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Higher Moments of Fourier Coefficients of
Cusp Forms

Guangshi Lii and Ayyadurai Sankaranarayanan

Abstract. Let Si(T') be the space of holomorphic cusp forms of even integral weight k for the full
modular group SL(2,7Z). Let A¢(n), Ag(n), 1, (n) be the n-th normalized Fourier coefficients of
three distinct holomorphic primitive cusp forms f(z) € S, (T), g(z) € Sk, (T), and h(z) € S, (T),
respectively. In this paper we study the cancellations of sums related to arithmetic functions, such
as A¢(n)*Ag(n)? Ag(n)%, Ag(n)? A, (n)*, and Ag(n*)? twisted by the arithmetic function A ¢ (n).

1 Introduction

Let Sk (T) be the space of holomorphic cusp forms of even integral weight k for the full
modular group I' = SL(2,Z). Suppose that f(z) € S, (T), g(z) € S,(T) and h(z) €
Sk, (T') are primitive cusp forms. We shall denote their corresponding normalized
Fourier coefficients by A¢(n), Ag(n), and A, (n).

Fourier coefficients of cusp forms are mysterious objects, and it is of interest to
study their distribution. In 1927, Hecke [7] proved that

S(x) = ¥ As(n) <5 x2.

Subsequent improvements on S(x) were made by Wilton [34], Walfisz [33], and im-
plied by the work of Kloosterman [13], Davenport [1], Salié [27], and Weil [35]. As a
corollary of the Ramanujan-Petersson conjecture proved by Deligne [2], it is known
that for any € > 0,

S(x) = ¥ Ap(n) <5, ¢ x3*.

Further improvements are due to Hafner and Ivi¢ [6], Rankin [24], and Wu [36].
In the 1930, Rankin [23] and Selberg [28] introduced a method (the Rankin-
Selberg method) and showed that
ngx/\fc(") =cox + Of(x%), n§x/\f(")/\g(ﬂ) =0y, ¢(x%) (f#8)
Nearly half a century later, the work of Moreno and Shahidi [22] implied that:
> )L;(n) ~ c1xlogx, X — oo,

n<x

In 2001, Fomenko [3] strengthened and then generalized these results by showing that

Received by the editors October 8, 2014; revised March 21, 2015.

Published electronically May 21, 2015.

AMS subject classification: 11F30, 11F66.

Keywords: Fourier coefficients of automorphic forms, Dirichlet series, triple product L-function,
Perron’s formula.

548

https://doi.org/10.4153/CMB-2015-031-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2015-031-1

Higher Moments of Fourier Coefficients of Cusp Forms 549

(a) Forany ¢ > 0, we have
> )Lj:(n) Kfe x&te,

n<x

(b) For any ¢ > 0, we have
> Af:(n))tg(n) Kfige x&Te,
n<x

(c) Let F; be the Gelbart-Jacquet lift on GL3(Ag) associated with f, and let F, be
the Gelbart-Jacquet lift on GL3(Ag) associated with g. If F; and F, are distinct,
then for any ¢ > 0, we have

2 A2(m)A2(n) = cax + O e (x754°).
n<x

(d) For any ¢ > 0, we have

> A}(n) =cxlogx + c3x + Of,s(x%”).
n<x

In a series of papers [18-20], the first author further improved Fomenko’s results and

was able to consider more general higher moments of Fourier coefficients of cusp

forms. For instance, the following results were established:

(a) foranye>0,
> A?(n) = xP;(logx) + Of)g(x%”),
n<x

where P;(x) is a polynomial of degree 4;
(b) foranye >0,

> /\fc(n) = xP,(logx) + Of)g(x%”),
n<x

where P,(x) is a polynomial of degree 13.
In fact, it is clear that for two distinct primitive cusp forms f and g, the earlier ex-
isting methods are able to establish asymptotic formulae with acceptable error terms
(or nontrivial estimates) for sums of the type

