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Abstract

A continuous real-linear operator A = Ao + i,A, + iiA?+ i,A, on a quaternionic Hilbert space
is called sesquihermitian if the linear operators A., are Hermitian; this condition is independent of
the choice of quaternion basis (i,,i2,i,). The joint spectral distribution of the Av provides a
functional calculus for sesquihermitian operators and real-valued "C'-functions on 2. This calculus
is independent of the quaternion basis and extends naturally to quaternion-valued functions to give
a continuous quaternion-linear mapping from the algebra of these functions to that of sesquihermi-
tian operators. The mapping is not, in general, multiplicative unless the A» commute, in which case
it agrees with that for several commuting operators on complex Hilbert space.

The convex hull of the support of the joint spectral distribution coincides with the closure of
the numerical range of A and contains the spectrum of A.

1. Introduction

Let A be a continuous real-linear operator on a quaternionic Hilbert space
dK and (I,,I2, ij) be a quaternion basis (i.e., a right-handed orthonormal triad of
vector quaternions). Powers (1973) has shown that A has a canonical decom-
position A =S'=0iVi4l,, where io= 1 and where A0,A,,A2,A] are continuous
(quaternion-) linear operators uniquely determined by the choice of quaternion
basis. In the present work a functional calculus is developed for a class of
real-linear operators which we call sesquihermitian. This calculus is based on
the Weyl functional calculus developed by Anderson (1967, 1969, 1970) for (not
necessarily commuting) n -tuples of self-adjoint operators on a (complex)
Banach space.

The research for this paper was carried out at the Flinders University of South Australia with ,
the support of a Commonwealth Postgraduate award and subsequently of a Flinders University
Research Scholarship.
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Further information and references on quaternionic Hilbert space can be
found in Powers (1973).

The author wishes to thank his Ph.D. supervisor, Professor B. Abraham-
son of the Flinders University of South Australia, for his advice and encour-
agement while this research was being carried out.

2. Sesquihermitian operators

The adjoint A* of a continuous real-linear operator A on I has been
iefined in Powers (1973) thus

Re(Ax,y) = Re(x,A*y) for each x,yG%.

[f A has canonical decomposition 2.U0ivAv, then

A* = At-i,At*- i2A2* - i,A}*.

4 is said to be Hermitian if A * = A, normal if AA * = A *A.
In the case where the linear operators A0,A,,A2,Ai are Hermitian, the

iVeyl functional calculus can be applied to the quadruple (AO,A,,A2,A3). First,
lowever, we show that this condition is independent of the choice of
juaternion basis.

DEFINITION. Let il^KA* be the canonical decomposition of a continuous
•eal-linear operator A on a quaternionic Hilbert space X. The operator A - Ao

s called the vector part Av of A. If Ao = 0, then A is called a vector operator.
Fhe operator A is called sesquihermitian if Ao is Hermitian and Av is
•kew-Hermitian.

Powers (1973) showed that Ao is independent of the quaternion basis
ii,/2,i}). Hence the above definitions are also basis-free.

THEOREM 1. Let A be a continuous real-linear operator on dK with
'anonical decomposition '£l=0LAv. Then A is sesquihermitian if and only if the
\v are Hermitian.

PROOF. If AUA2 and v43 are Hermitian, then the operator Av = X'=, i^Av is
kew-Hermitian. If Ao is also Hermitian, then A is sesquihermitian.

Conversely, suppose that A is sesquihermitian. Then Ao is Hermitian and
\v is skew-Hermitian. Applying the canonical decomposition [Theorem 2 of
'owers (1973)] to Av, we have:

4Ai=— i,Av - Av • ill - iiAv • i2l + i2Av • i 3 / ,

4A2 = — i2Av + i}Av • i,I — Av • i2l — iiAv • i 3 / ,

4A-i=- i,Av - i2Av • i,I + i,Av • i2l - Av • J 3 / .
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It can now be verified that A,,A2, and A3 are Hermitian by direct
computation, using the fact that (/„/)*= - LA (v = 1,2,3).

