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Abstract

Let FBC(λ, k; t) be the Heckman–Opdam hypergeometric function of type BC with
multiplicities k = (k1, k2, k3) and weighted half-sum ρ(k) of positive roots. We prove
that FBC(λ+ ρ(k), k; t) converges as k1 + k2→∞ and k1/k2→∞ to a function of type
A for t ∈ Rn and λ ∈ Cn. This limit is obtained from a corresponding result for Jacobi
polynomials of type BC, which is proven for a slightly more general limit behavior
of the multiplicities, using an explicit representation of Jacobi polynomials in terms
of Jack polynomials. Our limits include limit transitions for the spherical functions of
non-compact Grassmann manifolds over one of the fields F = R, C,H when the rank is
fixed and the dimension tends to infinity. The limit functions turn out to be exactly
the spherical functions of the corresponding infinite-dimensional Grassmann manifold
in the sense of Olshanski.

1. Introduction

Consider the Heckman–Opdam hypergeometric functions FR(λ, k; t) for the root systems
R=BCn = {±ei,±2ei,±ei ± ej : 1 6 i < j 6 n} and An−1 = {±(ei − ej) : 1 6 i < j 6 n} with
multiplicities k = (k1, k2, k3) and k = κ, respectively, as studied in [BO93, Hec87, Hec91, Hec97,
HS94, Opd95, Opd00], for instance. Fix a positive subsystem R+ in each case, and denote by
ρR(k) = 1

2

∑
α∈R+

kαα the weighted half-sum of positive roots. The Jacobi polynomials of type
BCn are indexed by the cone of dominant weights

P+ = {(λ1, . . . λn) ∈ Zn+ : λ1 > · · ·> λn}

and can be written as

PBCλ (k; t) =
1

c(λ+ ρBC(k), k)
FBC(λ+ ρBC(k), k; t)

where c is the generalized c-function. The Jacobi polynomials of type An−1 are indexed by the
set π(P+), where π denotes the orthogonal projection of Rn onto Rn

0 . They can be written as
monic Jack polynomials,

PAπ(λ)(κ; t) = jκλ(et), t ∈ Rn
0 ;

see § 4 for the precise notation.
In this paper, we shall prove the following limit for the Jacobi polynomials of type BCn:

lim
k1+k2→∞
k1/k2→a

PBCλ (k; t) = 4|λ| · jk3
λ (x(t)) (1.1)
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for a ∈ [0,∞], with the transform

Rn→ Rn
+, t 7→ x(t) with xi(t) = γa + sinh2

(
ti
2

)
, γa =

a+ 1
a+ 2

.

This result was already stated in [Koo95] without proof. A proof different from the one in the
present paper was given by R. J. Beerends and the second author in an unpublished manuscript.

Restricting to the case of a=∞, we shall next extend the limit with respect to the spectral
variable λ and prove that

lim
k1+k2→∞
k1/k2→∞

FBC(λ+ ρBC(k), k; t)

=
n∏
i=1

(
cosh2 ti

2

)∑n
i=1 λi/n

· FA
(
π(λ) + ρA(k3), k3; π

(
log cosh2 t

2

))
(1.2)

for all t ∈ Rn, locally uniformly in λ ∈ Cn.
Let us briefly discuss the above limits for the rank-one case n= 1, where k3 does not appear,

the functions FBC(λ, k; t) are essentially Jacobi functions

ϕ
(α,β)
λ (t) = 2F1(1

2(α+ β + iλ), 1
2(α+ β + 1− iλ); α+ 1;−sinh2t)

(for which we refer to [Koo84]), and FA reduces to the constant function 1. More precisely, by
comparing the examples in [Opd95, p. 89] and in [Koo84], we have

FBC1(λ, k; t) = ϕ
(α,β)
−2iλ

(
t

2

)
with α= k1 + k2 − 1/2, β = k2 − 1/2,

and (1.2) becomes the limit

lim
α→∞, α/β→∞

ϕ
(α,β)
λ+i(α+β+1)(t) = (cosh t)−iλ for λ ∈ C.

This limit is easily seen from

ϕ
(α,β)
λ+i(α+β+1)(t) = 2F1(1

2 iλ, α+ β + 1− 1
2 iλ; α+ 1;−sinh2t)

= (cosh t)−iλ2F1(1
2 iλ,−β + 1

2 iλ; α+ 1; tanh2 t).

Moreover, the Heckman–Opdam polynomials in rank one are related to the monic Jacobi
polynomials p(α,β)

n by

PBCn (k; it) = 2np(α,β)
n (cos t) for n ∈ Z+.

Limit (1.1) means that for c= a+ 1 ∈ [1,∞) and x= cos t ∈ [−1, 1],

lim
α→∞, α/β→c

p(α,β)
n (x) =

(
x+

c− 1
c+ 1

)n
.

This limit is easily seen from

p(α,β)
n (x) =

2n(α+ 1)n
(n+ α+ β + 1)n

n∑
l=0

(n+ α+ β + 1)l
(α+ 1)l

(
n

l

)(
x− 1

2

)l
.

We shall obtain (1.1) by means of an explicit representation of PBCλ in terms of Jack
polynomials, which goes back to ideas of [SK97] and to [Hal09]. The limit (1.2) for the
hypergeometric function is then obtained from (1.1) by Phragmén–Lindelöf principles and
sharp explicit estimates for general hypergeometric functions which slightly improve estimates
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in [Opd95, Sch08]. Our limit transition (1.2) includes a limit result for the spherical functions of
the Grassmannians SO0(p, n)/SO(p)× SO(n), SU(p, n)/S(U(p)×U(n)) and Sp(p, n)/Sp(p)×
Sp(n), where Sp(p, n) denotes the pseudo-unitary group of index (p, n) over H. As p→∞
(and the rank n is fixed), the spherical functions of these Grassmannians converge to (restrictions
of) the spherical functions of the reductive symmetric spaces GL+(n, R)/SO (n),GL(n, C)/U(n)
and GL(n,H)/Sp(n), respectively. We shall also show that the limits obtained are exactly the
spherical functions of the corresponding infinite-dimensional Grassmannians in the sense of
Olshanski. Our results for infinite-dimensional Grassmannians are also of interest in comparison
with the recent results of [DOW13].

