopedic surgical procedure performed by the department of orthopedics, without further restrictions.

Note. ≥3 of these 4 criteria must be fulfilled to be considered high probability for having deep SSI.20 All criteria should be fulfilled within 120 days after the index surgery.
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deep SSI. Patients were classified as high probability for deep SSI
according to the algorithm if theymet≥3 of the 4 criteria (Table 1).

For each hospital, the allocation of patients with low or high
probability by the algorithm was compared to the outcome (deep
SSI) as reported in the reference standard. Subsequently, sensitiv-
ity, PPV, and workload reduction (defined as difference between
the total number of surgeries in surveillance and the proportion
of surgeries requiring manual review after algorithm application)
were calculated with corresponding confidence intervals.23 For
semiautomated surveillance, we considered sensitivity to be the
most important characteristic because any false-positive cases
are corrected during subsequent chart review, whereas false-nega-
tive cases may remain unnoticed. Analyses were performed using
SAS version 9.4 software (SAS Institute, Cary, NC).

Discrepancy analyses and validation of the reference
standard

Exploratory discrepancy analyses were performed to evaluate and
understand possible underlying causes of misclassification by the
algorithm. In addition, for each hospital, an on-site visit took place
to validate the conventional surveillance (ie, reference standard
PREZIES). This validation was executed by 2 experienced surveil-
lance advisors of PREZIES, and they were blinded for the outcomes
both of the reference standard and the algorithm. For the valida-
tion of the conventional surveillance, a maximum of 28 records
were selected containing all presumed false positives and false neg-
atives, complemented with a random sample of true positives and
true negatives. At least 50% of the reported superficial SSIs in the
true-negative group were included in the validation sample. The
maximum number was selected for logistical reasons and the time
capacity of the validation team.

Results

Overall, 4 hospitals met the inclusion criteria and were willing to
participate in this study: the Beatrix Hospital in Gorinchem,
Haaglanden Medical Center in The Hague (3 locations),
Meander Medical Center in Amersfoort and Sint Antonius
Hospital in Nieuwegein and Utrecht (3 locations). Hospitals were
randomly assigned the letters A, B, C, and D. The remaining hos-
pitals were not able to participate for the following reasons:

inability to extract historical data due to a transition of EHR
(n= 1); inability to extract microbiology results or antibiotic use
from historical data in a structured format (n= 3); no approval
of the hospital’s board to share pseudonymized patient data (n= 1)
or no capacity of human resources (ICPs, information technology
personnel, and data managers) (n= 1).

Completeness of surveillance population

The 4 participating hospitals extracted 9,554 THA and TKA pro-
cedures performed between 2012 and 2018 along with data
required for application of the algorithm (Table S1, Appendix 1
online). Hospital B used inclusion in conventional surveillance
as a selection criterion for the selection of index surgeries and
extraction of the data required for the algorithm. These extracted
records could be matched using a pseudonymized surveillance
identification number, which was also available in the reference
standard. By definition, this procedure resulted in a perfect match;
hence, no inferences could be made regarding the completeness of
the surveillance population when using automated selections, for
example, using administrative procedure codes. Hospitals A, C,
and D selected their surveillance population automatically using
administrative THA and TKA procedure codes. For hospitals A
and D, these records were matched by patient characteristics to
the reference standard and, for hospital C, by a pseudonymized
surveillance identification number. Matching with the PREZIES
database revealed a mismatch for 1,128 records that could not
be linked to the reference standard. Manual review of a random
sample of these records showed that these were mainly revision
procedures that were excluded from conventional surveillance.
Vice versa, 103 records were in the reference standard but could
not be linked to the extractions. Explanations for this mismatch
per hospital are described in Table 2.

Algorithm performance

In total, 8,378 primary arthroplasty procedures (4,432 THAs and
3,946 TKAs) in 7,659 patients and 95 SSIs (1.1%) were uniquely
matched with the reference standard and were available for analy-
sis of algorithm performance (Table 2). The algorithm sensitivity
ranged from 93.6% to 100.0% and PPV ranged from 55.8% to
72.2% across hospitals (Table 3). In all hospitals, a workload

Table 2. Overview of Data Extractions and Selection of Surveillance Population

Variable Hospital A Hospital B Hospital C Hospital D

Time period extractions (years) 2012–2015 2015–2016 2017–2018 2012–2017a

Total number of THA/TKA in extractions (count) 2,604 1,601 1,037 4,311

Matched to PREZIES (count) 2,395 1,601 1,029 3,353

Match made based on Patient
characteristics

Surveillance identification
number

Surveillance identification
number

Patient
characteristics

Records in extractions that could not be linked to
reference standard (count, %)b

