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MODEL THEORY OF DERIVATIONS OF THE FROBENIUS
MAP REVISITED

JAKUB GOGOLOK

Abstract. We prove some results about the model theory of fields with a derivation of the Frobenius
map, especially that the model companion of this theory is axiomatizable by axioms used by Wood in the
case of the theory DCFp and that it eliminates quantifiers after adding the inverse of the Frobenius map to
the language. This strengthens the results from [4]. As a by-product, we get a new geometric axiomatization
of this model companion. Along the way we also prove a quantifier elimination result, which holds in a
much more general context and we suggest a way of giving “one-dimensional” axiomatizations for model
companions of some theories of fields with operators.

§1. Introduction. In this paper we investigate model-theoretically the so-called
derivations of the Frobenius map building on results by Kowalski in [4]. Let K be a
field of characteristic p > 0 and let n be a natural number. A derivation of the n-th
power of Frobenius map on K is an additive map ∂ : K → K satisfying the following
twisted Leibniz rule

∂ (xy) = xp
n
∂ (y) + yp

n
∂ (x),

for x, y ∈ K . In [4] they are also called n-derivations for short, but we choose a
more expressive name Frn-derivation. If D : K → K is a derivation in the usual
sense, then Frn ◦D is a Frn-derivation, but most Frn-derivations do not come from
usual derivations.

Derivations of the Frobenius map have some reasonable model theory, which
was explored in [4]. In particular, the theory of fields with a Frn-derivation (or
Frn-differential fields for short) has a model companion, this model companion is
strictly stable and eliminates quantifiers in a natural language (details below). In
this paper we establish some further algebraic and model-theoretic properties of
Frn-derivations and answer the six questions stated in [4].

We now recall some definitions and facts from [4]. Fix a Frn-differential field (K, ∂)
of characteristic p > 0. The kernel of ∂ , called the constants of (K, ∂), is denoted
by K∂ and it is a field extension of Kp. We call (K, ∂) strict if K∂ = Kp. There is
an obvious notion of Frn-differential extensions and any Frn-differential field has
a strict Frn-differential extension (Lemma 1.9 in [4]). Moreover, derivations of the
Frobenius map extend to separable field extensions and for algebraic extensions this
extension is unique. We call a Frn-differential field differentially perfect, if any of its
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Frn-differential extension is separable. Since there is always a strict extension, we
have that any differentially perfect field is strict. Lemma 2.1 says that the converse
also holds.

An important property of derivations of the Frobenius, which we will use a few
times, is the following: for m, n > 0, the composition of an Frm-derivation and an
Frn-derivation is an Frm+n-derivation. This does not hold for usual derivations, as
compositions of derivations produces “operators of higher order” (a Hasse-Schmidt
derivation).

Let L∂ be the language of fields together with one unary function symbol ∂ .
Clearly, there is an L∂ -theory Frn – DFp (called DFp,n in [4]), whose models are
precisely Frn-differential field of characteristic p. We can and will also consider
this theory in the languages L∂� and L∂�0 , where we add the function symbols for
the �-functions and only �0 respectively (see [2, Section 1.8] for the definition of
�-functions). Recall that �0 is interpreted in a field K as a function, which is the
inverse of the Frobenius onKp and zero everywhere else. The theory Frn – DFp has
a model companion in the language L∂ , which we call Frn – DCFp. The axioms of
this theory are geometric (see the beginning of Section 2 in [4]), of a similar form
as the geometric axioms for DCF0 (see [7]). Unfortunately, there is an unnaturally
looking assumption in the geometric axioms of Frn – DCFp about the density of
a certain equalizer. The results of this paper provide a more elegant geometric
axiomatization of Frn – DCFp. A possibility for such an axiomatization was also
the content of Question 4 in [4]. Since we will only use the fact that Frn – DFp has
a model companion and not the specific axiomatization of it, we will not recall the
original geometric axioms and instead just present the nicer version following from
our work (see Remark 3.14).

The theory Frn – DCFp eliminates quantifiers in the language L∂� (see Theorem
2.2(v) in [4]). In [4] it is wrongly claimed that Frn – DCFp is also a model companion
of Frn – DFp in the languageL∂� , but this can be easily fixed (see the discussion above
Remark 3.5). In Section 2 we prove that Frn – DCFp eliminates quantifiers already
in the language L∂�0 , answering Question 3 from [4]. Actually, in Lemmas 2.1 and
2.2 we provide an easy proof of a surprisingly general fact, which implies quantifier
elimination results for a very general class of theories of fields with operators.
More precisely (see Section 2.1), we give a new and shorter proof of quantifier
elimination in the framework of B-operators (introduced in [1]) and a stronger
quantifier elimination result in the setting of B-operators (introduced in [3]).

In Section 3 we prove that Frn – DCFp can be axiomatized by the same axioms
(Theorem 3.13), which were used by Wood to axiomatize DCFp (see [10]). This
result answers Questions 4 and 5 from [4]. To formulate Wood’s axioms we need the
concept of differential polynomials, but this works just as in the (Fr0-)differential
case. Namely, for a Frn-differential field (K, ∂) we consider the polynomial ring
K {X} = K

[
X,X ′, ... , X (i), ...

]
in countably many variables, and consider it with

the unique Frn-derivation ∂ ′ on K {X}, which extends ∂ : K → K and has the
property that ∂

(
X (i)

)
= X (i+1). By the usual abuse of notation, we write ∂ instead

of ∂ ′. We call elements of K {X} differential polynomials with coefficients in K.
For f ∈ K {X} and a ∈ K , we may evaluate f at a in an obvious manner, and we
write f (a) for this evaluation. The order of f ∈ K {X} \ {0} is the biggest i such
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that X (i) appears in f, if f is not constant, and –1 if f is a non-zero constant. Let
us denote by TWood the following scheme of axioms: a Frn-differential field (K, ∂)
satisfies T if and only if

(1) K is strict and
(2) for any non-zero differential polynomials f, g ∈ K {X}, where the order of

f is equal m and the order of g is smaller than m, if ∂f

∂X (m) �= 0, then there is
some a ∈ K such that f (a) = 0 and g (a) �= 0.

