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Abstract. Packing topological entropy is a dynamical analogy of the packing dimension,
which can be viewed as a counterpart of Bowen topological entropy. In the present paper
we give a systematic study of the packing topological entropy for a continuous G-action
dynamical system (X, G), where X is a compact metric space and G is a countable infinite
discrete amenable group. We first prove a variational principle for amenable packing
topological entropy: for any Borel subset Z of X, the packing topological entropy of Z
equals the supremum of upper local entropy over all Borel probability measures for which
the subset Z has full measure. Then we obtain an entropy inequality concerning amenable
packing entropy. Finally, we show that the packing topological entropy of the set of generic
points for any invariant Borel probability measure μ coincides with the metric entropy if
either μ is ergodic or the system satisfies a kind of specification property.

Key words: packing topological entropy, amenable group, variational principle, generic
point
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1. Introduction
In 1973, in a profound and influential paper [3], Bowen introduced a definition of
topological entropy of subsets inspired by Hausdorff dimension, which is now known as
Bowen topological entropy or dimensional entropy. For dynamical systems over compact
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Hausdorff spaces, Bowen showed that Bowen topological entropy on the whole space
coincides with the Adler–Konheim–McAndrew topological entropy defined through open
covers.

Bowen topological entropy can be viewed as dynamically analogous to Hausdorff
dimension and has exhibited very deep connections with dimension theory in dynamical
system and multifractal analysis ever since its appearance (see, for example, [19]). It
is natural to consider the analogous concepts in dynamical systems for other forms of
dimensions. For pointwise dimension (of a measure), its dynamical correspondence is the
Brin–Katok local entropy [4]. For packing dimension, its dynamical correspondence is
the packing topological entropy, which was introduced by Feng and Huang [9]. Applying
the methods in geometric measure theory, they also provided variational principles for
Bowen topological entropy and packing topological entropy. Other works on packing
topological entropy can be found in [27], where the packing topological entropy for certain
non-compact subsets was considered.

In this paper we focus on packing topological entropy in the framework of countable
discrete amenable group actions.

1.1. Amenable packing entropy and local entropies. Let (X, G) be a G-action topo-
logical dynamical system, where X is a compact metric space with metric d and G is
a topological group acting continuously on X. Throughout this paper we assume that G
is a countable infinite discrete amenable group unless otherwise specified. Recall that a
countable discrete group G is amenable if there is a sequence of non-empty finite subsets
{Fn} of G which are asymptotically invariant, that is,

lim
n→+∞

|Fn � gFn|
|Fn| = 0 for all g ∈ G.

Such sequences are called Følner sequences. One may refer to [14, 18] for more details on
amenable groups and their actions. A Følner sequence {Fn} in G is said to be tempered if
there exists a constant C > 0 which is independent of n such that∣∣∣∣ ⋃

k<n

F−1
k Fn

∣∣∣∣ ≤ C|Fn| for any n. (1.1)

Let F(G) denote the collection of finite subsets of G. For F ∈ F(G), let dF be the
metric defined by

dF (x, y) = max
g∈F

d(gx, gy) for x, y ∈ X.

Let ε > 0 and x in X; we denote

BF (x, ε) = {y ∈ X : dF (x, y) < ε}
and

BF (x, ε) = {y ∈ X : dF (x, y) ≤ ε},
which are respectively the open and closed (F-)Bowen balls with center x and radius ε.
When we want to clarify the underlying metric d, we also denote the above balls
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by BF (x, ε, d) and BF (x, ε, d). For a Z-action (or N-action) topological dynamical
system (X, T ) (T is the homeomorphism (or the continuous onto map) on X), let F =
{0, 1, . . . , n − 1} := [0, n − 1]. The (F-)Bowen balls will be written as Bn(x, ε, T ) or
Bn(x, ε, d).

Definition 1.1. Let {Fn} be a sequence of finite subsets of G with |Fn| → ∞ (which need
not be Følner). For Z ⊆ X, s ≥ 0, N ∈ N and ε > 0, define

P(Z, N , ε, s, {Fn}) = sup
∑

i

exp(−s|Fni
|),

where the supremum is taken over all finite or countable pairwise disjoint families
{BFni

(xi , ε)} such that xi ∈ Z, ni ≥ N for all i. The quantity P(Z, N , ε, s, {Fn}) does
not increase as N increases, hence the following limit exists:

P(Z, ε, s, {Fn}) = lim
N→+∞ P(Z, N , ε, s, {Fn}).

Define

P(Z, ε, s, {Fn}) = inf
{ +∞∑

i=1

P(Zi , ε, s, {Fn}) :
+∞⋃
i=1

Zi ⊃ Z

}
.

It is easy to see that if Z ⊆ ⋃+∞
i=1 Zi , then P(Z, ε, s, {Fn}) ≤ ∑+∞

i=1 P(Zi , ε, s, {Fn}).
There exists a critical value of the parameter s, which we will denote by hP

top(Z, ε, {Fn}),
where P(Z, ε, s, {Fn}) jumps from +∞ to 0, that is,

P(Z, ε, s, {Fn}) =
{

0, s > hP
top(Z, ε, {Fn}),

+∞, s < hP
top(Z, ε, {Fn}).

It is not hard to see that hP
top(Z, ε, {Fn}) increases when ε decreases. We call

hP
top(Z, {Fn}) := lim

ε→0
hP

top(Z, ε, {Fn})
the amenable packing topological entropy (amenable packing entropy or packing entropy,
for short) of Z (with respect to the Følner sequence {Fn}).

Let M(X) denote the collection of Borel probability measures on X.

Definition 1.2. Let {Fn} be a sequence of finite subsets of G with |Fn| → ∞. For μ ∈
M(X) and Z ∈ B(X) (the Borel σ -algebra on X), denote

h
loc
μ (Z, {Fn}) =

∫
Z

lim
ε→0

lim sup
n→+∞

− 1
|Fn| log μ(BFn(x, ε)) dμ

and

hloc
μ (Z, {Fn}) =

∫
Z

lim
ε→0

lim inf
n→+∞ − 1

|Fn| log μ(BFn(x, ε)) dμ,

which are called the upper local entropy and the lower local entropy of μ over Z (with
respect to {Fn}), respectively.

https://doi.org/10.1017/etds.2021.126 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.126


Amenable packing topological entropy 483

In the Z-action or N-action case, if the sequence {Fn} is chosen to be Fn = [0, n − 1]
(hence {Fn} is naturally a Følner sequence), the local entropies of a topological dynamical
system (X, T ) will be denoted by hloc

μ (Z, T ) and h
loc
μ (Z, T ), respectively.

By the Brin–Katok entropy formula for amenable group actions (see [26]), if μ is in
addition G-invariant and {Fn} is a tempered Følner sequence which satisfies the growth
condition

lim
n→+∞

|Fn|
log n

= +∞, (1.2)

then the values of the upper and lower local entropies over the whole space X coincide
with the measure-theoretic entropy of the system (X, G).

We will prove the following variational principle between amenable packing entropy
and upper local entropy.

THEOREM 1.3. Let (X, G) be a G-action topological dynamical system and G a countable
infinite discrete amenable group. Let {Fn} be a sequence of finite subsets in G satisfying
the growth condition (1.2). Then for any non-empty Borel subset Z of X,

hP
top(Z, {Fn}) = sup{hloc

μ (Z, {Fn}) : μ ∈ M(X), μ(Z) = 1}.

1.2. Amenable packing entropy inequalities via factor maps. Let (X, G) and (Y , G) be
two G-action topological dynamical systems. A continuous map π : (X, G) → (Y , G) is
called a homomorphism or a factor map from (X, G) to (Y , G) if it is onto and π ◦ g =
g ◦ π , for all g ∈ G. We also say that (X, G) is an extension of (Y , G) or (Y , G) is a factor
of (X, G).

For a subset Z of X, we denote by hUC
top (Z, {Fn}) the upper capacity topological entropy

of Z (defined in §2). We will show in §2 that the packing entropy can be estimated
via the upper capacity topological entropy with parameters (Proposition 2.7). This is a
dynamical version of the fact that the packing dimension can be defined via the upper
Minkowski dimension. Applying Proposition 2.7, we can prove the following packing
entropy inequalities for factor maps.

THEOREM 1.4. Let G be a countable infinite discrete amenable group and π : (X, G) →
(Y , G) be a factor map between two G-action topological dynamical systems. Let {Fn} be
any tempered Følner sequence in G satisfying the growth condition (1.2). Then, for any
Borel subset E of X,

hP
top(π(E), {Fn}) ≤ hP

top(E, {Fn}) ≤ hP
top(π(E), {Fn})

+ sup
y∈Y

hUC
top (π−1(y), {Fn}). (1.3)

We remark here that for Z-actions, the inequalities were proved in [24]. But for
amenable group actions, except employing Bowen’s idea in [2] and the quasi-tiling
techniques developed by Ornstein and Weiss [18], we need a crucial covering lemma for
amenable groups built by Lindenstrauss while proving pointwise theorems for amenable
groups in [15].

https://doi.org/10.1017/etds.2021.126 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.126


484 D. Dou et al

1.3. Amenable packing entropy for certain subsets. Let M(X, G) and E(X, G) be
the collection of G-invariant and ergodic G-invariant Borel probability measures on X,
respectively. Since G is amenable, M(X, G) and E(X, G) are both non-empty. For
μ ∈ M(X, G), let hμ(X, G) denote the measure-theoretic entropy of (X, G) with respect
to μ.

For μ ∈ M(X, G) and a Følner sequence {Fn} in G, let Gμ,{Fn} be the set of generic
points for μ (with respect to {Fn}), which is defined by

Gμ,{Fn} =
{
x ∈ X : lim

n→+∞
1

|Fn|
∑
g∈Fn

f (gx) =
∫

X

f dμ, for any f ∈ C(X)

}
.

For simplicity, we write Gμ,{Fn} as Gμ when there is no ambiguity over {Fn}. But we
should note that for different Følner sequence {Fn}, the corresponding Gμ may not
coincide. When μ is ergodic and the Følner sequence {Fn} is tempered, Gμ has full
measure for μ (see Remark 5.1). But when μ is not ergodic, the set Gμ could be empty.

For the case G = Z, Bowen [3] proved that the Bowen topological entropy of Gμ equals
the measure-theoretic entropy of μ if μ is ergodic. Pfister and Sullivan [20] extended
Bowen’s result to the system with the so-called g-almost product property for invariant
Borel probability measure μ. And the results for the amenable group action version were
proved by Zheng and Chen [26] and Zhang [23]. The g-almost product property (see [20])
is an extension of the specification property for Z-systems and was generalized to amenable
systems in [23] (called the almost specification property there). It was shown in [23]
that weak specification implies almost specification for amenable systems. We defer the
detailed definitions of almost specification and weak specification to §5.

We will prove for packing entropy the following theorem.

THEOREM 1.5. Let (X, G) be a G-action topological dynamical system with G a
countable infinite discrete amenable group and let μ ∈ M(X, G) and {Fn} be a Følner
sequence in G satisfying the growth condition (1.2). If either μ is ergodic and {Fn} is
tempered or (X, G) satisfies the almost specification property, then

hP
top(Gμ, {Fn}) = hμ(X, G). (1.4)

In geometric measure theory, a set is said to be regular (or ‘dimension-regular’) if it has
equal Hausdorff and packing dimensions [22]. As a counterpart in dynamical systems, we
have the following definition.

