
JFP 16 (4&5): 547–582, 2006. c© 2006 Cambridge University Press

doi:10.1017/S0956796806006009 Printed in the United Kingdom
547

Multi-return function call

OLIN SHIVERS and DAVID FISHER
College of Computing, Georgia Institute of Technology, GA, USA

(e-mail: shivers,dfisher@cc.gatech.edu)

Abstract

It is possible to extend the basic notion of “function call” to allow functions to have multiple return
points. This turns out to be a surprisingly useful mechanism. This article conducts a fairly wide-
ranging tour of such a feature: a formal semantics for a minimal λ-calculus capturing the mechan-
ism; motivating examples; monomorphic and parametrically polymorphic static type systems; useful
transformations; implementation concerns and experience with an implementation; and comparison
to related mechanisms, such as exceptions, sum-types and explicit continuations. We conclude that
multiple-return function call is not only a useful and expressive mechanism, at both the source-code
and intermediate-representation levels, but also quite inexpensive to implement.

Capsule Review

Interesting new control-flow constructs don’t come along every day. Shivers and Fisher’s multi-
return function call offers intriguing possibilities – but unlike delimited control operators or first-
class continuations, it won’t make your head hurt or break the bank. It might even make you smile
when you see the well-known tail call generalized to a “semi-tail call” and a “super-tail call.” What
I enjoyed the most was the chance to reimagine several of my favorite little hacks using the new
mechanism, but this unusually broad paper offers something for everyone: the language designer, the
theorist, the implementor, and the programmer.

1 Introduction

The purpose of this article is to explore in depth a particular programming-language mech-
anism: the ability to specify multiple return points when calling a function. Let’s begin by
introducing this feature in a minimalist, “essential” core language, which we will call λMR,
the “multi-return λ-calculus.” λMR looks just like the standard λ-calculus (Church, 1941;
Barendregt, 1984), with the addition of a single form:

l ∈ Lam ::= λx.e

e ∈ Exp ::= x | n | l | e1 e2 | �e r1. . .rm� | (e)

r ∈ RP ::= l | #i

An expression is either a variable reference (x), a numeral (n), a λ-expression (l, of the
form λx.e), an application (e1 e2), or our new addition, a “multi-return form,” which we

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

548 O. Shivers and D. Fisher

write as �e r1 . . . rm�.1 Additionally, our expression syntax allows for parenthesisation to
disambiguate the concrete syntax. From here on out, however, we’ll ignore parentheses,
and speak entirely of the implied, unambiguous abstract syntax.

We’ll develop a formal semantics for λMR in a following section, but let’s first define
the language informally. An expression is always evaluated in a context of a number of
waiting “return points” (or “ret-pts”). Return points are established with the ri elements of
multi-return forms, and are specified in our grammar by the RP productions: they are either
λ expressions, or elements of the form “#i” for positive numerals i, e.g., “#1”, “#2”, etc.
Here are the rules for evaluating the various kinds of expressions in λMR:

• x, n, λx.e

Evaluating a variable reference, a numeral, or a λ-expression simply returns the
variable’s, numeral’s, or λ’s value, respectively, to the context’s first return point.

• e1 e2

Evaluating an application first causes the function form e1 to be evaluated to produce
a function value. In a call-by-name (CBN) semantics, we then pass the expression
e2 off to the function. In a call-by-value (CBV) semantics, we instead evaluate e2
to a value, which we then pass off to the function. In either case, the application of
the function to the argument is performed in the context of the entire form’s return
points.
Note that the evaluation of e1 and, in call-by-value, e2 do not happen in the outer
return-point context. These inner evaluations happen in distinct, single return-point
contexts. So, if we evaluate the expression

(f 6) (g 3)

in a context with five return points, then the f 6 and the g 3 applications themselves
are conducted in single ret-pt contexts. The application of f’s return value to g’s
return value, however, happens in the outer, five ret-pt context.

• �e r1 . . . rm�

The multi-return form is how we establish contexts with multiple return points.
Evaluating such a form evaluates the inner expression e in a return-point context
with m ret-pts, given by the ri.
If e eventually returns a value v to a return point of the form λx.e′, then we bind x
to value v, and evaluate expression e′ in the original form’s outer ret-pt context. If,
however, e returns v to a ret-pt of the form “#i,” then v is, instead, passed straight
back to the ith ret-pt of the outer context.

Consider, for example, evaluating the expression

�(f 6) (λx . x+5) (λy . y∗y)�,

where we have extended the syntax with the introduction of infix notation for standard
arithmetic operators. The function f is called with two return points. Should f return an

1 Strictly speaking, the addition of numerals means our language isn’t as primitive as it could be, but we’ll allow
these so that we’ll have something a little simpler than λ expressions to use for arbitrary constants in our
concrete examples.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 549

integer j to the first, then the entire form will, in turn, return j+5 to its first ret-pt (whatever
it may turn out to be – it’s part of the form’s evaluation context). But if f returns to its
second ret-pt, then the square of j will be returned to the whole expression’s first ret-pt.

On the other hand, consider the expression

�(f 6) (λx . x+5) #7�.

Should f return j to its first ret-pt, all will be as before: j + 5 will be returned to the
entire form’s first ret-pt. But should f return to its second ret-pt, the returned value will be
passed on to the entire form’s seventh ret-pt. Thus, “#i” notation gives a kind of tail-call
mechanism to the language.

One final question may remain: with the �e r1 . . . rm� multi-ret form, we have a notation
for introducing multiple return points. Don’t we need a primitive form for selecting and in-
voking a chosen return point? The answer is that we already have the necessary machinery
on hand. For example, if we wish to write an expression that returns 42 to its third ret-pt,
we simply write

�42 #3�,

which means “evaluate the expression ‘42’ in a ret-pt context with a single return point,
that being the third return point of the outer context.” The ability of the #i notation to select
return points is sufficient.

2 Examples

To get a better understanding of the multi-return mechanism, let’s work out an extended
example that will also serve to demonstrate its utility. Consider the common list utility
filter: (α→bool) → α list → α list which filters a list with a given element-
predicate. Here is ML code for this simple function:

fun filter f lis =

let fun recur nil = nil

| recur (x::xs) =

if f x then x :: (recur xs)

else recur xs

in recur lis

end

Now the challenge: let us rewrite filter to be “parsimonious,” that is, to allocate as few
new list cells as possible in the construction of the answer list by sharing as many cells as
possible between the input list and the result. In other words, we want to share the longest
possible tail between input and output. We can do this by changing the inner recursion so
that it takes two return points. Our function-call protocol will be:

• Ret-pt #1: α list
output list is shorter than input list
If some element of the input list does not satisfy the test f, the filtered result is
returned to the first return point.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

550 O. Shivers and D. Fisher

fun filter f lis =

let fun recur nil = multi () #2

| recur (x::xs) =

if f x

then multi (recur xs)

(fn ans => x::ans)

#2

else multi (recur xs)

#1

(fn () => xs)

in multi (recur lis)

#1

fn () => lis

end

Fig. 1. The parsimonious filter function, written with a multi-return recursion.

• Ret-pt #2: unit
output list = input list
The call returns the unit value to its second return point if every element of the input
list satisfies the test f.