It is clear that the axioms above are expressible in L∂ . Moreover, the sentences
expressing these axioms are verbatim the same as the Wood axioms for DCFp in
[10] (i.e., they do not depend on n).

The proofs in Section 3 are in the spirit of the proof from [10] that the Wood
axioms work for DCFp, although we had to overcome some obstacles. For example,
for usual derivations, the ring of differential polynomial has nice division properties,
which is not the case for Frn-derivations for n > 0, since e.g., for a ∈ K we have

∂ (aX ) = ap
n
X ′ + ∂ (a)Xp

n
,

so applying ∂ increases the degree in lower-order variables, which complicates
possible division algorithms. Because of this lack of division, we can not use
“constrained ideals” as in [10], but we still can reason using some “choosing
polynomials of minimal order/degree” type of reasoning, which is somewhat
reminiscent of a division algorithm.

In what follows n is always a positive natural number (i.e., we do not speak about
usual derivations, when considering Frn-derivations), all fields are of characteristic
p > 0 and we set q = pn, so that an Frn-differential field (K, ∂) obeys

∂ (xy) = xq∂ (y) + yq∂ (x) ,

for all x, y ∈ K .

§2. Quantifier elimination. Let (K, ∂) be a field of characteristic p with some
operators, i.e., a tuple (possibly infinite) of unary functions ∂ = (∂i : K → K)i∈I .
We define the constants of (K, ∂) as the set of common zeroes of all ∂i and denote
it by K∂ . We assume that K∂ is a field. We also assume that every ∂i is additive and
“Frm-linear over the constants”, i.e., there is some natural number mi such
that for any a ∈ K∂, x ∈ K we have ∂ (ax) = ap

mi ∂ (x). Examples of such
operators include derivations, difference operators, Hasse–Schmidt derivations and
derivations of the Frobenius map (see also Section 2.1).

Let (K, ∂) ⊆ (L, ∂ ′) be an extension of fields with operators in the above sense,
that is, ∂ ′|K = ∂ and the numbersmi mentioned above are the same for K and L. By
abuse of notation, we will use the same symbol ∂ for the operators on K and on L.

Lemma 2.1. Let (K, ∂) ⊆ (L, ∂) be as above. Assume that Lp ⊆ L∂ and that K is
strict, i.e., K∂ = Kp. Then L∂ and K are linearly disjoint over K∂ .

Proof. Assume the conclusion is not true and take the minimal n > 1 such that
there are some x1, ... , xn ∈ L∂ linearly dependent over K, but linearly independent
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over K∂ . By the minimality assumption, there are a1, ... , an ∈ K \ {0} such that:

a1x1 + ··· + anxn = 0.

Then for any i ∈ I :

0 = ∂i

(
a1

an
x1 + ··· +

an–1

an
xn–1 + xn

)
= ∂i

(
a1

an

)
xp
mi

1 + ··· + ∂i

(
an–1

an

)
xp
mi

n–1 .

If some ∂i
(
aj
an

)
is nonzero, then xp

mi

1 , ... , xp
mi

n–1 ∈ Lp ⊆ L∂ are linearly dependent

over K, so by the minimality assumption on m we get that xp
mi

1 , ... , xp
mi

n–1 are linearly

dependent over K∂ = Kp, hence xp
mi –1

1 , ... , xp
mi –1

n–1 are linearly dependent over K.
Repeating this reasoning yields that x1, ... , xn–1 are linearly dependent over Kp,
contrary to the assumption, that they are independent over K∂ = Kp.

Therefore for any i we have ∂i
(
a1
an

)
= ··· = ∂i

(
an–1
an

)
= 0, hence a1

an
, ... ,

an–1
an

∈ K∂ .
By the strictness assumption we get that for some b1, ... , bn–1 ∈ K \ {0}:

a1 = bp1 an, ... , an–1 = bpn–1an,

thus

0 = a1x1 + ··· + anxn = an
(
bp1 x1 + ··· + bpn–1xn–1 + xn

)
,

hence x1, ... , xn are linearly dependent over Kp = K∂ , contrary to the
assumption. �

From the proof it is clear that in the linear case (i.e., for every i we have mi = 0)
we have the following

Lemma 2.2. Let (K, ∂) ⊆ (L, ∂) be an extension of fields with operators linear over
the constants. Then L∂ and K are linearly disjoint over K∂ .

The strictness assumption in Lemma 2.1 is necessary (which gives a negative
answer to Question 1 in [4]), as shown by the example below.

Example 2.3. Take K = Fp (X,Y, �, �) , L = Fp

(
X 1/p, Y 1/p, �, �

)
and define a

derivation of the Frobenius map on L by setting

∂
(
X 1/p) = ∂

(
Y 1/p) = 0, ∂ (�) = Y, ∂ (�) =– X.

We will show that L∂ and K are not linearly disjoint over K∂ . Note that

∂
(
�X 1/p + �Y 1/p) = X∂ (�) + Y∂ (�) = 0.

Thus, X 1/p, Y 1/p, �X 1/p + �Y 1/p are elements of L∂ , linearly dependent over K.
However, they are independent over K∂ :

Indeed, for any a, b, c ∈ K∂ , if

aX 1/p + bY 1/p + c
(
�X 1/p + �Y 1/p) = 0,

then

(a + c�)X 1/p + (b + c�)Y 1/p = 0,
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butX 1/p andY 1/p are linearly independent over K, soa + c� = b + c� = 0. If c �= 0,
then � = – ac ∈ K∂ , which is not the case. Thus c = 0 and therefore a = b = 0, hence
X 1/p, Y 1/p, �X 1/p + �Y 1/p are linearly independent over K∂ .

Lemma 2.1 answers Question 2 from [4], which asks whether strict Frn-differential
fields are differentially perfect. As explained there, it also implies a positive answer
to Question 3, i.e.,

Theorem 2.4. The theory Frn – DCFp eliminates quantifiers in the language L∂�0 .