209 (8.0%) NAc 8 (0.8%) 958 (22.2%)

Records in reference standard that could not be
linked to extractions (count, %)

48 (2.0%)d NAc 6 (0.6%)e 49 (1.5%)f

Note. THA, total hip arthroplasty; TKA, total knee arthroplasty; NA, not applicable.
aUntil September 1, 2017.
bManual review of a random sample of these records showed these were mainly revision procedures.
cExploration of automating selecting surveillance population not applicable as hospital collected data for the extractions based on the selection of the conventional surveillance.
dReason for mismatch: typo’s and mistakes in the manual data collection.
eReason for mismatch: all emergency cases for which data was incomplete. Automated extractions therefore not possible.
fReason for mismatch: a clear cause was not found, although it is suspected data was lost due to the merger of hospitals and their EHR during the study period.
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reduction of ≥98.0% was achieved. In hospitals B and D, 1 and 2
deep SSIs were missed by the algorithm, respectively. Discrepancy
analyses revealed that 1 case was reclassified into ‘no deep SSI’,
and, hence, was correctly indicated by the algorithm. Of the 2 truly
missed cases, 1 case was missed by incomplete microbiology data
and the other was missed because of unavailability of data regard-
ing the treating specialty of the readmissions, thereby using ward
level for the selection of readmissions. Results and details of false-
negative and false-positive cases are provided in Table 4. On-site
validation visits found 6 additional deep SSIs, which were missed
in the conventional surveillance but were correctly classified as
potential SSIs by the algorithm. Other findings of the on-site val-
idation of the reference standard, but not essential for the assess-
ment of the algorithm, were reclassifications of superficial SSIs to
no SSI (n= 6), missed superficial SSIs (n= 2), and errors in the
determination of the infection date (n= 4).

Discussion

This study successfully validated a previously developed algorithm
for the surveillance of deep SSIs after THA or TKA in 4 hospitals.
The algorithm had sensitivity ranging from 93.6% to 100.0% and
achieved a workload reduction of 98.0% or more, which is in line
with the original study and another international study.20,24 In
total, only 2 SSIs were missed by the algorithm; both were the
result of limitations of the use of historical data and can be resolved
with the current EHR. Validation of the reference standard
revealed 6 additional deep SSIs that were initially missed by con-
ventional surveillance but classified as high probability of SSI by
the algorithm; thus, the accuracy of the surveillance improved.
For automated selection of the surveillance population (ie, denom-
inator data), hospitals should be able to distinguish primary THAs
and TKAs from revisions. Our results provide essential informa-
tion for successful implementation of semiautomated surveillance
for deep SSIs after THA or TKA in Dutch hospitals in the future.

The results of our study reveal some preconditions that
require attention when further implementing this algorithm
for semiautomated surveillance. First, dialogue between informa-
tion technology personnel, data management, ICPs and micro-
biologists is essential to identify the correct sources of data for
applying the algorithm. In 2 of 4 hospitals, interim results
revealed that data extractions were incomplete due to unaware-
ness in hospitals of the existence of registration codes. This find-
ing demonstrates the importance of validating the completeness
and accuracy of data sources required for the implementation of
semiautomated surveillance.14,25 Second, successful validation of
this algorithm does not guarantee that widespread implementa-
tion can be taken for granted. It appeared that none of the 4 hos-
pitals could perfectly select the surveillance population using
structured routine care data such as procedure codes (mismatch
ranged from 0.8% to 22.2%). Procedure codes are not developed
for the purpose of surveillance but for medico-administrative
purposes, and they may contain some misclassification in distin-
guishing between primary procedures and procedures that
should be excluded according to conventional surveillance (eg,
revision procedures).25 For implementation, improvement of
patient selection is considered to increase comparability.
Mismatches between the data extractions and reference standard
(97 records from the reference standard were not found in the
hospitals’ extractions) were partly the result of typing errors in
the manual surveillance, hence, they underscore the vulnerability
of traditional manual surveillance.Ta
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Although superficial SSIs are included within the conventional
method of surveillance, this algorithm was developed to detect deep
SSIs only. During initial algorithm development superficial SSIs
were not taken into account for the following reasons: First, the costs
and impact on patient and patient-related outcomes are more det-
rimental after deep SSIs. In addition, only 20% of all reported SSIs in
THAs and TKAs concern superficial SSIs.4 Third, superficial SSIs
are mostly scored by clinical symptoms that are often stored in
unstructured data fields (clinical notes) with a wide variety in
expressions.26 These data are complex to use in automatization proc-
esses and will complicate widespread implementation.27 Fourth, the
determination of superficial SSIs requires a subjective interpretation
of the definition, making them a difficult surveillance target both for
manual and automated surveillance.