> Ap(n) Ag(n),
n<x
for any 1 < i, j < 4; and for one primitive cusp form f, for sums of the type
2 A (n),
forany1<j<8.
More recently, in [21] it was shown that the changes of sign in A(n)A,(n) cause

cancellations on the twisted sums related to the positive-valued functions A 7(n)* and
An(n)*, namely,

g Ap(n)*Ag(n) < X2t Z<: Ar(n)dg(n)An(n)* < e,

This means that sequences {A;(n)Ag(n)} and {A(n)*} (or {14(n)*}) are asymp-
totically orthogonal as x — oo.

In this short note, we study cancellations on sums related to A r(n)*A4(n)?, A4 (n)°®,
Ag(n)?Ap(n)’, Ag(n?)?, and Ag(n*)? twisted by A ;(n). More precisely, we will prove
the following theorems.
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Theorem 1.1  For any € > 0, we have

34, 6,
g )Lfc(n)lg(n)z Kf g e XWE, Y )Lf(n))tg(n)6 Kf, g e X

n<x

Theorem 1.2  For any € > 0, we have
> /\f(n)/lg(”l)z)th(n)j < g he xl—ﬁﬂ’
n<x

where2 < j < 4.

Theorem 1.3  For any € > 0, we have

26 15
Ex Ar(n)Ag(n®)’ g, g e x7 75, Ex/\f(n)/lg(nS)z Kf g e X10TE

Remark 1.4 'The proofs of Theorems 1.1, 1.2, and 1.3 make use of the j-th symmet-
ric power lifts with j < 4 and the Rankin-Selberg convolution theory. In addition,
we shall also exploit the important progress on the Langlands program, namely the
functorial product for GL, x GL; (see [15]).

2 Some Lemmas

Suppose that f(z) € Sk, (T), g(2) € Sk, (T), and h(z) € Si,(T) are primitive cusp
forms. According to Deligne [2], for any prime number p there are a¢(p) and S(p)
such that

Ap(p) = ar(p) + Bs(p) and |as(p)| = ar(p)Bs(p) =1.
We shall also use the notations a, (p), an(p), Bg(p), and B (p) with the same mean-
ings. The Hecke L-function L(f,s) is defined by

= Ag(n -1 -1
L(f,s)=n§1;(5)=1;I(1—af(p)p“) (1-Bs(p)p™) -

The j-th symmetric power L-function attached to f is defined by

(2.1) L(sym’ f,s) = I;[ Ii:[0

(1= as(p) " Bs(p)"p~*) " == 1Ly (sym £.5)

for Rs > 1.

It is well known that for every f € S, (T), there is associated an automorphic
cuspidal representation 77 of GL,(Ag). This representation factors as a restricted
tensor product of local GL, representations 77 = ®, 7y, ,,, where v runs over all places
of Q. If v = p is finite, 71¢,, is an unramified principal series representation, and one
associates with it a semi-simple SL, (C)-conjugacy class

ar(p) 0\
g}(p):(fop ﬁf(p))'
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It should be stressed that this gft( p) and g¢(p) below are related to s, and the

reader should not confuse them with g(z) and 7, from the context. The automor-
phic L-function associated with 7 is defined by

L(mg,s) = I;[det(l—p_sgf(p))_l,

which coincides with L( f, s). It is well known that

A () = 5 ag(p) " By(p)" = te(syml (g (1)),

where sym’ denotes the symmetric j-th power representation of the standard repre-
sentation of GL,. Thus the local L-function of the j-th symmetric power L-function
is given by

Ly(sym’ f,s) = I;[ det(I-p~* sym’(gs(p)) !
As a part of the far-reaching Langlands program, there exists an automorphic cuspidal
self-dual representation, denoted by sym’ 7y = ®," sym/ 7, of GLj;1(Ag) whose
local L-factors L(sym/ 71, , s) agree with the local L-factors L,(sym’ f, ).