2.1. Quantifier elimination for more general operators. Lemmas 2.1 and 2.2 are
very general and actually provide quantifier elimination in more general frameworks,
which we will now briefly discuss.

We begin with the setting of B-operators. They were introduced by Moosa and
Scanlon (under the name D-ring structures) in [5] and investigated further in [6], but
we are mostly interested in the positive characteristic case considered by Beyarslan
et al. in [1]. Let k be a field, let B be a finite k-algebra together with a k-algebra
homomorphism � : B → k. A B-operator on a k-algebra R is then a k-algebra
homomorphism ∂ : R→ R ⊗k B such that the following diagram commutes

R R ⊗k B

R

∂

idR
idR ⊗�

Fix a basis b0, ... , bd of B over k such that � (b0) = 1 and � (bi) = 0 for i > 0. A
B-operator is then the same as a d-tuple of maps ∂1, ... , ∂d : R→ R such that the
map

R 	 r 
→ r ⊗ b0 + ∂1 (r) ⊗ b1 + ··· + ∂d (r) ⊗ bd ∈ R ⊗k B,
is a homomorphism of k-algebras.

Example 2.5. If B = k × k and b0 = (1, 0) , b1 = (0, 1), then ∂1 : R→ R is a
B-operator if and only if ∂1 is and k-algebra endomorphism.

The ring of constants of a B-operator ∂ on R is defined as

R∂ = {r ∈ R : ∂ (r) = r ⊗ 1B} .
Note that in general this is not the same as the constants in our sense, i.e.,
the intersection of the kernels of ∂1, ... , ∂d . For example, consider a k-algebra
automorphism ∂1 of R, which is a B-operator as in Example 2.5. Then the ring
of constants in our sense is {0}, but the ring of constants defined above is the fixed
field of ∂1.

However, if we take the basis b0, ... , bd of B over k so that b0 = 1, then both
notions of constants agree. Moreover, it is then easy to calculate that such operators
are linear over the constants, so they fit into our considerations. Therefore, we may
apply Lemma 2.2, which is in this instance the same as Corollary 4.5 in [1], namely

Corollary 2.6. Let (K, ∂) ⊆ (L, ∂) be an extension of B-fields (i.e., fields with
B-operators). Then L∂ and K are linearly disjoint over K∂ .
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Our proof is easier than the proof in [1]. This corollary is then applied as
follows. The main result of [1] is a complete classification for which B the theory of
B-fields has a model companion B – DCF (see Corollary 3.9 there for details). This
happens in essentially two cases, one of which is when B is local and the nilradical
of B coincides with the kernel of the Frobenius homomorphisms on B (e.g., the case
of derivations). Corollary 2.6 is used to prove the following (Theorem 4.11 in [1]):

Theorem 2.7. Assume that B is local and the nilradical of B coincides with the
kernel of the Frobenius homomorphisms on B. Then the theoryB – DCF has quantifier
elimination in the language L∂�0 (the language of fields with d unary symbols ∂1, ... , ∂d

and an unary symbol for the �0-function).

Even more generally, we can get a quantifier-elimination result for so-called
B-operators considered in [3]. We will not recall the precise definition of a
B-operator, as it is a bit involved, but the rough idea is to replace the functor
–⊗kB in the context of B-operators by an appropriate functor B and the map � by
a natural transformation B −→ id.

Theorem 2.19 in [3] says, that we can replaceB by an isomorphicB′ in a somewhat
“normal form.” This normal form has the property that there is some k-algebra B
such that B-operators “twisted” by an appropriate sequence of Frobenius maps are
B-operators. In other words, Theorem 2.19 in [3] says that general B-operators are
related to B-operators in the same way as derivations of the Frobenius map are
related to derivations. Now, in order to speak about B-operators as tuples of maps
∂1, ... , ∂d : R→ R (as opposed to a k-algebra homomorphism ∂ : R→ B (R)) it
is enough to fix a basis b0, ... , bd of this algebra B over k. If we choose it so that
b0 = 1, then the tuple ∂1, ... , ∂d is “Frn-linear over the constants” (see the proof of
Lemma 4.16 in [3] for details), so they fall under the class of operators considered
in Lemma 2.1.

One of the main results of [3] says that the theory of B-fields has a model
companion B – DCF, provided that the theory of B-field is companionable, where
B := B

(
kalg

)
. If B satisfies the assumptions of Theorem 2.7, then we can use our

Lemma 2.1 to show the following

Theorem 2.8. Assume thatB := B
(
kalg

)
satisfies the assumptions of Theorem 2.7.

Then, the theory B – DCF eliminates quantifiers in the language L∂�0 .

The proof is completely analogous to the proofs of Theorems 2.4 and 2.7. Theorem
2.8 is new and strengthens Theorem 4.14 from [3], which states that B – DCF
eliminates quantifiers in the language L∂� . This theorem is also a vast generalization
of Theorem 2.4.

§3. Wood axioms for Frn – DCFp. We are now going to prove, that the Wood
axioms TWood described in the Introduction do axiomatize Frn – DCFp. The proof
consists of two steps. First we prove some sort of primitive element theorem
for Frn-derivations (Proposition 3.2), which implies that for Frn-differential fields
1-existential closedness is equivalent to existential closedness (Corollary 3.7). In
the second step, we show that Wood axioms, as expected, axiomatize 1-existentially
closed Frn-differential fields (Theorem 3.13).
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For an extension of (Frn-)differential fields K ⊆ L and a tuple ā ∈ L, denote by
K 〈ā〉 the (Frn-)differential field generated by K and ā. The proof in [10] that DCFp
can be axiomatized by the Wood axioms relays on the following primitive element
theorem (Theorem 1 in [9]):

Theorem 3.1. Let (K, ∂) be a differentially perfect differential field which
has infinite dimension over its constants (equivalenty: every non-zero differential
polynomial assumes a non-zero value). Let K ⊆ L be an extension of differential
fields and let a1, ... , am ∈ L be differential-algebraic over K. Then there is some c ∈ L
such that K 〈a1, ... , am〉 = K 〈c〉. Moreover, c can be taken from Ka1 + ··· +Kam.