Definition 1.6. A subset is said to be regular in the sense of dimensional entropy (or
regular for short) if it has equal Bowen entropy and packing entropy.

An affirmative task in the study of packing entropy is to compute the dimensional
entropies (including packing entropy and its dual, Bowen entropy) for various subsets and
to make clear which subsets are regular. From Theorem 1.5 and results in [23, 26] for
Bowen entropy, under the conditions in Theorem 1.5, the set Gμ is regular since both of
its dimensional entropies equal the measure-theoretic entropy for μ.

1.4. Organization of the paper. In §2 we give some properties of amenable packing
entropy including connections with Bowen entropy and upper capacity entropy. We devote
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§3 to the proof of Theorem 1.3, the variational principle between amenable packing
entropy and upper local entropy. This extends Feng and Huang’s result in [9] from
Z-actions to amenable group actions. In §4 we prove the packing entropy inequalities for
factor maps (Theorem 1.4). Finally, in §5, we give the proof of Theorem 1.5 and provide
some examples to discuss the regularity for certain subsets. These examples include subsets
of symbolic dynamical system and fibers of the (T , T −1) transformation. Some detailed
computations on these examples are included in Appendix A.

2. Properties of amenable packing entropy
Due to the definition of packing entropy in §1, it is not hard to prove that the packing
entropy has the following properties.

PROPOSITION 2.1. Let {Fn} be a sequence of finite subsets in G with |Fn| → ∞, and let
Z, Z′ and Zi(i = 1, 2, . . .) be subsets of X.
(1) If Z ⊆ Z′, then

hP
top(Z, {Fn}) ≤ hP

top(Z
′, {Fn}).

(2) If Z ⊆ ⋃+∞
i=1 Zi , then for any ε > 0,

hP
top(Z, ε, {Fn}) ≤ sup

i≥1
hP

top(Zi , ε, {Fn}).

Hence

hP
top(Z, {Fn}) ≤ sup

i≥1
hP

top(Zi , {Fn}).

(3) If {Fnk
} is a subsequence of {Fn}, then

hP
top(Z, {Fnk

}) ≤ hP
top(Z, {Fn}).

In the following we recall the definition of amenable Bowen topological entropy which
was introduced in [25].

Let {Fn} be a sequence of finite subsets in G with |Fn| → ∞. For Z ⊆ X, s ≥ 0, N ∈ N

and ε > 0, define

M(Z, N , ε, s, {Fn}) = inf
∑

i

exp(−s|Fni
|),

where the infimum is taken over all finite or countable families {BFni
(xi , ε)} such that xi ∈

X, ni ≥ N and
⋃

i BFni
(xi , ε) ⊇ Z. The quantity M(Z, N , ε, s, {Fn}) does not decrease

as N increases and ε decreases, hence the following limits exist:

M(Z, ε, s, {Fn}) = lim
N→+∞ M(Z, N , ε, s, {Fn})

and

M(Z, s, {Fn}) = lim
ε→0

M(Z, ε, s, {Fn}).

The Bowen topological entropy hB
top(Z, {Fn}) is then defined as the critical value of the

parameter s, where M(Z, s, {Fn}) jumps from +∞ to 0, that is,
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M(Z, s, {Fn}) =
{

0, s > hB
top(Z, {Fn}),

+∞, s < hB
top(Z, {Fn}).

Next we will compare packing topological entropy with Bowen topological entropy.

PROPOSITION 2.2. Let {Fn} be a sequence of finite subsets in G with |Fn| → ∞. For any
Z ⊆ X,

hB
top(Z, {Fn}) ≤ hP

top(Z, {Fn}).
Proof. The proof for the case hB

top(Z, {Fn}) = 0 is obvious. Now assume hB
top

(Z, {Fn}) > 0 and let 0 < s < hB
top(Z, {Fn}).

Let {Zi}+∞
i=1 be any covering of Z. For each i, for any n ∈ N and ε > 0, let

{BFn(xi,j , ε)}Ni

j=1 be a disjoint subfamily of {BFn(x, ε)}x∈Zi
with maximal cardinality

Ni . Then

Ni⋃
i=1

BFn(xi,j , 3ε) ⊇ Zi .

So

M(Zi , n, 3ε, s, {Fn}) ≤ Nie
−|Fn|s ≤ P(Zi , n, ε, s, {Fn}),

and hence

M(Zi , 3ε, s, {Fn}) ≤ P(Zi , ε, s, {Fn}).
Thus

M(Z, 3ε, s, {Fn}) ≤
+∞∑
i=1

M(Zi , 3ε, s, {Fn}) ≤
+∞∑
i=1

P(Zi , ε, s, {Fn}),

from which we deduce that

M(Z, 3ε, s, {Fn}) ≤ P(Z, ε, s, {Fn}).
Since s < hB

top(Z, {Fn}), we have M(Z, s, {Fn}) = +∞. So

1 ≤ M(Z, 3ε, s, {Fn}) ≤ P(Z, ε, s, {Fn})
whenever ε is sufficiently small. This implies that

hP
top(Z, ε, {Fn}) ≥ s.

Letting ε → 0, we have hP
top(Z, {Fn}) ≥ s. Hence

hB
top(Z, {Fn}) ≤ hP

top(Z, {Fn}).

COROLLARY 2.3. Let μ ∈ M(X, G), Z ⊆ X with μ(Z) = 1 and {Fn} be a Følner
sequence in G. Then

hμ(X, G) ≤ hP
top(Z, {Fn}).
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Proof. Let {Fnk
} be a subsequence of {Fn} which is tempered and satisfies the growth

condition (1.2). By [26], hμ(X, G) ≤ hB
top(Z, {Fnk

}). Together with Proposition 2.2 and
(3) of Proposition 2.1, we have

hμ(X, G) ≤ hP
top(Z, {Fnk

}) ≤ hP
top(Z, {Fn}).

Let ε > 0, Z ⊆ X and F ∈ F(G). A subset E ⊆ Z is said to be an (F , ε)-separated set
of Z if, for any two distinct points x, y ∈ E, dF (x, y) > ε. Let sF (Z, ε) denote the largest
cardinality of (F , ε)-separated sets for Z. A subset E ⊆ X is said to be an (F , ε)-spanning
set of Z if, for any x ∈ Z, there exists y ∈ E with dF (x, y) ≤ ε. Let rF (Z, ε) (sometimes
we use rF (Z, ε, d) to indicate the accompanied metric d) denote the smallest cardinality
of (F , ε)-spanning sets for Z. For a sequence of finite subsets {Fn} in G with |Fn| → ∞,
the upper capacity topological entropy of Z is defined as

hUC
top (Z, {Fn}) = lim

ε→0
lim sup
n→+∞

1
|Fn| log sFn(Z, ε) = lim

ε→0
lim sup
n→+∞

1
|Fn| log rFn(Z, ε).

The second equality comes from the following simple fact:

rFn(Z, 2ε) ≤ sFn(Z, 2ε) ≤ rFn(Z, ε). (2.1)

For convention we denote

hUC
top (Z, ε, {Fn}) = lim sup

n→+∞
1

|Fn| log sFn(Z, ε),

and then

hUC
top (Z, {Fn}) = lim

ε→0
hUC

top (Z, ε, {Fn}).
We note here that for the case Z = X and where {Fn} is a Følner sequence, the quantity
hUC

top (X, {Fn}) coincides with htop(X, G), the topological entropy of (X, G).

PROPOSITION 2.4. Let {Fn} be a sequence of finite subsets in G satisfying the growth
condition (1.2). Then for any subset Z of X and any ε > 0,

hP
top(Z, ε, {Fn}) ≤ hUC

top (Z, ε, {Fn}).
Hence

hP
top(Z, {Fn}) ≤ hUC

top (Z, {Fn}).
Proof. Let ε > 0 be fixed. The proposition is obvious for the case hP

top(Z, ε, {Fn}) = 0.
Assume hP

top(Z, ε, {Fn}) > 0 and let 0 < t < s < hP
top(Z, ε, {Fn}). Then

P(Z, ε, s, {Fn}) ≥ P(Z, ε, s, {Fn}) = +∞.

Thus for any N, there exists a countable pairwise disjoint family {BFni
(xi , ε)} with xi ∈ Z

and ni ≥ N for all i such that 1 <
∑

i e−|Fni
|s . For each k, let mk be the number of i with

ni = k. Then we have ∑
i

e−|Fni
|s =

∑
k≥N

mke
−|Fk |s .
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Since {Fn} satisfies the growth condition limn→+∞(|Fn|/log n) = +∞,
∑

k≥1 e|Fk |(t−s)

converges. Let M = ∑
k≥1 e|Fk |(t−s). There must be some k ≥ N such that mk >

(1/M)e|Fk |t , otherwise the above sum is at most∑
k≥1

1
M

e|Fk |t e−|Fk |s = 1.

So sFk
(Z, ε) ≥ mk > (1/M)e|Fk |t and hence

hUC
top (Z, ε, {Fn}) = lim sup

k→+∞
1

|Fk| log sFk
(Z, ε) ≥ t ,

from which we deduce that hP
top(Z, ε, {Fn}) ≤ hUC

top (Z, ε, {Fn}).
As a corollary, we have the following result.

COROLLARY 2.5. If {Fn} is a Følner sequence that satisfies the growth condition (1.2),
then

hP
top(X, {Fn}) = htop(X, G).

Proof. By Corollary 2.3, for any μ ∈ M(X, G), hμ(X, G) ≤ hP
top(X, {Fn}). Apply-

ing the variational principle for amenable topological entropy (cf. [17, 21]), we
have hP

top(X, {Fn}) ≥ htop(X, G). By Proposition 2.4, we have hP
top(X, {Fn}) ≤

htop(X, G).

Remark 2.6.

(1) By [8] (see also [25]), if {Fn} is a tempered Følner sequence and satisfies the growth
condition (1.2), then

hP
top(X, {Fn}) = htop(X, G) = hB

top(X, {Fn}).
(2) If we replace X by a G-invariant compact subset, the above equality also holds and

hence any G-invariant compact subset is regular (when the Følner sequence {Fn} is
tempered and satisfies the growth condition (1.2)).

At the end of this section we will give further relations between packing entropy and
upper capacity topological entropy.

PROPOSITION 2.7. Let ε > 0, Z be a subset of X and let {Fn} be a sequence of finite
subsets in G satisfying the growth condition (1.2).
(1) We have

hP
top(Z, ε, {Fn}) ≤ inf

{
sup
i≥1

hUC
top (Zi , ε, {Fn}) : Z =

∞⋃
i=1

Zi

}
.

Hence

hP
top(Z, {Fn}) ≤ inf

{
sup
i≥1

hUC
top (Zi , {Fn}) : Z =

∞⋃
i=1

Zi

}
.
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(2) For any δ > 0, there exists a cover
⋃∞

i=1 Zi = Z (which depends on both ε and δ)
such that

hP
top(Z, ε, {Fn}) + δ ≥ sup

i≥1
hUC

top (Zi , 3ε, {Fn}).

Proof. For any Z = ⋃∞
i=1 Zi , by Propositions 2.1 and 2.4,

hP
top(Z, ε, {Fn}) ≤ sup

i≥1
hP

top(Zi , ε, {Fn}) ≤ sup
i≥1

hUC
top (Zi , ε, {Fn}).

Hence

hP
top(Z, ε, {Fn}) ≤ inf

{
sup
i≥1

hUC
top (Zi , ε, {Fn}) : Z =

∞⋃
i=1

Zi

}
.