This paper is organized as follows: In § 2 we recapitulate some basic notions and facts
concerning the Cherednik kernel and Heckman–Opdam hypergeometric functions. We need
the Cherednik kernel because, in § 3, we improve estimates obtained by Opdam [Opd95]
and Schapira [Sch08] for this function. This results in an estimate for the Heckman–Opdam
hypergeometric functions which is uniform in the multiplicity parameters. The Cherednik kernel
will not be used further in the main part of the paper, starting with § 4, where the limit (1.1) for
Jacobi polynomials of type BC is proved. This result, the estimates of § 3, and Phragmén–Lindelöf
principles are combined in § 5, leading to the limit (1.2). In § 6 we briefly discuss this limit in
terms of spherical functions for non-compact Grassmann manifolds of growing dimension and
fixed rank. Finally, in § 7, the Olshanski spherical functions of the associated infinite-dimensional
Grassmannians are characterized.

2. Notation and preliminaries

Let a be a finite-dimensional Euclidean space with inner product 〈· , ·〉 which is extended to a
complex bilinear form on the complexification aC of a. We identify a with its dual space a∗ =
Hom(a, R) via the given inner product. Let R⊂ a be a (not necessarily reduced) crystallographic
root system, and letW be the Weyl group ofR. For α ∈R, we write α∨ = 2α/〈α, α〉 and denote by
σα(t) = t− 〈t, α∨〉α the orthogonal reflection in the hyperplane perpendicular to α. We denote
by K the vector space of multiplicity functions k = (kα)α∈R which satisfy kα = kβ if α and β are
in the same W -orbit. We shall write k > 0 (respectively, k > 0) if kα > 0 (respectively, kα > 0)
for all α ∈R. For k ∈ K let

ρ= ρ(k) :=
1
2

∑
α∈R+

kαα (2.1)

be the weighted half-sum of positive roots, where R+ is some fixed positive subsystem of R. Let

a+ := {t ∈ a : 〈t, α〉> 0 ∀α ∈R+}

be the positive Weyl chamber associated with R+. If k > 0, then ρ(k) ∈ a+; and if k > 0, then
ρ(k) ∈ a+. This follows from the fact that for a simple system {αi} ⊂R+ (with indivisible roots
αi), the reflection σαi leaves R+\{αi} invariant, and hence

〈ρ(k), α∨i 〉= kαi + 2k2αi

(with the understanding that k2αi = 0 if 2αi /∈R); cf. [Mac00, § 11].
For fixed k ∈ K, the Cherednik operator in direction ξ ∈ a is defined by

Tξ = Tξ(k) := ∂ξ +
∑
α∈R+

kα〈α, ξ〉
1

1− e−α
(1− σα)− 〈ρ(k), ξ〉,
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where ∂ξ is the usual directional derivative and

eλ(t) := e〈λ,t〉 for λ, t ∈ aC.

For fixed k, the operators {Tξ(k), ξ ∈ a} commute. According to [Opd95, Theorem 3.15], there
exist a W -invariant tubular neighborhood U of a in aC and a unique holomorphic function G on
aC ×Kreg × U which satisfies:

(i) for all ξ ∈ a and λ ∈ aC, Tξ(k)G(λ, k; · ) = 〈λ, ξ〉G(λ, k; · );
(ii) G(λ, k; 0) = 1. (2.2)

The function G is called the Cherednik–Opdam kernel. We shall mainly be concerned with the
hypergeometric function associated with R, which is given by

F (λ, k; t) :=
1
|W |

∑
w∈W

G(λ, k; w−1t).

It is actually W -invariant in both λ and t. The functions F (λ, k; · ) generalize the spherical
functions of Riemannian symmetric spaces of non-compact type, which occur for specific values
of the multiplicity parameter k > 0.

In order to interpret the main results below in the geometric context, we shall use the following
scaling property.

Lemma 2.1. Let R be a root system in a Euclidean space a with multiplicity function k. For a
constant c > 0, consider the rescaled root system R̃ := cR := {cα, α ∈R} and define k̃ on R̃ by
k̃cα := kα. Then the associated Cherednik kernels are related via

Gλ(k̃; t) =Gλ/c(k; ct).

A corresponding result holds also for the associated hypergeometric functions.

Proof. Write f̃(t) = f(ct) for functions f on a. Then

(Tξ(k̃)f̃)(t) = (Tcξ(k)f)(ct).

In view of the characterization (2.2), this implies the assertion. 2

In this paper, we shall always assume that k > 0, and we will often write

G(λ, k; t) =Gλ(k; t), F (λ, k; t) = Fλ(k; t).

For certain spectral variables λ, the hypergeometric functions Fλ are actually exponential
polynomials, called Heckman–Opdam Jacobi polynomials. To introduce these, let P = {λ ∈ a :
〈λ, α∨〉 ∈ Z ∀α ∈R} denote the weight lattice of R and P+ = {λ ∈ P : 〈λ, α∨〉> 0 ∀α ∈R+} the
set of dominant weights associated with R+. We equip P+ with the usual dominance order, that
is, µ < λ if and only if λ− µ is a sum of positive roots. Let

T := spanC{eλ, λ ∈ P}
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denote the space of exponential polynomials associated with R. The monomial symmetric
functions

Mλ =
∑
µ∈Wλ

eµ, λ ∈ P+ (2.3)

form a basis of the subspace T W of W -invariant elements from T .

Definition 2.2. The Jacobi polynomials {Pλ(k), λ ∈ P+} associated with R are uniquely
characterized by the following two conditions:

(i) Pλ(k) =Mλ +
∑
µ<λ

cλµ(k)Mµ, where cλµ(k) ∈ C;

(ii) LkPλ(k) = 〈λ, λ+ 2ρ(k)〉Pλ(k), where

Lk = ∆a +
∑
α∈R+

kα coth
〈α, t〉

2
∂α. (2.4)

Note that (2.4) just gives the W -invariant part of the Heckman–Opdam Laplacian, which is
given by restriction to W -invariant functions of

n∑
i=1

Tξi(k)2 − |ρ(k)|2,

with an arbitrary orthonormal basis {ξ1, . . . , ξn} of a. The operator Lk generalizes the radial
part of the Laplace–Beltrami operator on a Riemannian symmetric space of non-compact type.

Let us point out that in the definition of the Jacobi polynomials, condition (ii) is frequently
replaced by an orthogonality condition. As remarked in [Hec87, Proposition 8.1], the two sets of
conditions are equivalent. Note also that in [Hec87], the Jacobi polynomials are indexed by −P+

instead of P+, which leads to a different sign in (ii).
According to [HS94, (4.4.10)], the Pλ(k) can be expressed in terms of the hypergeometric

function via

Fλ+ρ(k; t) = c(λ+ ρ, k)Pλ(k; t), (2.5)

where c(λ, k) is the generalized c-function as defined in [HS94, Definition 3.4.2]. As the
polynomial P0(k) is a constant, it follows that

Fρ(k; t) = 1. (2.6)

3. Some estimates for G and F

The growth behavior and asymptotic properties of the Cherednik kernel G and the
hypergeometric function F have been studied in detail in [Opd95] and in [Sch08], where the
precise asymptotic behavior in the space variable was determined. We recall the following results.