We recommend that you stop at this point and write the function, given the recurrence
specification above; it is an illuminating exercise. We’ll embed the �e r1 . . . rm� multi-
return form into ML with the concrete syntax “multi e r1...rm.” The result function
is shown in Figure 1. Note the interesting property of this function: both recursive calls are
“semi-tail recursive,” in the sense that one return point requires a stack frame to be pushed,
while the other is just a pre-existing pointer to some older frame found deeper in the call
stack. However, the two calls differ in which ret-pt is which. In the first recursion, the first
ret-pt requires a new stack frame and the second ret-pt is tail-recursive. In the second, it is
the other way around.

Suppose we were using our parsimonious filter function to select the even numbers
from a list. What would the call/return pattern be for a million-element list of even num-
bers? The recursion would perform a million-and-one calls . . . but only two returns! Every
call to recur would pass along the same pointer to filter’s original stack frame as ret-
pt two. The “recur nil” base case would return through this pointer, jumping over all
intermediate frames straight back to the initial call frame, where the “fn () => lis”
code would return the original list as the final answer to filter’s caller.

Similarly, selecting even numbers from a list containing only odd elements would per-
form n calls but only two returns, this time driven by the tail-recursion through the second
recursive call’s first return point.

Filtering mixed lists gives us the minimal-allocation property we sought. Also, contigu-
ous stretches of elements not in the list are returned over in a single return. This is possible
because multiple return points allow us to distribute code after the call over a conditional
test contained inside the call. This combines with the tail-recursive properties of the “#i”
notation to give us the code improvement.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 551

There’s an alternate version of this function that uses three return points, with the fol-
lowing protocol: return a list to ret-pt #1 if the output is a proper tail of the input; return
unit to ret-pt #2 if output = input; and return a list to ret-pt #3 if the output is neither. We
leave this variant as an (entertaining) exercise for the reader.

3 Formal semantics

Having gained a reasonably intuitive feeling for the multi-return mechanism, it is fairly
straightforward to return now to the minimalist λMR and develop a formal semantics for it.
We can define a small-step operational semantics as a binary relation � on Exp. We’ll first
designate integers and λ-expressions as “values” in our semantics: v ∈ Val = � + Lam.
Then our core set of transition rules are defined as follows:

[funapp]
(λx.e) e2 � [x �→ e2]e

[rpsel]
�v r1 . . . rm� � �v r1�

m > 1

[retlam]
�v l� � l v

[ret1]
�v #1� � v

[rettail]
��v #i� r1 . . . rm� � �v ri�

1 < i � m,

to which we add standard progress rules to allow reduction in any term context:

[funprog]
e1 � e′

1

e1 e2 � e′
1 e2

[argprog]
e2 � e′

2

e1 e2 � e1 e
′
2

[retprog]
e � e′

�e r1 . . . rm� � �e′ r1 . . . rm�
[bodyprog]

e � e′

λx.e � λx.e′

[rpprog]
l � l′

�e r1 . . . l . . . rm� � �e r1 . . . l
′ . . . rm�

.

funapp The funapp schema is the usual “function application” β rule that actually applies
a λ term to the argument.

rpsel The rpsel schema describes how a value being returned selects the context’s first
return point.

retlam The retlam schema describes how a value is returned to a λ return point – the λ
expression is simply applied to the returned value.

rettail The rettail schema describes how a value is returned through a #i return point. We
simply select the ith return point from the surrounding context, collapsing the pair of
nested multi-return contexts together.

ret1 The rettail rule does not apply to all #i returns: it only applies when i > 1, which, in
turn, requires that the expression be returning to a context established by a multi-return
form. However, return context can be established in other ways. Consider the expression
�(λx.e) #1� 17. Even if we allowed rettail to fire when the ret-pt is #1, in this case,
there is no surrounding multi-ret form providing ret-pts for �λx.e #1� to index. The ret1
rule handles this case, which allows our example to progress to (λx.e) 17.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

552 O. Shivers and D. Fisher

Part of the point of λMR is to provide language-level access to the different continu-
ations that underly the evaluation of the program – albeit in a way that still manages
to keep these continuations firmly under control. (We’ll return to this theme later.)
Considered from the continuation perspective, evaluation of an application expression
hides an implicit continuation, the one passed to the evaluation of the application’s func-
tion subexpression. For call-by-value, this continuation would be rendered in English
as, “Collect the final value for this expression; this value must be a function. Then
evaluate the application’s argument, and pass its value to this function, along with the
application’s continuation(s).” This implicit continuation is the one indexed by the “#1”
in �(λx.e) #1� 17.

Note a pleasing control/value anti-symmetry between function call and return in this
calculus: application is strict in the function (i.e., we need to know where we are going),
while return is strict in the value being passed back (i.e., we need to know what we are
returning). We cannot have a sort of “normal-order” return semantics allowing general
non-value expressions to be returned: the non-determinancy introduced would destroy the
confluence of the calculus, giving us an inconsistent semantics. To see this, suppose we
added a “call-by-name return” rule of the form

�e l r2 . . . rm� � l e,

allowing an arbitrary expression e rather than a value v to be returned through a multi-
return form. This would introduce semantically divergent non-determinism, as shown by
the use of our new, bogus rule and the rettail rule to take the same expression in two very
different directions:

��7 #2� l1 l2� � l1 �7 #2� (by bad rule)
��7 #2� l1 l2� � �7 l2�. (by rettail rule)

Restricting the progress rules to just funprog and retprog gives us the call-by-name
transition relation �n. The normal-order λMR has some interesting and exotic behaviours,
but exploring them is beyond the scope of this article, so we will press on to the applicative-
order semantics. For call-by-value, our progress rules are funprog, retprog and a modified
form of argprog that forces the function part of an application to be evaluated first:

[argprogv]
e2 � e′

2

l e2 � l e′
2

.

We must also modify the function-application rule to require the argument to be a value:

[funappv]
(λx.e) v � [x �→ v]e

.

4 Confluence

Let us write →∗ for the transitive, reflexive closure of →. We say that a relation → is
confluent iff whenever x →∗ a and x →∗ b, there is a join term j such that a →∗ j and
b →∗ j. When such a j exists, we say that a and b are joinable.

It is a standard issue, when defining a semantics by means of a transition relation that
permits non-determinism, to want confluence for the relation. Confluence tells us that if

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 553

⇒ M�2M

M�2M
′ ⇒ λx.M �2 λx.M

′

M�2M
′, N�2N

′ ⇒ M N �2 M
′ N ′

M�2M
′, N�2N

′ ⇒ λx.M N �2 [x �→ N ′]M ′

M�2M
′ ⇒ �M r1 . . . rn� �2 �M

′ r1 . . . rn�

M�2M
′ ⇒ �e r1 . . .M . . . rn� �2 �e r1 . . .M

′ . . . rn�

(M,M ′ ∈ Lam)

⇒ �v λx.M� �2 λx.M v

⇒ ��v #i� r1 . . . rn� �2 �v ri� (1 < i � n)

⇒ �v r1 . . . rn� �2 �v r1� (n > 1)

⇒ �v #1� �2 v

Fig. 2. Schemata defining the �2 relation, presented in a compact form.

one execution path terminates at some answer, then all other terminating execution paths
must produce the same final answer: final values are normal forms, and so two distinct
answers would be unjoinable.