Thanks to the works of Gelbart and Jacquet [4], Kim and Shahidi [15,16], and Kim
[14] in which it is established that the automorphy of the j-th symmetric power lifts
(up to 4), the predicted analytic properties and functional equations of the symmet-
ric power L-functions L(sym/ f,s) (j = 2,3, 4) actually hold, we have the following
lemma.

Lemma 2.1 Let f(z) € Si(T) be a primitive cusp form. The j-th symmetric power
L-function L(sym/ f,s) is defined in (2.1). For j = 1,2, 3, 4, there exists an automorphic
cuspidal self-dual representation, denoted by sym’ 7y = ®” sym’ 75, of GLj1(Ag)
whose local L-factors L(sym’ iy ,,s) agree with the local L-factors L,(sym/ f,s) in
(2.1). In particular, for j = 1,2,3,4, L(sym/ f,s) has an analytic continuation as an en-
tire function in the whole complex plane C, and it satisfies a certain functional equation
of Riemann-type.

Proof This lemma follows from Gelbart and Jacquet [4] for k = 2, and from the
recent works of Kim and Shahidi [15,16] and Kim [14] when k = 3, 4. [ |

Besides Lemma 2.1, we need the result of Kim and Shadihi [15] on the automorphy
of the tensor product transfer from automorphic representations on GL; x GL3 to
GLs.

Lemma 2.2 Let w and 1’ be cuspidal automorphic representations of GL;(Ag) and
GLy(Aq), respectively. Then there exists an isobaric automorphic representation T® 1’
of GLs(Aq) such that

Lnrn',s)=L(nen,s),
where L(n ® 7', s) is the Rankin-Selberg L-function associated with 7t and '.

We shall also use the special case of the cuspidality criterion for the functorial
product GL; x GL; proved by Ramakrishnan and Wang [26] which is embodied in :
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Lemma 2.3  Suppose that f(z) € Sk, (T) and g(z) € Si,(T) are distinct primitive
cusp forms, and L(my ® sym® g, s) is the Rankin-Selberg L-function associated to 7y
on GL,(Ag) and sym® g on GL3(Ag) . Then there exists a cuspidal representation
mf R sym® mg := Iy, on GLg(Ag) such that

L(my ® sym” mg,s) = L(Ilf g, ).

Proof Theorem 3.1 in Ramakrishnan and Wang [26] implies that ' & 7 is cuspidal
if (i) 7’ is not dihedral and (ii) 7 is not a twist of the adjoint square Ad(n").

Since dihedral forms are not present in our case (holomorphic primitive cusp forms
for the full modular group), s is not dihedral. It is also clear that the equivalence
Ad(7s) = Ad(7y) (namely sym? 75 = sym® g in our case) implies that 777 = 7. This
shows that 77 ® sym? 7, := 1, is cuspidal. ]

Lemma 2.4 For Rs > 1, define

Lii(s)=% *f(”Mg(rz)ZAh(n)f)

n=1

where j = 2,3, 4. Then we have
Li(s) = L(ms,s)L(7y ® sym® mg, s)L(7y ® sym” my, s)
x L((1; ® sym® mg) ® sym® my, s) Uy (s),
Ly(s) = L(mf ® my,s)*L(my ® sym® my, s)L( (s ® sym® my) ® my,5)°

x L((my ® sym® my) ® sym’ my, s) Ua(s),

Ls(s) = L(mf,s)*L(mry ® sym” my,s)*L(my ® sym® my, s)L(7rf ® sym” mg, s)?

x L((my ® sym® mg) ® sym® my,,s)°L((7y ® sym® mg) ® sym* 7y, s)Us(s),
where U;(s) are Dirichlet series, which converge uniformly and absolutely in the half
plane Rs >1/2 + ¢ for any € > 0.

Here L(my ® sym’ mrg,s), L((mf ® sym® mp) ® sym/ my,,s) (with j < 4) are the

Rankin-Selberg L-functions associated with corresponding automorphic cuspidal repre-
sentations.