Lemma 3.1 [Opd95]. Let k > 0. Then for all λ ∈ aC and all t ∈ a,

|Gλ(k; t)|6
√
|W | · emaxw∈W Re〈wλ,t〉. (3.1)

Lemma 3.2 [Sch08]. Let k > 0. Then:

(1) for λ ∈ a, the kernel Gλ(k; · ) is real and strictly positive on a;

(2) |Gλ(k; t)|6GRe λ(k; t) for all λ ∈ aC and t ∈ a.
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By symmetrization over the Weyl group, one obtains the same properties and estimates for
the hypergeometric function F .

In [Sch08], Opdam’s estimate (3.1) was substantially improved. In fact, it is shown there that
for all λ ∈ a and all t ∈ a,

Gλ(k; t) 6G0(k; t) · emaxw∈W 〈wλ,t〉 (3.2)

and that for fixed k > 0, the kernel G0 has the asymptotic behavior

G0(k; t)�
∏

α∈R0
+|〈α,t〉>0

(1 + 〈α, t〉)e−〈ρ,t+〉,

where R0
+ denotes the set of indivisible positive roots and t+ is the unique element from the

orbit Wt which is contained in a+.

The following result generalizes Schapira’s estimate (3.2).

Theorem 3.3. Let k > 0. Then for all λ ∈ a, all µ ∈ a+ and all t ∈ a,

Gλ+µ(k; t) 6Gµ(k, t) · emaxw∈W 〈wλ,t〉.

The same estimate holds for the hypergeometric function F instead of G.

For µ= ρ ∈ a+ we obtain, in view of identity (2.6) and Lemma 3.2, the following result.

Corollary 3.4. Let k > 0. Then for all λ ∈ aC and all t ∈ a,

|Fλ+ρ(k; t)|6 emaxw∈W Re〈wλ,t〉. (3.3)

Remarks. (i) While the proof of (3.2) is by real-analytic methods and uses the Cherednik
operators, we shall present a different approach, based on methods from complex analysis.

(ii) [Sch08, Remark 3.1] implies the following asymptotics for t ∈ a+, when k > 0 and some
real λ ∈ a+ are fixed:

Fλ+ρ(k; t)� e〈λ,t〉.
For our purposes, however, it will be important to have an estimate which is uniform in k.

For the proof of Theorem 3.3, we shall use the Phragmén–Lindelöf principle; see, e.g., [Tit39,
Theorem 5.61].

Lemma 3.5 (Phragmén–Lindelöf principle). Let f be holomorphic in an open neighborhood of
the right half-plane H = {z ∈ C : Re z > 0}, and suppose that f is such that

|f(iy)|6M for all y ∈ R

and, as |z|= r→∞,
f(z) =O(er

β

)

for some β < 1, uniformly in H. Then, actually, |f(z)|6M for all z ∈H.

Proof of Theorem 3.3. Fix t ∈ a and denote again by t+ the unique element from the orbit Wt
which is contained in a+. Further, put

S := {λ ∈ aC : Re λ ∈ a+}.

The geometry of root systems implies that for λ ∈ S and all w ∈W,

〈w Re λ, t〉6 〈Re λ, t+〉.
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Now fix w ∈W and consider the function

f(λ) := e−〈λ,t+〉 ·
Gwλ+µ(k; t)
Gµ(k; t)

,

which is holomorphic on aC. We shall investigate f on the closure S of S. By part (2) of
Lemma 3.2, we have

|f(λ)|6 f(Re λ).
Hence, for λ ∈ S, Lemma 3.1 leads to the estimate

|f(λ)|6 e−〈Re λ,t+〉 ·
Gw Re λ+µ(k; t)

Gµ(k; t)
6
√
|W | · e

〈µ,t+〉

Gµ(k; t)
. (3.4)

Note that the right-hand side is independent of λ. Again, by Lemma 3.2, we further obtain for
real λ ∈ a the uniform estimate

|f(iλ)|=
|Giwλ+µ(k; t)|
Gµ(k; t)

6 1. (3.5)

We claim that |f |6 1 on S. To see this, fix a basis {λ1, . . . , λn} ⊆ P+ of fundamental
weights. Then each λ ∈ S has a unique expansion λ=

∑n
i=1 ziλi with zi ∈H = {z ∈ C : Re z > 0}.

Consider first λ= z1λ1 with z1 ∈H. In view of estimates (3.5) and (3.4), we may apply Lemma 3.5
with β = 0, thus obtaining

|f(z1λ1)|6 1 for all z1 ∈H.
We proceed by induction. Suppose, for 1 6m< n, that

|f(z1λ1 + · · ·+ zmλm)|6 1 for z1, . . . , zm ∈H.

Consider h(zm+1) := f(z1λ1 + · · ·+ zmλm + zm+1λm+1) for zm+1 ∈H. This function is
uniformly bounded on H according to (3.4), and for purely imaginary zm+1 ∈ iR we have

|h(zm+1)|6 |f(Re(z1λ1 + · · ·+ zmλm + zm+1λm+1))|= |f(Re z1 · λ1 + · · ·+ Re zm · λm)|,

which is less than or equal to 1 by our induction hypothesis. By Lemma 3.5, we conclude that
|h(z)|6 1 for all z ∈H. Thus, induction shows that |f(λ)|6 1 for all λ ∈ S and, in particular,
for all λ ∈ a+. If λ ∈ a is arbitrary, just use the fact that λ= wλ′ with some w ∈W and λ′ ∈ a+.
This implies the assertion. 2

4. Limit transition for Jacobi polynomials of type BC

Let a = Rn with the usual Euclidian scalar product, and denote by (ei)i=1,...,n the standard basis
of Rn. We consider the root system BCn in Rn with the positive subsystem

BC+
n = {ei, 2ei : 1 6 i6 n} ∪ {ei ± ej : 1 6 i < j 6 n},

as well as the root system An−1 in the linear subspace

Rn
0 := {t ∈ Rn : t1 + · · ·+ tn = 0}

with the positive subsystem

A+
n−1 = {ei − ej : 1 6 i < j 6 n}.