The CBV and CBN semantics are clearly confluent, since their transition relations are
just partial functions and do not permit branching. To see this, note that the defining rules
partition the terms – no two rules apply to the same term and no rule can match a given
term two ways.

However, the general system is non-deterministic, as it allows progress in any reducible
subterm. To establish λMR as a reasonable linguistic mechanism, we need to show that the
ability to step a term in two different ways doesn’t allow the semantics to produce two
different final values: we need to show that � is confluent.

We establish the confluence of the general system by showing the confluence of a second
relation, which has the same reflexive, transitive closure as the general system. It’s easy to
see that, since they share closure, if our second relation is confluent, our first one will be,
as well.2 We define the new transition relation �2 in Figure 2.

We show the confluence of this system by showing that is satisfies the diamond prop-
erty (Baader & Nipkow, 1998). We say that a relation → has the diamond property iff
e → ea and e → eb implies that ea → ej and eb → ej for some ej . Clearly, a relation →
is confluent iff its reflexive, transitive closure →∗ has the diamond property. (The diamond
property will also come in handy when we reason about program transformations in λMR in
Section 6, as well.)

Lemma 1
The �2 relation satisfies the diamond property.

Proof
We prove this by structural induction on the source term. Suppose source term e0 transitions
to two terms: e0 �2 ea and e0 �2 eb. Consider the rule justifying the a transition. Most
cases are immediate (e.g., M�2M

′) or follow by induction (e.g., λx.M�2 λx.M
′). If e0 is

an application, the only other possible case arises from reducing (λx.M) N when both M

2 This construction is based on a proof Barendregt attributes to Tait and Martin-Löf (Proposition 3.2.1,
Barendregt, 1984).

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

554 O. Shivers and D. Fisher

and N can be stepped (rule four). In this case, it is a straightforward structural induction to
show that the rules of �2 give us joinable terms (lemma 3.2.4, Barendregt, 1984).

Otherwise, e0 is a multi-ret form �e r1 . . . rn�. If the a transition is an in-place rewrite of
e or a λ ret-pt, it is simple to see that it commutes with all possible b transitions. The only
remaining transitions possible are the �2 variants of retlam, rettail, rpsel and ret1, the last
four rules of its definition. Again, in each of these cases, it is simple to commute the a step
with any of the possible b transitions. �

Lemma 2
The reflexive, transitive closure of � is the transitive closure of �2.

Proof
We merely note that these two transition relations are closely related: any step in � can be
done through a number of steps in �2, and vice versa. In fact, every transition in � can
be made in one step by �2. �

Theorem 1
The general multi-return λ-calculus is confluent.

Proof
Since �2 has the diamond property, its transitive closure does, as well. Hence �∗ has the
diamond property, and so � is confluent. �

5 Types

Our basic untyped semantics in place, we can proceed to consideration of type systems and
static safety. The type system we’ll develop first is a monomorphic one. The key feature
of this system is that expressions have, not a single type τ, but, rather, a vector of types
〈τ1, . . . , τn〉 – one for each return point. Further, we allow a small degree of subtyping by
allowing “holes” (written ⊥) in the vector of result types, meaning the expression will
never return to the corresponding return point. So, if we extended λMR to have if/then/else
forms, along with boolean and string values, then, assuming that b is a boolean expression,
the expression

if b then �3 #2� else �“three” #4�

would have principal type vector 〈⊥, int,⊥, string〉, meaning, “this expression either returns
an integer to its second ret-pt, or a string to its fourth ret-pt; it never returns to any other
ret-pt.” For that matter, the expression has any type vector of the form

〈τ1, int, τ3, string, . . . , τn〉 ,

for any types τi. We lift this base form of subtyping to λMR functions with the usual
contravariant/covariant subtyping rule on function types.

Let us write
⇀
τ to mean a finite vector of types with holes allowed for some of the

elements. More precisely,
⇀
τ is a finite partial map from the naturals to types, where we

write
⇀
τ [i] = ⊥ to mean that i is not in the domain of

⇀
τ . Then our domain of types is

τ ∈ T ::= int | τ → ⇀
τ .

Notice that ⊥ is not a type itself.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 555

Types and type vectors are ordered by the inductively defined � and
→
� subtype

relations, respectively:

int � int
τb � τa

⇀
τa

→
� ⇀

τb

τa →⇀
τa � τb →⇀

τb

.

We define
⇀
τsub

→
� ⇀

τsup to hold when

∀i ∈ Dom(
⇀
τsub) . i ∈ Dom(

⇀
τsup) ∧ ⇀

τsub[i] � ⇀
τsup[i].

In other words, type vector
⇀
τa is consistent with (is a sub-type-vector of) type vector

⇀
τb if

⇀
τa is pointwise consistent with

⇀
τb.

We now have the machinery in place to define a basic type system, given by the judge-

ment Γ � e :
⇀
τ , meaning “expression e has type vector

⇀
τ in type environment Γ.” Type

environments are simply finite partial maps from variables to types. The type-judgment
relation is defined by the following schemata:

Γ � n : 〈int〉
Γ � x : 〈Γx〉

x ∈ Dom(Γ)
Γ[x �→ τ] � e :

⇀
τ

Γ � λx.e : 〈τ → ⇀
τ 〉

Γ � e1 : 〈τ → ⇀
τ 〉 Γ � e2 :

⇀
τ2

Γ � e1 e2 :
⇀
τapp

⇀
τ2

→
� 〈τ〉

⇀
τ

→
�⇀
τapp

Γ � e :
⇀
τe

Γ � rj : 〈τj → ⇀
τj〉 (∀rj ∈Lam)

Γ � �e r1 . . . rm� :
⇀
τ

⇀
τec[j] =

{
τj rj ∈Lam
⇀
τ [i] rj = #i

⇀
τe

→
�⇀
τec

⇀
τj

→
�⇀
τ .

These rules are minor variations of the standard rules for the simply-typed λ calculus,
with the exception of the rule for the multi-return form. This rule first type-checks all the

λ ret-pts in the outer context; if rj is a λ-expression, then we assign it the type τj → ⇀
τj .

The return type vector
⇀
τj produced by any such ret-pt must be consistent with the return

type vector of the entire expression:
⇀
τj

→
� ⇀

τ . This ensures that if e transfers control to λ

ret-pt rj , that rj will return through the outer form’s ret-pts in a legal way. Then we use

the rj to construct a type vector
⇀
τec that constrains the return context of e. If ret-pt rj is

a λ expression, the type of rj’s input or domain is what e must return to e’s jth ret-pt; if
rj is of the form #i, then e must return to its jth ret-pt whatever is required of the entire

expression’s ith ret-pt. After constructing
⇀
τec, we constrain e’s actual type vector

⇀
τe to be

consistent with this requirement,
⇀
τec

→
� ⇀

τe, and we are done.

The type system, as we’ve defined it, is designed for the call-by-value semantics, and
is overly restrictive for the call-by-name semantics. Development of a call-by-name type
system is beyond the scope of this article; we simply remark that it requires function types
to take a type vector on the left side of the arrow, as well as the right side.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

556 O. Shivers and D. Fisher

With the basic structure of our CBV type system established, we can now proceed to
consider its properties and how we might extend it. The key property we want of a type
system is that it guarantee that a program that has been statically determined to be well
typed will never, at run time, generate a type error: the classic guarantee that “well-typed
programs never go wrong.” Once we’ve done this, we can next turn to the possibility
of introducing parametric let-polymorphism into the type system, along with the task of
automatically inferring these types in the Hindley-Milner style, as we do in languages such
as SML. This is our agenda for the rest of this section.