3. The joint spectral distribution

Throughout the rest of this work A denotes a sesquihermitian operator on
$f with canonical decomposition "ZUoLA,,. Given an arbitrary unit vector
quaternion u,X,(u) denotes the symplectic image of u as defined in Powers
(1973). Then (Ao,A,,A2,A3) is a quadruple of Hermitian operators on the
complex Hilbert space ffl,(u) and thus has a joint spectral distribution in the
sense of Anderson (1969). For the time being we denote this distribution by
Tu(A0,A,,A2,Ai); however, it will turn out to be independent both of u and of
the quaternion basis ((1,(2,(3)-

Given a quaternion q =2',0<?X, let q denote the real 4-vector
(qo,qt,q2,qi) and let dq denote integration with respect to the four real
variables. The Hermitian linear operator HLoq-A* is denoted by q A. Let
C~(R") denote the class of those real-valued functions f = f(q) which are
infinitely differentiable with respect to the four real variables (qo,qt,q2,qi) and
let 3>(R4) consist of those members of C(R*) which have compact support.

DEFINITION. Any function f: SL—*St can be written in the form :

(1) f(q) = 2'=o LfAq) foreach q £ l

where the /„ are real-valued functions. The function f is called a C-function if
each /VGC"(JJ4).

THEOREM 2. Let (iui2,ii) and (ii/.iVwV) be two quaternion bases and let
A be the sesquihermitian operator on ffl given by

A = X'=o IAV = 2'-o l'Av'. (writing i0 = iY = 1).

Let f:2.—>R be a C-function and write:

f(q) = g{qo,q,,q2,q)) = h(qo',q,',q2',qi),

where q = S',oqX = 2'_o g,' i-' - Then

TM(A0,AltAi,A3)g = T^Ao'^^A^A^h.

PROOF. Let L be the 3 x 3 real orthogonal matrix such that

and let M be the 4 x 4 matrix r ^ K — L
L Ui ^ J

Then [qo
r q,' q2' q,'] = [qoq, q2q,] M, and [Powers (1973) Theorem 3]:

[Ao' A,' A2' A,'] = [Ao A, A2A3] M.
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Anderson [(1969), Theorem 2.9 (a)] has proved that, if B = (B,r • -,Bn) is
an n -tuple of Hermitian operators on a complex Hilbert space and S is an affine
transformation of R", then T(SB)f = T(B)(Sf) for each / G C~(R"), where 5/
is the function on R" defined by (S/)(x) = /(5x) for each x GR", and SB is the
n -tuple of operators obtained by replacing the components of x in the
expansion of Sx by the operators B,,--,Bn. Applying this result to the affine
transformation M, the function h, and the quadruple (A0,At,A2, A,), we have:

TAA^A^A^A^h = Tu(Ao,A,,A2,Ai)(h°M). But h°M = g,

so the theorem is proved.
Thus, for any C°°-function /:.2—»R, we can write Tu(A)f instead of

Tu(Ao,A,,A2,A))f without ambiguity.

THEOREM 3. For each sesquihermitian operator A on dtf and each C°°-
function f: 2.^>R, TU(A )f is a Hermitian linear operator and is independent of
u.

PROOF. Since 3) (R4) is dense in C°°(.R4) and TU(A) is continuous on
C°°(R") [Anderson (1969), Theorem 2.9 (c)], it is sufficient to prove the assertion
for fG2(R4).

Let /E2)(l?4). Then, by definition of TU(A),

Tu(A)f = (2ir)"2 f fu(q)exp(~uqA)dq,

where /„(<?) = (2TT)"2 /(p)exp(wp • q)dp
JR4

for each q £ l The operator exp(- uq -A) is given by the usual functional
calculus for a single operator on the complex Hilbert space $?,(M). It can be
written in the form:

exp ( - uq • A) = cos (q • A) - u sin (q • A).

