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This paper proposes a jackknife Lagrange multiplier (JLM) test for instrumental
variable regression models, which is robust to (i) many instruments, where the num-
ber of instruments may increase proportionally with the sample size, (ii) arbitrarily
weak instruments, and (iii) heteroskedastic errors. In contrast to Crudu, Mellace, and
Sándor (2021, Econometric Theory 37, 281–310) and Mikusheva and Sun (2021,
Review of Economic Studies 89, 2663–2686), who proposed jackknife Anderson–
Rubin tests that are also robust to (i)–(iii), we modify a score statistic by jackknifing
and construct its heteroskedasticity robust variance estimator. Compared to the
Lagrange multiplier tests by Kleibergen (2002, Econometrica 70, 1781–1803) and
Moreira (2001, Tests with Correct Size when Instruments Can Be Arbitrarily Weak,
Working paper) and their modification for many instruments by Hansen, Hausman,
and Newey (2008, Journal of Business & Economic Statistics 26, 398–422), our JLM
test is robust to heteroskedastic errors and may circumvent a possible decrease in the
power function. Simulation results illustrate the desirable size and power properties
of the proposed method.

1. INTRODUCTION

In empirical applications of instrumental variable (IV) regression methods,
researchers often face imprecise estimation results and so seek to employ many
valid IVs to improve precision. However, statistical inference procedures in IV
regression models can be crucially affected by the quality and number of the
IVs. It has been known that when instruments are only weakly correlated with
the endogenous regressors, the standard asymptotic approximations to the finite
sample distributions of the conventional estimators and test statistics can be poor.
The use of many instruments can improve efficiency of the estimators or their
associated tests, but often leads the usual inference procedures to have poor finite
sample properties (see, e.g., Andrews and Stock, 2007a, for a review).
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In order to overcome the weak IV problem, several robust inference methods
have been proposed. Moreira (2001) and Kleibergen (2002) proposed Lagrange
multiplier (LM)-type tests, whereas Moreira (2003) proposed a conditional like-
lihood ratio (CLR) test, both of which are shown to be robust to the strength of
the IVs.1 There have been a lot of studies on the properties of these tests and their
extensions (see, e.g., Kleibergen, 2005; Andrews, Moreira, and Stock, 2006). We
note that these tests were developed mainly in response to the weak IV problem,
and as such it is not clear how well (or how poorly) their tests perform with many
instruments.

There have been many studies investigating the effects of many instruments.
Linear models and asymptotics with many instruments were introduced by
Kunitomo (1980) and Morimune (1983). Bekker (1994) pointed out that the many
instruments asymptotic theory, where the number of instruments K may grow
proportionally to the sample size n, may be suited better to applications, even
when the number of instruments is moderate. Chao and Swanson (2005)
generalized the many instruments asymptotic theory to allow for weaker
instruments, where the concentration parameter may grow at a slower rate than n,
and investigated conditions to achieve consistency for the k-class IV estimators.
Han and Phillips (2006) further extended the many weak instruments asymptotic
framework to study the asymptotic properties of the generalized method of
moments (GMM) estimator for possibly nonlinear models. Andrews and Stock
(2007b) showed that Anderson–Rubin (AR), LM, and CLR statistics are robust
to many weak instruments, where the instruments are arbitrarily weak and K
satisfies K3/n → 0. We also refer the reader to Newey and Windmeijer (2009)
for the GMM theory including the LM statistic under the many weak moments
asymptotics. Hansen, Hausman, and Newey (2008) studied the case where K may
be proportional to n and the error term is homoskedastic, and developed a many
instruments robust standard error and modification for the LM test. Hausman et al.
(2012) proposed a Wald test based on heteroskedasticity and many instruments
robust versions of the limited information maximum likelihood and Fuller (1977)
estimators. These papers make assumptions on the rates of the concentration
parameter or the number of instruments and/or homoskedasticity to achieve
consistency of the point estimators and associated tests on parameter hypotheses.
This paper complements these existing results by considering asymptotically valid
tests under the null hypothesis with arbitrarily weak instruments, even though such
tests may be inconsistent under the alternatives without further assumptions on
the strength of instruments.

In this paper, we propose a jackknife Lagrange multiplier (JLM) test for IV
regression models, which is robust to (i) many instruments, where the number
of instruments may increase proportionally with the sample size, (ii) arbitrarily
weak instruments, and (iii) heteroskedastic errors. Our idea is to modify the score

1Here, robustness refers to size control under the null hypothesis on structural parameters. Under arbitrarily weak
instruments, there is no consistent test in general (see Mikusheva and Sun, 2021, and the discussion below for the
case of many and weak instruments).
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statistic by jackknifing and to construct its heteroskedasticity robust variance esti-
mator. In particular, by applying the leave-one-out method introduced by Phillips
and Hale (1977) and Angrist, Imbens, and Krueger (1999), we re-center a score-
type vector in the presence of many weak instruments and heteroskedasticity.2

Compared to the LM tests by Moreira (2001) and Kleibergen (2002) and their
modification for many instruments by Hansen et al. (2008), our JLM test is robust
to heteroskedastic errors and may circumvent a possible decrease in the power
function. In particular, the power of our test does not decline asymptotically in any
region under an additional requirement on strength of the instruments. Further-
more, the Wald statistic introduced by Hausman et al. (2012) is not fully robust
to weak instruments because it relies on the consistency of their heteroskedastic
limited information maximum likelihood estimator. Our JLM test can be a useful
complement to Hausman et al.’s (2012) Wald test if the researcher is primarily
concerned with the size properties of the tests. The JLM test is asymptotically
valid under the null hypothesis with arbitrarily weak instruments even though
it is generally inconsistent under fixed alternatives without further requirements
on the strength of the instruments. Simulation results illustrate the desirable size
robustness properties of the proposed method.

Many papers in the econometrics literature have applied the idea of jackknifing
for IV regression models. Phillips and Hale (1977), Angrist et al. (1999), and
Blomquist and Dahlberg (1999) proposed the jackknife IV estimator (JIVE),
which aims at eliminating the correlation between the first-stage fitted values and
structural equation errors. Hahn, Hausman, and Kuersteiner (2004) studied higher-
order properties of the jackknife two-stage least-squares estimator. Davidson
and MacKinnon (2006) conducted an extensive simulation study on the finite
sample performance of the JIVE. Ackerberg and Devereux (2009) proposed a
bias-corrected JIVE and investigated its asymptotic properties under the many
instruments asymptotics and heteroskedastic errors. Chao et al. (2012) studied
asymptotic properties of the JIVE under the many-weak instruments asymptotics
and heteroskedastic errors. Newey and Windmeijer (2009) extended the JIVE to
the GMM context. Hansen and Kozbur (2014) proposed a regularized JIVE to deal
with the case where the number of instruments may be larger than the sample size.

Recently and independently, Crudu, Mellace, and Sándor (2021) and Mikusheva
and Sun (2021) have proposed jackknife AR tests, which are asymptotically size
correct under (i)–(iii). These tests use jackknifing to re-center the AR statistic
in the presence of many weak instruments and heteroskedasticity. Furthermore,
Mikusheva and Sun (2021) developed a novel variance estimator based on cross-
fitting in the spirit of Kline, Saggio, and Sølvsten (2020) to standardize the
jackknifed AR statistic. In contrast to these recent papers, we apply jackknifing
to the score statistic. Thus, the construction and theoretical developments for our

2In the context of overidentifying restriction testing, Chao et al. (2014) proposed a jackknife version of the
conventional overidentifying restriction test statistic, which is robust to many instruments and heteroskedastic errors.
In contrast, this paper is concerned with parameter hypothesis testing.
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statistic are different, and this paper may be considered as a complement to the AR
approach in Crudu et al. (2021) and Mikusheva and Sun (2021). Simulation results
indicate that our JLM statistic compares favorably with the jackknife AR statistic,
even though a formal analysis to compare these statistics is beyond the scope of
this paper.