The Jacobi polynomials associated with these root systems (following Definition 2.2), as well
as their relationships, have been widely studied; see, in particular, [BO93, BF97, Hec87, Hec91].
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We recall the fundamental facts. Let

π(t) := t− 1
n
〈t, ωn〉ωn, (4.1)

where

ωn = e1 + · · ·+ en,

denote the orthogonal projection of Rn onto Rn
0 . The cone of dominant weights of BCn is

PBC+ = {(λ1, . . . λn) ∈ Zn+ : λ1 > · · ·> λn},

and the dominant weights of An−1 are given by

PA+ = π(PBC+ ).

For brevity, we write P+ := PBC+ , which is just the set of partitions of length n. The dominance
order and inclusion order on P+ are given by

λ6 µ ⇐⇒
i∑

j=1

λj 6
i∑

j=1

µj for i= 1, . . . , n,

λ⊆ µ ⇐⇒ λi 6 µi for i= 1, . . . , n.

For the An−1 case, we take a real parameter κ> 0 and consider the monic Jack polynomials
jκλ in n variables, which are indexed by partitions λ ∈ P+ and are uniquely characterized by the
following conditions.

(1) Each jκλ is homogeneous of degree |λ| and of the form

jκλ =mλ +
∑
µ<λ

cλµ(κ)mµ

where µ < λ refers to the dominance order on P+ and the mλ, λ ∈ P+, are the monomial
symmetric polynomials

mλ(x) =
∑
µ∈Snλ

xµ for x ∈ Rn.

(2) Each jκλ is an eigenfunction of the operator

Dκ =
n∑
i=1

x2
i

∂2

∂x2
i

+ 2κ
∑
i6=j

x2
i

xi − xj
∂

∂xi
.

In fact, the Jack polynomials satisfy

Dκj
κ
λ = dλ(κ)jκλ with dλ(κ) =

n∑
i=1

λi(λi − 1 + 2κ(n− i));

see [Hal09] or [Sta89]. For κ= 0 we have j0λ =mλ, while for κ > 0 the polynomial jκλ(x) coincides,
up to a constant positive factor, with the Jack polynomial Jλ(x; 1/κ) in standard normalization
as introduced in [Sta89].

The Heckman–Opdam Jacobi polynomials of type An−1 with multiplicity parameter κ> 0 are
essentially Jack polynomials; according to [BO93, Proposition 3.3], the two types of polynomials
are related by

PAπ(λ)(κ; t) = jκλ(et) where et = (et1 , . . . , etn), t= (t1, . . . , tn) ∈ Rn
0 .
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Notice that the homogeneity of the Jack polynomials implies that for arbitrary t ∈ Rn,

jκλ(et) = e|λ|(t1+···+tn)/n · jκλ(eπ(t)). (4.2)

The Heckman–Opdam Jacobi polynomials of type BCn are parameterized by a multiplicity
function k = (k1, k2, k3) > 0 on BCn, where k1 stands for the parameter on ei, k2 for the
parameter on 2ei, and k3 for the parameter on ei ± ej . Let LBCk be the associated operator (2.4)
of type BCn. The corresponding eigenvalue (see [Hal09]) is

eλ(k) := dλ(k3) + (k1 + 2k2 + 1)|λ|,

with dλ as above. We then obtain from [Hal09] the following representation of the BCn-type
Jacobi polynomials PBCλ (k) in terms of the Jack polynomials jk3

λ .

Proposition 4.1. For all λ, k and t as above,

PBCλ (k; t) = 4|λ|
∏
µ⊂λ

LBCk − eµ(k)
eλ(k)− eµ(k)

jk3
λ

(
−sinh2

(
t

2

))
. (4.3)

Here sinh2(t/2) is understood component-wise, and µ⊂ λ means that µ 6= λ and µi 6 λi for all i.

Proof. Denote the right-hand side of (4.3) by P̃BCλ (k; t). It follows from [Hal09, (13)] that
P̃BCλ (k; t) is equal to PBCλ (k; t) up to a multiplicative constant. In order to identify this constant,
we compare the leading terms of the two polynomials in the expansion with respect to the
monomial symmetric functions MBC

µ of type BC as defined in (2.3). In fact,

4|λ|mλ

(
sinh2 t

2

)
=MBC

λ (t) +
∑
µ<λ

bλµM
BC
µ (t)

with certain constants bλµ (see [SK97, p. 383], the last displayed formula with t= iθ). Next, we
use the characterization of the Jack polynomials jκλ given above and also, from [Hal09, p. 1580],
the first part of the characterization of the P̃BCλ (k; t) and the definition of ti. Then we conclude
that

P̃BCλ (k; t) =MBC
λ (t) +

∑
µ<λ

dλµM
BC
µ (t) (4.4)

with certain coefficients dλµ. Therefore P̃BCλ (k; t) = PBCλ (k; t) as claimed. 2

We note that representations such as (4.3) were already observed by Macdonald [Mac00] and
were used in [SK97] for limit transitions between different families of orthogonal polynomials.

From (4.3) we shall deduce the following limit result.

Theorem 4.2. Fix a parameter 0 6 a6∞ and consider k = (k1, k2, k3) where k3 > 0 is fixed.
Then

lim
k1+k2→∞
k1/k2→a

PBCλ (k; t) = 4|λ| · jk3
λ (x(t)), (4.5)

where the transform Rn→ Rn
+, t 7→ x(t), is given by

xi(t) = γa + sinh2

(
ti
2

)
where γa =

a+ 1
a+ 2

,
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with the understanding that γ∞ = 1. The convergence in (4.5) is locally uniform in t ∈ Rn. In
particular, if a=∞, then

lim
k1+k2→∞
k1/k2→∞

PBCλ (k; t) = 4|λ|jk3
λ

(
cosh2 t

2

)

=
( n∏
i=1

4 cosh2 ti
2

)|λ|/n
· PAπ(λ)

(
k3; π

(
log cosh2 t

2

))
. (4.6)

The a=∞ case occurs, for instance, when k2, k3 > 0 are fixed and k1→∞.

Proof. We split the coordinate transform t→ x(t) and consider first the transform

yi =−sinh2 ti
2
,

which is frequently used in the BC setting. In y-coordinates, the operator LBCk becomes

L̃BCk =
n∑
i=1

yi(yi − 1)
∂2

∂y2
i

−
n∑
i=1

(
k1 + k2 +

1
2
− (k1 + 2k2 + 1)yi

)
∂

∂yi
+ 2k3

∑
i6=j

yi(yi − 1)
yi − yj

∂

∂yi
;

see [BO93, § 4] (or [Hal09, § 2.3]). Next, we carry out the linear transform xi = γa − yi, under
which L̃BCk becomes

L̂BCk =
n∑
i=1

(γa − xi)(γa − 1− xi)
∂2

∂x2
i

+ 2k3

∑
i6=j

(γa − xi)(γa − 1− xi)
xi − xj

∂

∂xi

+
n∑
i=1

(
k1 + k2 +

1
2
− (k1 + 2k2 + 1)(γa − xi)

)
∂

∂xi
.