For the opposite direction, we may assume that hP
top(Z, ε, {Fn}) < ∞. Let δ > 0 be

fixed and set s = hP
top(Z, ε, {Fn}) + δ. By the definition of the amenable packing entropy,

we have that P(Z, ε, s, {Fn}) = 0. Then there exists a cover
⋃∞

i=1 Zi ⊇ Z such that∑
i≥1

P(Zi , ε, s, {Fn}) < 1.

For each Zi , when N is large enough, we have P(Zi , N , ε, s, {Fn}) < 1. Let E be any
(FN , 3ε)-separated subset of Zi . Noting that the closed Bowen balls BFN

(xi , ε) (xi ∈ E ⊂
Zi) are pairwise disjoint, we have

|E|e−s|FN | =
∑
xi∈E

e−s|FN | ≤ P(Zi , N , ε, s, {Fn}) < 1.

Hence sFN
(Zi , 3ε) < es|FN |, which leads to hUC

top (Zi , 3ε, {Fn}) ≤ s. Thus we have

hP
top(Z, ε, {Fn}) + δ ≥ sup

i≥1
hUC

top (Zi , 3ε, {Fn}).

Remark 2.8. Proposition 2.4 is motivated from the equivalent definition of packing
dimension through Minkowski dimension in geometric measure theory, which was due
to Tricot [22] (see also [16] for reference). It is unclear to us whether

hP
top(Z, {Fn}) = inf

{
sup
i≥1

hUC
top (Zi , {Fn}) : Z =

∞⋃
i=1

Zi

}
.

3. A variational principle for amenable packing entropy
In this section we will give the proof of our Theorem 1.3, the variational principle for
amenable packing topological entropy. We assume in this section that {Fn} is a sequence
of finite subsets in G and satisfies growth condition (1.2).

3.1. Lower bound.

PROPOSITION 3.1. Let Z ⊆ X be a Borel set. Then

hP
top(Z, {Fn}) ≥ sup{hloc

μ (Z, {Fn}) : μ ∈ M(X), μ(Z) = 1}.
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For the proof, we need the following classical 5r-lemma in geometric measure theory
(cf. [16, Theorem 2.1]).

LEMMA 3.2. (5r-lemma) Let (X, d) be a compact metric space and B = {B(xi , ri)}i∈I

be a family of closed (or open) balls in X. Then there exists a finite or countable subfamily
B′ = {B(xi , ri)}i∈I ′ of pairwise disjoint balls in B such that⋃

B∈B
B ⊆

⋃
i∈I ′

B(xi , 5ri).

We also need the following lemma, which comes directly from the definition of the
packing entropy.

LEMMA 3.3. Let E ⊂ X and s > 0. Then for any 0 < ε1 < ε2,

P(E, ε2, s, {Fn}) ≤ P(E, ε1, s, {Fn}).

Proof of Proposition 3.1. Let μ ∈ M(X) with μ(Z) = 1 and assume h
loc
μ (Z, {Fn}) > 0.

Let 0 < s < h
loc
μ (Z, {Fn}). Then there exist ε, δ > 0 and a Borel set A ⊂ Z with

μ(A) > 0 such that for every x ∈ A,

hμ(x, ε, {Fn}) > s + δ,

where hμ(x, ε, {Fn}) := lim supn→+∞ −(1/|Fn|) log μ(BFn(x, ε)).
Let E ⊂ A be any Borel set with μ(E) > 0. Define

En = {x ∈ E : μ(BFn(x, ε)) < e−|Fn|(s+δ)}, n ∈ N.

Then
⋃+∞

n=N En = E for any N ∈ N, and hence μ(
⋃+∞

n=N En) = μ(E). Fix N ∈ N. There
exists n ≥ N such that

μ(En) ≥ 1
n(n + 1)

μ(E).

Fix such n and consider the family of Bowen balls {BFn(x, ε/5) : x ∈ En}. By the
5r-lemma, Lemma 3.2 (we use metric dFn instead of d), there exists a finite pairwise
disjoint family {BFn(xi , ε/5)} with xi ∈ En such that⋃

i

BFn(xi , ε) ⊃
⋃

x∈En

BFn

(
x,

ε

5

)
⊃ En.

Thus

P

(
E, N ,

ε

5
, s, {Fn}

)
≥ P

(
En, N ,

ε

5
, s, {Fn}

)
≥

∑
i

e−|Fn|s = e|Fn|δ ∑
i

e−|Fn|(s+δ)

≥ e|Fn|δ ∑
i

μ(BFn(xi , ε)) ≥ e|Fn|δμ(En) ≥ e|Fn|δ

n(n + 1)
μ(E).

By the growth condition (1.2) of the sequence {Fn}, we have

e|Fn|δ

n(n + 1)
→ +∞ as n → +∞.
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Letting N → +∞, we obtain that

P

(
E,

ε

5
, s, {Fn}

)
= +∞.

Note that this equality holds for every Borel set E ⊂ A with μ(E) > 0.
Let {Ai}∞i=1 be any covering of A. Then by Lemma 3.3,

∑
i

P

(
Ai ,

ε

10
, s, {Fn}

)
≥

∑
i

P

(
Ai ,

ε

5
, s, {Fn}

)
.

Since there must exist some Ai such that Ai ∩ A (which is a Borel set now) contains a
Borel subset E ⊂ Ai ∩ A with μ(E) > 0, we have

∑
i

P

(
Ai ,

ε

10
, s, {Fn}

)
≥ P

(
E,

ε

5
, s, {Fn}

)
= +∞.

Thus

P
(

Z,
ε

10
, s, {Fn}

)
≥ P

(
A,

ε

10
, s, {Fn}

)
= +∞,

from which we deduce that

hP
top(Z, {Fn}) ≥ hP

top

(
Z,

ε

10
, {Fn}

)
≥ s.

Since s is chosen arbitrarily in (0, hμ(Z, {Fn})), we finally show that

hP
top(Z, {Fn}) ≥ h

loc
μ (Z, {Fn}).

This finishes the proof of Proposition 3.1.

3.2. Upper bound. The following proposition is the upper bound part of the variational
principle. In fact it is valid for any analytic set Z. Recall that a set in a metric space is
said to be analytic if it is a continuous image of the set N of infinite sequences of natural
numbers. In a Polish space, the collection of analytic subsets contains Borel sets and is
closed under countable unions and intersections (cf. [11]).

PROPOSITION 3.4. Let Z ⊆ X be an analytic set with hP
top(Z, {Fn}) > 0. For any

0 < s < hP
top(Z, {Fn}), there exist a compact set K ⊆ Z and μ ∈ M(K) such that

h
loc
μ (K , {Fn}) ≥ s.

The following lemma is needed.

LEMMA 3.5. Let Z ⊆ X and s, ε > 0. Assume that P(Z, ε, s, {Fn}) = +∞. Then for any
given finite interval (a, b) ⊂ R with a ≥ 0 and any N ∈ N, there exists a finite disjoint
collection {BFni

(xi , ε)} such that xi ∈ Z, ni ≥ N and
∑

i exp(−|Fni
|s) ∈ (a, b).

Proof. See [9, Lemma 4.1].
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Proof of Proposition 3.4. Since Z is analytic, there exists a continuous surjective map φ :
N → Z. Let �n1,n2,...,np = {(m1, m2, . . .) ∈ N : m1 ≤ n1, m2 ≤ n2, . . . , mp ≤ np} and
let Zn1,...,np = φ(�n1,...,np ).

For 0 < s < hP
top(Z, {Fn}), take ε > 0 small enough to make 0 < s < hP

top(Z, ε, {Fn})
and take t ∈ (s, hP

top(Z, ε, {Fn})). Following Feng and Huang’s steps (which are inspired
by the work of Joyce and Preiss [12] on packing measures), we will construct inductively
the following data:
(D-1) a sequence of finite sets (Ki)

+∞
i=1 with Ki ⊂ Z;

(D-2) a sequence of finite measures (μi)
+∞
i=1 with each μi supported on Ki ;

(D-3) a sequence of integers (ni)
+∞
i=1 and a sequence of positive numbers (γi)

+∞
i=1 ;

(D-4) a sequence of integer-valued functions (mi : Ki → N)+∞
i=1 .

Moreover, the sequences (Ki), (μi), (ni), (γi) and (mi(·)) will be constructed to satisfy
the following conditions.
(C-1) For each i, the family Vi := {B(x, γi)}x∈Ki

is disjoint. Each element in Vi+1 is a
subset of B(x, γi/2) for some x ∈ Ki .

(C-2) For each i, Ki ⊂ Zn1,...,ni
and μi = ∑

y∈Ki
e−|Fmi (y)|sδy with 1 < μ1(K1) < 2.

(C-3) For each x ∈ Ki and z ∈ B(x, γi),

BFmi(x)
(z, ε) ∩

⋃
y∈Ki\{x}

B(y, γi) = ∅ (3.1)

and

μi(B(x, γi)) = e−|Fmi (x)|s ≤
∑

y∈Ei+1(x)

e
−|Fmi+1(y)|s < (1 + 2−(i+1))μi(B(x, γi)),

(3.2)

where Ei+1(x) = B(x, γi) ∩ Ki+1.
We will give the construction later.

Suppose the sequences (Ki), (μi), (ni), (γi) and (mi(·)) have been constructed. By
(3.2), for Vi ∈ Vi ,

μi(Vi) ≤ μi+1(Vi) =
∑

V ∈Vi+1,V ⊂Vi

μi+1(V ) ≤ (1 + 2−(i+1))μi(Vi).

Repeatedly using the above inequalities, we have for any j > i and any Vi ∈ Vi ,

μi(Vi) ≤ μj (Vi) ≤
j∏

n=i+1

(1 + 2−n)μi(Vi) ≤ Cμi(Vi), (3.3)

where C := ∏+∞
n=1(1 + 2−n) < +∞.

Let μ̃ be a limit point of (μi) in the weak∗ topology. Let

K =
+∞⋂
n=1

⋃
i≥n

Ki .
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Then μ̃ is supported on K. Furthermore,

K ⊂
+∞⋂
p=1

Zn1,...,np .

By the continuity of φ, applying Cantor’s diagonal argument, we can show that⋂+∞
p=1 Zn1,...,np = ⋂+∞

p=1 Zn1,...,np . Hence K is a compact subset of Z.
By (3.3), for any x ∈ Ki ,

e−|Fmi (x)|s = μi(B(x, γi)) ≤ μ̃(B(x, γi)) ≤ Cμi(B(x, γi)) = Ce−|Fmi (x)|s .

In particular,

1 ≤
∑
x∈K1

μ1(B(x, γ1)) ≤ μ̃(K) ≤
∑
x∈K1

Cμ1(B(x, γ1)) ≤ 2C.

Note that K ⊂ ⋃
x∈Ki

B(x, γi/2). By (3.1), the first part of (C-3), for each x ∈ Ki and
z ∈ B(x, γi), reads

μ̃(BFmi (x)
(z, ε)) ≤ μ̃(B(x, γi/2)) ≤ Ce−|Fmi (x)|s .

For each z ∈ K and i ∈ N, z ∈ B(x, γi/2) for some x ∈ Ki . Hence

μ̃(BFmi (x)
(z, ε)) ≤ Ce−|Fmi (x)|s .

Define μ = μ̃/μ̃(K). Then μ ∈ M(K). For each z ∈ K , there exists a sequence ki ↑
+∞ such that μ(BFki

(z, ε)) ≤ Ce−|Fki
|s/μ̃(K). Hence h

loc
μ (K , {Fn}) ≥ s.