The paper is organized as follows. Section 2 presents our main results. After
introducing our basic setup in Section 2.1, Section 2.2 proposes the JLM statistic
and studies its asymptotic property for a simple case where there is no included
exogenous regressor, and then Section 2.3 discusses a general case. Section 3
conducts a simulation study and presents a real data example. Finally, Section 4
concludes.

2. MAIN RESULTS

2.1. Setup

We first introduce our basic setup. Consider a single structural equation

y1i = y′
2iβ + z′

1iγ +ui, (1)

for i = 1, . . . ,n, where y1i is a scalar dependent variable, y2i is a G-dimensional
vector of endogenous regressors, z1i is a K1-dimensional vector of (included)
exogenous regressors in (1), β and γ are G- and K1-dimensional vectors of
unknown parameters, respectively, and ui is an error term. We assume that (1) is the
first equation in a simultaneous system of G+1 linear stochastic equations relating
G+1 endogenous variables yi = (y1i,y′

2i)
′, and K = K1 +K2 exogenous variables

zi = (z′
1i,z

′
2i)

′, where z2i is a K2-dimensional vector of IVs for (1). The number
of instruments K2 = K2n may grow with the sample size n, and thus the joint
distribution of (y′

i,z
′
i) is allowed to vary with n. We also assume that (u1, . . . ,un) are

mutually independent conditional on (z1, . . . ,zn) with E(ui|zi) = 0 almost surely for
i = 1, . . . ,n. The reduced form of yi is defined as

yi = �′
nzi + vi =

(
π ′

1n
�′

2n

)
zi +

(
v1i

v2i

)
, (2)

where π1n is a K-dimensional vector and �2n is a K ×G matrix of the reduced form
coefficients, and vi = (v1i,v′

2i)
′ is a (1+G)-dimensional vector of the disturbances.

(v1, . . . ,vn) are mutually independent conditional on (z1, . . . ,zn) with E(vi|zi) = 0
almost surely.

In this setup, we are interested in the following testing problem:

H0 : β = b against H1 : β �= b,

for a given b. In particular, we focus on the situation where (i) the number of
instruments may increase proportionally with the sample size (i.e., K/n → α ∈
[0,1) as n → ∞), (ii) the instruments are arbitrarily weak (i.e., �2n may be zero),
and (iii) the error term ui may be heteroskedastic and nonnormal. For this setting,
we develop a new robust test statistic.
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2.2. Simple Case: No Exogenous Regressor

To present the basic idea, we begin with a simple case, where there is no included
exogenous regressor, i.e., y1i = y′

2iβ +ui. A general case will be considered in the
next subsection.

We introduce some notation to define our test statistic. Let Y2 = (y21, . . . ,y2n)
′,

Z = (z1, . . . ,zn)
′, and V2 = (v21, . . . ,v2n)

′ be matrices for the endogenous regres-
sors, instruments, and reduced form errors, respectively. Although the number
of columns K of Z grows with the sample size n, we suppress the dependence
and denote ZKn by Z. We also define the observables u0i = y1i − y′

2ib and u0 =
(u01, . . . ,u0n)

′. Finally, we define the matrix P∗ by P∗
ij = Pij, for i �= j, and P∗

ii = 0,
for all i, where P is the projection matrix Z(Z′Z)−1Z′.

We note that under the null hypothesis H0 : β = b, the score-type vector Y ′
2Pu0

is not necessarily centered, i.e., E(Y ′
2Pu0) = E(V ′

2Pu0) may not be zero. This is
due to the fact that E(V2iPiiu0i) may not be zero. Thus, we propose to construct
our test statistic based on the jackknife version of the score-type vector Y ′

2P∗u0,
which satisfies E(Y ′

2P∗u0) = 0.
By inserting the reduced form y2i = �′

2nzi + v2i, the (conditional) variance of
Y ′

2P∗u0 is written as

�n = Var(Y ′
2P∗u0|Z)

=
n∑

i,j,k,i �=k,j �=k

σ 2
k �′

2nziPikPkjz
′
j�2n +

n∑
i �=j

P2
ij{E(v2iv

′
2i|Z)σ 2

j +E(v2iui|Z)E(v′
2juj|Z)},

where σ 2
i = E(u2

i |Z). The first and second terms come from the components
�′

2nzi and v2i in the reduced form, respectively. Under the conventional asymptotic
framework with a fixed number of strong instruments, the first term dominates.
On the other hand, under the many and weak instruments setup as in this paper,
both terms may be of the same order. Note that this variance formula allows for
heteroskedastic errors. Observe that �n can be alternatively written as

�n = E

⎡
⎣ n∑

i,j,k,i�=k,j�=k

y2iPiku2
0kPkjy

′
2j +

n∑
i�=j

y2iy
′
2ju0iu0jP

2
ij

∣∣∣∣∣∣Z
⎤
⎦ .

Based on this expression, we estimate the variance �n by

�̂n = Y ′
2P∗	0P∗Y2 +

n∑
i,j=1

y2iy
′
2ju0iu0jP

∗2
ij , (3)

where 	0 = diag(u2
01, . . . ,u

2
0n). By standardizing the jackknife score vector by this

variance estimator, our JLM test statistic for testing H0 : β = b is defined as

JLM(b) = (u′
0P∗Y2)�̂

−1
n (Y ′

2P∗u0). (4)
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Compared to the standard LM statistic, (u′
0PY2)

[
σ̂ 2(Y ′

2PY2)
]−1

(Y ′
2Pu0), for

some homoskedastic error variance estimator σ̂ 2 (Wang and Zivot, 1998), the
major differences of our approach are the use of the jackknife score Y ′

2P∗u0

instead of Y ′
2Pu0 and the use of the heteroskedasticity robust variance estimator

�̂n instead of σ̂ 2(Y ′
2PY2). Note that Y ′

2P∗u0 and Y ′
2Pu0 are asymptotically

equivalent under the conventional asymptotics with a fixed number of strong
instruments.

To study the asymptotic properties of the JLM statistic, we impose the following
assumptions.

Assumption 1. (i) For each n, Z is of full column rank almost surely, and there
exists a constant c ∈ [Pii,1) almost surely for all i = 1, . . . ,n. (ii) For each n,
conditional on Z, {(ui,v′

2i)}n
i=1 are independent with E(ui|Z) = 0 and E(v2i|Z) = 0

almost surely. (iii) There exists a positive constant C (which is independent of n)
such that, for each n, maxi=1,...,n E(u4

i |Z) ≤ C, maxi=1,...,n E(||v2i||4|Z) ≤ C, and
maxi=1,...,n |z′

iπ2s|4 < C, for all s = 1, . . . ,G almost surely, where π2s is the sth
column of �2n. (iv) There exists a positive constant C1 (which is independent of n)
such that, for each n, maxi=1,...,n |corr(c′v2i,ui|Z)| < C1 < 1 almost surely for any
c �= 0.

We note that the distribution of the data (y′
i,z

′
i) is allowed to vary with n. Assump-

tion 1(i)–(iii) is also imposed in existing papers on many weak IV regressions,
such as Chao et al. (2012) and Hausman et al. (2012). Assumption 1(i) is on Z and
implies K < n. Assumption 1(ii) is a standard exogeneity condition for instruments,
and Assumption 1(iii) contains regularity conditions for the fourth conditional
moments of the error terms, which are used to apply central limit theorems.
Assumption 1(iv) is a mild condition which guarantees positive definiteness of
�n (see Lemma A.1 in the Appendix).3 Under these assumptions, the limiting null
distribution of the JLM statistic is obtained as follows.

Theorem 1. Suppose Assumption 1 holds true, K → ∞, and K/n → α ∈ [0,1)

as n → ∞. Then, under H0 : β = b,

JLM(b)
d→ χ2

G.