The operator cos (q • A) and sin (q • A) can be expressed as the strong
limits of the usual power series; since these two series have real co-efficients,
cos(q -A) and sin(q -A) are (quaternion-) linear operators. Thus we have:

Tu(A)f = (ITTT* \ \ f(p)exp(up-q)exp(-uqA)dpdq
JK' }R'

(2)
= /OC4) + M/,G4),

where fo(A) and fi(A) are (quaternion-) linear operators given by:

' JR4
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and

/,G4) = (27rr4f f f(p)[sm(pq)cos(qA)-cos(pq)sin(qA)]dpdq.
JR' JR'

If we replace u by - u in (2) we obtain:

= (2TT)4 /(p)exp(-ap q)exp(uq • A)dpdq
JR' JR4

= (27r)"4 f(p)exp(up q')exp(-uq' • A)dpdq',
JR' JR'

putting q' = — q and nothing that the Jacobian of q' with respect to q is + 1.
Thus T-u(A)f= Tu(A)f. Hence f,(A) = 0, so that Tu(A)f = fo(A). Hence
TU(A)/ is linear and independent of u. Anderson [(1969), Theorem 2.9 (d)] has
shown that Tu(A)f is Hermitian whenever / is real-valued.

Thus we can write T(A) instead of TU(A) without ambiguity. The support
o\, (A) of the distribution T(A) is called the joint spectrum of the sesquiher-
mitian operator A.

4. The joint spectrum

The aim of this section is to investigate the relationship between the joint
spectrum, the "traditional" spectrum, and the numerical range of a sesquiher-
mitian operator.

DEFINITION. The numerical range W(A) of a continuous real-linear
operator A on a quatemionic Hilbert space is the set W(A) =
{{Ax,x):x £ ^ , | | J C | | = 1}.

Clearly the numerical range of a Hermitian linear operator is contained in
R.

THEOREM 4. If A is a sesquihermitian operator on a quatemionic Hilbert
space ffl, then W{A) is convex.

PROOF. Let p =(Ax,x), q =(Ay,y), where ||* || = ||y || = 1. We have to
show that the segment {tp + (1 - t)q: 0 S t § 1} lies in W(A).

(i) If p = q, the result is trivial. So assume p / q. Assume further that the
theorem has been proved for the case where p = 1, q = 0. In the general case,
there exist quaternions a and b such that ap + b = 1, aq + b = 0. Consider the
canonical decomposition 2'_0 L(aA + bl)» of the operator aA + bl. Each of the
linear operators (aA + bl)v is Hermitian, being a real-linear combination of
the Hermitian operators Ao,A,,A2,Ay, and the identity operator /. But
((aA + bl)x,x)= 1 and ((aA + bl)y,y) = 0. So, by our assumption that the
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theorem is true for this case, [0,1] C W(aA + bl). Now let t E [0,1]. Then there
is an element zE.dK such that || z || = 1 and:

(aAz + bz,z) = a(Az,z) + b = t.
But t = t(ap + b) + (1 - 1 ) (aq + b) = a [tp + (1 - t)q] + b. Hence

tp +(1 - t)q = {Az,z)E W(A). Thus we can assume without loss of generality
that p = \,q =0.

(ii) Let (Ax,x) = 1, (Ay,y) = 0, where ||* || = II? II = 1- Then

(3) (A(ux),ux)=l

where u is an arbitrary unit quaternion. To show this, we note that:

(A(ux), ux) = ̂  _ iv(Av(ux), ux)

= y iv u{Avx,x)u",
^^ v = 0

where u" denotes the quaternion conjugate of u. But, since the Av are
hermitian, {Ajc,x)E R,(v = 0,1,2,3).

Hence {A(ux), UX) = 1.1.OK(AVX,X) = (Ax,x)= I. Now it is possible to
choose a unit quaternion u such that:

(4) Re(AAux),y) = 0. (v = 1,2,3)

To prove this we have to find a unit quaternion u = S , o w \ such that

(5) Mo(^^,y)o-2.A, , MA(^WC,V>A = 0 (v = 1,2,3)

where the (Avx, y)k are the real components of the quaternions (A»x,y). But (5)
is a system of three homogeneous linear equations in the four unknowns
«0,Mi,«2,«3 and hence has a non-trivial solution. Thus it is always possible to
choose a suitable unit quaternion u.

(ii)' By virtue of (3) and (4), we can assume without loss of generality
that:

:,y) = 0 (f = 1,2,3).

(iii) With the assumptions justified in parts (i) and (ii)', let z(t) -
tx + (1 - f )y for each t G [0,1]. Then z(t) does not vanish on [0,1]. For suppose
z(f) = 0 for some t £ [ 0 , l ] . Since ||x|| = ||y||= 1, t^0 or 1. So we can write
x = t~\t - l)y, contradicting the assumption that (Ax,x) = 1 and (Ay,y) = 0.