Now the only thing left is to give the inductive construction of the data (Ki), (μi),
(ni), (γi) and (mi(·)). The inductive steps are as follows.

Step 1. Construct the data K1, μ1, n1, γ1 and m1(·).
Since t ∈ (s, hP

top(Z, ε, {Fn})), we have that P(Z, ε, t , {Fn}) = +∞. Let

H =
⋃

{U ⊂ X : U is open, P(Z ∩ U , ε, t , {Fn}) = 0}.
Then by the separability of X, H is a countable union of the open sets U. Hence
P(Z ∩ H , ε, t , {Fn}) = 0. Let Z′ = Z \ H = Z ∩ (X \ H). If P(Z′ ∩ U , ε, t , {Fn}) = 0
for some open set U, then

P(Z ∩ U , ε, t , {Fn}) ≤ P(Z′ ∩ U , ε, t , {Fn}) + P(Z ∩ H , ε, t , {Fn}) = 0.

So U ⊂ H and then Z′ ∩ U = ∅. Hence for any open set U ⊂ X, either Z′ ∩ U = ∅ or
P(Z′ ∩ U , ε, t , {Fn}) > 0.

Because P(Z, ε, t , {Fn})≤ P(Z′, ε, t , {Fn})+ P(Z ∩ H , ε, t , {Fn}) = P(Z′, ε, t , {Fn}),
we have P(Z′, ε, t , {Fn}) = P(Z, ε, t , {Fn}) = +∞. Then P(Z′, ε, s, {Fn}) = +∞.

By Lemma 3.5, we can find a finite set K1 ⊂ Z′, an integer-valued function m1(x) on
K1 such that the collection {BFm1(x)

(x, ε)}x∈K1 is disjoint and∑
x∈K1

e−|Fm1(x)|s ∈ (1, 2).
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Define μ1 = ∑
x∈K1

e−|Fm1(x)|sδx , where δx denotes the Dirac measure at x. Take γ1 > 0
sufficiently small such that for any function z : K1 → X with maxx∈K1 d(x, z(x)) ≤ γ1,
we have for each x ∈ K1,

(B(z(x), γ1) ∪ BFm1(x)
(z(x), ε)) ∩

( ⋃
y∈K1\{x}

B(z(y), γ1) ∪ BFm1(y)
(z(y), ε)

)
= ∅.

(3.4)

Since K1 ⊂ Z′, we have P(Z ∩ B(x, γ1/4), ε, t , {Fn}) ≥ P(Z′ ∩ B(x, γ1/4), ε, t ,
{Fn}) > 0 for each x ∈ K1. Therefore we can pick a sufficiently large n1 ∈ N so that
Zn1 ⊃ K1 and P(Zn1 ∩ B(x, γ1/4), ε, t , {Fn}) > 0 for each x ∈ K1.

Step 2. Construct the data K2, μ2, n2, γ2 and m2(·).
By (3.4), the family of balls {B(x, γ1)}x∈K1 are pairwise disjoint. For each x ∈

K1, since P(Zn1 ∩ B(x, γ1/4), ε, t , {Fn}) > 0, similarly to Step 1, we can construct a
finite set E2(x) ⊂ Zn1 ∩ B(x, γ1/4) and an integer-valued function m2 : E2(x) → N ∩
[max{m1(y) : y ∈ K1}, +∞) such that:
(2-a) for each open set U with U ∩ E2(x) �= ∅, P(Zn1 ∩ U , ε, t , {Fn}) > 0;
(2-b) the elements in the family {BFm2(y)

(y, ε)}y∈E2(x) are pairwise disjoint and

μ1({x}) <
∑

y∈E2(x)

e−|Fm2(y)|s < (1 + 2−2)μ1({x}).

To see this, we fix x ∈ K1. Denote V = Zn1 ∩ B(x, γ1/4). Let

Hx :=
⋃

{U ⊂ X : U is open and P(V ∩ U , ε, t , {Fn}) = 0}.
Set V ′ = V \ Hx . Then as in Step 1, we can show that

P(V ′, ε, t , {Fn}) = P(V , ε, t , {Fn}) > 0.

Moreover, for any open set U ⊂ X, either V ′ ∩ U = ∅ or P(V ′ ∩ U , ε, t , {Fn}) > 0.
Since s < t , we have that P(V ′, ε, s, {Fn}) = +∞. By Lemma 3.5, we can find a finite
set E2(x) ⊂ V ′ and a map m2 : E2(x) → N ∩ [max{m1(y) : y ∈ K1}, +∞) such that
(2-b) holds. Notice that if an open set U satisfies U ∩ E2(x) �= ∅, then U ∩ V ′ �= ∅. So
P(Zn1 ∩ U , ε, t , {Fn}) ≥ P(V ′ ∩ U , ε, t , {Fn}) > 0. Hence (2-a) holds.

Since the family {B(x, γ1)}x∈K1 is disjoint, so is the family {E2(x)}x∈K1 . Define

K2 =
⋃

x∈K1

E2(x) and μ2 =
∑
y∈K2

e−|Fm2(y)|sδy .

By (3.4) and (2-b), the elements in {BFm2(y)
(y, ε)}y∈K2 are pairwise disjoint.

Hence we can take 0 < γ2 < γ1/4 such that for any function z : K2 → X satisfying
maxx∈K2 d(x, z(x)) < γ2, we have for x ∈ K2,

(B(z(x), γ2) ∪ BFm2(x)
(z(x), ε)) ∩

( ⋃
y∈K2\{x}

B(z(y), γ2) ∪ BFm2(y)
(z(y), ε)

)
= ∅.

(3.5)
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Choose a sufficiently large n2 ∈ N so that Zn1,n2 ⊃ K2 and

P(Zn1,n2 ∩ B(x, γ2/4), ε, t , {Fn}) > 0

for each x ∈ K2.

Step 3. Next we suppose that the data Ki , μi , ni , γi and mi(·) (i = 1, . . . , p) have been
constructed. We will construct the data Kp+1, μp+1, np+1, γp+1 and mp+1(·).

Assume that we have constructed Ki , μi , ni , γi and mi(·) for i = 1, . . . , p. And
assume that for any function z : Kp → X with d(x, z(x)) < γp for all x ∈ Kp, we have

(B(z(x), γp) ∪ BFmp(x)
(z(x), ε)) ∩

( ⋃
y∈Kp\{x}

B(z(y), γp) ∪ BFmp(y)
(z(y), ε)

)
= ∅

(3.6)

for each x ∈ Kp; and Zn1,...,np ⊃ Kp and P(Zn1,...,np ∩ B(x, γp/4), ε, t , {Fn}) > 0 for
each x ∈ Kp.

Note that the family of balls {B(x, γp)}x∈Kp are pairwise disjoint. For each x ∈ Kp,
since P(Zn1,...,np ∩ B(x, γp/4), ε, t , {Fn}) > 0, similarly to Step 2, we can construct
a finite set Ep+1(x) ⊂ Zn1,...,np ∩ B(x, γp/4) and an integer-valued function mp+1 :
Ep+1(x) → N ∩ [max{mp(y) : y ∈ Kp}, +∞) such that:
(3-a) for each open set U with U ∩ Ep+1(x) �= ∅, P(Zn1,...,np ∩ U , ε, t , {Fn}) > 0;
(3-b) the elements in the family {BFmp+1(y)

(y, ε)}y∈Ep+1(x) are pairwise disjoint and

μp({x}) <
∑

y∈Ep+1(x)

e
−|Fmp+1(y)|s < (1 + 2−(p+1))μp({x}).

By (3.6) and (3-b), the family {BFmp+1(y)
(y, ε)}y∈Kp+1 is disjoint. Hence we can take

0 < γp+1 < γp/4 such that for any function z : Kp+1 → X with maxx∈Kp+1 d(x, z(x)) <

γp+1, we have for each x ∈ Kp+1,

(B(z(x), γp+1)∪BFmp+1(x)
(z(x), ε))

∩
( ⋃

y∈Kp+1\{x}
B(z(y), γp+1) ∪ BFmp+1(y)

(z(y), ε)

)
= ∅. (3.7)

Choose a sufficiently large np+1 ∈ N so that Zn1,...,np+1 ⊃ Kp+1 and P(Zn1,...,np+1 ∩
B(x, γp+1/4), ε, t , {Fn}) > 0 for each x ∈ Kp+1.

Then we finish the required construction and complete the proof of the proposition.

4. Packing entropy inequalities for factor maps
In this section we will prove Theorem 1.4. The proof is a combination of Bowen’s method
in [2] and quasi-tiling techniques for amenable groups.

4.1. Preliminaries for amenable groups. Let G be a countable infinite discrete amenable
group. Let A and K be two non-empty finite subsets of G. Recall that B(A, K), the
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K-boundary of A, is defined by

B(A, K) = {g ∈ G : Kg ∩ A �= ∅ and Kg ∩ (G \ A) �= ∅}.
For δ > 0, the set A is said to be (K , δ)-invariant if

|B(A, K)|
|A| < δ.

We say a sequence of non-empty finite subsets {Fn} of G becomes more and more invariant
if, for any δ > 0 and any non-empty finite subset K of G, Fn is (K , δ)-invariant for
sufficiently large n. An equivalent condition for the sequence {Fn} to be a Følner sequence
is that {Fn} becomes more and more invariant (see [18]).

Let F̃ be a collection of finite subsets of G. It is said to be δ-disjoint if for every A ∈ F̃
there exists an A′ ⊂ A such that |A′| ≥ (1 − δ)|A| and such that A′ ∩ B ′ = ∅ for every
A �= B ∈ F̃ .

The following is a covering lemma for amenable groups by Lindenstrauss.

LEMMA 4.1. (Lindenstrauss’s covering lemma, [15, Corollary 2.7]) For any δ ∈
(0, 1/100), C > 0 and finite D ⊂ G, let M ∈ N be sufficiently large (depending only
on δ, C and D). Let Fi,j be an array of finite subsets of G where i = 1, . . . , M and
j = 1, . . . , Ni , with the following two requirements.
(1) For every i, F̄i,∗ = {Fi,j }Ni

j=1 satisfies∣∣∣∣ ⋃
k′<k

F−1
i,k′ Fi,k

∣∣∣∣ ≤ C|Fi,k| for k = 2, . . . , Ni .

(2) Denote Fi,∗ = ⋃
F̄i,∗. The finite set sequences Fi,∗ satisfy that for every 1 < i ≤ M

and every 1 ≤ k ≤ Ni , ∣∣∣∣ ⋃
i′<i

DF−1
i′,∗Fi,k

∣∣∣∣ ≤ (1 + δ)|Fi,k|.

Assume that Ai,j is another array of finite subsets of G with Fi,jAi,j ⊂ F for some finite
subset F of G. Let Ai,∗ = ⋃

j Ai,j and

α = min1≤i≤M |DAi,∗|
|F | .

Then the collection of subsets of F,

F̃ = {Fi,j a : 1 ≤ i ≤ M , 1 ≤ j ≤ Ni and a ∈ Ai,j },
has a subcollection F that is 10δ1/4-disjoint such that∣∣∣∣ ⋃

F
∣∣∣∣ ≥ (α − δ1/4)|F |.