This theorem proves the asymptotic pivotalness of the JLM statistic under the
conditions that allow for (i) arbitrarily weak instruments, (ii) many instruments in
the sense that K/n → α ∈ [0,1), and (iii) heteroskedasticity. By inverting JLM(b),

3Although �n is shown to be positive definite for each n almost surely, its eigenvalues typically diverge. Therefore,
the argument based on the continuous mapping theorem for separately taking the limits for �̂n and Y ′

2P∗u0 is not
applicable here if we want to derive the limiting distribution of JLM(b). As shown in Lemma A.3, we take the limit
for the whole quadratic part of the dominant term of JLM(b), where the diverging eigenvalues of �n are internally
normalized.
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the JLM-based 100(1−a)% confidence set can be obtained as {b : JLM(b) ≤ χ2
G,a},

where χ2
G,a is the (1−a)th quantile of the χ2

G distribution.4

We note that this theorem does not cover the case where K is fixed. In this case,
we can still obtain the same conclusion as far as the instruments are strong enough
(in the sense that �2n is fixed or decays to zero slower than the

√
n-rate).

Furthermore, the LM test by Moreira (2001) and Kleibergen (2002) is not robust
to many instruments, in the sense of α > 0. Hansen et al.’s (2008) modified version
is robust to the case of α > 0, but not robust to heteroskedastic errors. The Wald test
by Hausman et al. (2012) is also robust to the case of α > 0, but not fully robust to
weak instruments. Recently and independently, Crudu et al. (2021) and Mikusheva
and Sun (2021) have proposed jackknife AR tests, which are asymptotically size
correct under the setup of Theorem 1. It is beyond the scope of this paper to
compare our JLM test with these tests under the many and weak instruments setup.
However, under the conventional asymptotic framework with a fixed number of
strong instruments, we can see that the limiting null distribution of their jackknife
AR statistics is (χ2

K − K)/
√

2K, instead of χ2
G for the JLM statistic. Therefore,

under the conventional asymptotics, the JLM statistic will exhibit better power
properties when K > G.

We next study power properties of the JLM test. As indicated by the impos-
sibility result in Dufour (1997), we cannot achieve consistency of the JLM test
under fixed alternatives without further assumptions. Indeed, based on Mikusheva
and Sun (2021), there exists no consistent test for the null H0 : β = b unless some
condition on the concentration parameters, which guarantees sufficiently strong
instruments, is satisfied. As such, we derive the consistency of the JLM test under
this additional requirement.

Furthermore, we note that the LM statistic by Moreira (2001) and Kleibergen
(2002) and its modification by Hansen et al. (2008) may lose power in some regions
for the alternative hypotheses. This lack of power is caused by the fact that those
LM statistics are equal to zero at the maximum as well as the minimum of the
concentrated log-likelihood, since they are quadratic forms of the score of the
concentrated likelihood (see page 1788 of Kleibergen, 2002). On the other hand,
the jackknife score for our JLM statistic is different from the (conventional) score
of the concentrated likelihood. Specifically, we can show that under an additional
requirement on strength of instruments, the power curve of the JLM statistic shows
monotonicity in an asymptotic sense.

The power properties of the JLM test discussed above are described as follows.

Theorem 2. Suppose Assumption 1 holds true, K → ∞, and K/n → α ∈ [0,1)

as n → ∞. Additionally, assume that K
min{μ4

1,...,μ
4
G} → 0, where (μ1, . . . ,μG) are the

4We note that Theorem 1 only guarantees pointwise asymptotic validity of the JLM test and confidence set by using
the χ2 critical value (i.e., the limit is taken under each null distribution). Although it is beyond the scope of this paper,
it is interesting to assess uniform asymptotic size or coverage properties based on our JLM statistic by applying the
generic results in Andrews, Cheng, and Guggenberger (2020).
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concentration parameters defined in (A.2). Then, under the alternative H1 : β =
b+� for a fixed � �= 0,

(i) P{JLM(b) ≥ χ2
G,a} → 1 as n → ∞, where χ2

G,a is the (1 − a)th quantile of
the χ2

G distribution.
(ii) There exists some C > 0 such that

P{JLM(b) ≥ C||b−β||2 for each b} → 1 as n → ∞.

The additional assumption K
min{μ4

1,...,μ
4
G} → 0 is on the strength of the instruments.

For example, Chao and Swanson (2005) imposed this assumption to achieve
consistency of point estimators under their many weak instruments asymptotics.
This theorem says that the JLM test is consistent for any fixed � �= 0 and that the
JLM statistic JLM(b) for testing H0 : β = b increases monotonically as ||b −β||
increases with probability approaching to 1.

We note that the consistency and power monotonicity results presented in Theo-
rem 2 do not contradict the impossibility result given in Dufour (1997), which says
that any valid confidence set with level 1−α must be unbounded with probability
close to 1−α in the neighborhood of nonidentification regions. The reason is that
these power properties of the JLM test are derived under the additional condition

K
min{μ4

1,...,μ
4
G} → 0, which requires sufficiently strong instruments relative to the

number of instruments K. Indeed, based on Mikusheva and Sun (2021), unless
K

min{μ4
1,...,μ

4
G} → 0, we can conclude that there exists no consistent test for the null

H0 : β = b.

2.3. Models with Exogenous Regressors

In this subsection, we extend our analysis to models with exogenous regressors in
(1). Under the null hypothesis H0 : β = b, the slope parameters γ for the exogenous
regressors can be estimated by

γ̂ (b) = (Z′
1Z1)

−1Z′
1(y1 −Y2b),

where Z1 = (z11, . . . ,z1n)
′. We can construct the JLM test statistic in the same way

as in the previous section. Define û0i = y1i −y′
2ib− z′

1iγ̂ (b) and û0 = (û01, . . . ,û0n).
Based on the projection matrix P1 = Z1(Z′

1Z1)
−1Z′

1, we define n×n matrices P2 =
(I − P1)Z2(Z′

2(I − P1)Z2)
−1Z′

2(I − P1) and P# such that P#
ij = P2,ij, for i �= j, and

P#
ii = 0.
We can show that under H0,

(û′
0P#Y2)(�

†
n )−1(Y ′

2P#û0) = (u′
0P†Y2)(�

†
n )−1(Y ′

2P†u0)+op(1), (5)
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where u0i = y1i − y′
2ib − z′

1iγ and u0 = (u01, . . . ,u0n)
′, P† is an n × n matrix such

that P†
ij = [P2 +diag(P2)P1]i,j, for i �= j, and P†

ii = 0, and

�†
n =

n∑
i,j,k,i�=k,j�=k

σ 2
k �′

2nziP
†
ikP†

kjz
′
j�2n +

n∑
i�=j

{P†
ijP

†
jiE(v2iv

′
2i|Z)σ 2

j +P†2
ij E(v2iui|Z)E(v′

2juj|Z)}.

Thus, the score-type vector Y ′
2P#û0 can be a proxy for the mean-zero vector Y ′

2P†u,
and we can construct the JLM statistic for this general case using the quadratic
form:

JLM(b) = (û′
0P#Y2)�̃

−1
n (Y ′

2P#û0), (6)

where

�̃n = Y ′
2P†	̂0P†′Y2 +

n∑
i,j=1

y2iy
′
2jû0iû0j(P

†
ij)

2, (7)

and 	̂0 = diag(û2
01, . . . ,û

2
0n).

The asymptotic property of this JLM statistic is obtained as follows.

Theorem 3. Suppose Assumption 1 holds true, K → ∞, and K/n → α ∈ [0,1)

as n → ∞. Then, under H0 : β = b,

JLM(b)
d→ χ2

G.

Similar comments to Theorem 1 apply. For example, the JLM-based 100(1 −
a)% confidence set for β in this setup can be constructed as {b : JLM(b) ≤ χ2

G,a}.