As a final remark before moving ahead, it’s amusing to pause and note that one of the
charms of the λMR type system is that it provides a type for expressions whose evaluation
never terminates: the empty type vector 〈〉.3

5.1 Basic type safety: progress and preservation

To show the type-safety of the multi-return λ-calculus, we prove the progress and preser-
vation theorems.

Theorem 2 (Progress)
If e ∈ λMR is well typed, then either e is a value, e is a multi-return form �v #i� for some
i > 1 and value v, or e has a CBV transition e �v e

′.

Proof
We prove this by induction on the language structure. For each kind of non-value expres-
sion, we show that when such an expression is well-typed, there must be a transition, given
that the theorem holds for the subexpressions of the term.

Consider function-application expressions of the form e1 e2. The rule that determines
the type of the application requires both e1 and e2 to be well-typed themselves. Suppose
e1 and e2 are both values. In order to be well-typed, e1 must be of a function type, and
therefore a λ expression; the function-application rule would then apply. Suppose e1 is not
a value; it is either a function application or a multi-ret form. Since e1 is well-typed, we
can inductively assume our hypothesis for e1. We know e1 isn’t a value, so either it is of
the form �v #i� for i > 1, or it can be advanced. But the first possibility would violate the
typing rule for the application e1 e2 (since e1’s syntactic context constrains it to only one
ret-pt), so this cannot be the case. The latter possibility provides us with a transition for the
entire application.

Alternatively, our expression might be a multi-return form �e r1 . . . rn�. The typing rule
for multi-return expressions requires that sub-expression e also be well typed. Thus, by our
induction hypothesis, we can assume e is either a value, a multi-return expression of the
form �e′ #i� for i > 1, or it has a transition. If e is a value, the nature of the transition
depends on the form of the whole expression, which is either of the form �v #1�, �v #j�

for j > 1, �v l�, or �v r1 . . . rn� for n �= 1. In the first case, the ret1 rule applies. The second
case is a base case for the induction. In the third case, the retlam rule applies. In the fourth
case, rpsel applies; in this case, the fact that v has a type forces the multi-ret form to have
at least one return point, by means of the typing rule for multi-ret forms. If e is, instead,

3 Not every such expression can be assigned this type, of course.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 557

of the form �e′ #i� for i > 1, then in order to be well-typed, i � n, and the rettail rule
applies. Finally, if e has a transition, then the progress rule for multi-return forms gives us
a transition for the entire expression. �
Theorem 3 (Preservation)

If Γ � e :
⇀
τ and e �v e

′, then Γ � e′ :
⇀
τ

′
for some

⇀
τ

′ →
� ⇀

τ .

Proof
The proof is by induction on the justification tree for the transition. For the funprog,
argprogv and retprog rules, because of the induction hypothesis and the fact that sub-
expressions are rewritten in place, preservation follows directly.

For the funappv rule, the proof is identical to the preservation proof for the standard
λ-calculus.

For the retlam rule, we have �v l� �v l v. In the typing of the left-hand side, let
⇀
τv be

the type vector of v and 〈τl → ⇀
τl〉 be the type vector of l. We can now construct a

⇀
τ typing

of the application on the right-hand side. By the first side condition of the multi-return type

rule,
⇀
τv

→
� ⇀

τec = 〈τl〉, which satisfies the first side condition of the application typing.

The second side condition of the multi-ret typing gives us
⇀
τl

→
� ⇀

τ , which establishes the

second, remaining side condition for the application.
For the rpsel rule, we have �v r1 . . . rn� �v �v r1�, where the left-hand expression has

type vector
⇀
τ . Let the type vector for v be 〈τv〉. We can now construct a

⇀
τ typing of the

right-hand term. The premises of the type rule carry over from the typing of the original
expression; we just need to handle the side conditions. From the original typing’s first side

condition, 〈τv〉 =
⇀
τe

→
� ⇀

τec, so τv � ⇀
τec[1], which implies 〈τv〉

→
� 〈⇀τec[1]〉. If r1 ∈ Lam,

then
⇀
τ

′
ec = 〈τ1〉 is the

⇀
τec value in the new typing. With the previous inequality, we have

〈τv〉
→
� 〈⇀τec[1]〉 = 〈τ1〉 =

⇀
τ

′
ec, which is the first side condition of the new typing. The

second side condition,
⇀
τ1

→
� ⇀

τ , also carries directly over from the first typing. If r1 is of

the form #i, then, similarly, 〈τv〉
→
� 〈⇀τec[1]〉 = 〈⇀τ [i]〉 =

⇀
τ

′
ec; the second side condition is

vacuously true.
In the ret1 case, we have �v #1� �v v, where the left-hand expression has type vector

⇀
τ . In the typing of the left-hand expression,

⇀
τe is the type vector of v, and the first side

condition gives us
⇀
τe

→
� ⇀

τec = 〈⇀τ [1]〉 →
� ⇀

τ , which establishes the theorem.

For the rettail rule, we have ��v #i� r1 . . . rn� �v �v ri�. Call the inner multi-ret form a,

the outer one b, and the result one c. Let the type of form a be
⇀
τa, the

⇀
τec type vector in its

typing rule be
⇀
τec,a, and so forth, for the three forms a, b and c. Let

⇀
τv be the type vector of

v. Then the typing of form a gives us
⇀
τv

→
� ⇀

τec,a = 〈⇀τa[i]〉, and the typing of form b gives

us
⇀
τa

→
� ⇀

τec,b. We can now construct a
⇀
τ typing for form c.

If ri is of the form #j, the b typing gives us
⇀
τec,b[i] =

⇀
τ [j]. So

⇀
τa

→
� ⇀

τec,b implies
⇀
τa[i] � ⇀

τec,b[i] =
⇀
τ [j]. Since

⇀
τv

→
� 〈⇀τa[i]〉, we may conclude

⇀
τv

→
� 〈⇀τ [j]〉, which is the

⇀
τe

→
� ⇀

τec side condition needed for the c typing.

If ri ∈ Lam, then the b typing gives us
⇀
τec,b[i] = τi, where the type vector for ri is

τi → ⇀
τi. As in the #j case,

⇀
τa[i] � ⇀

τec,b[i] = τi. Thus
⇀
τv

→
� 〈⇀τa[i]〉

→
� 〈τi〉, which is,

again, the side condition needed for the c typing. �

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

558 O. Shivers and D. Fisher

5.2 Parametric polymorphism

The multi-return λ-calculus can be extended with polymorphic types, without terrible com-
plication. The key addition is the use of “row variables” to permit the type-reconstruction
algorithm to handle the continuation tuples implied by multi-return calls; with this addition,
all the standard Hindley-Milner machinery goes through. Accordingly, we develop the let-
polymorphic λMR focussing primarily on the necessary row-variable extensions.