Equation (4.3) thus reads

PBCλ (k; t) = 4|λ|
( ∏
µ⊂λ

L̂BCk − eµ(k)
eλ(k)− eµ(k)

jk3
λ

)
(x) (4.7)

with x= x(t). As k1 + k2→∞, we have

eλ(k)∼ |λ|(k1 + 2k2).

If, in addition, k1/k2→ a, then
k1 + k2

k1 + 2k2
→ γa.

Now let µ⊂ λ. Then |µ|< |λ|, and for f ∈ C∞(Rn) we obtain, as (k1, k2)→∞ in the required
way,

L̂BCk − eµ(k)
eλ(k)− eµ(k)

f(x)−→ 1
|λ| − |µ|

( n∑
i=1

xi
∂

∂xi
− |µ|

)
f(x).

If f is a symmetric polynomial, the convergence is locally uniform in x ∈ Rn. In our case, f = jk3
λ

is homogeneous of degree |λ|. Thus
n∑
i=1

xi
∂

∂xi
jk3
λ (x) = |λ| · jk3

λ (x)
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and therefore
L̂BCk − eµ(k)
eλ(k)− eµ(k)

jk3
λ −→ jk3

λ

locally uniformly, for each µ⊂ λ. Iteration according to formula (4.7) yields

PBCλ (k; t)−→ 4|λ| · jk3
λ (x(t))

locally uniformly in t, which completes the proof of relation (4.5). Finally, in the setting of
relation (4.6) we have γa = 1, and the claimed limit result follows from (4.2). 2

Remark 4.3. Theorem 4.2 was already stated without proof as [Koo95, Theorem 1]. There it was
based on an unpublished manuscript of R. J. Beerends and the second author. The proof given
in that manuscript uses the coefficients cλ,µ in

Pλ(k) =
∑
µ6λ

cλ,µ(k)eµ

with cλ,λ = 1 and cλ,wµ = cλ,µ (for w ∈W ) (which is equivalent to Definition 2.2(i)). From (2.4)
and condition (ii) of Definition 2.2 one can deduce a recurrence relation for the cλ,µ which
determines them uniquely with the given initial value cλ,λ = 1. Then it is shown that the
coefficients in the recurrence relation for the cλ,µ in case BC tend in the limit under consideration
to the corresponding coefficients in the recurrence relation for the Jack case. This essentially
involves the asymptotics of the operator LBCk and the eigenvalue eλ(k), just as we used in the
proof of Theorem 4.2.

Remark 4.4. It follows from [Mac] (see also [BO93, (5.3)], [Las91, Théorème 3] and [Hal09,
p.1580]) that from Definition 2.2 an equivalent definition is obtained upon replacing condition
(i) by

(i)′ PBCλ (k; t) =
∑
µ⊆λ

uλµ j
k3
λ (−sinh2(t/2)), with uλλ = (−4)|λ|.

Macdonald also obtained in [Mac] a recurrence relation for the coefficients uλµ. This can be
used to give a third proof of Theorem 4.2. Furthermore, in combination with the homogeneity
of the Jack polynomials, (i)′ yields another limit from BCn-type Jacobi polynomials to Jack
polynomials:

lim
r→∞

e−|λ|r〈t,ω〉PBCλ (k; t+ rω) = jk3
λ (et). (4.8)

This can be further specialized as a limit to An−1-type Jacobi polyomials. Then it is the
q = 1 analogue of a limit from Macdonald–Koornwinder polynomials to An−1-type Macdonald
polynomials given by van Diejen [vanD95, § 5.2].

5. Limit transition for hypergeometric functions of type BC

We now extend the above limit transition to the associated hypergeometric functions, where we
restrict our attention to the a=∞ case.

For simplicity, we write CB for the closed Weyl chamber associated with the positive system
BC+

n ; that is,

CB = {t ∈ Rn : t1 > · · ·> tn > 0}.
Observe that under the projection π : Rn→ Rn

0 , the chamber CB is mapped onto the closed Weyl
chamber associated with the positive subsystem A+

n−1 of An−1.
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Again, we consider k = (k1, k2, k3) where k3 > 0 is fixed. We also recall that the half-sums (2.1)
of positive roots for BCn and An−1 are given by

ρBC(k) =
n∑
i=1

(k1 + 2k2 + 2k3(n− i))ei and ρA(k3) = k3

n∑
i=1

(n+ 1− 2i)ei. (5.1)

Theorem 5.1. For each t ∈ Rn and λ ∈ Cn,

lim
k1+k2→∞
k1/k2→∞

FBC(λ+ ρBC(k), k; t)

=
n∏
i=1

(
cosh2 ti

2

)〈λ,ωn〉/n
· FA

(
π(λ) + ρA(k3), k3; π

(
log cosh2 t

2

))
.

The convergence is locally uniform with respect to λ.

Notice that in this situation, ρBC(k)→∞. The proof of Theorem 5.1 will be based
on Theorem 4.2 above and the following well-known theorem of Carlson (see, e.g., [Tit39,
Theorem 5.81]).

Theorem 5.2 (Carlson’s theorem). Let f be a function which is holomorphic in a
neighborhood of {z ∈ C : Re z > 0} and satisfies f(z) =O(ec|z|) for some constant c < π. Suppose
that f(n) = 0 for all n ∈ N0. Then f is identically zero.

Proof of Theorem 5.1. Let K+ := {k = (k1, k2, k3) ∈ R3 : ki > 0 ∀i} and fix some t ∈ Rn. By the
BC-symmetry of both sides, we may assume that t ∈ CB. For k ∈ K+ define

fk(λ) := e−〈λ,t〉 · FBC(λ+ ρBC(k), k; t)

and

g(λ) := e−〈λ,t〉 ·
n∏
i=1

(
cosh2 ti

2

)〈λ,ωn〉/n
· FA

(
π(λ) + ρA(k3), k3; π

(
log cosh2 t

2

))
.

The functions fk and g are holomorphic on Cq. Corollary 3.4 readily implies that the family
{fk, k ∈ K+} is locally bounded on Cq and uniformly bounded on the set S := {λ ∈ Cq : Re λ ∈
CB}; indeed, as t ∈ CB we obtain

|fk(λ)|6 1 for all λ ∈ S. (5.2)

Now let (k(j))j∈N ⊂K+ be a sequence of multiplicities such that k(j)3 = k3 with fixed k3 > 0
and k(j)1 + k(j)2→+∞, k(j)1/k(j)2→+∞. For brevity, we write

fj := fk(j) for j ∈ N.