Proof The Rankin-Selberg L-function L(7; ® sym/ 1, s) is initially defined by
L(my ® sym’ mg, ) =

Il mIl:IO(l —ap(p)ag(p) " Be(p)"p™) (1= Br(p)ag(p) ™" Be(p)"p™) "

The product over primes also gives a Dirichlet series representation for
L7y ® sym’ 7g, s): for Rs > 1,

. o A i (1)
L(ms ® sym’ mg,s) = 3 w,
n=1 n
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where A, s @symi 7 (n) is a multiplicative function that satisfies

Aﬂf@Sij g (P) = /\f(p)Ag(PJ)’
when p is a prime.
Similarly, the Rankin-Selberg L-function L((7;®sym? 7, ) ®sym/ mry, s) is defined
by
L((7ry ® sym® mg) ® sym’ 1y, s)

T 111 ()Y o () B ()" 5)

x (1= Br(p)Be(p)an(p) " Bu(p)"p~*)"
x (1= ap(p)an(p) " Bu(p)"p~*) (1= Br(p)an(p) " Bu(p)" p~*)™"
x (1= ap(p)Be(p) an(p) ™" Bu(p)" p~)™
x (1= Br(p)Be(p)an(p) " Br(p)"p~)".

By using similar notations, one can easily check that (,, @sym? mg) ®sym/ my (n) isamul-
tiplicative function, which satisfies

A(nf®symz 7g)®@symJ ), (P) = Af(P)Ag(PZ)Ah(PJ)a

when p is a prime and j = 2, 3, 4.
On the other hand, from the recursive relations (coming from the Hecke Theory),
we have

M(p)? =1424(p%)s  Au(p)® = 2k(p)+An(p®),  An(p)* = 2431, (p*)+Au(p?).

Then
Ar(P)Ag(P)*An(p)? = Ag(p) + As(P)An(p?) + As(P)Ag(p?)
+ A (P)Ag(P*)An(p?);
A (P)Ag(P)*An(p)? = 245 (p)An(p) + As(P)An(p%) + 22 £(p)Ag(P*) A (p)
+As(p)Ag(P*)An(p®)s

Ap(P)Ag(P)*An(p)* =245 (p) + 311 (P)An(P*) + Ay (P)An(p™) + 245 (p)Ag(p?)
+34(P)Ag(P*)An(p*) + Ay (P)Ae(P)An(p®).
These identities essentially determine Lemma 2.4.

To illustrate this, we consider L3 (s). Since A 7(n)Ag(n)*A4(n)* is a multiplicative
function, we have

O M @) A TIED"

2.2 L = 1
@2 L@ =1(1+ p o
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On the other hand, we have
(2.3)
L(my, s)zL(r[f ® sym? 1y, s)3L(7'[f ® sym* y, s)L(my® sym® 7, 5)*
x L((my ® sym® mg) ® sym” my, s)*L((7ry ® sym” mg) ® sym® my,, 5)

(1 M0 (o ey

P
y (1+M+...)(1+M+...)2
r r’
y (1+ /l(nf®sym2 7g)®@sym? (p) N .”)3(1+ A(nf@)syml 7g)®@sym* my, (P) N )
P P
- 1}(1+ Af(p)lg(li)”h(p)zl ).