5.2.1 Polymorphic types

To add let polymorphism, we first extend the type system for λMR with type variables,
α, β, . . ., and type schemata, which allow polymorphism at the top-level of the types. This,
in turn, requires us to introduce the notion of a substitution, a partial function mapping type
variables to types. We lift substitutions to operate on types, type environments, etc., in the
natural way: e.g., applying a substitution to a type walks the type recursively, applying the
substitution to each type variable in the type.

We define types and type schemata as follows:

σ ∈ Tvar ::= α | β | . . .

τ ∈ T ::= int | τ → ⇀
τ | σ

s ∈ TS ::= ∀σ1 . . . σn . τ

Now would be a good time to spell out our conventions for using letters: The symbol τ

is reserved as a mathematical variable representing a type; similarly,
⇀
τ represents a type

vector. We’ll use letters from the beginning of the alphabet (α, β, etc.) for actual type
variables in λMR source terms, and letters from the end of the alphabet (σ, ψ, etc.) for
mathematical meta-variables that represent a λMR type variable. The variable s represents a
type schema.

Type environments now map program variables to type schemata. To allow the pro-
grammer to express polymorphism, we add a new term to the language: let x = e in e′. Its
dynamic semantics is equivalent to (λx.e′) e, but its static semantics “splits” uses of x so
that the typings associated with distinct uses of the variable are not combined together. This
is arranged by new typing rules for the language elements that involve variables: variable
reference, polymorphic let, and λ expressions:

Γx = ∀σ1 . . . σn . τ

Γ � x : 〈[σi �→ τi]τ〉
Γ[x �→ ∀ . τ] � e :

⇀
τ

Γ � λx.e : 〈τ → ⇀
τ 〉

Γ[x �→ ∀σ1 . . . σn . τe] � e′ :
⇀
τ Γ � e : 〈τe〉

Γ � let x = e in e′ :
⇀
τ

{σi} = gen(Γ, τe),

where the generalisation function gen(Γ, τ) produces the type variables occurring in type
τ, minus the free type variables in the range of Γ:

gen(Γ, τ) = FV(τ) − FV(Γ).

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 559

Note that we handle λ expressions by binding their variables to type schemata that do no
generalisation: ∀ . τ. What is noteworthy about this type system is its non-novelty: it is
exactly the classic Hindley-Milner one. Our progress and preservation proofs go through
exactly as before.

5.2.2 Row variables

Reconstructing types for a polymorphic (or even a monomorphic) λMR term requires the
reconstruction algorithm to assign type variables to stand for the types of the various ret-
pts of an expression, before it may even know how many ret-pts that expression might use.
As we stated at the beginning of this section, we can think of this as attempting to find
a type for the tuple of continuations in a given evaluation context when we don’t know
a priori the arity of the tuple. We can manage this by introducing a “row variable” notation
allowing us to allocate compactly an infinite sequence of type variables for a given return
context, unrolling this sequence on demand as reconstruction proceeds.

We represent an infinite vector of type variables with a variable/start-index pair, σi↑. For
example, α5↑ represents the infinite list of subscripted type variables 〈α5, α6, α6, . . .〉. We
call such a vector a “row variable,” after Wand’s use of a similar device for type inference
in an object-oriented setting (Wand, 1987). We also allow infinite type vectors to specify
an explicit finite prefix, in the form 〈τ1, . . . , τn; σm↑〉, which simply means the result of
concatenating finite type vector 〈τ1, . . . , τn〉 with the infinite type (variable) vector σm↑.
Thus, we have the following representation for the type vectors manipulated by our type-
reconstruction algorithm:

⇀
τ ∈

⇀

T ::= σm
↑ | 〈τ?1, . . . , τ?n〉 | 〈τ?1, . . . , τ?n; σ

m↑〉
τ? ∈ T? ::= τ | ⊥

5.2.3 Substitution and unification with row variables

Applying a substitution S to a type is well understood, once we handle applying S to
the type vectors that may occur on the right-hand side of function arrows. Lifting S to type
vectors is straightforward: we just apply it to every element in the vector. This is mathemat-
ically well-defined for infinite vectors, but how can we manage this algorithmically, given
our particular representation of infinite type vectors? A substitution is typically specified
by a finite set of mappings from type variables to types. We now extend substitutions to
allow them additionally to include mappings for row variables. Such a mapping takes the
row variable either to another row variable, σn↑ �→ ψm↑, or to an unbounded vector of
bottom elements, written σn↑ �→ ⊥∗. To be well defined, we require that if a substitution
includes a row-variable mapping for σn↑, then it has no redundant, conflicting mappings
for any “scalar” type variables σi for i � n, already covered by the entry for σn↑, and it has
no other conflicting σk↑ row-variable mapping. In other words, a given scalar type variable
is handled by at most one mapping in a given substitution; that mapping might be either a
scalar or row-variable mapping. (While ⊥ is not a type, it may appear as an element of a
type vector, and so substitutions are allowed to produce ⊥ when applied to type variables
appearing as elements of type vectors.)

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

560 O. Shivers and D. Fisher

We can now apply such a substitution to one of our possibly infinite type vectors with
a bounded amount of computation. To apply a substitution to a scalar type variable, we
simply employ the relevant mapping, if any:

Sσ= τ? when (σ �→ τ?) ∈ S ,
Sσi =ψn+i−m when (σm↑ �→ ψn↑) ∈ S, i � m,
Sσi = ⊥ when (σm↑ �→ ⊥∗) ∈ S, i � m,
Sσ= σ otherwise.

With scalar-variable application defined, we can lift the application of a substitution to
general types with no difficulty. To apply a substitution to a type vector, we apply the
substitution to the scalar elements in the vector’s finite prefix, and then use the row-variable
mappings to handle any row-variable suffix:

S 〈τ1, . . . , τn〉 = 〈Sτ1, . . . , Sτn〉
S

〈
τ1, . . . , τn; σ

m↑〉
= S 〈τ1, . . . , τn〉 @ Sσm

↑

S σn
↑

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈Sσn, . . . , Sσk−1;ψ
m↑〉 (σk↑ �→ ψm↑) ∈ S, n < k

ψ(n−k+m)↑ (σk↑ �→ ψm↑) ∈ S, k � n

〈Sσn, . . . , Sσk−1〉 (σk↑ �→ ⊥∗) ∈ S, n < k

⊥∗ (σk↑ �→ ⊥∗) ∈ S, k � n〈
Sσn, . . . , Sσj; σ

(j+1)↑
〉

σk↑ �∈ Dom(S), n � j,

j = Max {i | σi ∈ Dom(S)}
σn↑ otherwise,

where we write “v1 @ v2” to append vector v1 with vector v2.
A final issue in our representation of substitutions is composing substitutions with this

representation. This is simply a matter of proper bookkeeping in tracing through the inter-
actions of the map entries in the two substitutions being composed.

Hindley-Milner type-reconstruction algorithms produce the substitutions they manip-
ulate by means of unification on types. In our setting, we will need to extend this to
unification on our type vectors. When we have simple vectors, this is easy: we simply
unify each element in turn. To unify vectors that involve row variables, we “unroll” the
row variables on demand as the vector unification proceeds across the two vectors. For
the purposes of unification, a finite vector can be considered to be implicitly terminated
with ⊥∗. As we discuss later, finite type vectors don’t arise from analysing expressions
that only return to one or two ret points (which would constitute over-constraining such an
expression), but from expression contexts that constrain expressions, forbidding them to
return to more than some number of ret points.