4.2. Proof of Theorem 1.4. Let G, {Fn} and π : (X, G) → (Y , G) be as in Theorem 1.4
and E ⊂ X be a Borel set. Let d and ρ be the compatible metrics on X and Y, respectively.
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For any ε > 0, there exists δ > 0 such that, for any x1, x2 ∈ X with d(x1, x2) ≤ δ, one
has ρ(π(x1), π(x2)) ≤ ε. Now let {yi}ki=1 ⊂ π(E) be any (Fn, ε)-separated set of π(E)

and choose for each i a point xi ∈ π−1(yi) ∩ E. Then {xi}ki=1 forms an (Fn, δ)-separated
set of E. Hence

sFn(π(E), ε) ≤ sFn(E, δ)

and

hUC
top (π(E), ε, {Fn}) ≤ hUC

top (E, δ, {Fn}). (4.1)

By Proposition 2.7(2), for any η > 0, there exists a cover
⋃∞

i=1 Ei = E such that

hP
top(E, δ/3, {Fn}) + η ≥ sup

i≥1
hUC

top (Ei , δ, {Fn}).

Then we have

hP
top(π(E), ε, {Fn}) ≤ sup

i≥1
hP

top(π(Ei), ε, {Fn}) (by Proposition 2.1(2))

≤ sup
i≥1

hUC
top (π(Ei), ε, {Fn}) (by Proposition 2.4)

≤ sup
i≥1

hUC
top (Ei , δ, {Fn}) (noting that 4 also holds for each Ei)

≤ hP
top(E, δ/3, {Fn}) + η,

which implies that

hP
top(π(E), {Fn}) ≤ hP

top(E, {Fn}).
To get the upper bound, we need to prove the following inequality for amenable

upper capacity topological entropy, which extends a result by Bowen [2, Theorem 17] to
amenable group actions.

THEOREM 4.2. Let G be a countable infinite discrete amenable group and π : (X, G) →
(Y , G) be a factor map between two G-action topological dynamical systems. Let {Fn} be
any tempered Følner sequence in G satisfying growth condition (1.2). Then for any subset
E of X,

hUC
top (E, {Fn}) ≤ hUC

top (π(E), {Fn}) + sup
y∈Y

hUC
top (π−1(y), {Fn}). (4.2)

Proof. If sup
y∈Y

hUC
top (π−1(y), {Fn}) = ∞ then there is nothing to prove. So we assume that

a := sup
y∈Y

hUC
top (π−1(y), {Fn}) < ∞.

To verify (4.2), we need some preparations in the following three steps.

Step 1. Construct Fi,j , the array of subsets of G.

Fix τ > 0. For any ε > 0, let 0 < δ < min{ε, 1/100} be small enough. Let C > 0
be the constant in the tempered condition (1.1) for the Følner sequence {Fn} and let
D = {eG} ⊂ G, where eG is the identity element of G. Let M > 0 be large enough as
in Lemma 4.1 corresponding to δ, C and D.
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For each y ∈ Y , choose m(y) ∈ N such that for any n ≥ m(y),

1
|Fn| log rFn(π

−1(y), ε, d) ≤ hUC
top (π−1(y), {Fn}) + τ ≤ a + τ . (4.3)

Here recall that rFn(π
−1(y), ε, d) denotes the smallest cardinality of (Fn, ε)-spanning sets

for π−1(y). Let Ey be an (Fm(y), ε)-spanning set of π−1(y) with the smallest cardinality
|Ey | = rFm(y)

(π−1(y), ε, d). Denote

Uy = {p ∈ X : there exists q ∈ Ey such that dFm(y)
(p, q) < 2ε},

which is an open neighborhood of π−1(y). Since
⋂

γ>0 π−1(B(y, γ , ρ)) = π−1(y), we
have (X \ Uy)

⋂
(
⋂

γ>0 π−1(B(y, γ , ρ))) = ∅. Hence by the finite intersection property
of compact sets, there is a Wy := B(y, γy , ρ) for some γy > 0 such that Uy ⊃ π−1(Wy).
Since Y is compact, there exist y1,1, . . . , y1,r1 such that Wy1,1 , . . . , Wy1,r1

cover Y. List the
Følner sets in the collection {Fm(y1,k) : 1 ≤ k ≤ r1} by

Fn1,1 , Fn1,2 , . . . , Fn1,N1
where n1,1 < n1,2 < · · · < n1,N1 .

Note that N1 = #{Fm(y1,k) : 1 ≤ k ≤ r1} ≤ r1.
For each y ∈ Y , choose m(y) > n1,N1 such that (4.3) holds for any n ≥ m(y). Repeating

the above process, we can obtain y2,1, . . . , y2,r2 ∈ Y such that Wy2,1 , . . . , Wy2,r2
cover Y.

We then list the Følner sets in the collection {Fm(y2,k) : 1 ≤ k ≤ r2}:
Fn2,1 , Fn2,2 , . . . , Fn2,N2

where n2,1 < n2,2 < · · · < n2,N2 .

Note that N2 = #{Fm(y2,k) : 1 ≤ k ≤ r2} ≤ r2.
Repeating the above steps inductively, we can obtain, for each 1 ≤ i ≤ M:

(1) a collection of points yi,1, . . . , yi,ri ∈ Y such that Wyi,1 , . . . , Wyi,ri
cover Y;

(2) a collection of Følner sets {Fni,1 , Fn2,2 , . . . , Fni,Ni
} (= {Fm(yi,k) : 1 ≤ k ≤ ri}) with

ni,1 < ni,2 < · · · < ni,Ni
and Ni ≤ ri .

From the above construction, for each 1 ≤ i ≤ M − 1, we have ni,Ni
< ni+1,1. More-

over, ni+1,1 can be chosen sufficiently large compared with ni,Ni
such that, for every

1 < i ≤ M and every 1 ≤ k ≤ Ni ,∣∣∣∣ ⋃
i′<i

F−1
ni′ ,∗Fni ,k

∣∣∣∣ ≤ (1 + δ)|Fni ,k|. (4.4)

For simplification, we denote Fi,j = Fni,j for each 1 ≤ i ≤ M and 1 ≤ j ≤ Ni , which
is the array of G we required.

Step 2. Produce quasi-tilings from Fi,j .

Let η1 be a common Lebesgue number of the family of open covers {Wyi,1 , . . . , Wyi,ri
}

with respect to the metric ρ. Denote η = (η1/2).
Let N be large enough such that, for every n > N , Fn is (Fi,∗ ∪ {eG}, δ)-invariant for

all 1 ≤ i ≤ M .
For each y ∈ Y and n > N , let

https://doi.org/10.1017/etds.2021.126 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.126


Amenable packing topological entropy 499

Ai,j = {a ∈ Fn : Fi,j a ⊂ Fn and there exists 1 ≤ k ≤ ri such that Fm(yi,k) = Fi,j

and B(ay, η, ρ) ⊆ Wyi,k }.
We note here that Ai,j depends on y.

For any g ∈ Fn \ B(Fn, Fi,∗ ∪ {eG}), we have Fi,∗g ⊂ Fn. Since η1(= 2η) is a
Lebesgue number of {Wyi,1 , . . . , Wyi,ri

}, B(gy, η, ρ) is contained in some Wyi,k and
then g ∈ Ai,∗. Hence

Ai,∗ ⊇ Fn \ B(Fn, Fi,∗ ∪ {eG})
for each 1 ≤ i ≤ M , and

α = min1≤i≤M |DAi,∗|
|Fn| = min1≤i≤M |Ai,∗|

|Fn| > 1 − δ.

We are now able to apply Lemma 4.1: the temperedness assumption for {Fn} makes
requirement (1) of that lemma hold and (4.4) makes requirement (2) hold. From the
collection of subsets of Fn,

F̃ = {Fi,j a : 1 ≤ i ≤ M , 1 ≤ j ≤ Ni and a ∈ Ai,j },
we can find by Lemma 4.1 a subcollection F which is 10δ1/4-disjoint and∣∣∣⋃ F

∣∣∣ ≥ (α − δ1/4)|Fn| ≥ (1 − δ − δ1/4)|Fn|. (4.5)

In fact, this subcollection F is a 10δ1/4 quasi-tiling of Fn subordinate to y ∈ Y (see, for
example, [14] for the detail definition of quasi-tiling).

There may exist overlaps between elements in F . Since F is 10δ1/4-disjoint, there exits
T ′ ⊂ T for each T ∈ F such that |T ′|/|T | ≥ 1 − 10δ1/4 and the collection {T ′ : T ∈ F}
is disjoint. Denote this new collection by F ′. By (4.5),∣∣∣⋃ F

∣∣∣ ≤
∑
T ∈F

|T | ≤ 1
1 − 10δ1/4

∑
T ∈F

|T ′| ≤ 1
1 − 10δ1/4 |Fn| (4.6)

and ∣∣∣⋃ F ′
∣∣∣ =

∑
T ∈F

|T ′| ≥ (1 − 10δ1/4)(1 − δ − δ1/4)|Fn|. (4.7)

Step 3. Cover π−1BFn(y, η, ρ) through Fn-Bowen balls in (X, G).

CLAIM. When δ is sufficiently small, for any y ∈ Y and n > N , there exist l(y) > 0 and
v1(y), v2(y), . . . , vl(y)(y) ∈ X such that

l(y)⋃
i=1

BFn(vi(y), 4ε, d) ⊇ π−1(BFn(y, η, ρ))

and

l(y) ≤ exp((a + 2τ)|Fn|).
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Proof of the Claim. For each T = Fi,j a ∈ F , since a ∈ Ai,j , by the construction of Ai,j ,
there exists some point in {yi,1, yi,2, . . . , yi,ri }, denoted by yT , such that B(ay, η, ρ) ⊆
WyT

and Fm(yT ) = Fi,j .
In the following we will recover the Fn-orbits of (X, G) from the T-orbits.
Let E ⊂ X be any finite ε-spanning set under the metric d. For any sequence of points

{zT }T ∈F with each zT ∈ EyT
and any sequence of points {zg}g∈Fn\∪F ′ with each zg ∈ E,

let

V (y; {zT }, {zg}) :=
{
u ∈ X : dT ′(u, a−1zT ) < 2ε for all T = Fi,j a ∈ F ,

d(gu, zg) < 2ε for all g ∈ Fn \
⋃

F ′}.

It is not hard to verify that⋃
{zT },{zg}

V (y; {zT }, {zg}) ⊇ π−1(BFn(y, η, ρ)),

that is, the family {V (y; {zT }, {zg}) : zT ∈ EyT
, T ∈ F , zg ∈ E, g ∈ Fn \ ⋃ F ′} forms an

open cover of π−1(BFn(y, η, ρ)). We also note that some of the V (y; {zT }, {zg}) may be
empty.

We pick any point v({zT }, {zg}) in each non-empty V (y; {zT }, {zg}). Then

BFn(v({zT }, {zg}), 4ε, d) ⊇ V (y; {zT }, {zg}).
Enumerate these v({zT }, {zg}) by y1, y2, . . . , yl(y). We then obtain

l(y)⋃
i=1

BFn(yi , 4ε, d) ⊇ π−1(BFn(y, η, ρ)). (4.8)

Now the only thing left is to estimate l(y). Clearly,

l(y) ≤
∏
T ∈F

|EyT
| ·

∏
g∈Fn\∪F ′

|E| =
∏
T ∈F

rFm(yT )
(π−1(y), ε, d) · |E||Fn|−| ⋃ F ′|

≤ exp
( ∑

T ∈F
|Fm(yT )|(a + τ) +

(
|Fn| −

∣∣∣⋃ F ′
∣∣∣) log |E|

)

≤ exp
((

1
1 − 10δ1/4 (a + τ) + (1 − (1 − 10δ1/4)(1 − δ − δ1/4)) log |E|

)
|Fn|

)
(by (4.6) and (4.7))

≤ exp((a + 2τ)|Fn|) (when δ is sufficiently small).