Thus, for each t E [0,1], it is possible to write 0(0 = ||z(OH"2(Az(O, z(O>.
Clearly 6 is a continuous function on [0,1] and 0(0) = 0, 6(1) = 1. Furthermore,
d is real-valued. For:
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+ (l-t)2(A.y,y) (v = 1,2,3).

But, by an argument similar to that used in (ii),

(Avx,x) = (Avy,y) = 0.

Furthermore, since the Av are Hermitian,

,x) = 2Re(Al/x,y) = 0.

Hence (Auz(t), z(t)) = O (^ = 1,2,3) so that (Az(t),z(t))E R for each
/ £ [0,1]. Thus 6 is a real-valued, continuous function on [0,1] such that
0(0) = 0, 0(1)= 1. Hence [0,l]C9([0,l]), so that [0,1] C W(A) as required.

THEOREM 5. If A is a sesquihermitian operator on a quaternionic Hilbert
space W, then the convex hull of o-»(A) is equal to the closure of the numerical
range W(A).

PROOF. Let A be a sesquihermitian operator on $f. Then, by Theorem 4,
W(A) is convex. Hence its closure [W04)]~ <s also convex. Now Anderson
[(1969), Theorem 3.5] has shown that, if B = (B,,•••,£„) is an n-tuple of
Hermitian operators on a complex Hilbert space and <rw(B) is the support of
the joint spectral distribution T(B), then the convex hull ch<r»,(B) of aw(B) is
given by:

= fl { }

where £ • B = 2r=, £B; and £ ranges over R". Applying this result to the
quadruple (A0,A,,A2,A3), we have:

ch(Tw(A)= f l {<? e ^ i i n f u -A ̂ q u ^ s u p u -A},

where % denotes the set of unit quaternions. Let q = 1\.oqX £ [ W(A)]". Then
qve[W(Av)Y (^ =0,1,2,3) and so u qE[W(u • A)]~ for each u E %. But
M • .4 is a Hermitian linear operator on Sif, with real numerical range, so we have
as a trivial consequence of t̂he corresponding result for complex Hilbert space:

[W(u A)y = [infu -A,supu A].

Thus inf u • A g u • q S sup u • A for each q G [ W(A)]". Hence [ W(A)]' C
cho-w(A). Moreover, given any H 6 1 , we can find quaternions p and q in
[ W(A)]' such that u • p = inf u • A and u • q = sup u • A. Thus [ W(A)]~ has the
same bounding hyperplanes as cho-*.(A). But [ W(A)]' is convex, so [ W(A)]' =
chaw(A).

We now examine the relationship between the spectrum and the numerical
range.
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DEFINITION. Let A:3)(A)C.W —*2C be a (not necessarily bounded) real-
linear operator. The resolvent set p(A) is defined to be the set of all quaternions
q such that the operator A - ql has a bounded inverse (A - ql)' defined on all
of "X. The spectrum a(A) is the complement of p(A) in St and can be expressed
as the union of three disjoint parts in the usual way, viz,:

(i) the point spectrum o-P(A) = {q E.2.: A - ql is not injective},
(ii) the continuous spectrum a-c(A) consisting of those quaternions q

such that A - ql is injective and the range 9t(A - ql) is a proper, dense subset
W, and:

(iii) the residual spectrum aR(A) consisting of those quaternions q such
that 9t(A — ql) is injective but 9l(A — ql) is not dense in $f.

DEFINITION. The approximate point spectrum FI(A) of a continuous
real-linear operator A: %!—>W is the set of quaternions q such that A - ql is not
bounded below. The compression spectrum V(A) is the set of quaternions q
such that 9i(A - ql) is not dense in 5if.

As in the complex Hilbert space theory, it is easy to verify that:
(i) a(A) = n{A)\JT{A),
(ii) aP(A)cn(A),
(iii) aR(A) = T(A)-crP(A),
(iv)

THEOREM 6. // the operator A:dtC-*%C is sesquihermitian, then
a(A)C[W(A)]-.

The proof makes use of two lemmas.

LEMMA 1. For every continuous real-linear operator A:9€—>9€,
U(A)C[W(A)]-.