It seems that the above fact does not hold for Frn-derivations, but in any case,
we have the following weaker version, which suffices for our purposes. The proof
is similar to the proof of Theorem 3.1 given in [9], although additional steps are
needed.

Proposition 3.2. Let n > 0 and let (K, ∂) be a differentially perfect Frn-differential
field such that every non-zero differential polynomial assumes a non-zero value. Let
K ⊆ L be an extension of Frn-differential fields and let a1, ... , am ∈ L be differential-

algebraic over K. Then there is some c ∈ L and some i > 0 such that aq
i

1 , ... , a
qi

m ∈
K 〈c〉. Moreover, c can be taken from Ka1 + ··· +Kam.

Remark 3.3. (1) For derivations, the assumption “every non-zero differential
polynomial assumes a non-zero value” is equivalent to “the dimension of K
overK∂ is infinite,” which can be proven using Wronskians (see [9] for details).
For Frn-derivations with n > 0 this is no longer true. To see that, let (K, ∂0) be
a differential field with infinite dimension over its constant. For n > 0 define
∂n = Frn ◦∂0. Since K∂0 = K∂n we have that (K, ∂n) is a Frn-differential field
with infinite dimension over its constants, but the differential polynomial X ′′

is zero when evaluated on K.
(2) In our work, we will use Proposition 3.2 only in the case when K is

1-existentially closed. For such K the assumption about differential polynomi-
als is satisfied, which can be seen e.g., by considering the field of “differential-
rational functions” over K.

Proof of Proposition 3.2. It is enough to prove the proposition for m = 2.
Let u, v ∈ L be differentially algebraic over K. Let Λ be a differentially tran-
scendental indeterminate. The elements u, v,Λ ∈ L 〈Λ〉 are differentially algebraic
over K 〈Λ〉, hence so is u + Λv, thus there is some non-zero polynomial G ∈
K [X0, ... , Xt, Y0, ... , Ys ] such that

G
(
Λ, ... ,Λ(t), u + Λv, ... , (u + Λv)(s) )

= 0. (∗)

Without out loss of generality assume that the total degree of G is minimal.
Fix i ∈ {0, ... , s}. To simplify the notation, we set

Λ̄ =
(
Λ, ... ,Λ(t), u + Λv, ... , (u + Λv)(s) )

.
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Let ∂

∂Λ(i) denote the obvious partial derivation on the field L 〈Λ〉. Using the chain

rule, we may differentiate the equality (∗) with respect to Λ(i)

0 =
∂

∂Λ(i)
G

(
Λ, ... ,Λ(t), u + Λv, ... , (u + Λv)(s)

)

=
t∑
k=0

∂G

∂Xk

(
Λ̄

)
· ∂Λ(k)

∂Λ(i)
+

s∑
k=0

∂G

∂Yk

(
Λ̄

)
· ∂ (u + Λv)(k)

∂Λ(i)

=
∂G

∂Xi

(
Λ̄

)
+
∂G

∂Yi

(
Λ̄

)
· vqi ,

since for i > 0 we have

∂

∂Λ(i)
(u + Λv)(k) =

∂

∂Λ(i)

(
u(k) + Λ(k)vq

k
+ Λq

k
v(k)

)
= �ikvq

k
,

and for i = 0

∂

∂Λ
(u + Λv)(k) =

∂

∂Λ

(
u(k) + Λ(k)vq

k
+ Λq

k
v(k)

)
= �0kvq

k
+ qkΛq

k–1v(k) = �0kvq
k
,

where �ik is the Kronecker delta.

Claim 1. There is some i ∈ {0, ... , s} such that ∂G∂Yi is not the zero polynomial.

Proof of Claim 1: Assume this is not the case. Then also each ∂G
∂Xi

is the zero

polynomial—otherwise, ∂G∂Xi

(
Λ̄

)
= 0 by the formula above, which would contradict

the minimality assumptions on G. Thus G is a polynomial inXp0 , ... , X
p
t , Y

p
0 , ... Y

p
s .

Therefore (∗) expresses the linear dependence over K of pth powers of some
monomials in Λ, ... ,Λ(t), u + Λv, ... , (u + Λv)(s). Lemma 2.1 implies that the
pth powers of these monomials are already linearly dependent over Kp, hence
the monomials are linearly dependent over K. Since Λ, ... ,Λ(t) are algebraically
independent over K, some (u + Λv)(i) must appear in this dependence relation, thus
we get a relation of the form

F
(
Λ, ... ,Λ(t), u + Λv, ... , (u + Λv)(s) )

= 0,

where F is a multivariate polynomial over K with lower total degree than G, contrary
to the minimality assumption. �

Thus, for some i ∈ {0, ... , s} we have the following equality:

vq
i

=–

∂G
∂Xi

(
Λ̄

)
∂G
∂Yi

(
Λ̄

) .
Claim 2. There is some � ∈ K such that

∂G

∂Yi

(
�, ... , ∂t (�) , u + �v, ... , ∂s (u + �v)

)
�= 0.

Proof of Claim 2: Here ∂G∂Yi is a non-zero differential polynomial, but not over
K, so we cannot use the assumption about K directly. However, expanding u, v
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according to some transcendence basis of L over K, we may rewrite the above
(desired) inequality as a conjunction of polynomial inequalities over K of the form

N∧
k=0

fk (�) �= 0,

for some f0, ... , fN ∈ K {X}. But this conjunction is equivalent to the single
inequality

∏N
k=0 fk (�) �= 0, to which the assumption about K applies, yielding the

desired �. �

For this � from Claim 2 one has therefore vq
i ∈ K 〈u + �v〉 and it follows that

uq
i ∈ K 〈u + �v〉, which finishes the proof. �

Remark 3.4. Theorem 2.2(v) in [4] states (in our notation) that Frn – DCFp
is a model companion of Frn – DF in L∂� . This is not true however, as proved by
the following example. Let K be a model of Frn – DF which is not strict (e.g., any
imperfect field with the zero Frn-derivation) and K ⊆ L be an L∂ -extension of K
such that L is a model of Frn – DCFp. Since L is strict and K is not, this extension
is not separable (as L contains p-roots not present in K), thus K ⊆ L is not an
L∂� -extension. Hence Frn – DCFp is not a model companion of Frn – DF in L∂� .