We have to show that fj → g locally uniformly on Cq. By Montel’s theorem in several complex
variables (see, for instance, [Gun90]), each locally bounded sequence of holomorphic functions
on Cq has a subsequence that converges locally uniformly to some limit function which is again
holomorphic on Cq. It therefore suffices to verify the following condition:

(M) If (fjν ) is a subsequence of (fj) such that fjν → h locally uniformly on Cq for some h,
then h= g on Cq.

Suppose that (fjν ) is a subsequence with fjν → h locally uniformly on Cq. According to
Theorem 4.2 together with (2.5) and the fact that Fλ+ρ(k; 0) = 1, we have

fjν (λ)→ g(λ)
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for all dominant weights λ ∈ P+. Therefore h(λ) = g(λ) for all λ ∈ P+. Consider again the set S.
We claim that

h(λ) = g(λ) for all λ ∈ S. (5.3)

Once this is shown, the identity theorem will imply that h= g on Cq, and the verification of
condition (M) will be accomplished. For the proof of (5.3) we shall apply Carlson’s theorem to
g − h on S, which requires suitable growth bounds on the functions involved. First, h is the
locally uniform limit of the sequence fjν , which is uniformly bounded on S according to (5.2).
Hence

|h(λ)|6 1 for all λ ∈ S.
For an estimate of g on S, note that Re π(λ) is contained in the closed positive chamber associated
with A+

n−1 for each λ ∈ S. Application of Corollary 3.4 therefore yields∣∣∣∣e−〈π(λ),π(log(cosh2(t/2)))〉 · FA
(
π(λ) + ρA(k3), k3; π

(
log cosh2 t

2

))∣∣∣∣6 1

for all λ ∈ S. Let us call the function on the left E(λ) and write

|g(λ)|=
∣∣∣∣e−〈λ,t〉 · e〈π(λ),π(log(cosh2(t/2)))〉 ·

n∏
i=1

(
cosh2 ti

2

)〈λ,ωn〉/n∣∣∣∣ · E(λ).

As

〈π(x), π(y)〉= 〈x, y〉 − 1
n
〈x, ωn〉〈y, ωn〉 for all x, y ∈ Rn,

we obtain

|g(λ)|=
∣∣e−〈λ,t〉 · e〈λ,log(cosh2(t/2))〉∣∣ · E(λ) 6

n∏
i=1

(
e−ti cosh2 ti

2

)Re λi

and therefore

|g(λ)|6 1 for all λ ∈ S.
Summing up, we have

|g − h|6 2 on S and (g − h)(λ) = 0 for all λ ∈ P+.

As in the proof of Theorem 3.3, we fix a set of fundamental weights {λ1, . . . , λn} ⊂ P+ and write
λ ∈ S as λ=

∑n
i=1 ziλi with coefficients zi ∈ {z ∈ C : Re z > 0}. Then successive use of Carlson’s

theorem with respect to the variables z1, . . . , zn shows that actually g − h= 0 on S. 2

6. Limit transition for spherical functions of non-compact Grassmann manifolds

6.1 Spherical functions of non-compact Grassmannians
For specific multiplicities, hypergeometric functions of type BC occur as spherical functions of
non-compact Grassmann manifolds. This was the starting point for the construction in [Ros10]
of hypergroup convolution algebras with hypergeometric functions as characters. Let us recall
this connection. For each of the fields F = R, C,H we consider the Grassmann manifolds
Gp,q(F) =G/K whereG is one of the groups SO0(p, q), SU(p, q) or Sp(p, q) with maximal compact
subgroup K = SO(p)× SO(q), S(U(p)×U(q)) or Sp(p)× Sp(q), where we assume that p > q. We
regard G and K as subgroups of the indefinite unitary group U(p, q; F) over F. The Lie algebra
g of G has the Cartan decomposition g = k⊕ p where k is the Lie algebra of K and p consists of
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the (p+ q)-block matrices (
0 X

X
t 0

)
, X ∈Mp,q(F).

As a maximal abelian subspace of p we choose

a =

Ht =

 0p×p
t

0(p−q)×q
t 0q×(p−q) 0q×q

 , t ∈ Rq


where t := diag(t1, . . . , tq) is the q × q diagonal matrix corresponding to t.

The restricted root system ∆ = ∆(g, a) is of type BCq, with the understanding that zero is
allowed as a multiplicity on the long roots. We identify a∗ with a via the Killing form and a with
Rq via the mapping Ht 7→ t. Under this identification, the Killing form corresponds to a constant
multiple of the Euclidean scalar product on Rq, and

∆ =BCq = {±ei,±2ei,±ei ± ej : 1 6 i < j 6 q} ⊂ Rq.

The geometric multiplicities of the roots are given by

mα =


d(p− q) for α=±ei,
d− 1 for α=±2ei,
d for α=±ei ± ej ,

where d= dimR F. We consider the spherical functions of G/K as functions on A= exp a. Let
FBC denote the hypergeometric function associated with R=BCq and multiplicity kα =mα/2
(with mα as above), and denote by F̃BC the hypergeometric function associated with the rescaled
root system R̃= 2BCq and multiplicity k̃2α = kα. Then, according to [Hec97, Remark 2.3] and
Lemma 2.1, the spherical functions of the Grassmannian Gp,q(F) are given by

ϕλ(at) = F̃BC(λ, k̃; t) = FBC(λ/2, k; 2t) for λ ∈ Cq, (6.1)

where

t ∈ Rq and at = eHt =

cosh t 0 sinh t
0 In 0

sinh t 0 cosh t

 .

The limit k1→∞ in Theorem 5.1 here corresponds to p→∞. In order to identify the limit in
this case, we recall some facts on spherical functions of type A.