Here we have used
245(p) + 3An,0sym2 7, (P) + Ans@syms my, (P) + 247 05ym? 2, (P)
+ ?’)L(nmsym2 7g)®@sym? (p) + A(nf®sym2 g)®sym? 7, (p)
=214(p) + 34, () (p?) + s (P)An(p") + 2A£(P) A (p?)
+34r(P)Ag(p*) A (p?) + A5 (P)Ag (P*)AR(p")
= Ar(P)Ag(P)*An(p)*.
By comparing (2.2) with (2.3), we find that
Ls(s) = L(nf,s)*L(ms ® sym® my,s)’L(my ® sym® 7y, s)L(7y ® sym” mg, s)*
x L((7ry ® sym® mg) ® sym® my,s)*L((7ry ® sym” mg) ® sym® 1, s) Us(s),

where U3 (s) is a Dirichlet series, which converge uniformly and absolutely in the half
plane s > 1/2 + ¢ for any ¢ > 0. Here we have used the Ramanujan-Petterson bound

|A¢(n)| < d(n) (established by Deligne). |
Lemma 2.5 ForRs > 1, define
o Ar(n)’Ay(n)? o Ar(n)do(n)®
A(S)= ZjI f( )nsg( ) , B(5)= Z:l f )nsg ) .

Then we have
A(s) = L(ms,s)*L(sym® my ® ms,5)°L(sym* s @ s, s)L(7y ® sym® g, s)?
x L(sym® 7ty ® (ms ® sym® 1), s) L(sym® 7y ® (77 ® sym® 1), s)U(s),
and
B(s) = L(ms,s)*L(sym® mg ® 4,5) L(sym® my ® 75, 5)L(7f ® sym” mg, s)°
x L(sym® my ® (17 ® sym® mg),s) L(sym® m, ® (7 ® sym® mg),s) V (s),

where U(s) and V (s) are Dirichlet series, which converge uniformly and absolutely in
the half plane Rs > 1/2 + € for any € > 0.
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Proof The proof of this lemma is similar to that of Lemma 2.4. Recall that

Ar(p)* =2+345(p%) + A5 (p"),
where p is prime. Then this lemma is based on the following two identities:
A (p)Ae(p)* = A5 (p) (A5 (P) + Ar(P)Ag(P*))
=245(p) + 345 (p")As(p) + A, (p")As (p)
+22(p)Ag(p?) + 307 (P*)As(P)Ag(p*) + Ar(pH)A s (P)Ag(P%)
=21£(p) + 3Asym2 nyem, (P) + Asymt my0m, (P)
+ Z)Lﬂf@Ssz g (p) + 3Asym? ;@ (np@sym? mg) (p)

+ Asym“ @ (mp@sym? my) (p),

and

Ar(P)Ag(p)® = (Ar(p) + Ar(P)Ag(P*))Ag(p)*
=247(p) +324(p*)A s (p) + Ag(P)As(p)
+20(P)Ag (%) + 345 (P*) A (P)Ag (%) + Ag(P*) A5 (P)Ag(p?)
=215(p) + 3Aeym? myon, (P) + Asymt ne@m, (P)
+ Z)tnf®sym2 g (p) + 3 sym? 1@ (mp@sym? 7g) (p)

+ Asym“ mg®(mp®sym? mg) (p). u

Lemma 2.6  ForRs > 1, define

)= RO & Do)

Then we have
C(s) = L(ms ® sym” mg, s)L(sym® g ® (77 ® sym”® 1), 5)
x L(sym* g ® (17 ® sym” mg),s)U'(s),

and
D(s) = L(ms,s)L(sym® g ® (77 ® sym® 1), s) V' (s),

where U'(s) and V'(s) are Dirichlet series, which converge uniformly and absolutely in
the half plane Rs > 1/2 + ¢ for any € > 0.

Proof Recall that g}( p) is the semi-simple SL, (C)-conjugacy class associated with
s Then we have that for a > b,

(2.4 sy g/(p) @ sym” gy(p) = @ sym* ¥ gy(p).

In particular, (2.4) with (a, b) = (2,2), (4,2) , and (3, 3) implies that
Ae(p)? = Agyme n, (P)* =1+ Ag(p*) + Ao (p*),
Ae(p)Ae(P*) = dgyme m, (P) Asyms n, (P) = Ag(p?) + Ag(p*) + Ag(p®),
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and
Ag(P?)? = dyyme n, (P)% =1+ Ag(p?) + Ag(p*) + Ag ().