5.2.4 Generalisation with row variables

When the Hindley-Milner algorithm operates on a let x = e in e′ expression, and creates a
type schema for the bound variable x, it must compute the subset of the type variables in
x’s type that should be made generic. That is, it must compute the gen(Γ, τ) function, which
in turn means computing FV(τ), the free type variables of τ, and similarly for Γ. As with

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 561

substitution and unification, computing the gen function in a row-variable setting is just a
matter of proper bookkeeping. Consider FV(τ). After we find all the scalar type variables
and row variables occurring in τ, it is a simple matter to collapse together multiple row
variables with the same symbol but distinct indices: just discard the one with the higher
index. E.g., if we find both α5↑ and α38↑, we can discard the latter, since all the type variables
it represents are also represented by the α5↑ row variable. Similarly, we absorb any scalar
type variables created by unrolling a row variable back into the row variable, if the row
variable occurs in the type and its start index covers the scalar. E.g., we could absorb α17

into our α5↑ row variable, but would have to leave α2 as a distinct scalar type variable. (We
could combine α4 and α5↑ into α4↑, or not, as we please.)

This all means that row variables can appear in the list of a type schema’s generalised
variables, e.g., ∀α3, β, α

17↑ . β → 〈α3; α
19↑〉. As a minor note, when we instantiate such a

schema with fresh variables, we can “reset” the start index of any generic row variables. If,
for example, we instantiated the schema above with the substitution

[α3 �→ δ, β �→ γ, α17↑ �→ η1↑
],

for fresh type variables δ, γ and η, we would have type γ → 〈δ; η3↑〉.

5.3 The W algorithm for let-polymorphic λMR

The primitive operations of the Hindley-Milner algorithm W (Milner, 1978) are substitu-
tion, unification and generalisation. Having defined these, we are almost completely done.
The algorithm itself, shown in Figure 3, is quite close to the original W. Three elements of
the algorithm depart from the original. First, there are three places in the algorithm where
an expression is restricted to having at most one return point: the function and argument
subexpressions of an application, and the expression e producing the value bound to the
variable in a “let x = e in e′” form. This is managed for the let form by unifying the type

vector
⇀
τe calculated for e with 〈σ〉, for a fresh type variable σ. The implicit ⊥∗ tail of

the 〈σ〉 vector will force trailing elements of
⇀
τe to ⊥. The application cases are similar.

Second, the type vector calculated for a “scalar” value (an integer, variable reference, or λ
expression) is not of the form 〈τ〉, but 〈τ; σ1↑〉, for a fresh row variable σ1↑. This is because
such an expression, as we observed in the monomorphic-type introduction, can have a
multi-ret-pt type. This allows such expressions to appear correctly in multi-ret contexts,
and successfully unify with such type vectors. So, for example, the expression “5” can
be given, if needed by context, the type vector 〈int, bool〉. Finally, the handling of multi-
ret forms is, of course, an addition to the algorithm. This clause in the algorithm simply
collects type constraints from the return points and unifies them together, in the general
style of the W algorithm.

6 Transformations

Besides the usual λ-calculus transformations enabled by the β and η rules in their various
forms (general, CBN and CBV), the presence of multi-return context as an explicit syn-
tactic element in λMR provides for new useful transformations. For example, the “ret-comp”

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

562 O. Shivers and D. Fisher

W(Γ, n) =
(
T ,

⇀
τ
)

// Integer n

1 T = [],
⇀
τ =

〈
int; σ1↑〉 , σ fresh

W(Γ, x) =
(
T ,

⇀
τ
)

// Variable reference x
1 let ∀σ1 . . . σn . τ = Γx

2 let τ′ = [σi �→ ψi]τ (ψi fresh scalar and row variables)

3 T = [],
⇀
τ =

〈
τ′;ω1↑〉 , ω fresh

W(Γ, g h) =
(
T ,

⇀
τ
)

// Application g h

1 let (R,
⇀
τg) = W(Γ, g)

2 let S =
⇀

U(
⇀
τg, 〈σ〉), σ fresh

3 let (X,
⇀
τh) = W(SRΓ, h)

4 let U =
⇀

U(
⇀
τh, 〈ψ〉), ψ fresh

5 let V = U
(
UXσ, (Uψ) → ω1↑), ω fresh

6 T = VUXSR,
⇀
τ = Vω1↑

W(Γ, λx.e) =
(
T ,

⇀
τ
)

// λ expression

1 let
(
T ,

⇀
τe

)
= W(Γ[x �→ ∀ . σ], e), σ fresh

2
⇀
τ = 〈(Tσ) → ⇀

τe;ψ
1↑〉, ψ fresh

W(Γ, let x = e in e′) =
(
T ,

⇀
τ
)

// let expression

1 let
(
R,

⇀
τe

)
= W(Γ, e)

2 let S =
⇀

U(
⇀
τe, 〈ψ〉), ψ fresh

3 let τe = Sψ

4 let {σi} = gen(RSΓ, τe)

5 let
(
V ,

⇀
τ
)

= W(SRΓ[x �→ ∀σ1 . . . σn . τe], e
′)

6 T = VSR

W(Γ, �e r1 . . . rn�) =
(
T ,

⇀
τ
)

// Multi-return form

1 let (R,
⇀
τe) = W(Γ, e)

2 let σ be fresh
3 let S = Wr

(
RΓ, 〈r1, . . . , rn〉 ,

⇀
τe

)
4 define Wr

(
Γ, #i.

⇀
rrest, τr.

⇀
τrest

)
5 let V = U(τr, σi)

6 let X = Wr
(
VΓ,

⇀
rrest, V

⇀
τrest

)
7 in XV
8 define Wr

(
Γ, (λx.e′).

⇀
rrest, τr.

⇀
τrest)

9 let
(
U, 〈τl〉

)
= W(Γ, λx.e′)

10 let V = U
(
τr → Uσ1↑, τl

)
11 let X = Wr

(
VUΓ,

⇀
rrest, U

⇀
τrest

)
12 in XVU
13 define Wr

(
Γ, 〈〉 , 〈〉

)
= []

14 T = SR,
⇀
τ = Tσ1↑

Fig. 3. The W algorithm, modified for multi-return forms.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 563

transform allows us to collapse a pair of nested multi-ret forms together:

��e r1 . . . rn� r
′
1 . . . r

′
m� = �e r′′

1 . . . r
′′
n� [ret-comp]

where

r′′
i =

{
r′
j ri = #j,

λx.�(ri x) r
′
1 . . . r

′
m� (x fresh) ri ∈ Lam.

This equivalence shows how tail-calls collapse out an intermediate stack frame. In par-
ticular, it illustrates how a term of the form �e� eats surrounding context, freeing the entire
pending stack of call frames represented by surrounding multi-return contexts. Thus a
function call that takes no return points and so never returns can eagerly free the entire
run-time stack.

Another useful equivalence is the mirror transform:

l e = �e l�. [mirror]

Note that the mirror transform does not hold for the normal-order semantics – shifting e
from its non-strict role as an application’s argument to its strict role in a multi-ret form can
change a terminating expression into a non-terminating one. Since both positions are strict
in the call-by-value semantics, the problem does not arise there.