3. NUMERICAL ILLUSTRATIONS

3.1. Simulation

In this section, we conduct a simulation study to evaluate the finite sample
properties of the proposed JLM test. We consider the data generating process:

y1i = y2iβ0 + z1iγ0 +ui,

y2i = z′
iπ2 + v2i, (8)

Table 1. 95% confidence sets of the effect of
schooling on log weekly wage using Angrist and
Krueger’s (1991) data

HAR JLM

180 instruments [0.008, 0.201] [0.067, 0.133]

1,530 instruments [−0.047, 0.202] [0.025, 0.123]
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Table 2. Empirical rejection frequencies at the 5% significant level:
Homoskedastic errors

ρ δ2 K tTS tLI tHLI AR CLR KLM mKLM HKLM HCLR HAR JLM

0.2 30 5 0.045 0.048 0.048 0.056 0.055 0.053 0.052 0.040 0.048 0.085 0.044

30 10 0.056 0.064 0.036 0.055 0.057 0.055 0.053 0.038 0.048 0.074 0.051

30 30 0.123 0.132 0.027 0.075 0.066 0.063 0.051 0.032 0.047 0.078 0.050

30 90 0.391 0.342 0.024 0.129 0.146 0.127 0.052 0.112 0.132 0.087 0.053

10 5 0.033 0.034 0.023 0.051 0.053 0.054 0.051 0.031 0.035 0.080 0.047

10 10 0.058 0.061 0.019 0.058 0.057 0.052 0.046 0.032 0.032 0.077 0.050

10 30 0.161 0.156 0.014 0.071 0.076 0.068 0.047 0.030 0.040 0.076 0.050

10 90 0.447 0.370 0.015 0.126 0.158 0.140 0.047 0.110 0.131 0.082 0.049

2 5 0.018 0.015 0.008 0.054 0.056 0.055 0.048 0.016 0.013 0.082 0.049

2 10 0.054 0.042 0.008 0.058 0.060 0.059 0.047 0.019 0.014 0.079 0.050

2 30 0.179 0.152 0.009 0.067 0.073 0.072 0.047 0.026 0.029 0.072 0.051

2 90 0.484 0.371 0.012 0.126 0.158 0.145 0.049 0.105 0.131 0.086 0.052

0.6 30 5 0.086 0.055 0.055 0.059 0.052 0.052 0.052 0.042 0.051 0.085 0.049

30 10 0.176 0.062 0.049 0.057 0.055 0.053 0.052 0.039 0.049 0.075 0.050

30 30 0.696 0.097 0.046 0.072 0.063 0.059 0.049 0.034 0.048 0.075 0.046

30 90 0.999 0.253 0.069 0.128 0.136 0.119 0.049 0.112 0.139 0.088 0.051

10 5 0.131 0.073 0.068 0.052 0.053 0.052 0.050 0.035 0.040 0.082 0.048

10 10 0.312 0.099 0.064 0.055 0.055 0.055 0.050 0.034 0.036 0.078 0.049

10 30 0.879 0.201 0.081 0.073 0.070 0.063 0.046 0.031 0.042 0.076 0.048

10 90 1.000 0.349 0.097 0.129 0.154 0.136 0.046 0.109 0.143 0.086 0.050

2 5 0.210 0.114 0.075 0.052 0.051 0.050 0.045 0.018 0.016 0.080 0.042

2 10 0.497 0.197 0.092 0.055 0.058 0.050 0.042 0.024 0.016 0.075 0.042

2 30 0.945 0.324 0.104 0.070 0.079 0.069 0.046 0.029 0.032 0.074 0.047

2 90 1.000 0.448 0.125 0.124 0.161 0.148 0.050 0.110 0.151 0.082 0.051

for i = 1, . . . ,n, where π2 = (d, . . . ,d)′, zi = (z1i,z′
2i)

′, z1i = 1, and z2i =
(z21i,z2

21i,z
3
21i,z

′
22i)

′ with z21i ∼ N(0,1) and z22i ∼ N(0,IK−4). The error terms are
generated by (ui,v2i) = ((1 + φz21i)ε1i,ρui +

√
1−ρ2ε2i), where ε1i and ε2i are

independent and drawn from N(0,1).5 We set n = 200 for the sample size in

5In our preliminary simulation, we also consider the cases of (a) the t5 and χ3 distributions for error terms as examples
of fat-tailed and skewed errors, (b) truncated support of zi to satisfy Assumption 1(iii), (c) {zi} kept fixed throughout
Monte Carlo replications, and (d) identification failure by setting d = 0. For (a)–(c), the results are overall similar to
the ones in Table 2. For (d), the size properties are also similar to the ones in Table 2.
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Table 3. Empirical rejection frequencies at the 5% significant level: Het-
eroskedastic errors

ρ δ2 K tTS tLI tHLI AR CLR KLM mKLM HKLM HCLR HAR JLM

0.2 30 5 0.091 0.098 0.050 0.088 0.113 0.110 0.108 0.035 0.044 0.095 0.045

30 10 0.096 0.107 0.044 0.080 0.099 0.097 0.093 0.037 0.040 0.081 0.045

30 30 0.139 0.155 0.025 0.076 0.083 0.076 0.062 0.030 0.043 0.070 0.046

30 90 0.408 0.351 0.024 0.124 0.152 0.132 0.051 0.114 0.136 0.082 0.048

10 5 0.068 0.067 0.029 0.088 0.108 0.102 0.098 0.025 0.026 0.096 0.045

10 10 0.083 0.085 0.019 0.077 0.091 0.087 0.078 0.025 0.026 0.087 0.050

10 30 0.172 0.168 0.017 0.082 0.088 0.076 0.054 0.028 0.036 0.076 0.045

10 90 0.458 0.378 0.016 0.129 0.162 0.147 0.049 0.104 0.128 0.082 0.050

2 5 0.030 0.026 0.008 0.082 0.085 0.073 0.063 0.013 0.012 0.091 0.044

2 10 0.066 0.052 0.008 0.078 0.081 0.067 0.054 0.018 0.013 0.081 0.047

2 30 0.197 0.167 0.009 0.081 0.090 0.078 0.050 0.025 0.027 0.077 0.048

2 90 0.493 0.380 0.012 0.128 0.161 0.146 0.047 0.107 0.127 0.083 0.053

0.6 30 5 0.128 0.097 0.064 0.091 0.116 0.112 0.111 0.040 0.049 0.098 0.046

30 10 0.201 0.095 0.057 0.081 0.099 0.096 0.093 0.039 0.046 0.088 0.049

30 30 0.708 0.130 0.056 0.082 0.088 0.081 0.068 0.031 0.044 0.075 0.050

30 90 0.999 0.263 0.071 0.130 0.148 0.126 0.055 0.116 0.136 0.086 0.050

10 5 0.170 0.112 0.076 0.092 0.107 0.104 0.100 0.028 0.033 0.098 0.044

10 10 0.329 0.134 0.077 0.079 0.094 0.089 0.082 0.032 0.035 0.081 0.046

10 30 0.883 0.213 0.080 0.081 0.087 0.076 0.057 0.029 0.043 0.075 0.047

10 90 0.999 0.356 0.098 0.124 0.151 0.134 0.046 0.111 0.142 0.081 0.045

2 5 0.248 0.149 0.091 0.087 0.095 0.086 0.077 0.014 0.014 0.092 0.032

2 10 0.515 0.214 0.095 0.077 0.083 0.069 0.058 0.020 0.015 0.082 0.043

2 30 0.948 0.338 0.107 0.083 0.089 0.075 0.052 0.026 0.031 0.077 0.050

2 90 1.000 0.446 0.124 0.131 0.165 0.149 0.049 0.108 0.148 0.083 0.047

all cases, and set β0 = γ0 = 1, ρ ∈ {0.2,0.6}, and φ ∈ {0,0.2} for the cases of
homoskedastic and heteroskedastic errors, respectively. For each Monte Carlo
replication, we set the value of d to fix the value of the concentration parameter
(given the realized values of {zi})

δ2 =
π ′

2

[∑n
i=1 z2iz′

2i −
∑n

i=1 z2iz′
1i

(∑n
i=1 z1iz′

1i

)−1∑n
i=1 z1iz′

2i

]
π2

Var(v2i)
.