6.2 Spherical functions of type A
Consider the symmetric spaces G/K where G is one of the connected reductive groups
GL+(q, R), GL(q, C) and GL(q,H) with maximal compact subgroup K = SO(q),U(q) and Sp(q),
respectively. We have the Cartan decomposition G=KAK with

A= exp a where a = {t= diag(t1, . . . , tq) : t= (t1, . . . , tq) ∈ Rq}. (6.2)

For the moment, we consider the spherical functions of G/K as functions on a, where we identify
a with Rq via t 7→ t. The spherical functions of G/K are then characterized as the continuous
functions on Rq which are symmetric and satisfy the product formula

ψ(t)ψ(s) =
∫
K
ψ(log(σsing(et k es))) dk; (6.3)
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here σsing(M) = (σ1, . . . , σq) ∈ Rq denotes the singular values of M ∈Mq(F) ordered by size:
σ1 > · · ·> σq. The spherical functions of G/K = GL(q, F)/U(q, F) are closely related to those
of G1/K1 where G1 is the corresponding semisimple group SL(q, F) and K1 = SU(q, F). Indeed,
consider the orthogonal projection π : Rq→ Rq

0 as in (4.1). In the same way as above, the spherical
functions of G1/K1 may be characterized as the symmetric functions ψ on Rq

0 which satisfy the
same product formula (6.3). Now suppose that ψ is a spherical function of G/K. Then for t ∈ Rq

we have
ψ(t) = ψ(t− π(t) + π(t)) = ψ(t− π(t)) · ψ(π(t)),

because t− π(t) corresponds to the scalar matrix exp(
∑q

i=1 ti/q) · Iq, which belongs to the
subgroup ZR := {a · Iq : a > 0} of the center of G. As the restriction of ψ to ZR is multiplicative
on ZR, we have ψ(a · Iq) = am with some exponent m ∈ C. Therefore

ψ(t) = exp
(
m ·

q∑
i=1

ti/q

)
· ψ(π(t)), (6.4)

where the restriction ψ|Rq0 corresponds to a spherical function of G1/K1. Conversely, it is easily
checked that for a given spherical function ψ of G1/K1, formula (6.4) defines an extension to a
spherical function ψ of G/K.

We now return to the usual convention and consider spherical functions as functions on the
group. For G1/K1, the geometric multiplicity on the restricted root system ∆ =Aq−1 is given
by m= d. Therefore, again according to [Hec97, Remark 2.3] and Lemma 2.1, the spherical
functions of G1/K1 can be identified as

ψλ(et) = FA(λ/2, d/2; 2t), t ∈ Rq
0, (6.5)

with λ ∈ Cq
0 := {λ ∈ Cq :

∑q
i=1 λi = 0}. For λ ∈ Cq, put m=

∑q
i=1 λi. Then

〈t− π(t), λ〉=m ·
q∑
i=1

ti/q. (6.6)

This shows that we can parameterize the spherical functions of G/K according to

ψλ(et) = e〈t−π(t),λ〉 · FA(π(λ/2), d/2; π(2t)), λ ∈ Cq. (6.7)

With the notions of (6.1) and (6.7), Theorem 5.1 now implies the following limit relation.

Corollary 6.1. The spherical functions ϕλ of Gp,q(F) and ψλ of GL(q, F)/U(q, F) satisfy

lim
p→∞

ϕλ+ρgeo
BC

(at) = ψλ+ρgeo
A

(cosh t)

for all λ ∈ Cq and t ∈ Rq, with the ‘geometric’ constants ρgeo
R = 2ρR(k) given by

ρgeo
BC =

q∑
i=1

(d(p+ q + 2− 2i)− 2)ei and ρgeo
A =

q∑
i=1

d(q + 1− 2i)ei.

Proof. From relation (6.1), Theorem 5.1 and identity (6.6) we obtain

lim
p→∞

ϕλ+ρgeo
BC

(at) = lim
k1→∞

FBC(λ/2 + ρBC(k), k; 2t)

=
q∏
i=1

(cosh2 ti)〈λ,ωq〉/2q · FA(π(λ/2) + ρA(k3), d/2; π(ln cosh2 t))

= e〈ln cosh2 t−π(ln cosh2 t), λ/2〉 · FA(π(λ/2) + ρA(k3), d/2; π(ln cosh2 t)),

1395

https://doi.org/10.1112/S0010437X13007045 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007045


M. Rösler, T. Koornwinder and M. Voit

with k = (d(p− q)/2, (d− 1)/2, d/2). Using ρA(k3) ∈ Rq
0 and (6.7), we conclude that this limit

equals

e〈ln cosh2 t−π(ln cosh2 t), λ/2+ρA(k3)〉 · FA(π(λ/2 + ρA(k3)), d/2; π(ln cosh2 t)) = ψλ+ρgeo
A

(cosh t)

as claimed. 2

Finally, we mention that Corollary 6.1 can also be obtained via sharp estimates on the order of
convergence, by comparing explicit versions of the Harish-Chandra integral representations of the
spherical functions involved. This is work in progress. We also remark that our limit transition
for hypergeometric functions has a counterpart in the Euclidean case, namely the convergence
of (suitably scaled) Dunkl–Bessel functions of type B to those of type A, which was obtained
in [RV08] by completely different methods.

7. Spherical functions of infinite-dimensional Grassmannians

We now discuss an interpretation of the preceding limit results in the context of infinite-
dimensional symmetric spaces and Olshanski spherical pairs. For general background on this
subject we refer to Faraut [Far08] and Olshanski [Ols84, Ols90]. In order to be in agreement with
standard terminology, we change our notation slightly. We consider the Grassmann manifolds
Gn/Kn with Gn = SO0(n+ q, q), SU(n+ q, q) or Sp(n+ q, q) and maximal compact subgroup
Kn = SO(n+ q)× SO(q), S(U(n+ q)×U(q)) or Sp(n+ q)× Sp(q). In all three cases, Gn is
regarded as a closed subgroup ofGn+1 withKn =Gn ∩Kn+1. Consider the inductive limitsG∞ =
lim→ Gn and K∞ := lim→ Kn. Then (G∞, K∞) is an Olshanski spherical pair, and G∞/K∞ is
one of the infinite-dimensional Grassmannians SO0(∞, q)/SO(∞)× SO(q), SU(∞, q)/S(U(∞)×
U(q)) and Sp(∞, q)/Sp(∞)× Sp(q). A continuous function φ :G∞→ C is called an Olshanski
spherical function of (G∞, K∞) if φ is K∞-biinvariant and satisfies the product formula

φ(g) · φ(h) = lim
n→∞

∫
Kn

φ(gkh) dk for g, h ∈G∞.

We shall now classify the Olshanski spherical functions of (G∞, K∞) without representation
theory.

For this we use the decomposition Gn =KnA
+
nKn, with the set

A+
n :=


cosh t 0 sinh t

0 In 0
sinh t 0 cosh t

 : t ∈ CB

 ,

of representatives of the Kn-double cosets in Gn, where again

CB := {t= (t1, . . . , tq) ∈ Rq : t1 > t2 > · · ·> tq > 0}

denotes the closed Weyl chamber of type BC. Therefore, independently of n, we identify A+
n

with the set of diagonal matrices

D := {cosh t := diag(cosh t1, . . . , cosh tq) : t ∈ CB}.