Previous studies investigating the use of algorithms in SSI sur-
veillance after orthopedic surgeries achieved a low(er) sensitivity,
applied rather complex algorithms, or used administrative coding
data such as ICD-10 codes for infection.28-30 Although the use of
ICD-10 codes for infection is an easy and straightforward method
in some settings, relying solely on administrative data is considered
inaccurate.25,31-33 In addition, coding practices differ by country,
and results cannot be extrapolated. Thirukumaran et al27 investi-
gated the use of natural language processing in detecting SSIs.
Sensitivity and PPV were extremely high in the center under study;
however, the performance in other centers was not investigated,
and the proposed method is rather complex to implement on a
large scale compared to our method. In contrast, Cho et al34

showed a more pragmatic approach in which one algorithm was
used to detect SSIs in 38 different procedures, including THAs
and TKAs. Although the sensitivity for detecting deep SSIs was
100%, a high number of false positives occurred because of the
broad algorithm, resulting in a nonoptimal workload reduction.

Strengths and limitations

The strengths of this study are themulticenter aspect and the use of
an algorithm that is relatively simple to apply. All participating

hospitals had previously performed conventional surveillance
according to a standardized protocol and SSI definitions, enabling
optimal comparison and generalizability to the Dutch situation.
The algorithm could be successfully applied despite potential
differences in clinical and diagnostic practice, as well as the use
of different EHRs. Whereas previous studies used complex algo-
rithms and were mostly performed in single tertiary-care centers,
this study achieved a near-perfect sensitivity and high workload
reduction in small(er) general hospitals, using an algorithm that
is likely feasible to implement in these hospitals.

This study has several limitations. First, postdischarge surveil-
lance was limited to patient encounters in the initial hospital. The
algorithm will not detect patients who are treated or readmitted in
other hospitals; however, this is also the case in conventional sur-
veillance. In the Netherlands, most patients return to the operating
hospital in cases with complications such as deep SSIs, especially if
they occur within the 90-day follow-up period. Secondly, in this
study, we made use of historical data retrieved from the local
EHR. Because of shifts in hospital information systems andmerger
of hospitals, historical data were not accessible for some hospitals,
limiting their participation in this retrospective study. Therefore,
we have no insight into the feasibility of future large-scale imple-
mentation in these hospitals. Lastly, in this study, 1 hospital used
the conventional surveillance to identify the surveillance popula-
tion and to perform electronic data extractions. Therefore, for this
hospital, we were unable to adequately evaluate the quality and
completeness of the selected surveillance population if they had
been using an automated selection procedure.

In conclusion, a previously developed algorithm for semiauto-
mated surveillance of deep SSI after THA and TKA was success-
fully validated in this multicenter study; a near-perfect
sensitivity was reached, with a ≥98% workload reduction. In addi-
tion, semiautomated surveillance not only proved to be an efficient
method of executing surveillance but also had the potential to cap-
ture more true deep SSIs compared to conventional (manual) sur-
veillance approaches. For successful implementation, hospitals
should be able to identify the surveillance population using

Table 4. Overview of Discrepancy Analysis

Variable Hospital A Hospital B Hospital C Hospital D

No. of false negatives (missed deep SSI) 0 1 0 2

Reasons

Reclassification of reference data (true negative) 1

Incorrect selection of readmissiona 1

Microbiological cultures performed in external laboratoryb 1

No. of false positives 10 10 11 23

Reasons

Reclassification of reference data (true positive) 3 3

Incorrect inclusion in surveillance (revision procedure) 1 2

Superficial SSI 1 3 4

Other complications 6 10 6 13

Unknown 1 1

Note. SSI, surgical site infection.
aThis hospital used data extractions from a previous electronic health record system, where no information was stored regarding the specialty of the readmission. Selection of readmission was
thereforemade onward level, instead of treating specialty. Because this patient was readmitted to another ward because of overcapacity of the orthopedic ward, it wasmissed by the algorithm.
bMicrobiological cultures of this patient were performed in external laboratory and culture results were therefore not available in the in-house laboratory information system from which the
data were extracted to apply the algorithm.
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electronically accessible data sources. This study is the first step to
broader implementation of semiautomated surveillance in the dig-
ital infrastructures of hospitals.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2020.377
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