We investigate size properties of 11 tests for H0 : β = β0: (i) the standard
t-test with the two-stage least-squares estimator (tTS), (ii) the standard t-test with
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Figure 1. Calibrated power curves: n = 200, K = 30, ρ = 0.2, δ2 = 60, Heteroskedastic errors.
Readers are referred to the online version of the paper for colored graphics.

the limited information maximum likelihood estimator (tLI), (iii) the t-test with
the heteroskedasticity robust limited information maximum likelihood estimator
by Hausman et al. (2012) (tHLI), (iv) the AR test using the asymptotic χ2 critical
value, (v) the CLR test by Moreira (2003), (vi) the LM test by Kleibergen (2002)
(KLM), (vii) the modified LM test by Hansen et al. (2008) (mKLM), (viii) the
heteroskedasticity robust version of KLM by Kleibergen (2005) (HKLM), (viiii)
the heteroskedasticity robust version of CLR by Kleibergen (2005) (HCLR), (x)
the heteroskedasticity robust version of AR by Mikusheva and Sun (2021) (HAR),
and (xi) the proposed JLM test (JLM). The number of Monte Carlo repetitions in
each experiment is 10,000.

Tables 2 and 3 report the null rejection frequencies of the tests at the nominal
5% significance level for the cases of homoskedastic and heteroskedastic errors,
respectively. Our findings are summarized as follows.

(i) The size distortions of both tTS and tLI are large except when δ2 is large, K is
small, and the errors are homoskedastic. The distortions tend to be quite large
when δ2 is small, and K and ρ are large (see the case of δ2 = 2, K = 30, and
ρ = 0.6) even in the case of homoskedastic errors.

(ii) The size distortions of tHLI are smaller for both the cases of homoskedastic
and heteroskedastic errors compared to tTS and tLI . However, the distortions
tend to be large when δ2 is small (see the case of δ2 = 2). More precisely, tHLI

under-rejects when ρ is small and over-rejects when ρ is large.
(iii) AR, CLR, and KLM work well even when δ2 is small in the case of

homoskedastic errors. However, they tend to over-reject when K is large.
The size distortions are severe in the case of heteroskedastic errors. These
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Figure 2. Calibrated power curves: n = 200, K = 30, ρ = 0.2, δ2 = 30, Heteroskedastic errors.
Readers are referred to the online version of the paper for colored graphics.

Figure 3. Calibrated power curves: n = 200, K = 30, ρ = 0.2, δ2 = 10, Heteroskedastic errors.
Readers are referred to the online version of the paper for colored graphics.

findings are consistent with lack of robustness of these tests against
heteroskedastic errors and relatively large K, as shown in Andrews and
Stock (2007b).

(iv) mKLM works well for all the cases of homoskedastic errors. However, it tends
to over-reject in the case of heteroskedastic errors. This result is also sensible
because mKLM is derived under homoskedastic errors.
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(v) HCLR, HKLM, and HAR work relatively well for both the cases of
homoskedastic and heteroskedastic errors. However, HCLR and HKLM tend
to under- or over-reject when δ2 is small. HAR works best among these
although it tends to mildly over-reject for all cases.

(vi) Compared to the other tests we consider, the rejection frequencies of JLM
are overall close to the nominal level for all cases. The JLM test is robust to
many instruments, weak instruments, and heteroskedastic errors, as we would
expect from our theoretical results in Section 2.

We also investigate the power properties of the tests for H0 : β = β0 under the
alternative hypotheses H1 : β = β0 +�. We focus on HAR, mKLM, and JLM since
the size distortions of the other tests are severe when the errors are heteroskedastic
and/or the number of instruments is large. Figures 1–3 display the calibrated power
curves at the 5% significance level (i.e., the rejection frequencies of these tests,
where the critical values are given by the Monte Carlo 95th percentiles of these
test statistics under H0). Among various cases tried in preliminary simulations,
we present the cases of n = 200, K = 30, and ρ = 0.2 for δ2 = 60,30,10 as
typical examples. First, JLM and mKLM are more powerful when |�| is small
but less powerful when |�| is large compared to HAR. Although it is beyond
the scope of this paper, we conjecture that the power property of JLM for large
|�| can be improved by using a cross-fit variance estimator as in Mikusheva
and Sun (2021). Second, mKLM exhibits declines of power in some regions
for the alternative hypotheses, whereas the power curves of JLM and HAR are
monotone for all cases. This result is consistent with our theoretical finding in
Theorem 2.

3.2. Real Data Example

We compare the confidence sets of the effect of schooling on log weekly wage
with the specification underlying column 6 of Table VII in Angrist and Krueger
(1991) using their original data. We focus on the specification with 180 and 1,530
instruments as in Mikusheva and Sun (2021). Table 1 reports the 95% confidence
sets based on the HAR statistic by Mikusheva and Sun (2021), and the proposed
JLM statistic. In this application, the confidence sets based on JLM are narrower
than those based on HAR. We conjecture that this is due to the better power
property of the JLM test for small values of |�| as illustrated in the simulation
study above.

4. CONCLUSION

By modifying the score statistic based on jackknifing combined with heteroskedas-
ticity robust estimation for its variance component, we propose a new JLM test
for parameter hypotheses on IV regression models. Our test is easy to imple-
ment and robust not only to many and arbitrarily weak instruments, but also to
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heteroskedastic errors. Simulation results endorse desirable size and power prop-
erties of the proposed test. It is interesting to adapt our idea of jackknifing to
other tests, such as Moreira’s (2003) CLR test and its heteroskedasticity and
autocorrelation robust version by Moreira and Moreira (2019), to robustify these
tests under many instruments asymptotics. Such extensions are currently under
investigation by the authors.

A. APPENDIX: Proofs

Notation: Hereafter, C means a generic positive constant. Lemma A.1 guarantees that
�n is positive definite almost surely. Thus, by the spectral decomposition, there exists an
orthogonal matrix Qn = (q1, . . . ,qG) such that QnQ′

n = I and

Q′
n�nQn = �n = diag(λ1, . . . ,λG). (A.1)

Moreover, define u0i = y1i − y′
2ib, and

Aijk = σ 2
k �′

2nziPikPkjz
′
j�2n, Bij = P2

ij{E(v2iv
′
2i|Z)σ 2

j +E(v2iui|Z)E(v′
2juj|Z)},

Âijk = u2
0ky2iPikPkjy

′
2j, B̂ij = P2

ij(y2iy
′
2iu

2
0j + y2iy

′
2ju0iu0j),

so that �n = ∑n
i,j,k,i �=k,j �=k Aijk +∑n

i �=j Bij and �̂n = ∑
i �=j �=k Âijk +∑n

i �=j B̂ij under H0.
Based on Qn = (q1, . . . ,qG), denote

μ2
g =

n∑
i=1

q′
g�′

2nziz
′
i�2nqg, (A.2)

for g = 1, . . . ,G.

A.1. Proof of Theorem 1

By Lemma A.1, �n is positive definite, and then we have

JLM(b) = u′P∗Y2Qn�−1
n Q′

nY ′
2P∗u+op(1)

d→ χ2
G,

under H0 : β = b, where the equality follows from Lemma A.2 and the convergence follows
from Lemma A.3.

A.2. Lemmas for Theorem 1

Lemma A.1. Under Assumption 1, �n is positive definite almost surely for each n > K.