PROOF. Let q Gll(A). Then there is a sequence {*„} in X such that
|| JC ||=1 for all n and limn (A - ql)xn = 0. Hence \(Axn,xn)-q\ =
\({A -qI)xn,xn)\^\\(A -ql)xn\\ which -»0 as n -*°o. So limn (Axn,xn) = q, so
that qe[W(A)]~.

LEMMA 2. // A:ffl-*9€ is a continuous real-linear operator, then
<TP(A*) = {q°: q £ FG4 )}.

PROOF, q" E <rP(A *) if and only if there is an element x G 3€ such that
(A*-q"I)x =0 .

But (A*- q"I)x = 0 <=> Re((y4 * - q"l)x,y) = Re{x,(A - ql)y) = 0 for each
y £ l Thus q" E <rP(A *) if and only if 91 (A - ql) is not dense in X —i.e., if
and only if q

PROOF OF THEOREM 6. By Lemma 1, we need only show that FG4)C
[W(A)]~. Let q E T(A). Then, by Lemma 2, there is an element x £ 9if such
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that A*x - q"x = 0. We can assume without loss of generality that ||JC||= 1.
Then (A*x,x) = q°. Now let 1,l.0LAv be the canonical decomposition of A
with respect to a quaternion basis (ii,i2, h). Then, since A is sesquihermitian,
A* = Ao-Zl-1iuA*. Thus (A*x,x) = (Aox,x)-I.l.ii(A.x,x) = (Ax,x)" since
(A.,x,x)<=R (̂  =0,1,2,3). Thus (Ax,x) = (A*x,x)a = q, so that q G W(A).
Hence T(A)C W(A), so that a{A) = IIG4) U T(/4) C [W(A)]".

COROLLARY. If A is sesquihermitian, then a(A)Cchaw(A).

The last step of the proof of Theorem 6 breaks down if A is not
sesquihermitian; in this case the (A,x,x) need not be real and we cannot assert
that (.4 *x,x) = (Ax,x)". The truth or falsity of the theorem for the general case
is still an open question. However, the proof remains valid in the case where A
is linear but not necessarily Hermitian.

The assertion of Theorem 6 can also be proved for an arbitrary normal
real-linear operator.

THEOREM 7. The residual spectrum of a continuous normal real-linear
operator A on X is empty.

PROOF. Let A be a continuous normal real-linear operator on 3€ and let q
be any quaternion.

Then (A - ql) (A* - q"I) - (A*-q°I)(A - ql) = (q'A -A q'l)
- (qA * - A * • ql). A routine calculation involving the canonical decomposi-
tions of A and A * shows the operator on the right-hand side is zero, so that the
operator Aq = A - ql is normal. Thus for each x G 'M:

||(A,)*x f = ((A,)*x,(Aq)*x) = Rc(Aq(Aq)*x,x)

= Re((Aq)*Aqx,x) = (Aqx,Aqx) = \\Aqx f.

But (Aq)* = A*-q'l. Hence qEo-r(A) if and only if qaGaP(A*).
Combining this with the result of Lemma 2 gives a-P(A) = T(A). Hence <rR(A)
is empty.

COROLLARY. // A is a continuous normal real-linear operator, then

5. Functional calculus

In this section some basic properties of the functional calculus for a
sesquihermitian operator are investigated.

Given a quaternionic Hilbert space X, let 5£+{dK) denote the real-linear
space of Hermitian linear operators on 9£ and 5̂ (5if) the quaternion-linear
space of sesquihermitian operators on 9€. Then it follows from a result of
Anderson [(1969), Theorem 2.9(c)] that the mapping (A,f)*-+ T(A)f is a
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continuous mapping from 5^(20 x C°°(R*) to SE+C3C) with respect to the norm
topology on if+W, the C~-topology on C"(R4), and the topology on 5^(20
defined by the norm || ||s, where for a sesquihermitian operator A = S'-ofVA,,,
we define ||A ||s = S'_o||/\^ ||. In general, || ||s will depend on the choice of
quaternion basis (i,,U, i3). However, || ||s is equivalent to the operator norm || ||,
as we shall show.

THEOREM 8. Let A be a sesquihermitian operator on df€ with canonical
decomposition ll-oLA,. Then \\A \\^\\A \\s ̂ 4\\A \\.