6.1 Correctness and commutation

These equivalences are useful to allow tools such as compilers to manipulate and integ-
rate terms in a fine-grained manner, as we’ll see in the following section. It’s important,
however, to first establish that these basic transforms don’t alter the meaning of a program
term.

In order to demonstrate that the ret-comp and mirror transformations do not change the
CBV meaning of an expression, we show that the relation formed by adding one of the
transformations to the CBV evaluation relation is confluent. This is sufficient to show that
if an expression evaluates to a value, then the transform of the expression will evaluate to
the same value.

Let us start with the notion of commuting relations. Two relations →a and →b are said to
commute if, whenever x →a a and x →b b, there is a j such that a →b j and b →a j. The
Hindley-Rosen lemma (Barendregt, 1984) states that if two relations have the diamond
property (see Section 4), and these two relations commute, then the union of these two
relations has the diamond property. So, if we can show (1) that �∗

v commutes with →∗,
for some transform →, and (2) that both of these relations have the diamond property, then
Hindley-Rosen establishes for us the confluence of their union.

6.2 Correctness of mirror transform

Lemma 3
Let the relation e→m e

′ be the mirror transform defined by the two rules l e→m �e l� and
�e l�→m l e, plus all five general progress rules from Section 3. The relations →∗

m and �∗
v

commute.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

564 O. Shivers and D. Fisher

Proof

Let us begin with a start term e0 and transitions e0 �∗
v ev and e0 →∗

m em. Suppose we mark
each l e or �e l� subterm that is transformed by the mirror steps in the e0 →∗

m em transform:
imagine we paint them red, in both the source e0 and target em terms. Note that the red
subterms in e0 and em correspond to one another, since the mirror transform doesn’t destroy
or create new terms; it merely rearranges them. We can now trace along the individual steps
of the e0 �∗

v ev transition, constructing an equivalent path from em to our eventual join
term, which we will call ej . Consider the first e0 �v ev1 transition on the e0 �∗

v ev path,
and its justification tree of recursive CBV rules. Red subterms not appearing in the root
axiom of the justification tree get copied over from e0 to ev1 unchanged. If the root axiom
is rpsel, ret1 or rettail, we can trivially construct an equivalent em �v em1 transition. If it is
retlam and the �v l� subterm is red, then the corresponding mirrored red subterm in em is
already the target l v, hence ev1 = em. That is, no transition is needed in the em �∗

v ej path;
we merely remove the red paint from em’s l v subterm to preserve the 1-1 correspondence
of red subterms. On the other hand, if the axiom is retlam and the �v l� term is not red,
we can make the corresponding retlam transition to get our em �v em1 step. Finally, the
active rule axiom in the e0 �v ev1 step might be funappv, for redex l v. Either it is red or
it isn’t. If red, the corresponding red subterm in em is a multi-ret form �v′ l′�, which we
correspondingly step twice, with retlam and then funappv, destroying a red subterm in both
sequences. If not red, we simply contract the corresponding redex in em. In both the retlam
and funappv cases, any red subterms appearing within l or v are copied over to the result
term in both transitions (the funappv contraction may replicate v, but this will happen in
both sequences as well, keeping red subterms in 1-1 correspondence.)

In this fashion, we can follow along the intermediate terms e0 �v ev1 �v ev2 �v . . . �v

ev of the e0 �∗
v ev path, constructing an equivalent path em �v em1 �v em2 �v . . . �v ej

from em to ej . The terms of this em �∗
v ej sequence stay in lock-step with the e0 �∗

v ev
sequence (allowing, as we’ve seen, for a bit of local “stuttering,” where a single step on the
original path may correspond to a couple of steps, or zero steps, in the constructed one),
with the red subterms staying in correspondence. This means that the two terms at the ends
of the two sequences, ev and ej , are structurally equivalent, modulo the red subterms. So
we can get from ev to ej by applying →m steps to “re-mirror” any remaining red subterms
in ev , joining em and ev . Thus �∗

v and →∗
m commute. �

Theorem 4 (Mirror safety)

The union of the �∗
v and the →∗

m relations is confluent.

Proof

The mirror-transform relation →m clearly has the diamond property: two distinct redexes
can be mirrored in either order to produce the same final term. Thus →∗

m also has the
diamond property. We know �∗

v has the diamond property, as well, because the CBV
transition system is confluent. So Hindley-Rosen applies to →∗

m and �∗
v , and we have

established that invoking →m to transform a program won’t alter its final result. �

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 565

6.3 Correctness of ret-comp transform

We demonstrate the correctness of the ret-comp transform in the same way we handled the
mirror transform. We define a ret-comp relation →rc by a rule that maps the left side of
the ret-comp transform to the right side, plus the five progress rules allowing the transform
anywhere in a term.

Lemma 4

The →rc relation is confluent.

Proof

Suppose we apply the ret-comp transform to two distinct subterms in start term e0, yielding
e0 →rc ea and e0 →rc eb. What we will show is that there is a join term ej , such that ea →∗

rc ej
and eb →∗

rc ej . This is sufficient to conclude confluence.
If the two subterms of e0 on which we performed our two ret-comp transforms are

completely distinct, then we can do the transforms in either order and arrive at the same
final term. What we must consider more carefully are the cases where the two transforms
overlap.

Consider the justification tree for the e0 →rc ea step. The axiom rule at the root of the
tree is a ret-comp transform of some subterm e′

a of e0, where

e′
a = ��e′′

a r1a . . . rna� r
′
1a . . . r

′
ma�,

and

��e′′
a r1a . . . rna� r

′
1a . . . r

′
ma� →rc �e

′′ r′′
1a . . . r

′′
na�.

Similarly, let e′
b be the transformed subterm of eb:

e′
b = ��e′′

b r1b . . . rjb� r
′
1b . . . r

′
kb�.

The overlap cases we must consider occur when e′
b is one of the pieces of e′

a manipulated
by the e′

a transform. (The case when e′
b contains e′

a is symmetric.)
The first way this might happen is if one of the inner return points ria of e′

a is a λ
expression containing the e′

b term, so that ria →rc ria′ is part of the eb justification tree.
In this case, the corresponding post-a-transform return point r′′

ia is λx.�(ria x) r′
1a . . . r

′
ma�.

This, in turn, allows us to step ria just as in the b step, producing a final return point
λx.�(ria′ x) r′

1a . . . r
′
ma�. This is exactly what we would have gotten if we had done the b

transform first and then the a transform.
If one of the outer return points r′

ia of e′
a contains the b transform, the operations com-

mute in a similar way. Since the a transform might replicate multiple copies of r′
ia into inner

return points that are λ expressions, we need multiple →rc steps to transform the multiple
copies of e′

b; otherwise, this case is identical to the previous case.
If e′

b occurs entirely within e′′
a , the operations again commute with no difficulty.

Finally, we have a true case of overlap: if e′′
a is itself a multi-ret form, then we could take

e′
b to be the inner multi-ret form of e′

a. That is, if e′
a is a triply-nested multi-ret form

e′
a = ���e′′

b r1b . . . rjb� r1a . . . rna� r
′
1a . . . r

′
ma�,

then we can take the inner pair as e′
b and the outer pair as e′

a, with the ria serving double

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

566 O. Shivers and D. Fisher

duty as the r′
ib. However, working out the transforms in either order produces the same

result. �

Lemma 5
The →∗

rc and �∗
v relations commute.