Hence, it is easy to see that

(25) As(p)Ag(p?)°

= A (P)Ae(P)(1+Ag(p) + A4 (p*))

= Ap(P)Ag(p?) + As(P)Ag(pP)Ag(p) + A5 (P)Ag(p*) A (p*)

= As@sym? g (P) + Asym? mg@(;@sym? mg) (P) + Asymt mg@ (s @sym? ng) (P>
(2.6) As(p)Ag(p*)?

= Ap(p)(1+ Ag(p?) + Ag(p*) + A4 (p%))

= Ap(P) 1+ Ag(pP)Ag(p*)) = A5(p) + Ap(p)Ag(pP*)Ag (p*)

= A7(P) + Asym* ne@(ny@sym? mg) (P)-

The identities (2.5) and (2.6) determine Lemma 2.6. [ |

3 Proof of the Theorems

Suppose that f(z) € Sk, (T), g(2z) € Sk, (T), and h(z) € Si,(T) are primitive cusp
forms. The L-function L((7 ® sym® 7ry) ® sym’ my,s) (1 < j < 4) has an analytic
continuation to be an entire function in the whole complex plane C and satisfies a
certain functional equation of Riemann-type.

In fact, from Lemma 2.1, for 1 < j < 4, sym’ 7, is an automorphic cuspidal self-dual
representation on GLj,1(Ag). From Lemma 2.3, 7y ® sym? 7, is an automorphic cus-
pidal self-dual representation on GL¢(Ag). Then from the works about the Rankin-
Selberg theory associated with two automorphic cuspidal representations developed
by Jacquet, Piatetski-Shapiro, and Shalika [10], Jacquet and Shalika [11,12], Shahidi
[29-32], and the reformulation of Rudnick and Sarnak [25], we know the analytic
properties for the Rankin-Selberg L-functions L((7r; ® sym® 7r,) ® sym’ 7., s) with
i=1,2,3,4.

Remark 3.1 In the sense of Iwaniec and Kowalski [9, Chapter 5], L-functions ap-
pearing in Lemmas 2.4, 2.5, and 2.6:
L(ms,s)L(ms ® sym® mg, s)L(my ® sym® my, s)L((7f ® sym® my) ® sym® my,, 5),
L(ms ® my,s)*L(mp ® sym® 7y, s)L((717 ® sym® mg) ® 1y, s)°

x L((my ® sym® my) ® sym’ 7y, s),
L(ms,s)*L(my ® sym® mp, s)°L(m; ® sym* my, s)L(7; ® sym® g, s)?

x L((my ® sym® mg) ® sym” my,s)*L((7ry ® sym” mg) ® sym® my,, 5),
L(mg,s)*L(sym” mp ® 7, s) L(sym® ry ® 7y, s)L(mp ® sym® 7, 5)*

x L(sym® 7ty ® (m ® sym® m,),s) L(sym* 7y ® (17 ® sym® 1), s),
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L(mg,s)*L(sym® mg ® mf,s) L(sym* mg ® my,s)L(7ms ® sym® mg, s)*

x L(sym® g ® (17 ® sym® mg),s) L(sym* 7y ® (77 ® sym® mg), s),
L(ms ® sym® mg,s)L(sym” g ® (77 ® sym® mg),s)L(sym® my ® (77 ® sym® 7,), 5),
and
L(mg,s)L(sym* my ® (17 ® sym® mg), s)
are general L-functions of degree 32, 64, 128, 128, 128, 54, and 32, respectively. In
particular, they satisfy the conditions of Lemma 2.4 in Lau and Lii [17], which states

that if we suppose that L( f, s) is a product of two general L-functions L;, L, with both
degL; > 2,and L(f, s) satisfies the Ramanujan conjecture, then for any ¢ > 0, we have

né:x A¢(n) = M(x)+O(x""

where M (x) = ress1 L( f, s)x° /s and m = deg L. This proves Theorems 1.1, 1.2, and 1.3
in general.