PROOF. Clearly \\A || ^Zi-0||/,A. || = 2 j . 0 | | ^ | | = \\A ||s. Using the canoni-
cal decomposition formulae [5, Theorem 2] to find the Av, we have for example:

4v4 0 = A - i, A • i,I - i2A • i2l - h A • i 3 J .

So ||AoNJ(||A|| + | M -UW + WiiA -UW + WhA •/3/||) = ||A||. Similarly
| | ^ | | s | | A || (v = 1,2,3). Hence

COROLLARY. The mapping (A,f)l-*T(A)f is continuous with respect to
the norm topology on 3?+(X), the C-topology on C(R*), and the uniform-
norm topology on Sf(dK).

Now let tt&R*) denote the quaternion-linear space of C°-functions
f:3.—*Q and let A denote a fixed sesquihermitian operator. Then the continu-
ous real-linear mapping T(A): C"(J*4)->i?+(2if) can be extended to C3(JJ4) by
writing, for each /

where the real-valued functions /„ are given by (1). Since each T(A)f* is a
Hermitian linear operator, the operator T(A)f is sesquihermitian.

THEOREM 9. For any fixed sesquihermitian operator A on W, T(A) is a
continuous (quaternion-) linear mapping from CH&R*) to Sf(dfC).

PROOF. T(A) is clearly continuous and real-linear. Let / G C%R*). Then
for each q E.2L:

So T(A) (i,/) = - T(A )f + i, T(A )/„ - i2 T(A )f3 + h T(A )f2 = i, T(A)/.
Similarly for i2,h, and hence for any quaternion q. Thus T(A) is linear.

The space C^R*) is actually an algebra over 3. with respect to pointwise
multiplication of functions and Sf(2if) is an algebra over St with respect to
composition of operators. However, T(A): C^R*)-*Sf(3€) is not in general an
algebraic homomorphism.
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For example, let / be the identity function on 2L, so that T(A)f = A.
But

f\q) = q2 = q0
2 - q2 - q2 - q2 + 2/, q0 q,

for each qE.3..

Hence, using the fact that T(A) acts "naturally" on the polynomials on R4

[Anderson (1969), Theorems 2.4(c), 2.8]:

T(A) (/2) = A0
2 - A 2 - A2

2 - A3
2 + i,(Ao A, + A, Ao)

+ i2(A0A2 + A2A0)

which does not equal A2 unless AUA2, and A3 commute with each other.
However, Anderson (1967) shows that the functional calculus for an

n-tuple of commuting operators reduces to the orthodox one based on the
commuting spectral measures.

DEFINITION. A sesquihermitian operator A = J.l-0 LAv is called supernor-
mal if the operators AQ,A2,A2,Ai are mutually commuting.

This concept does not depend on the choice of quaternion basis. For if
A =2Uoi.A, =VV=OL'AJ then [Powers (1973), Theorem 3] the A,' are
real-linear combinations of the Av, so that the AJ are mutually commuting if
and only if the Av are.

THEOREM 10. // A is a supernormal operator on "%, then the mapping
T(A): C%(R4)^>¥(%() is an algebraic homomorphism.

PROOF. Suppose that A is supernormal, so that the Hermitian linear
operators A0,A,, A2,As are mutually commuting. We have to show that T(A) is
multiplicative. Let f,g £ C^R4). Since T(A) is linear, we can assume without
loss of generality that f,g G C"(R*) —i.e., that / and g are real-valued.

Since the operators Av are Hermitian and linear, their spectral measures £„
are linear. It can be deduced from complex Hilbert space spectral theory that
the £„ are mutually commuting, and we can define

f(A0,AuA2,A3)= f(qo,quq2,q3)Eo(dqo)- •• E3(dqi)
JK'

and similarly for g. Then according to Riesz and Sz.-Nagy (1965), § 111

But Anderson [(1967), §1.4] shows that:

f(A0,Al,A2,A,)=T(A)f forany

Hence [T(A)/][T(A)g] = T(A)(fg).
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Thus the Weyl functional calculus for C°°-functions of a supernormal
operator reduces to the classical one for several commuting operators, and is
"natural" in its treatment of quaternion polynomials.
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