It can be easily fixed by replacing Frn – DF by Frn – DF + “strictness” and the
proof from [4] goes through.

For the above reasons, in the following few auxiliary facts about existential
closedness, the strictness assumption is present.

Lemma 3.5. Let K be a strict Frn-differential field and let φ (x) be a quantifier-
free L∂�0 -formula with parameters from K, which has a solution in some L∂�0 -extension

L ⊇ K . Then there exists a quantifier free L∂ -formula � (x) with parameters from
K, satisfiable in some L∂�0 -extension of K, which has the following property: in any

L∂�0
-extension L ⊇ K (equivalenty: L∂ -extension) we have L |= � (x) → φ (x).

Proof. When plugging a solution a into φ (x), any instance of �0 (b) becomes
either zero or b1/p. Applying a high enough power of the Frobenius automorphisms
to every equality and adding some formulas of the form ∂ (t (x)) = 0 for some
L∂ -terms t (this formulas keep track whether a |= �0 (t (x)) = 0), we get a quantifier
free L∂ -formula � (x) with the following property: in any L∂�0 -extension L ⊇ K
(equivalenty: L∂ -extension) we have L |= � (x) → φ (x), as desired. �

Proposition 3.6. In the language L∂�0 , strict 1-existentially closed Frn-differential
fields are existentially closed.

Proof. Let K be a strict Frn-differential field, which is 1-existentially closed in
L∂�0

. Let φ be an existential L∂�0 -sentence with parameters from K and let K ⊆ L be
an extension of Frn-differential fields such that L satisfies φ. By Remark 3.5 we may
assume, that φ is an L∂ -sentence and by the standard tricks we may assume that φ

is of the form (∃x)
(∧k

i=1 fi (x) = 0
)

where x is a tuple of variables and f1, ... , fk

are multivariate differential polynomials with coefficients from K.
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Take a tuple a = (a1, ... am) from L such that f1 (a) = ··· = fk (a) = 0. We
may assume that every element of a is differentially algebraic over K.1 Then, by
Lemma 3.2 there is some single element c ∈ L such that for each i we have

aq
N

i ∈ K 〈c〉 for some natural number N. Thus there are univariate differential
polynomials g1, h1, ... , gm, hm over K, such that

aq
N

1 =
g1 (c)
h1 (c)

, ... , aq
N

m =
gm (c)
hm (c)

,

or in other words

a1 = �nN0

(
g1 (c)
h1 (c)

)
, ... , am = �nN0

(
gm (c)
hm (c)

)
,

since q = pn. Consider the following formula:

� (y) :
k∧
i=1

hi (y) �= 0 ∧
k∧
i=1

fi

(
�N0

(
g1 (y)
h1 (y)

)
, ... , �N0

(
gm (y)
hm (y)

))
= 0.

Then L |= � (c), therefore by 1-existential closedness of K in L∂�0 there is some

b ∈ K such that L |= � (b). Then the tuple
(
�N0

(
g1(b)
h1(b)

)
, ... , �N0

(
gm(b)
hm(b)

))
witnesses

the satisfiability of φ in K, as desired. �
Corollary 3.7. For a strict Frn-differential field (K, ∂), the following conditions

are equivalent:

(1) K is a 1-existentially closed Frn-differential field in the language L∂ .
(2) K is a existentially closed Frn-differential field in the language L∂ .
(3) K is a 1-existentially closed Frn-differential field in the language L∂�0 .

(4) K is a existentially closed Frn-differential field in the language L∂�0 .

Proof. The implications (2) =⇒ (1) and (4) =⇒ (3) are obvious. Corollary 3.6
gives the implication (3) =⇒ (4). It is now enough to prove (1) ⇐⇒ (3) and (2) ⇐⇒
(4).

By Lemma 2.1, K has the same extensions in the languages L∂ and L∂�0 ,
hence (3) =⇒ (1) and (4) =⇒ (2). Moreover, by this and by Lemma 3.5, if K is
(1-)existentially closed in L∂ , it is also (1-)existentially closed in L∂�0 , therefore
(1) =⇒ (3) and (2) =⇒ (4), which finishes the proof. �

Remark 3.8. Corollary 3.7 is the key ingredient of the proof of our main result,
Theorem 3.13 (i.e., that TWood axiomatizes Frn – DCF). Using this Corollary, we
are basically just left to prove, that models of TWood are 1-existentially closed Frn-
differential fields, a statement which seems natural.

It seems that idea of the proof of Theorem 3.13 can be applied in a more general
context. Whenever we have a theoryT ′ of fields with some operators satisfying some
primitive element theorem (e.g., as in [8]), then 1-existential closedness is equivalent

1No finite set of formulas in variable x can imply the condition “x is differentially transcendental
over K,” thus the set of formulas {f1 (x) = ··· = fk (x) = 0} extends to a complete type over K, whose
realization over K is differentially algebraic over K.
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to existential closedness. On the other hand, if a theory of fields T ′ has a model
companion which eliminates quantifiers (in some reasonable language L), then it is
easy to see that the class of 1-existentially closed models of T ′ in the language L is
elementary. A more explicit axiomatization of 1-existentially closedness models, so
“Wood axioms for T ′,” should come from a division algorithm for the analogue of
the ring of differential polynomials for T ′. Thus, we find it appropriate to ask the
following.

Question 3.9. Can the above strategy be carried out in some interesting case, for
example in the case of B-operators?

Remark 3.10. It is worth noting, that the idea in Remark 3.8 does not apply to
ACFA. Recall that ACFA has quantifier eliminations only up to a single existential
quantifier. Moreover, the fixed field of a model of ACFA is pseudofinite, a condition
which is not axiomatizable by formulas in one variable, hence it seems unlikely that
ACFA can be axiomatized so.