Proof. Pick any n > K and nonzero G-dimensional vector c. Then c′�nc = A+B, where
A = ∑n

i,j,k,i �=k,j �=k c′Aijkc and B = ∑n
i �=j c′Bijc. For A, note that

A = c′
n∑

k=1

σ 2
k

⎛
⎝ n∑

i=1,i �=k

Pkiz
′
i�2n

⎞
⎠

′⎛
⎝ n∑

j=1,j �=k

Pkjz
′
j�2n

⎞
⎠c ≥ 0.
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For B, we have

B =
n∑

i<j

P2
ij{E[(c′v2i)

2|Z]σ 2
j +E[(c′v2j)

2|Z]σ 2
i +2E(c′v2iui|Z)E(c′v2juj|Z)}

≥ 1

2

n∑
i �=j

P2
ij{E[(c′v2i)

2|Z]σ 2
j +E[(c′v2j)

2|Z]σ 2
i −|2E(c′v2iui|Z)E(c′v2juj|Z)|}. (A.3)

Furthermore, the Cauchy–Schwarz inequality combined with Assumption 1(iv) implies

|E(c′v2iui|Z)E(c′v2juj|Z)| <

√
E[(c′v2i)

2|Z]E[(c′v2j)
2|Z]σ 2

i σ 2
j ,

almost surely. Thus, by 1
2 (a2 +b2) ≥ ab, we have

E[(c′v2i)
2|Z]σ 2

j +E[(c′v2j)
2|Z]σ 2

i −|2E(c′v2iui|Z)E(c′v2juj|Z)| > 0, (A.4)

almost surely. Since
∑n

i,j=1 P2
ij = ∑n

i=1 Pii = K, we have

∑
i �=j

P2
ij = K −

n∑
i=1

P2
ii ≥ K

(
1− max

1≤i≤n
Pii

)
> 0, (A.5)

almost surely, where the last inequality follows from Assumption 1(i).
Combining (A.3)–(A.5), we obtain B > 0 almost surely, and the conclusion follows.

Lemma A.2. Under Assumption 1 and H0 : β = b,

JLM(b) = u′P∗Y2Qn�−1
n Q′

nY ′
2P∗u+op(1). �

Proof. By Lemma A.1 and (A.1), the LM statistic can be written as

JLM(b) = u′
0P∗Y2{�n + (�̂n −�n)}−1Y ′

2P∗u0

= u′
0P∗Y2{QnQ′

n�nQnQ′
n +QnQ′

n(�̂n −�n)QnQ′
n}−1Y ′

2P∗u0

= u′
0P∗Y2Qn�

−1/2
n {I +�

−1/2
n Q′

n(�̂n −�n)Qn�
−1/2
n }−1�

−1/2
n Q′

nY ′
2P∗u0.

Pick any g,h = 1, . . . ,G. Then it follows from Lemma A.4 that

1√
λgλh

q′
g(�̂n −�n)qh

p→ 0.

Thus, we obtain �
−1/2
n Q′

n(�̂n − �n)Qn�
−1/2
n

p→ 0, and Slutsky’s lemma yields the
conclusion. �

Lemma A.3. Under Assumption 1,

u′P∗Y2Qn�−1
n Q′

nY ′
2P∗u

d→ χ2
G.

Proof. Without loss of generality, we assume that K
μ2

1
� ∞, . . . , K

μ2
G1

� ∞ and

K
μ2

G1+1
→ ∞, . . . , K

μ2
G

→ ∞. Pick any nonzero G2-dimensional vector ξ , and define
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Sn = diag(μ1, . . . ,μg,
√

K, . . . ,
√

K). Observe that

(ξ ′ξ)−1/2ξ ′�−1/2
n Q′

nY ′
2P∗u

= (ξ ′ξ)−1/2

⎧⎨
⎩ξ ′�−1/2

n SnS−1
n Q′

n

n∑
i=1

�′
2nzi(1−Pii)ui + ξ ′�−1/2

n
√

K
1√
K

Q′
n

n∑
i �=j

v′
2iPijuj

⎫⎬
⎭.

Here, we apply Chao et al. (2012, Lem. A.2) by setting “Ui, εi, Win, c1n, and c2n” in their

notation as v2i, ui, S−1
n Q′

n�′
2nzi(1−Pii)ui, Sn�

−1/2
n ξ , and

√
K�

−1/2
n ξ , respectively. It is

straightforward to verify that the conditions of Chao et al. (2012, Lem. A.2) are satisfied.6

Thus, by the Cramér–Wold device, we have

�
−1/2
n Q′

nY ′
2P∗u

d→ N(0,IG),

which implies the conclusion. �

Lemma A.4. Under Assumption 1, it holds that

1√
λgλh

q′
g(�̂n −�n)qh

p→ 0,

for g,h = 1, . . . ,G.

Proof. Pick any g,h = 1, . . . ,G. Decompose

1√
λgλh

q′
g(�̂n −�n)qh = 1√

λgλh

∑
i �=j �=k

q′
g(Âijk −Aijk)qh + 1√

λgλh

∑
i �=j

q′
g(B̂ij −Aiij −Bij)qh

≡ M1 +M2.

It is enough to show that M1,M2
p→ 0. Based on (A.1), let λg = Ag + Bg, where Ag =∑n

i,j,k,i �=k,j �=k q′
gAijkqg and Bg = ∑n

i �=j q′
gBijqg. We note that

√
λgλh ≥ max{√AgAh,√

BgBh} since Ag,Ah ≥ 0 and Bg,Bh > 0 from Lemma A.1. We consider two cases: (I)
K

μ2
gμ

2
h

→ 0, and (II) K
μ2

gμ
2
h
� 0.

6Conditions (i)–(iii) of Chao et al. (2012, Lem. A2) are directly verified from Assumption 1. Condition (iv) of Chao
et al. (2012, Lem. A2) can be verified as

n∑
i=1

E(||Win||4|Z) ≤ C
n∑

i=1

⎧⎨
⎩

G1∑
g=1

1

μ4
g
(z′

i�2nqg)
4 +

G∑
g=G1+1

1

K2
(z′

i�2nqg)
4

⎫⎬
⎭

≤ C

{
max

1≤i≤n
(z′

i�2nqg)
2
}⎧⎨
⎩

G1∑
g=1

1

μ2
g

+
G∑

g=G1+1

μ2
g

K2

⎫⎬
⎭ → 0,

almost surely for some C > 0, where the first inequality follows from the definition of Win = S−1
n Q′

n�
′
2nzi(1−Pii)ui

and Assumption 1(i) and (iii), and the convergence follows from μ2
g → ∞ for g = 1, . . . ,G1 (because of K → ∞),

the assumption K
μ2

g
→ ∞ for g = G1 + 1, . . . ,G, and boundedness of max1≤i≤n(z′

i�2nqg)
2 (by Assumption 1(iii)).

Furthermore, Chao et al. (2012, Lem. A2) require ||c1n|| ≤ C and ||c2n|| ≤ C for some C > 0. In our case, c1n =
Sn�

−1/2
n ξ and c2n = √

K�
−1/2
n ξ satisfy these requirements because of the fact that λg = Ag + Bg ≥ Ag and μ2

g =
O(Ag) by the proof of Lemma A.4.
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Case (I). First, consider the case where K
μ2

gμ
2
h

→ 0. It follows |M1| ≤ 1√
AgAh

∣∣∣∑i �=j �=k q′
g

(Âijk −Aijk)qh

∣∣∣ p→ 0 from Chao et al. (2012, Lem. A4) by setting “Wi, Yj, and ηk” in their

notation as 1√
Ag

q′
gy2i,

1√
Ah

q′
hy2j, and u2

k , respectively. Let μ2
g = ∑n

i=1(q′
g�′

2nzi)
2. Note

that μ2
g = O(Ag) because

μ2
g

Ag
≤ μ2

g

C
∑n

i,j,k,i �=k,j �=k q′
g�′

2nziPikPkjz
′
j�2nqg

= μ2
g

C
{∑n

i=1(q′
g�′

2nzi)
2 −2

∑n
i,k PikPki(q

′
g�′

2nzi)
2 +∑n

i=1 P2
ii(q

′
g�′

2nzi)
2
}

= μ2
g

C
{∑n

i=1(1−2Pii +P2
ii)(g

′
q�′

2nzi)
2
} ≤ C′,

where the first equality follows from
∑n

i,j,k=1 ziPikPkjz
′
j = ∑

i=1 ziz
′
i, the second equality

follows from
∑n

k=1 PikPki = Pii, and the second inequality follows from Assumption 1(i).
This allows us to verify the conditions in Chao et al. (2012, Lem. A4).