We now proceed to prove (4.2). For any subset E of X, let H be an (Fn, η)-spanning
set of π(E) with minimal cardinality rFn(π(E), η, ρ). Then by the above claim, the set
R = {vi(y) : 1 ≤ i ≤ l(y), y ∈ H } forms an (Fn, 4ε)-spanning set of E, since

⋃
y∈H

l(y)⋃
i=1

BFn(vi(y), 4ε, d) ⊇
⋃
y∈H

π−1(BFn(y, η, ρ)) ⊇ π−1π(E) ⊇ E.
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Hence

rFn(E, 4ε, d) ≤ rFn(π(E), η, ρ) · exp((a + 2τ)|Fn|). (4.9)

From this we deduce that

hUC
top (E, {Fn}) ≤ hUC

top (π(E), {Fn}) + a + 2τ .

Letting τ tend to 0, (4.2) is proved.

Proof of the upper bound of hP
top(E, {Fn}). What we need in fact is inequality (4.9) in the

proof of Theorem 4.2.
From (2.1), we first convert inequality (4.9) into

sFn(E, 8ε, d) ≤ sFn(π(E), η, ρ) · exp((a + 2τ)|Fn|).
This implies that

hUC
top (E, 8ε, {Fn}) ≤ hUC

top (π(E), η, {Fn}) + a + 2τ .

By Proposition 2.7(2) again, for any δ > 0, there exists a cover
⋃∞

i=1 Vi = π(E) such
that

hP
top(π(E), η/3, {Fn}) + δ ≥ sup

i≥1
hUC

top (Vi , η, {Fn}).

Using an similar argument to that in the proof of the lower bound,

hP
top(E, 8ε, {Fn}) ≤ sup

i≥1
hP

top(π
−1(Vi), 8ε, {Fn}) ≤ sup

i≥1
hUC

top (π−1(Vi), 8ε, {Fn})

≤ sup
i≥1

hUC
top (Vi , η, {Fn}) + a + 2τ

≤ hP
top(π(E), η/3, {Fn}) + δ + a + 2τ .

Hence

hP
top(E, {Fn}) ≤ hP

top(π(E), {Fn}) + a + 2τ .

Since τ > 0 is arbitrary, we finally obtain

hP
top(E, {Fn}) ≤ hP

top(π(E), {Fn}) + sup
y∈Y

hUC
top (π−1(y), {Fn}).

5. Amenable packing entropy for certain subsets
5.1. The set of generic points. Recall that for μ ∈ M(X, G) and a Følner sequence {Fn}
in G, the set of generic points for μ (with respect to {Fn}) is defined by

Gμ =
{
x ∈ X : lim

n→+∞
1

|Fn|
∑
g∈Fn

f (gx) =
∫

X

f dμ, for any f ∈ C(X)

}
.

Remark 5.1. If μ ∈ E(X, G) and {Fn} is a tempered Følner sequence then μ(Gμ) = 1.
To show this, let {fi}∞i=1 be a countable dense subset of C(X) and denote
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Xi =
{
x ∈ X : lim

n→+∞
1

|Fn|
∑
g∈Fn

fi(gx) =
∫

X

fi dμ

}
.

By the pointwise ergodic theorem, μ(Xi) = 1. Hence Gμ = ⋂∞
i=1 Xi has full measure.

The system (X, G) is said to have the almost specification property if there exists a
non-decreasing function g : (0, 1) → (0, 1) with limr→0 g(r) = 0 (a mistake-density
function) and a map m : (0, 1) → F(G) × (0, 1) such that for any k ∈ N, any
ε1, ε2, . . . , εk ∈ (0, 1), and any x1, x2, . . . , xk ∈ X, if Fi is m(εi)-invariant, i =
1, 2, . . . , k, and {Fi}ki=1 are pairwise disjoint, then⋂

1≤i≤m

B(g; Fi , xi , εi) �= ∅,

where B(g; F , x, ε) := {y ∈ X : |{h ∈ F : d(hx, hy) > ε}| ≤ g(ε)|F |}, the Bowen ball
allowing a mistake with density g(ε).

Remark 5.2. It was shown in [23] that the weak specification implies the almost
specification. Recall that in [6] the system (X, G) (the group G need not be amenable)
has weak specification if for any ε > 0 there exists a non-empty finite subset F of G with
the following property: for any finite collection F1, . . . , Fm of finite subsets G with

FFi ∩ Fj = ∅ for 1 ≤ i, j ≤ m, i �= j ,

and for any collection of points x1, . . . , xm ∈ X, there exists a point y ∈ X such that

d(gxi , gy) ≤ ε for all g ∈ Fi , 1 ≤ i ≤ m,

that is, ⋂
1≤i≤m

BFi
(xi , ε) �= ∅.

In this section, we will prove Theorem 1.5, that is, if μ ∈ M(X, G), the Følner sequence
{Fn} satisfies the growth condition (1.2) and either μ is ergodic and {Fn} is tempered or
(X, G) has almost specification, then

hP
top(Gμ, {Fn}) = hμ(X, G). (5.1)

The idea of the proof comes from Pfister and Sullivan [20] (see also [23, 26] for
amenable group actions).

5.1.1. Upper bound for hP
top(Gμ, {Fn}). In the following we are going to prove

hP
top(Gμ, {Fn}) ≤ hμ(X, G) assuming that the Følner sequence {Fn} satisfies the growth

condition (1.2).
For μ ∈ M(X, G), let {Km}m∈N be a decreasing sequence of closed convex neighbor-

hoods of μ in M(X) such that
⋂

m∈N Km = {μ}. Let

An,m =
{
x ∈ X :

1
|Fn|

∑
g∈Fn

δx ◦ g−1 ∈ Km

}
for m, n ∈ N,
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and

RN ,m =
{
x ∈ X : for any n > N ,

1
|Fn|

∑
g∈Fn

δx ◦ g−1 ∈ Km

}
for m, N ∈ N.

Then for any m, N ≥ 1,

RN ,m =
⋂
n>N

An,m and Gμ ⊆
⋃
k>N

Rk,m.

For ε > 0 and Z ⊆ X, recall that sFn(Z, ε) denotes the maximal cardinality of any
(Fn, ε)-separated subset of Z. Then we have

lim sup
n→+∞

1
|Fn| log sFn(RN ,m, ε) ≤ lim sup

n→+∞
1

|Fn| log sFn(An,m, ε) for any m, N ≥ 1.

(5.2)

By the claim in [26, p. 878] (we note that it also works for non-ergodic invariant
measures),

lim
ε→0

lim
m→+∞ lim sup

n→+∞
1

|Fn| log sFn(An,m, ε) ≤ hμ(X, G).

Hence for any η > 0, there exists 0 < ε1 such that, for any 0 < ε < ε1, there exists M =
M(ε) ∈ N such that

lim sup
n→+∞

1
|Fn| log sFn(An,m, ε) < hμ(X, G) + η,

whenever m ≥ M . Especially,

lim sup
n→+∞

1
|Fn| log sFn(An,M , ε) < hμ(X, G) + η. (5.3)

Taking (5.2) and (5.3) together, for any 0 < ε < ε1, we have that for any N ∈ N,

lim sup
n→+∞

1
|Fn| log sFn(RN ,M , ε) < hμ(X, G) + η.

Since for any N ′ ∈ N, Gμ ⊆ ⋃
N≥N ′ RN ,M , by Propositions 2.1 and 2.4,

hP
top(Gμ, ε, {Fn}) ≤ sup

N≥N ′
hP

top(RN ,M , ε, {Fn}) ≤ sup
N≥N ′

lim sup
n→+∞

1
|Fn| log sFn(RN ,M , ε),

from which it follows that

hP
top(Gμ, ε, {Fn}) ≤ hμ(X, G) + η.

Letting ε → 0 and then η → 0, we obtain that hP
top(Gμ, {Fn}) ≤ hμ(X, G).

5.1.2. Lower bound for hP
top(Gμ, {Fn}). For the case where μ is ergodic and {Fn} is

tempered, since μ(Gμ) = 1, Corollary 2.3 gives the lower bound.
For the case when μ ∈ M(X, G) and the system (X, G) has almost specification

property, the proof of the lower bound becomes rather complicated because of
the quasi-tiling techniques for amenable groups. But it was shown in [23] that
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hB
top(Gμ, {Fn}) = hμ(X, G). Hence by Proposition 2.2, we obtain hP

top(Gμ, {Fn}) ≥
hμ(X, G).

5.2. G-symbolic dynamical system. Let A be a finite set with cardinality |A| ≥ 2 and let
AG = {(xg)g∈G : xg ∈ A} be the G-symbolic space over A. Consider the left action of G
on AG:

g′(xg)g∈G = (xgg′)g∈G for all g′ ∈ G and (xg)g∈G ∈ AG.

(AG, G) forms a G-symbolic dynamical system or a G-acting full shift (over A). For
any non-empty closed G-invariant subset X of AG, the subsystem (X, G) is called a
subshift. For x = (xg)g∈G and a finite subset F ⊂ G, denote by x|F = (xg)g∈F ∈ AF the
restriction of x to F and denote [x|F ] = {ω ∈ AG : ωg = xg for all g ∈ F } (which is called
a cylinder).

Fix any tempered Følner sequence {Fn} of G with F0 = {eG} � F1 � F2 � . . . and⋃
n Fn = G. Note that {Fn} satisfies the growth condition (1.2) automatically. We can

then define a metric d on AG associated to {Fn} as follows:

d(x, y) =
{

1 if x and y are not equal on F0,

e−|Fn| n = max{k : x|Fk
= y|Fk

}. (5.4)

To discuss the regularity for subsets of (AG, G), we need to consider the relation
between Bowen entropy (packing entropy) and the corresponding Hausdorff dimension
(packing dimension). Before that, we recall the definitions of Hausdorff dimension and
packing dimension (cf. [16]).

Definition 5.3. Let (X, d) be a compact metric space. Let 0 ≤ s < ∞. For E ⊂ X and
ε > 0, put

P s
ε (E) = sup

∑
i

(diamBi)
s

where the supremum is taken over all disjoint families of closed balls {Bi} such that
diamBi ≤ ε and the centers of the Bi are in E.

Then set P s(E) = limε→0 P s
ε (E) (since P s

ε (E) is non-decreasing on ε) and define

Ps(E) = inf
{ ∞∑

i=1

P s(Ei) : E =
∞⋃
i=1

Ei

}
.

The packing dimension of E is then defined by

dimP (E) = inf{s : Ps(E) = 0} = sup{s : Ps(E) = ∞}.
Let Hs(E) = limε→0 Hs

ε(E), where

Hs
ε(E) = inf

{ ∞∑
i=1

(diamEi)
s : E ⊂

∞⋃
i=1

Ei , diamEi ≤ ε

}
.
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The Hausdorff dimension of E is then defined by

dimH (E) = inf{s : Hs(E) = 0} = sup{s : Hs(E) = ∞}.

Comparing with the definitions of dimensional entropies, we have the following
proposition.

PROPOSITION 5.4. Let the Følner sequence {Fn} satisfy the following two conditions:
(1) FmFn ⊂ Fm+n for each m, n ∈ N;
(2) limn→∞((Fn+1)/Fn) = 1.