In what follows, we will use the following notation: if K is a Frn-differential
field, a ∈ K and m > 0, then ∂<m (a) denotes the tuple

(
a, ∂ (a) , ... , ∂m–1 (a)

)
and analogously for ∂≤m (a). The following Lemma is well-known in the case of
derivations (see [10, p. 333]) and we prove a generalization of it to the Frn-differential
case.

Lemma 3.11. Let K be a strict Frn-differential field,K ⊆ L an Frn-differential field
extension and a ∈ L. For any m > 0, if ∂m (a) is algebraic over K (∂<m (a)), then
∂m (a) is separably algebraic over K (∂<m (a)).

Proof. Note that if ∂m (a) is separably algebraic over K (∂m (a)), then for
any k > m we have ∂k (a) ∈ K

(
∂≤m (a)

)
. Indeed, if f is the (separable) minimal

polynomial of ∂m (a) over K (∂<m (a)), then

0 = ∂ (f (∂m (a))) = f∂
(
∂m (a)q

)
+ f′ (∂m (a))q ∂m+1 (a) ,

and since f′ (∂m (a)) �= 0, the claim follows. Here f∂ denotes the polynomial
obtained by applying ∂ to the coefficients of f.

We may therefore assume that the tuple ā = ∂<m (a) is algebraically independent
over K. Let f (X ) =

∑N
i=0 fi (ā)X i be the minimal polynomial of b = ∂m (a) over

K [ā] - by this we mean that f ∈ K [ā] [X ] is a minimal-degree (= N ) polynomial
vanishing on b and the coefficients fi have minimal total degree. Since the tuple
ā is algebraically independent over K, the ring K [ā] [X ] is UFD, the polynomials
f0, ... , fN are uniquely determined and saying that they have minimal degree is the
same as saying that they are coprime.

Assume that the claim of the Lemma does not hold, i.e., that f′ = 0. Using this
and the chain rule we can do the following calculations:

0 = ∂ (f (b)) = ∂

(
N∑
i=0

fi (ā) bi
)

=
N∑
i=0

∂ (fi (ā)) bqi

=
N∑
i=0

⎛
⎝f∂i (āq) +

m–1∑
j=0

∂fi
∂Xj

(ā)q ∂j+1 (a)

⎞
⎠ bqi
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=
N∑
i=0

⎛
⎝f∂i (āq) +

m–2∑
j=0

∂fi
∂Xj

(ā)q ∂j+1 (a)

⎞
⎠ bqi +

N∑
i=0

∂fi
∂Xm–1

(ā)q ∂m (a) bqi

=
N∑
i=0

⎛
⎝f∂i (āq) +

m–2∑
j=0

∂fi
∂Xj

(ā)q ∂j+1 (a)

⎞
⎠ bqi +

N∑
i=0

∂fi
∂Xm–1

(ā)q bqi+1.

Let us define g ∈ K [ā] [X ] by the following formula:

g (X ) =
N∑
i=0

⎛
⎝f∂i (āq) +

m–2∑
j=0

∂fi
∂Xj

(ā)q ∂j+1 (a)

⎞
⎠Xqi +

N∑
i=0

∂fi
∂Xm–1

(ā)q X qi+1.

Since the polynomial g vanishes at b we have that, using Gauss Lemma, g is divisible
by f in the ringK [ā] [X ] (here we used the fact that the coefficients of f are coprime).
Therefore, sincef′ = 0, also g ′ is divisible by f, hence g ′ (b) = 0. A direct calculation
shows that

g ′ (X ) =
N∑
i=0

∂fi
∂Xm–1

(ā)q X qi =

(
N∑
i=0

∂fi
∂Xm–1

(ā)X i
)q
,

thus
∑N
i=0

∂fi
∂Xm–1

(ā) bi = 0. By the minimality assumption on f, for any i we have
∂fi
∂Xm–1

(ā) = 0 and, since ā is algebraically independent over K, also ∂fi
∂Xm–1

= 0.

By repeating analogous calculations we may also show that ∂fi∂Xj = 0 for any i, j—

as an example, we will prove this for j = m – 2. Recall that ∂2 = ∂ ◦ ∂ is a derivation
of x 
→ xq2

. Using the fact ∂fi
∂Xm–1

= 0 and the same identities as previously, we arrive
at

0 = ∂2 (f (b))

=
N∑
i=0

⎛
⎝f∂2

i

(
āq

2
)

+
m–3∑
j=0

∂fi
∂Xj

(ā)q
2
∂j+2 (a)

⎞
⎠ bq2i +

N∑
i=0

∂fi
∂Xm–2

(ā)q
2
bq

2i+1.

Let h ∈ K [ā] [X ] play the role of g above. As previously, h′ (b) = 0 and direct
calculations show that

h′ (X ) =
N∑
i=0

∂fi
∂Xm–2

(ā)q
2
Xq

2i =

(
N∑
i=0

∂fi
∂Xm–2

(ā)X i
)q2

,

hence
∑N
i=0

∂fi
∂Xm–2

(ā) bi = 0, thus by the minimality assumptions on f and the

independence of ā we get that ∂fi
∂Xm–2

= 0 for any i.

Since ∂fi∂Xj = 0 for any i, j, we get that every fi is a polynomial in Xp0 , ... , X
p
m–1.

Consider the equality

N∑
i=0

fi (ā) bi = 0.
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Sincefi = 0 if i is not divisible by p and everyfi is a polynomial inXp0 , ... , X
p
m–1, this

equality expresses the linear dependence over K of pth powers of some elements of L,
namely some monomials in ā and b whose degree in b is not greater thanN/p. Since
K ⊆ L is an separable extension, already this monomials must be linearly dependent
over K. Because of the algebraic independence of ā over K, this dependence relation
must contain b. Thus we get that b satisfies some algebraic relation over K [ā] of
degree smaller than N, contrary to the minimality of N. �

Lemma 3.12. A strict Frn-differential field K is 1-existentially closed in the language
L∂ if and only if the following condition holds: if f, g ∈ K{X} and there is some
Frn-differential extension K ⊆ L such that L |= (∃x) (f (x) = 0, g (x) �= 0), then
K |= (∃x) (f (x) = 0, g (x) �= 0).