For M2, we first apply Chao et al. (2012, Lem. A3) by setting “Wi and Yi” in their notation
as 1√

AgAh
(q′

gy2iy
′
2iqh) and u2

i , respectively. Note that

E(Wi|Z) = 1√
AgAh

(q′
g�′

2nziz
′
i�2nqh)+ 1√

AgAh
q′

gE(v2iv
′
2i|Z)qh,

so that

max
1≤i≤n

|E(Wi|Z)| ≤ C

[
1√

AgAh
max

1≤i≤n
|q′

g�′
2nziz

′
i�2nqh|+ 1√

AgAh

]
,

almost surely. Moreover, for ṽig = g′
qv2i, it holds that

max
1≤i≤n

Var(Wi|Z) = max
1≤i≤n

Var

(
1√

AgAh

{
q′

g(�
′
2nzi + v2i)(�

′
2nzi + v2i)

′qh

}∣∣∣∣∣Z
)

= max
1≤i≤n

1

AgAh

{
(q′

g�
′
2nzi)

2E(ṽ2
ig|Z)+ (q′

h�
′
2nzi)

2E(ṽ2
ih|Z)+2|q′

g�
′
2nziz

′
i�2nqh|E(ṽigṽih|Z)

+2(q′
g�

′
2nzi)E(ṽigṽ2

ih|Z)+2(q′
h�

′
2nzi)E(ṽ2

igṽih|Z)+Var(ṽigṽih|Z)
}

≤ C

AgAh
max

1≤i≤n
{(q′

g�
′
2nzi)

2 + (q′
h�

′
2nzi)

2 +|q′
g�

′
2nzi|+ |q′

h�
′
2nzi|+1},
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almost surely. Thus, by applying Chao et al. (2012, Lem. A3) (with Wi = 1√
AgAh

(q′
gy2iy

′
2iqh)

and Yi = u2
i ), we obtain

∥∥∥∥∥∥
1√

AgAh

∑
i�=j

P2
ijq

′
gy2iy

′
2iu

2
j qh − 1√

AgAh

∑
i�=j

P2
ij{q′

g�
′
2nziz

′
i�2nqhσ

2
j +q′

gE(v2iv
′
2i|zi)σ

2
j qh}

∥∥∥∥∥∥
2

L2,Z

≤ CK

{
max

1≤i≤n
Var(Wi|Z) max

1≤i≤n
Var(Yi|Z)+ max

1≤i≤n
Var(Wi|Z)

(
max

1≤i≤n
E(Yi|Z)

)2

+
(

max
1≤i≤n

E(Wi|Z)

)2

max
1≤i≤n

Var(Yi|Z)

}

≤ CK

AgAh
max

1≤i≤n

{
(q′

g�
′
2nzi)

2(q′
h�

′
2nzi)

2 + (q′
g�

′
2nzi)

2 + (q′
h�

′
2nzi)

2 +|q′
g�

′
2nzi|+ |q′

h�
′
2nzi|+1

}
,

almost surely. Taking the expectation with respect to the distribution of Z and using
Billingsley (1986, Thm. 16.1), we have that

E

⎡
⎢⎣
⎧⎨
⎩ 1√

AgAh

∑
i�=j

P2
ijq

′
gy2iy

′
2iu

2
j qh − 1√

AgAh

∑
i�=j

P2
ij{q′

g�
′
2nziz

′
i�2nqhσ

2
j +q′

gE(v2iv
′
2i|zi)σ

2
j qh}

⎫⎬
⎭

2
⎤
⎥⎦

= EZ

∥∥∥∥∥∥
1√

AgAh

∑
i�=j

P2
ijq

′
gy2iy

′
2iu

2
j qh − 1√

AgAh

∑
i�=j

P2
ij{q′

g�
′
2nziz

′
i�2nqhσ

2
j +q′

gE(v2iv
′
2i|zi)σ

2
j qh}

∥∥∥∥∥∥
2

L2,Z

≤ CK

AgAh
EZ

[
max

1≤i≤n
{(q′

g�
′
2nzi)

2(q′
h�

′
2nzi)

2 + (q′
g�

′
2nzi)

2 + (q′
h�

′
2nzi)

2 +|q′
g�

′
2nzi|+ |q′

h�
′
2nzi|+1}

]

= O

(
K

AgAh

)
= o(1),

where the last equality follows from μ2
g = O(Ag) and μ2

h = O(Ah). Thus, the Markov
inequality yields

1√
AgAh

∑
i �=j

P2
ijq

′
gy2iy

′
2iu

2
j qh

= 1√
AgAh

∑
i �=j

P2
ij{q′

g�′
2nziz

′
i�2nqhσ 2

j +q′
gE(v2iv

′
2i|Z)σ 2

j qh}+op(1). (A.6)

Second, by a similar argument as in Chao et al. (2012, Lem. A3) and setting “Wi and Yi” in
their notation as 1√

Ag
q′

gy2iui and 1√
Ah

q′
hy2iui, respectively, we can show that

1√
AgAh

∑
i �=j

P2
ijq

′
gy2iy

′
2juiujqh = 1√

AgAh

∑
i �=j

P2
ijq

′
gE(v2iui|Z)E(v′

2juj|Z)qh +op(1).

(A.7)

Combining (A.6), (A.7), and the fact that |M2| ≤ 1√
AgAh

∣∣∣∑i �=j(B̂ij −Aiij −Bij)
∣∣∣, we have

that M2
p→ 0.
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Case (II). Next, we consider the case where K
μ2

gμ
2
h
� 0. It follows that |M1| ≤

1√
BgBh

∣∣∣∑i �=j �=k q′
g(Âijk −Aijk)qh

∣∣∣ p→ 0 from Chao et al. (2012, Lem. A4) by setting “Wi,

Yj, and ηk” in their notation as 1√
Bg

q′
gy2i,

1√
Bh

q′
hy2j, and u2

k , respectively. Note that

1√
BgBh

∑
i �=j �=k q′

gAijkqh
p→ 0 in this case.

For M2, we apply Chao et al. (2012, Lem. A3) by setting “Wi and Yi” in their notation with
1√

BgBh
(q′

gy2iy
′
2iqh) and u2

i , respectively (and 1√
Bg

q′
gy2iui and 1√

Bh
q′

hy2iui, respectively),

and it follows |M2| ≤ 1√
BgBh

∣∣∣∑i �=j(B̂ij −Aiij −Bij)
∣∣∣ p→ 0 by the same argument as in

Case (I). �

A.3. Proof of Theorem 2

Proof of (i). To simplify the presentation, we consider the case of a single included
endogenous regressor (i.e., G = 1). The case of multiple endogenous regressors is shown in
a similar way using the spectral decomposition as in the proof of Theorem 1.

Pick any b �= β. In the case of G = 1, the JLM statistic is written as JLM(b) = (N1 +
N2 +N3)/�̂n, where

N1 =
⎛
⎝ n∑

i �=j

Pijy2iy2j

⎞
⎠

2

(β −b)2, N2 = 2
n∑

i �=j

n∑
k �=l

PijPkly2iujy2ky2l(β −b),

N3 =
⎛
⎝ n∑

i �=j

Pijy2iuj

⎞
⎠

2

.