Then for any E ⊂ AG,

hB
top(E, {Fn}) = dimH E and hP

top(E, {Fn}) = dimP E,

where the dimensions dimH and dimP are both under the metric d defined in (5.4).

Proof. See Appendix A.1.

Remark 5.5.

(1) Due to [10], the sequence of finite subsets {Fn} of G satisfying condition (1) in
Proposition 5.4 is called a regular system. If G is a finitely generated group, and
letting Fn be the collection of elements in G with word length (with respect to a
finite symmetric generating subset) no more than n, then {Fn} satisfies condition (1).

(2) There are examples of amenable groups which admit Følner sequences satisfying
the conditions in Proposition 5.4. An abelian example of the group G is Zd , with
Fn = [−n, n]d . An non-abelian example of the group G is the dihedral group, with
Fn chosen to be the collection of elements with word length no more than n (see [5]).

By Proposition 5.4, we have the following result.

PROPOSITION 5.6. Let the Følner sequence {Fn} satisfy the conditions in Proposition 5.4.
Then any subset E ⊂ AG is regular in the sense of dimensional entropy if and only if E is
dimension-regular (under the Følner sequence {Fn} and metric d).

By Remark 2.6, any non-empty closed G-invariant subset X of AG is regular in the sense
of dimensional entropy. Hence we have the following corollary.

COROLLARY 5.7. Let the Følner sequence {Fn} satisfy the conditions in Proposition 5.4.
Then any non-empty closed G-invariant subset X of AG is both regular in the sense
of dimensional entropy and dimension-regular (under the Følner sequence {Fn} and
metric d).

Let 0 ≤ α < β ≤ 1 and A = {0, 1}. Let H ⊂ G such that

lim inf
n→+∞

|H ∩ Fn|
|Fn| = α and lim sup

n→+∞
|H ∩ Fn|

|Fn| = β,
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that is H is a subset of G with lower density α and upper density β with respect to {Fn}.
Now we define Xα,β ⊂ {0, 1}G by

Xα,β = {(xg)g∈G : xg = 0 if g /∈ H }.
Assume in addition that {Fn} satisfies the conditions in Proposition 5.4. Then we have the
following proposition.

PROPOSITION 5.8. hB
top(Xα,β , {Fn}) = α log 2 and hP

top(Xα,β , {Fn}) = β log 2. Hence
Xα,β is not regular.

Proof. See Appendix A.2.

5.3. Fibers of {T , T −1} transformation. Random walk in random scenery (RWRS) is a
class of stationary random processes which are well studied in both probability theory and
ergodic theory. RWRS provides measure-theoretic models with amazingly rich behavior
(see [1, 7]). Among the class of RWRS, {T , T −1} transformation, although apparently
simple, is possibly the best known in the history of ergodic theory since it is a natural
example of a K-automorphism that is not Bernoulli [13]. In spite of its measure-theoretic
aspect, we will consider the topological model of the {T , T −1} transformation and
investigate subsets of the topological system.

Definition 5.9. (Topological {T , T −1} transformation) Let A = {1, −1}, and by conven-
tion we denote the shift map on AZ by T, which is defined by

(T (x))i = xi+1 for any x = (xi)i∈Z ∈ AZ.

The {T , T −1} transformation, denoted by S, on AZ × AZ is defined by

S(x, y) =
{

(T (x), T (y)) if y0 = 1,

(T −1(x), T (y)) if y0 = −1.

Then Sn(x, y) = (T ω(y,n)(x), T ny) for n ∈ Z, where

ω(y, n) :=

⎧⎪⎪⎨
⎪⎪⎩

∑n−1
j=0 yj if n > 0,

0 if n = 0,

− ∑−1
j=n yj if n < 0.

Clearly for the system (AZ × AZ, S), the acting group G here is the integer group Z.
The Følner sequence {Fn} is chosen naturally to be Fn = {0, 1, . . . , n − 1} := [0, n − 1].
Define a metric ρ on AZ × AZ by

ρ((x, y), (x′, y′)) = max{d(x, x′), d(y, y′)},
where d is the metric on AZ defined by

d(x, y) = 2−n where n = min{|i| : xi �= yi}.
We note that the metric d here is different from (5.4).
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Let π : AZ × AZ → AZ be the projection to the second coordinate. Then it induces
a factor map between (AZ × AZ, S) and (AZ, T ). For any y ∈ AZ, let Ey := AZ × {y}
denote the fiber of y under the factor map π . We denote by

hP
top(Ey , S) = hP

top(Ey , {Fn}) and hB
top(Ey , S) = hB

top(Ey , {Fn}),
the packing and Bowen entropies of Ey for the Z-system (AZ × AZ, S), respectively.

For n > 0, denote

M(y, n) = max
0≤i≤n

ω(y, i) and m(y, n) = min
0≤i≤n

ω(y, i).

PROPOSITION 5.10. For the packing and Bowen entropies of Ey , we have:
(1) hP

top(Ey , S) = lim supn→+∞((M(y, n) − m(y, n))/n)htop(A
Z, T );

(2) hB
top(Ey , S) = lim infn→+∞((M(y, n) − m(y, n))/n)htop(A

Z, T ).

Here htop(A
Z, T )(= log 2) is the topological entropy of the symbolic dynamical system

(AZ, T ). Hence Ey is regular if and only if limn→+∞(M(y, n) − m(y, n))/n exists.

Proof. See Appendix A.3.
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A. Appendix. Proofs of Propositions 5.4, 5.8 and 5.10
In this appendix we will give detailed proofs of Propositions 5.4, 5.8 and 5.10.

A.1. Proof of Proposition 5.4. Let E be a subset of the compact metric space (AG, d)

as defined in §5.2. Recall that in Proposition 5.4 the Følner sequence {Fn} satisfies the
following two conditions:
(1) FmFn ⊆ Fm+n for each m, n ∈ N;
(2) limn→∞((Fn+1)/Fn) = 1.

We divide the proof of Proposition 5.4 into two parts.

Part 1. Proof of hB
top(E, {Fn}) = dimH E. Let s > hB

top(E, {Fn}). From the definition of
Bowen entropy, we have

M(E, ε, s, {Fn}) = 0 for any ε > 0.

Hence for any N > 0, M(E, N , 1, s, {Fn}) = 0. For any δ > 0, there exists a countable
family {BFni

(xi , 1)} with xi ∈ E, ni ≥ N and
⋃

i BFni
(xi , 1) ⊃ E such that∑

i

e−s|Fni
| < δ.

https://doi.org/10.1017/etds.2021.126 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.126


508 D. Dou et al

Notice that

BFni
(xi , 1) = {y ∈ AG : ρ(gxi , gy) < 1, for all g ∈ Fni

}
= {y ∈ AG : (gxi)eG

= (gy)eG
, for all g ∈ Fni

}
= [xi |Fni

] (A.1)

and diam[xi |Fni
] = e−|Fni

| ≤ e−|FN |. Since the family of cylinders {[xi |Fni
]} covers E, we

have

Hs

e−|FN |(E) ≤
∑

i

e−s|Fni
| < δ.

Therefore Hs

e−|FN |(E) = 0 and then Hs(E) = 0. This means that dimH E ≤ s. Since s >

hB
top(E, {Fn}) is arbitrary, hB

top(E, {Fn}) ≥ dimH E.
Now we will show hB

top(E, {Fn}) ≤ dimH E.
If hB

top(E, {Fn}) = 0, then there is nothing to prove. Assume hB
top(E, {Fn}) > 0 and let

0 < s < hB
top(E, {Fn}). Then there exists 0 < ε < 1 such that

M(E, ε, s, {Fn}) > 1. (A.2)

Assume ε ∈ (e−|Fk |, e−|Fk−1|] for some k ∈ N and let η > 0 be fixed. By condition (2),
there exists N ′ > k such that

|Fn|
|Fn−k| < 1 + η whenever n > N ′.

By (A.2), there exists N > N ′ such that M(E, N , ε, s, {Fn}) > 1.
Let {Ei}∞i=1 be any countable family that covers E and diamEi < e−|FN+k | for each i. By

the definition of the metric d, diamEi = e−|Fni
| for some ni > N + k. Choose any point

xi ∈ Ei . Then Ei ⊂ [xi |Fni
].

Noticing that

BFni−k
(xi , ε) = {y ∈ AG : ρ(gxi , gy) < ε, for all g ∈ Fni−k}

= {y ∈ AG : ρ(gxi , gy) ≤ e|Fk |, for all g ∈ Fni−k}
= {y ∈ AG : (gxi)|Fk

= (gy)|Fk
, for all g ∈ Fni−k}

= {y ∈ AG : xi |FkFni−k
= y|FkFni−k

} = [xi |FkFni−k
]

⊇ [xi |Fni
] (since FkFni−k ⊆ Fni

), (A.3)

the family {BFni−k
(xi , ε)}∞i=1 also covers E (with each ni − k > N). So

∞∑
i=1

e−s|Fni−k | ≥ M(E, N , ε, s, {Fn}) > 1.

Hence
∞∑
i=1

e−(s/(1+η))|Fni
| =

∞∑
i=1

e−(s/(1+η))(|Fni
|/|Fni−k |)|Fni−k | >

∞∑
i=1

e−s|Fni−k | > 1,

which implies that H(s/(1+η))(E) ≥ H(s/(1+η))

e−|FN+k | (E) ≥ 1. Thus dimH E ≥ (s/(1 + η)).
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Letting η → 0, we have dimH E ≥ s. Since 0 < s < hB
top(E, {Fn}) is chosen arbitrarily,

we obtain that hB
top(E, {Fn}) ≤ dimH E.

Part 2. Proof of hP
top(E, {Fn}) = dimP E. We first show hP

top(E, {Fn}) ≥ dimP E.
Let s > hP

top(E, {Fn}). Then, for any 0 < ε < 1, we have that hP
top(E, ε, {Fn}) < s and

hence P(E, ε, s, {Fn}) = 0. So for any δ > 0, there exists a countable covering {Ei}∞i=1 of
E such that

∞∑
i=1

P(Ei , ε, s, {Fn}) < δ.

For each i, we can find Ni ∈ N sufficiently large such that

P(Ei , Ni , ε, s, {Fn}) < P (Ei , ε, s, {Fn}) + δ

2i
.

Let {Bi,j }∞j=1 be a family of disjoint closed balls in AG (with centers xi,j ∈ Ei and

diamBi,j ≤ e−|FNi
|) such that

P s

e
−|FNi

|(Ei) ≤
∞∑

j=1

(diam Bi,j )
s + δ

2i
.

From the definition of the metric d, diam Bi,j = e
−|Fni,j | for some ni,j ≥ Ni . Noticing that

Bi,j = B(xi,j , e
−|Fni,j |

) = [xi,j |Fni,j
]

⊇ BFni,j
(xi,j , ε) (here we have assumed ε < 1),

{BFni,j
(xi,j , ε)}∞j=1 is also a pairwise disjoint family. Hence

Ps(E) ≤
∞∑
i=1

P s(Ei) ≤
∞∑
i=1

P s

e
−|FNi

|(Ei) ≤
∞∑
i=1

( ∞∑
j=1

e
−s|Fni,j | + δ

2i

)

≤
∞∑
i=1

P(Ei , Ni , ε, s, {Fn}) + δ <

∞∑
i=1

(
P(Ei , ε, s, {Fn}) + δ

2i

)
+ δ

< 3δ.

Thus Ps(E) = 0 and dimP E ≤ s. Since s > hP
top(E, {Fn}) is arbitrary, we obtain

dimP E ≤ hP
top(E, {Fn}).