Proof. The implication (=⇒) is immediate. For (⇐=) assume that K satisfies
the condition from the statement of the Lemma. Let φ (x) be a quantifier free L∂ -
formula (in one variable, with parameters from K) for which there is some extension
K ⊆ L such that L |= (∃x)φ (x). We may assume that this formula is of the form

f1 (x) = 0 ∧ ··· ∧ fm (x) = 0 ∧ g (x) �= 0,

for some differential polynomials f1, ... , fm, g ∈ K{X}. Take N such thatm < pN

and pick some t ∈ K \Kp. By Lemma 2.1, for any extensionK ⊆ L in the language
L∂ we have t ∈ L \ Lp, thus we have

L |= (∃x) (f1 (x) = 0 ∧ ··· ∧ fm (x) = 0 ∧ g (x) �= 0)
⇐⇒ L |= (∃x) (f (x) = 0 ∧ g (x) �= 0) ,

where f (x) = f1 (x)p
N

+ tf2 (x)p
N

+ ··· + tm–1fm (x)p
N

. Since L |= (∃x)φ (x),
we have that L |= (∃x) (f (x) = 0 ∧ g (x) �= 0), thus K |= (∃x)

(
f (x) = 0 ∧

g (x) �= 0
)
, hence also K |= (∃x)φ (x). Therefore, K is 1-existentially closed. �

We are now ready to prove our main theorem. Recall that the theory TWood was
defined in the Introduction.

Theorem 3.13. The theory TWood has the same models as Frn – DCFp.

Proof. Since the theory Frn – DCFp contains TWood (see [4], after Question 3),
every model of Frn – DCFp is a model of TWood.

For the other direction, note that by Corollary 3.7 it is enough to prove that
models of TWood are 1-existentially closed Frn-differential fields in the language
L∂ . In order to prove this, we will verify the condition from Lemma 3.12.
Assume that this condition is not verified, i.e., there are f, g ∈ K{X} and some
Frn-differential extension K ⊆ L such that L |= (∃x) (f (x) = 0, g (x) �= 0), but
K �|= (∃x) (f (x) = 0, g (x) �= 0). Among all such f, g pick a pair which is minimal
in the following sense: f has minimal order, minimal degree in the highest variable
and g has (for this f ) minimal order. Note that f �= 0, since TWood proves that for
any non-zero g ∈ K{X} there is some a ∈ K such that g (a) �= 0.

Let L be an Frn-extension of K and leta ∈ Lbe such thatf (a) = 0, g (a) �= 0. Let
m be the maximal numbers such that the tuple ∂<m (a) is algebraically independent
over K. Let F̃ (X ) be the minimal polynomial of ∂m (a) overK [∂<m (a)], in the same
sense as in the proof of Lemma 3.11. Let f̃ be the differential polynomial obtained
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from F̃ (X ) by replacing the appearances of ∂<m (a) in F̃ by
(
X, ... , X (m–1)

)
.

By Lemma 3.11 f′ �= 0 and, as in the proof of this Lemma, for any k > m we
have ∂k (a) ∈ K

(
∂≤m (a)

)
and actually there is a polynomial Pk ∈ K [X0, ... , Xm],

depending only on f̃, such that

∂k (a) =
Pk

(
∂≤m (a)

)
f̃′ (∂m (a))q

k–m . (∗)

Letf0 be the differential rational function obtained from the differential polynomial
f by replacing X (k) by

Pk
(
X,X ′, ... , X (m)

)
f̃′

(
X (m)

)qk–m ,

for k > m. We see that

f0 =
f1

f̃′
(
X (m)

)N ,
for some N > 0 and some differential polynomial f1 ∈ K {X} of order at most m.
By the equality (∗) we have that f0 (a) = f (a) = 0. Thus f1 = f2 · f̃ for some
f2 ∈ K {X}.

Claim 1. If b ∈ L is a solution of the system f̃ (x) = 0, f̃′ (x) · g (x) �= 0, then
it is also a solution of f (x) = 0, g (x) �= 0.

Proof of Claim 1. Let b ∈ L be a solution of the system f̃ (x) = 0, f̃′ (x) ·
g (x) �= 0. Surely g (b) �= 0, so we need only to show that f (b) = 0. Since ∂<m (a)
is algebraically independent over K, by the formula (∗) we have that

∂k (b) =
Pk

(
∂≤m (b)

)
f̃′ (∂m (b))q

k–m ,

for k > m. Thus, by the definition of f0 we have f0 (b) = f (b). On the other hand

f0 (b) =
f1 (b)

f̃′ (∂m (b))N
=
f2 (b) · f̃ (b)

f̃′ (∂m (b))N
= 0,

since f̃ (b) = 0. Thus f (b) = f0 (b) = 0, as desired. �
Therefore, by the minimality assumptions on f and g, we have that the order of

the original f is m, f is separable as a polynomial in the variable X (m). Reasoning
as in Claim 1. we may assume that the order of g is at most m. If g would have
order strictly smaller than m, then K |= (∃x) (f (x) = 0, g (x) �= 0), as K satisfies
the Wood axioms, contrary to the assumptions. Thus g has order precisely m.

Denote by F,G ∈ K (∂<m (a))
[
X (m)

]
the polynomials obtained from f, g by

replacing ∂<m (a) by
(
X, ... , X (m–1)

)
.

Claim 2. The elements F and G of K (∂<m (a))
[
X (m)

]
are coprime.