For N1, observe that

N1 =
⎧⎨
⎩

n∑
i=1

(1−Pii)�
′
2nziz

′
i�2n +

n∑
i �=j

Pijv2iv2j +2
n∑

i=1

(1−Pii)�
′
2nziv2i

⎫⎬
⎭

2

(β −b)2

≥
⎧⎨
⎩C1μ2

1 +
n∑

i �=j

Pijv2iv2j +2
n∑

i=1

(1−Pii)�
′
2nziv2i

⎫⎬
⎭

2

(β −b)2

≡ (N11 +N12 +N13)2(β −b)2, (A.8)

for some C1 > 0, where the inequality follows from Assumption 1(i). For N12 and N13,
similar arguments as those in Chao et al. (2012, Lem. A2) yield

N2
12 = 2

n∑
i �=j

P2
ijE[v2

2i|Z]E[v2
2j|Z]{1+op(1)},

N2
13 = 4

n∑
i=1

(1−Pii)
2(�′

2nzi)
2E[v2

2i|Z]{1+op(1)}.
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Then N12 = op(N11) follows from the facts that
∑n

i �=j P2
ij ≤∑n

i,j=1 P2
ij =∑n

i=1 Pii = K and

the assumption K
min{μ4

1,...,μ
4
G} → 0, and N13 = op(N11) follows from Assumption 1(i) and

(iii). Hence, by applying similar arguments to the cross terms, we have

N1 ≥ C1μ4
1{1+op(1)}.

Similarly, for N2 and N3, we obtain

N2 = 4

⎧⎨
⎩

n∑
i,j,k,i�=j�=k

PikPkj(�
′
2nzi)(�

′
2nzj)E[v2kuk|Z](β −b)+

n∑
i�=j

P2
ijE[v2

2i|Z]E[v2juj|Z](β −b)

⎫⎬
⎭{1+op(1)}

= op(N1),

and

N3 =
⎧⎨
⎩

n∑
i,j,k,i �=k,j �=k

PikPkj(�
′
2nzi)(�

′
2nzj)E[u2

k |Z]+
n∑

i �=j

P2
ijE[v2iui|Z]E[v2juj|Z]

+
n∑

i �=j

P2
ijE[v2

2i|Z]E[u2
j |Z]

⎫⎬
⎭{1+op(1)}

= op(N1).

For the denominator, similar arguments as in the proof of Lemma A.4 yield

�̂n =
n∑

i,j,k,i�=k,j�=k

y2iPik{uk + y2k(β −b)}2Pkjy2j +
n∑

i�=j

P2
ijy2iy2j{ui + y2i(β −b)}{uj + y2j(β −b)}

=
⎛
⎝ n∑

i,j,k,i�=k,j�=k

y2iPiky2
2kPkjy2j +

n∑
i�=j

P2
ijy

2
2iy

2
2j

⎞
⎠(β −b)2

+2

⎛
⎝ n∑

i,j,k,i�=k,j�=k

y2iPikuky2kPkjy2j +
n∑

i�=j

P2
ijy2iy2juiy2j

⎞
⎠(β −b)

+
⎛
⎝ n∑

i,j,k,i�=k,j�=k

y2iPiku2
kPkjy2j +

n∑
i�=j

P2
ijy2iy2juiuj

⎞
⎠

≤ C3 max{μ2
1,K}{(β −b)2 +2(β −b)+1},

for some C3 > 0, by applying Chao et al. (2012, Lems. A3 and A4) and Assumption 1(iii).
By using the above results, it holds that

P{JLM(b) < C} = P

{
N1 +N2 +N3

�̂n
< C

}

≤ P

{
C1μ4

1(1+op(1))

C3 max{μ2
1,K}{(β −b)2 +2(β −b)+1} < C

}

→ 0, (A.9)
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for any C > 0, where the convergence follows from the assumption that K/μ4
1 → 0.

Therefore, the conclusion follows.

Proof of (ii). By using (A.9), there exists some C′ > 0 such that

P{JLM(b) < C′(β −b)2} = P

{
N1 +N2 +N3

�̂n
< C′(β −b)2

}

≤ P

{
μ4

1

�̂n
< (1− ε)

C′
C1

(β −b)2

}
+o(1) → 0,

for all ε > 0 small enough, where C1 is a positive constant defined in (A.8), and the
convergence follows from the assumption that K/μ4

1 → 0. Therefore, the conclusion
follows.

A.4. Proof of Theorem 3

We show the theorem in the same way as in Theorem 1:

JLM(b) = (û′
0P#Y2)(�†

n )−1(Y ′
2P#û0)+op(1)

= (u′
0P†Y2)(�†

n )−1(Y ′
2P†u0)+op(1)

d→ χ2
G, (A.10)

under H0 : β = b, where the first equality in (A.10) follows by the same argument as in
Lemma A.2, i.e., apply Chao et al. (2012, Lems. A3 and A4) with Pij replaced by P†

ij.
Indeed, by noting that

(P†
ij)

2 = P2
2,ij +2P2,iiP2,ijP1,ij +P2

2,iiP
2
1,ij ≤ P2

2,ij +2|P2,ijP1,ij|+P2
1,ij,

and y2iP
†
ij = y2iP2,ij + (y2iP2,ii)P1,ij, we can show the same results as in Chao et al. (2012,

Lems. A3 and A4) with Pij replaced by P†
ij.

The second equality in (A.10) follows from the relation in (5), which is shown as follows.
Note that under H0,

Y ′
2P#û0 = Y ′

2P#(y1 −Y2b2 −Z1γ̂ (b))

= Y ′
2P#u−Y ′

2P#Z1(γ̂ (b)−γ )

= Y ′
2P#u−Y ′

2P#P1u

= Y ′
2P#u+Y ′

2diag(P2)P1u

= Y ′
2P†u+Y ′

2diag(P2)diag(P1)u,

where the fourth equality follows from P2P1 = 0. Pick any G-dimensional vector c, and let
μ2

c = ∑n
i=1(c′�′

2nzi)
2. Since

Var
(
c′Y ′

2diag(P2)diag(P1)u|Z) =
n∑

i=1

P2
2iiP

2
1iiVar(c′y2iui|Z) ≤ C

n∑
i=1

P2
1iiVar(c′y2iui|Z)

≤ C
n∑

i=1

P1iiVar(c′y2iui|Z) = O(K1) = O(1),
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we have (I) c′Y ′
2diag(P2)diag(P1)u = op(μc) when K/μ2

c is bounded, and (II) c′Y ′
2diag(P2)

diag(P1)u = op(
√

K) when K/μ2
c → ∞. Hence, we have that c′Y ′

2diag(P2)diag(P1)u =
op(c′Y ′

2P†u). Therefore, the relation in (5) follows.
Finally, the convergence in (A.10) follows from the same argument as in Lemma A.3.

We note that

c′Y ′
2P†u =

n∑
j=1

⎧⎨
⎩

n∑
i=1,i �=j

c′�′
2nzi(P2,ij +P2iiP1ij)

⎫⎬
⎭uj +

n∑
i �=j

c′v2iP2,ijuj +
n∑

i �=j

c′v2iP2iiP1ijuj,

and
∑n

i �=j c′v2iP2iiP1ijuj = Op(
√

K1) = op(c′Y ′
2P†u). Then we apply Chao et al.

(2012, Lem. A2) by setting “Ui, εi, Win, c1n, and c2n” in their notation as v2i, ui,

S−1
n Q′

n

{∑n
j=1,j �=i �

′
2nzj(P2,ji +P2jjP1ji)

}
ui, Sn�

−1/2
n ξ , and

√
K�

−1/2
n ξ , respectively.
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