This gives the topological identification Gn//Kn 'A+
n 'D. Notice that the elements of D are

just the lower right q × q blocks of the matrices from A+
n . In the same way,

G∞//K∞ 'A+
∞ :=

a∞t :=

cosh t 0 sinh t
0 I∞ 0

sinh t 0 cosh t

 : t ∈ CB

'D.
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By definition of the inductive limit topology, a function φ :G∞→ C is continuous and K∞-
biinvariant if and only if for all n ∈ N, φ|Gn is continuous and Kn-biinvariant. The space of
all continuous, K∞-biinvariant functions on G∞ may thus be identified with the space of all
continuous functions on D. Using this convention, the Olshanski spherical functions of (G∞, K∞)
can be characterized as follows.

Lemma 7.1. A continuous K∞-biinvariant function φ :G∞→ C is an Olshanski spherical
function if and only if there is a continuous function φ̃ :D→ C with φ(a∞t ) = φ̃(cosh t) for t ∈ CB
such that φ̃ satisfies the product formula

φ̃(a) · φ̃(b) =
∫

U(q,F)
φ̃(σsing(akb))dk for a, b ∈D. (7.1)

Here the vector σsing(· · · ) ∈ Rq is identified with the corresponding diagonal matrix.

Proof. Let φ be a continuous K∞-biinvariant function on G∞. By the preceding discussion, φ is
Olshanski spherical if and only if there is a continuous function φ̃ :D→ C with φ(a∞t ) = φ̃(cosh t)
for t ∈ CB such that φ̃ satisfies

φ̃(cosh t) · φ̃(cosh s) = lim
n→∞

∫
Kn

φ(a∞t ka
∞
s ) dk = lim

n→∞

∫
Kn

φ(ant ka
n
s ) dk (7.2)

for s, t ∈ CB. We shall use [Ros10, Proposition 2.2] to rewrite the integrals on the right-hand
side. Let Bq := {w ∈Mq(F) : w∗w < I} and

cn :=
∫
Bq

∆(I − w∗w)(n+q)d/2−γ dw with γ := d(q − 1/2) + 1,

where ∆ denotes the determinant and dw means integration with respect to Lebesgue measure.
Then ∫

Kn

φ(ant ka
n
s ) dk = c−1

n

∫
Bq

∫
U0(q,F)

φ̃(σsing(sinh t w sinh s+ cosh t k cosh s))

· ∆(I − w∗w)(n+q)d/2−γ dk dw (7.3)

where U0(q, F) is the connected component of U(q, F). The probability measures

c−1
n ·∆(I − w∗w)(n+q)d/2−γ dw

are compactly supported in Bq and tend weakly to the point measure δ0 as n→∞.
Therefore (7.2) is equivalent to

φ̃(cosh t) · φ̃(cosh s) =
∫

U0(q,F)
φ̃(σsing(cosh t k cosh s)) dk. (7.4)

Finally, it is easily checked that the group U0(q, F) may be replaced by U(q, F) in the integral,
which completes the proof. 2

We consider the reductive symmetric spaces G/K = GL(q, F)/U(q, F) of § 6.2 and resume
using the notation from there. We introduce the set of diagonal matrices

D0 := {et ∈Mq(R) : t= (t1, . . . , tq) ∈ Rq with t1 > · · ·> tq}.

Then G//K ∼=D0, and a spherical function ψ of G/K may be characterized as a continuous
function on D0 satisfying the product formula

ψ(a) · ψ(b) =
∫

U(q,F)
ψ(σsing(akb)) dk for a, b ∈D0. (7.5)
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Comparison with Lemma 7.1 gives the following theorem.

Theorem 7.2. A continuous K∞-biinvariant function φ :G∞→ C is an Olshanski spherical
function if and only if the function φ̃ :D→ C with φ(a∞t ) = φ̃(cosh t) for t ∈ CB is the restriction
to D of a spherical function ψ of G/K. Each spherical function ψ of G/K is uniquely determined
by its restriction to D, and the Olshanski spherical functions therefore correspond in a bijective
way to the spherical functions of G/K.

Proof. The ‘if’ part is clear from Lemma 7.1. The converse direction follows from Lemma 7.1
together with the following lemma. 2

Lemma 7.3. Each continuous function ϕ on D which satisfies the product formula (7.1) admits
a unique extension to a continuous function ψ on D0 satisfying the product formula (7.5).

Proof. Assume first that ψ :D0→ C is such an extension of ϕ. Consider first a scalar matrix
a= rIq with r > 1. Then a ∈D and hence ψ(a) = ϕ(a). Moreover, as ψ(a−1) = 1/ψ(a) for a as
above, the function ψ is uniquely determined by ϕ on the set of scalar matrices Z = {rIq : r > 0}.
Now let a ∈D0. We then find r > 0 and a matrix b ∈D such that a= rb. Using the product
formula (7.5), we obtain

ψ(rIq)ψ(b) =
∫
Uq(F)

ψ(σsing(rkb)) dk = ψ(rb) = ψ(a). (7.6)

Therefore, ψ is determined uniquely by ϕ.
Conversely, it is easily checked that for any given ϕ, the definition of ψ first on Z as above

and then on D0 via (7.6) leads to a well-defined continuous function ψ on D0 which satisfies the
product formula. 2

We note at this point that our proof of Theorem 7.2 relies only on the explicit product
formula (7.3) and does not require the results of the preceding sections. On the other hand,
Corollary 6.1 and Theorem 7.2 imply the following result.

Corollary 7.4. All Olshanski spherical functions of the infinite-dimensional Grassmannians
G∞/K∞ occur as limits of the spherical functions of the Grassmannians Gn/Kn.

Finally, let us remark that further Olshanski spherical pairs with fixed rank may be treated
in a similar way: for example, pairs related to the Cartan motion groups of Grassmann manifolds
with growing dimension; see [RV13].
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exp. no. 828.

HS94 G. Heckman and H. Schlichtkrull, Harmonic analysis and special functions on symmetric spaces,
Perspectives in Mathematics, vol. 16 (Academic Press, San Diego, 1994).

Koo84 T. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, in
Special functions: group theoretical aspects and applications, eds R. Askey, T. Koornwinder and
W. Schempp (Reidel, Dordrecht, 1984), 1–85.

Koo95 T. Koornwinder, Jacobi polynomials of type BC, Jack polynomials, limit transitions and O(∞),
in Mathematical analysis, wavelets, and signal processing, Contemporary Mathematics, vol. 190
(American Mathematical Society, Providence, RI, 1995), 283–286; arXiv:math/9307216.
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