Proof of Claim 2. Denote the greatest common divisor of F and G in
K (∂<m (a))

[
X (m)

]
by G̃ and assume it is not invertible, i.e., not an element of
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K (∂<m (a)). By multiplying G̃ by some non-zero element of K [∂<m (a)] we may
assume that G̃ ∈ K [∂<m (a)]

[
X (m)

]
. By replacing the appearances of ∂<m (a) in G̃

by
(
X, ... , X (m–1)

)
we obtain a differential polynomial g̃ ∈ K {X}. Since G̃ divides

F,G and the tuple ∂<m (a) is algebraically independent over K, we get that g̃ divides
f and g in the ring K {X}. Let f̃ be the quotient of f by g̃. Then

K |= (∃x) (f (x) = 0 ∧ g (x) �= 0) ⇐⇒ K |= (∃x)
(
f̃ (x) = 0 ∧ g (x) �= 0

)
,

but f̃ has smaller degree in X (m) than f, which contradicts the minimality
assumptions on f and g. �

Using Claim 2 and Euclidean division in the ring K (∂<m (a))
[
X (m)

]
we can find

some P0, Q0 ∈ K (∂<m (a))
[
X (m)

]
such that

P0
(
X (m))F (

X (m)) +Q0
(
X (m))G(

X (m)) = 1.

By multiplying this equality by some non-zero element of K [∂<m (a)] we get
that there are some non-zero P,Q ∈ K [∂<m (a)]

[
X (m)

]
such that G̃ := PF +

QG ∈ K [∂<m (a)] \ {0}. We again replace all appearances of ∂<m (a) in G̃ by(
X, ... , X (m–1)

)
and obtain that there are non-zero differential polynomials p, q ∈

K {X} such that g̃ (X ) := p (X )f (X ) + q (X ) g (X ) is non-zero and of order
smaller than m.

The differential polynomial f has order m and is separable in X (m), and g is
non-zero, of order smaller that m. Thus, the system

f (x) = 0, g̃ (x) �= 0,

has a solution in K, by the Wood axioms. But, since g̃ (X ) = p (X )f (X ) +
q (X ) g (X ), any solution of this system is also a solution of the original system

f (x) = 0, g (x) �= 0,

which had no solution in K - a contradiction. �

Remark 3.14. Using Theorem 3.13 we can now give a positive answer to
Question 4 from [4]. We also slightly improve on the form of the geometric axioms
suggested there. Let (K, ∂) be a Frn-differential field. We work in some big ambient
algebraically closed field Ω containing K. For a K-variety V we recall the definition
of the “twisted Frobenius tangent bundle of V” (denoted V (1)) from [4]. Suppose V
is given as the zero locus of an ideal I � K

[
X̄

]
, where X̄ = (X1, ... , Xm) is a tuple

of variables. Let X̄ ′ =
(
X ′

1, ... , X
′
m) be a new tuple of variables. For f ∈ K

[
X̄

]
we

set

∂ (f)
(
X̄ , X̄ ′) = f∂

(
X̄ q

)
+

m∑
i=1

∂f

∂Xi

(
X̄

)q
X ′
i .

We define V (1) as the set of zeroes of the ideal (I, ∂ (I )) � K
[
X̄ , X̄ ′]. If we took in

the above formulas ∂ = 0, q = 1, then the resulting V (1) would be the usual tangent
bundle of V. Note that for any a ∈ V (K) we have (a, ∂ (a)) ∈ V (1) (K). Also, since
I is contained in (I, ∂ (I )), we have a projection map V (1) → V .
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We are now able to state the new geometric axioms for Frn – DCFp:

Suppose V,W are K-irreducible K-varieties andW ⊆ V (1). If the
projection mapW → V is separable, then there is some a ∈ V (K)
such that (a, ∂ (a)) ∈W .

It is standard, that this is expressible by a scheme of first-order conditions, as
explained in [4]. This looks a bit different than what is suggested in Question 4 from
[4], so we explain the changes. Literally, Question 4 suggests the following axioms

Assume K is strict. SupposeV,W are K-irreducible K-varieties and
W ⊆ V (1). If the projection map W → V is dominant and sepa-
rable, then there is some a ∈ V (K) such that (a, ∂ (a)) ∈W \ X .

The word “dominant” is redundant, as separable morphisms are by definition
dominant. The variety X can be removed by replacing W and V by some higher
dimensional variety. Finally, strictness of K follows from the latter part of the
axioms, as follows. Assume K is a Frn-differential field satisfying the above axioms,
but without the sentence “K is strict.” We will prove that K is strict. Assume that is
not the case and let c ∈ K∂ \Kp be a constant, which is not a p-th power. Define
V :=

{
c1/p

}
, i.e., V is the zero locus of the irreducible polynomial f (X ) = Xp – c.

Thus, the twisted tangent bundle V (1) is the zero locus of the polynomial

∂ (f) (X,X ′) = f∂ (Xq) + f′ (X )q X ′ = 0,

i.e.,V (1) =
{
c1/p

}
× A

1. SetW :=
{(
c1/p, 0

)}
. ClearlyW ⊆ V (1) and the projection

map W → V is separable, therefore by the geometric axioms there exists some
a ∈ V (K) such that (a, ∂ (a)) ∈W (K). But a ∈ V (K) means that a ∈ K and
ap = c, contrary to the assumption that c �∈ Kp.

Since the axioms described above are contained in the original axioms of Frn –
DCFp and they contain the Wood axioms (as explained in [4] above Question 4),
we get a new geometric axiomatization of Frn – DCFp.

Question 3.15. Is B – DCF also axiomatizable by simpler geometric axioms,
analogous to the above? Is there a direct proof (i.e., not using “one-dimensional”
axiomatizations) of that, even in the case of Frn-derivations?

Remark 3.16. For the sake of completeness we point out, that Question 6 from [4]
has an obvious negative answer. It asks whether

(
K, ∂2

)
is a model of Fr2n – DCFp,

provided that (K, ∂) is a model of Frn – DCFp. The answer is negative, since the
constants of

(
K, ∂2

)
are strictly bigger than Kp = K∂ , so

(
K, ∂2

)
is not even strict.

Acknowledgment. I would like to thank Piotr Kowalski for his careful reading of
this paper and many valuable comments. I would also like to thank the anonymous
referee for suggesting improvements. This research was supported by the Narodowe
Centrum Nauki grant no. 2018/31/B/ST1/00357.

https://doi.org/10.1017/jsl.2021.85 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.85


MODEL THEORY OF DERIVATIONS OF THE FROBENIUS MAP REVISITED 1229

REFERENCES
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