The results stated in the theorems need not be the best, and it might be possible to
improve them slightly. For instance, the above arguments lead only to

6
g /\?(n)/\g(n)2 Kfoge X61TE

2 e
m )
>

The aim here is to go further. We make use of the identity
L(sym® n; ® mf,s) = L(mg,s)L(sym’ 7y, )
so that we have
A(s) = L(mys,s)°L(sym’ 77, s)*L(sym® m; ® 4, 5)L(7y ® sym” g, s)?
x L(sym® 7ty ® (m ® sym® m,),s) L(sym* 7y ® (m; ® sym® 1), s) U(s).
We also need the following two lemmas (to be used in the sequel).

Lemma 3.2 Suppose that £(s) is a general L-function of degree m. Then for any
&> 0, we have

(3.1) (o +it) < (|t +1)F -9+
uniformly for1/2< o <1+ eand|t| > 1.
Proof This is the convexity bound for £(s), which can be proved by the functional

equation, the asymptotic properties of the I'-function, and the Phragmén-Lindel6f
theorem. ]

Lemma 3.3 Let f is a primitive holomorphic cusp form and € > 0. Then we have

T
/ |L(f.3+ ir)|4dr < T
0
uniformly for T > 1, and
(32) L(f) o+ IT) <<f,€ (|T| + l)maX{(2/3)(170), 0}+e

1<0o<2and|r > 1.

uniformly for
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Proof See, e.g, [8, Theorem 2, (1.8)] and [5, Corollary].

Recall that
°<> A 5) 2
n= 1 ns

= L(ms,s)°L(sym’ 4,5)°L(sym* 7; ® mf,5)L(7; ® sym® g, s)?
x L(sym® y ® (mp ® sym® 1), s)*L(sym® 7 ® (mp ® sym® mg),s)U(s)

can be analytically continued to be an entire function in the half-plane s > 1/2.
By the Perron formula (see [9, Proposition 5.54]), we have

b+iT xS 1+¢

né:xA;(n) (H)Z 27'[1 \/b\fiT A(S)?dS-FO( xT ))

where b =1+ eand 1< T < x is a parameter to be chosen later.
Then we move the line of integration to Qs = 5. By Cauchy’s theorem, we have

63) T B = 5 f P fb“T be A(s)x?sds+0(x

o)

1

+e
T

)

—]1+]2+]3+O(

For J;, we have

i <<x%fT‘L(r[f,§+it) (sym 7Tf,5+lt)3 (sym 7Tf®7'[f,5+lt)
1 8
5 2 3
><L(7Tf®sym2ng,§+it) (sym mr® (m ®sym® mg), = +zt)
xL(sym4ﬂf®(7rf®sym2 7'[g),§+1'l‘)|t_1dl‘+x§+€
By Lemmas 3.2 and 3.3, we have
(3.4)
2 Zx 34+ (2x3)x3+5x 3 +(3x 3 )x2+(9x 2 )x3+15x 2 + T 5 4 -1
]1<<xsT3 s +(2x3) B 8 8 8 Sf ‘L(nf,§+ll')| tdt
1
+xste
179 1 ¢

5
K x8TET’S

For the integrals over the horizontal segments, we use (3.2) (for the factor L(7y, s)°
whose degree is 10) and (3.1) (for rest of the factors) with m = 118 to bound

(3.5) Jo+J3 << max x o9+ (A=) te -l o pay x5 (m0)rep-l
S<o<h 2<0<b

X \¢ X 9
= max(—) T « 4 xEteTIE e
T

From (3.3), (3.4), and (3.5), we have

1+£
179

(3.6) Z Af(i’l) g(l’l) L — T +x§+€TT+£
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On taking T = X in (3.6), we have

2 A5 (m)Ag(n)? << xiv e,

n<x

This completes the proof. u
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