Next we will show hP
top(E, {Fn}) ≤ dimP E.

Assume hP
top(E, {Fn}) > 0, otherwise there is nothing to prove. Let 0 < s <

hP
top(E, {Fn}). Then there exists 0 < ε < 1 such that hP

top(E, ε, {Fn}) > s. Assume
ε ∈ (e−|Fk |, e−|Fk−1|] for some k ∈ N and let η > 0 be fixed. Similarly to Part 1, by
condition (2), there exists N > k such that

|Fn|
|Fn−k| < 1 + η whenever n > N .
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Let {Ei}∞i=1 be any countable family that covers E. Then

∞∑
i=1

P(Ei , ε, s, {Fn}) ≥ P(E, ε, s, {Fn}) = ∞.

For each i, let Ni > N be sufficiently large such that

P
(s/(1+η))

e
−|FNi

| (Ei) < P (s/(1+η))(Ei) + 1
2i

.

Let {BFni,j
(xi,j , ε)}∞j=1 be a disjoint family with xi,j ∈ Ei and ni,j ≥ Ni for each j such

that

P(Ei , Ni , ε, s, {Fn}) <

∞∑
j=1

e
−s|Fni,j | + 1

2i
.

With similar discussion to (A.3), BFni,j
(xi,j , ε)⊇[xi,j |Fni,j +k

] and hence {[xi,j |Fni,j +k
]}∞j=1

is a disjoint family of closed balls with

diam[xi,j |Fni,j +k
] = e

−|Fni,j +k | ≤ e−|FNi+k |.

Therefore

P
(s/(1+η))

e
−|FNi+k | (Ei) ≥

∞∑
j=1

e
−(s/(1+η))|Fni,j +k |.

Thus we have
∞∑
i=1

P (s/(1+η))(Ei) >

∞∑
i=1

P
(s/(1+η))

e
−|FNi+k | (Ei) − 1 ≥

∞∑
i=1

∞∑
j=1

e
−(s/(1+η))|Fni,j +k | − 1

=
∞∑
i=1

∞∑
j=1

e
−(s/(1+η))(|Fni,j +k |/|Fni,j |)|Fni,j | − 1 ≥

∞∑
i=1

∞∑
j=1

e
−s|Fni,j | − 1

>

∞∑
i=1

(
P(Ei , Ni , ε, s, {Fn}) − 1

2i

)
− 1

≥
∞∑
i=1

P(Ei , ε, s, {Fn}) − 2 = ∞,

which implies that P(s/(1+η))(E) = ∞ and then dimP E ≥ (s/(1 + η)).
Letting η → 0, we have dimP E ≥ s. Since 0 < s < hP

top(E, {Fn}) is chosen arbitrarily,
we obtain that hP

top(E, {Fn}) ≤ dimP E.

A.2. Proof of Proposition 5.8. Recall that for Proposition 5.8 we let 0 ≤ α < β ≤ 1,
A = {0, 1} and let H ⊂ G such that

lim inf
n→+∞

|H ∩ Fn|
|Fn| = α and lim sup

n→+∞
|H ∩ Fn|

|Fn| = β.
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Xα,β ⊂ {0, 1}G is defined by

Xα,β = {(xg)g∈G : xg = 0 if g /∈ H }.
Let μ ∈ M(Xα,β) such that μ([x|Fn]) = (1/2|H∩Fn|) for every x ∈ Xα,β and n ∈ N.

Noticing that BFn(x, 1) = [x|Fn] (see (A.1)), we have

hloc
μ (Xα,β , {Fn}) =

∫
Xα,β

lim
ε→0

lim inf
n→+∞ − 1

|Fn| log μ(BFn(x, ε)) dμ

≥
∫

Xα,β

lim inf
n→+∞ − 1

|Fn| log μ([x|Fn]) dμ

= lim inf
n→+∞ − 1

|Fn| log
1

2|H∩Fn| = α log 2,

and similarly,

h
loc
μ (Xα,β , {Fn}) ≥ β log 2.

Applying [25, Theorem 3.1] (the variational principle for amenable Bowen entropy) and
Theorem 1.3 (the variational principle for amenable packing entropy) respectively, we have

hB
top(Xα,β , {Fn}) ≥ α log 2 and hP

top(Xα,β , {Fn}) ≥ β log 2.

To prove hB
top(Xα,β , {Fn}) ≤ α log 2, by Proposition 5.4, we only need to prove that

dimH (Xα,β) ≤ α log 2.
Let

En = {(xg)g∈G : xg = 0 if g /∈ H ∩ Fn}, (A.4)

which is a subset of Xα,β with cardinality #En = 2|H∩Fn|. Note that
⋃

x∈En
[x|Fn] ⊇ Xα,β

and diam[x|Fn] = e−|Fn| for each x ∈ En. Let δ > 0 and N ∈ N be fixed. When n > N ,

H(α+δ) log 2
e−|FN | (Xα,β) ≤

∑
x∈En

e−(α+δ) log 2|Fn| = elog 2|Fn|((|H∩Fn|/|Fn|)−α−δ).

Since lim infn→+∞(|H ∩ Fn|/|Fn|) = α, we have

H(α+δ) log 2
e−|FN | (Xα,β) = 0 and H(α+δ) log 2(Xα,β) = lim

N→∞ H(α+δ) log 2
e−|FN | (Xα,β) = 0.

Thus

dimH (Xα,β) ≤ (α + δ) log 2,

from which we deduce that

dimH (Xα,β) ≤ α log 2.

Finally, we will prove that hP
top(Xα,β , {Fn}) ≤ β log 2.

Let ε > 0 such that ε ∈ (e−|Fk |, e−|Fk−1|] for some k ∈ N. Noticing that [x|Fn+k
] ⊆

BFn(x, ε) (see (A.3); here condition (1) of Proposition 5.4 is used), one can check that
the set En+k , defined by (A.4), is an (Fn, ε)-spanning set of Xα,β . Hence rFn(Xα,β , ε) ≤
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2|H∩Fn+k |. Then

lim sup
n→+∞

1
|Fn| log rFn(Xα,β , ε) ≤ lim sup

n→+∞
|H ∩ Fn+k|

|Fn| log 2 = β log 2,

where for the last equality we use condition (2) of Proposition 5.4. Thus

hP
top(Xα,β , {Fn}) ≤ hUC

top (Xα,β , {Fn}) ≤ β log 2.

A.3. Proof of Proposition 5.10. (1) For any ε > 0 and x ∈ AZ, in the system (AZ ×
AZ, S), we have

Bn((x, y), ε, ρ) ∩ Ey = {(x′, y) : ρ(Si(x′, y), Si(x, y)) < ε, for 0 ≤ i ≤ n − 1}
= {(x′, y) : d(T ω(y,i)(x′), T ω(y,i)x) < ε, for 0 ≤ i ≤ n − 1}
= B[m(y,n−1),M(y,n−1)](x, ε, d) × {y}. (A.5)

Let μ be the { 1
2 , 1

2 } Bernoulli measure on (AZ, T ) and δy be the Dirac probability measure
at the point y. Then

h
loc
μ×δy

(Ey , S) =
∫

Ey

lim
ε→0

lim sup
n→+∞

−1
n

log(μ × δy)(Bn((x, y), ε, ρ)) d(μ × δy)

=
∫

AZ

lim
ε→0

lim sup
n→+∞

−1
n

log μ(B[m(y,n−1),M(y,n−1)](x, ε, d)) dμ

= lim sup
n→+∞

M(y, n) − m(y, n)

n
htop(A

Z, T ), (A.6)

where for the last inequality we use the simple facts that M(y, n − 1) ≤ M(y, n) ≤
M(y, n − 1) + 1 and m(y, n − 1) − 1 ≤ m(y, n) ≤ m(y, n − 1). Hence by Theorem 1.3,
we have

hP
top(Ey , S) ≥ h

loc
μ×δy

(Ey , S) = lim sup
n→∞

M(y, n) − m(y, n)

n
htop(A

Z, T ).

Let E × {y} be any (n, ε)-separated set for Ey . Note that, from (A.5), E must be an
([m(y, n − 1), M(y, n − 1)], ε)-separated set for AZ. We have

hUC
top (Ey , S) ≤ lim sup

n→+∞
M(y, n) − m(y, n)

n
hUC

top (AZ, T )

= lim sup
n→+∞

M(y, n) − m(y, n)

n
htop(A

Z, T ).

By Proposition 2.4,

hP
top(Ey , S) ≤ hUC

top (Ey , S) ≤ lim sup
n→∞

M(y, n) − m(y, n)

n
htop(A

Z, T ).

This finishes the proof of (1).
(2) Similarly to (A.6), we have

hloc
μ×δy

(Ey , S) =
∫

Ey

lim
ε→0

lim inf
n→+∞ −1

n
log(μ × δy)(Bn((x, y), ε, ρ)) d(μ × δy)
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=
∫

AZ

lim
ε→0

lim inf
n→+∞ −1

n
log μ(B[m(y,n−1),M(y,n−1)](x, ε, d)) dμ

= lim inf
n→+∞

M(y, n) − m(y, n)

n
htop(A

Z, T ).

Hence by [25], the variational principle for amenable Bowen entropy, we have

hB
top(Ey , S) ≥ hloc

μ×δy
(Ey , S) = lim inf

n→∞
M(y, n) − m(y, n)

n
htop(A

Z, T ).

We now prove the upper bound for hB
top(Ey), that is,

hB
top(Ey , S) ≤ lim inf

n→∞
M(y, n) − m(y, n)

n
htop(A

Z, T ).

Let δ > 0 be fixed. For any ε > 0, there exists k ∈ N such that for any x, z ∈ AZ,
whenever xi = zi for every |i| ≤ k, we have that d(x, y) < ε. Hence for any interval [m.n]
of integers, we have

B[m,n](x, ε, d) ⊇ [x|[−k+m,k+n]],

where [x|[−k+m,k+n]] := {z ∈ AZ : zi = xi , for every − k + m ≤ i ≤ k + n} is the cylin-
der in AZ.

Let

En = {x ∈ AZ : xi = 1 if i /∈ [−k + m(y, n − 1), k + M(y, n − 1)]}.
Consider the family

{Bn((x, y), ε, ρ) ∩ Ey}x∈En .

This evidently covers Ey , since Bn((x, y), ε, ρ) ∩ Ey = B[m(y,n−1),M(y,n−1)](x, ε, d) ×
{y} (by (A.5)). Hence for any N ∈ N, we have for any n ≥ N ,

M(Ey , N , ε, s, {Fn}) ≤ (#En)e
−sn

= 2M(y,n−1)−m(y,n−1)+2k+1e−sn

= en(((M(y,n−1)−m(y,n−1)+2k+1)/n) log 2−s).

Note that there exist infinitely many n ∈ N such that

M(y, n − 1) − m(y, n − 1) + 2k + 1
n

< lim inf
n→+∞

M(y, n) − m(y, n)

n
+ δ.

Then for any s > (lim infn→+∞((M(y, n) − m(y, n))/n) + δ) log 2, we can deduce that

M(Ey , N , ε, s, {Fn}) = 0.

Letting N → +∞, ε → 0 and then δ → 0, from the definition of the Bowen entropy, we
can conclude that

hB
top(Ey , S) ≤ lim inf

n→∞
M(y, n) − m(y, n)

n
htop(A

Z, T ).

This finishes the proof of (2) of Proposition 5.10.
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