Proof
Suppose we have some start term e0 which we can transition under both base relations,
e0 →rc erc and e0 �v ev . We will show that there is a join term ej such that erc �∗

v ej and
ev →∗

rc ej . Commutativity of →∗
rc and �∗

v follows.
As before, let us isolate the subterm e′

rc of e0 that is transformed by the ret-comp step to
e′′

rc. The e′
rc subterm must be a doubly-nested multi-ret form:

e′
rc = ��e r1 . . . rn� r

′
1 . . . r

′
m�.

If the �v step involves e �v e
′, then we have no trouble commuting the CBV and ret-comp

steps. The only real case we have to consider is when the root axiom of the �v step involves
e′

rc as well. This can only occur when e is a value and the rule is one of ret1, rettail, rpsel or
retlam. If the ret1 rule applies, then e′

rc = ��e #1� r′
1 . . . r

′
m�, and so e′

rc �v �e r
′
1 . . . r

′
m�.

The ret-comp transform, on the other hand, gives us e′
rc →rc �e r

′
1�. We can join these two

with rpsel, which allows us to construct a justification tree for a erc � ev transition rooted
at this application of rpsel.

If the rettail rule applies, then r1 = #i. So e′
rc �v �e r

′
i� and e′

rc →rc �e r
′
i r

′′
2 . . . r

′′
n�; we

can join the latter to the former by rpsel, which again allows us to construct a justification
tree for a erc � ev transition rooted at this application of rpsel.

If the retlam rule applies, then r1 is a λ expression, and we have

e′
rc �v �(r1 e) r

′
1 . . . r

′
m�

e′
rc →rc �e (λx.�(r1 x) r

′
1 . . . r

′
m�) r

′′
2 . . . r

′′
n�.

We can join the latter to the former in three CBV steps: rpsel, retlam, then funappv.
In a similar fashion, we can join erc and ev if we arrived at ev by rpsel. �

Theorem 5 (Ret-comp safety)
The relations →∗

rc and �∗
v commute.

The proof is by the previous two lemmas, as for the proof of mirror safety.

7 Anchor pointing and encoding in the pc

Consider compiling the programming-language expression “x<5” in the two contexts
“f(x<5)” and “if x<5 then ... else ...” In the first context, we want to evaluate
the expression, leaving a true/false value in one of the machine’s registers. In the second
context, we want to evaluate the inequality, branching to one or another location in the
program based on the outcome – in other words, rather than encode the boolean result as
one of a pair of possible values in a general-purpose register, we wish to encode it as a pair
of possible addresses in the program counter. Compiler writers refer to this distinction as
“eval-for-value” and “eval-for-control” (Fisher & LeBlanc, 1988).

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 567

Not only do programs have these two ways of consuming booleans, they also have
corresponding means of producing them. On many processors, the conditional “x<5” will
be produced by a conditional-branch instruction – thus encoded in the pc – while the
boolean function call “isLeapYear(y)” will compute a boolean value to be left in one
of the general-purpose machine registers – thus encoded as a value.

Matching up and optimally interconverting between the different kinds of boolean pro-
ducers and consumers is one of the standard tasks of good compilers. In the functional
world, the technique for doing so relies on a transformation called “anchor pointing,”
(Steele, 1978; Kranz et al., 1986) defined for nested conditional expressions – sometimes
called “if-of-an-if.” The transformation is

if (if a then b else c)

then d

else e

⇒
if a

then (if b then d else e)

else (if c then d else e)

although we usually also replace the expressions d and e with calls to let-bound thunks λ .d
and λ .e to avoid replicating large chunks of code (where we write “ ” to suggest a fresh,
unreferenced “don’t-care” variable for the thunk, in the style of SML). In the original
form, the b and c expressions are evaluated for value; in the transformed result, b and c are
evaluated for control.

In λMR, we can get this effect by introducing primitive “control” functions. The %if func-
tion consumes a boolean, and returns to a pair of unit return points: �(%if b) rthen relse�. In
other words, it is the primitive operator that converts booleans from a value encoding to a
pc encoding. This allows us to desugar if/then/else forms into applications of %if:

if e1 then e2 else e3 ≡ �(%if e1) λ .e2 λ .e3�.

The anchor-pointing transformation translates to this setting:

�(%if �(%if a) λ .b λ .c�) d e� ⇒ �(%if a) λ .�(%if b) d e�

λ .�(%if c) d e��.

This transform, in fact, can be derived from the basic ret-comp and mirror transforms,
plus some simple β and η steps. Among other things, this provides us with a simple reason
to believe the transform is a sound one that won’t change the meaning of a program. The
derivation appears in Appendix A, though you may enjoy working it out for yourself – it
makes a nice puzzle. We can also define n-way case branches with multi-return functions;
for an intermediate representation of a language such as SML, we would probably want to
provide one such function for each sum-of-products datatype declaration, to case-split and
disassemble elements of the introduced type.

Recall that some boolean functions are primitively implemented on the processor with
instructions that encode the result in the pc (integer-comparison operations are an ex-
ample). We can express this at the language level by arranging for the primitive definitions
of these functions similarly to provide their results encoded in the pc. For example, the
exported < function can be defined in terms of an underlying primitive %< function that
encodes its result in the pc using multiple return points:

< = λx y. �(%< x y) (λ .true) (λ .false)�.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

568 O. Shivers and D. Fisher

With similar control-oriented definitions for the short-circuiting boolean syntax forms

x and y≡�(%if x) λ .y λ .false�

x or y ≡�(%if x) λ .true λ .y �

not =λx. �(%if x) λ .false λ .true�,
the anchor-pointing transform is capable of optimising the transitions from encoded-as-
value to encoded-as-pc.

For example, suppose we start out with a conditional expression that uses a short-circuit
conjunction:

if (0 <= i) and (i < n) then e1 else e2.

First, we expand the “and” into its underlying form, and rewrite our infix comparisons into
canonical application syntax:

if �(%if (<= 0 i)) λ .(< i n) λ .false�

then e1

else e2.

Already we see a tell-tale if-of-an-if that signals an opportunity to shift to evaluation for
control. Next, we translate the if/then/else syntax into its functional multi-return equivalent:

�(%if �(%if (<= 0 i))

λ .(< i n)

λ .false�)

λ .e1

λ .e2�,

and β-reduce the comparison-function applications to produce their control-oriented
definitions:

�(%if �(%if �(%<= 0 i) λ .true λ .false�)

λ .�(%< i n) λ .true λ .false�

λ .false�)

λ .e1

λ .e2�.

Now we have a triply-nested conditional expression. Apply the anchor-pointing transform
to the second %if and the %<= conditional. This, plus a bit of constant folding, leads to:

�(%if �(%<= 0 i) λ .�(%< i n) λ .true

λ .false�

λ .false�

λ .e1

λ .e2�.

Now we apply anchor-pointing to the first %if and the %<= application, leading to:
�(%<= 0 i) λ .�(%if �(%< i n) λ .true

λ .false�)

λ .e1

λ .e2�

λ .�(%if false)

λ .e1

λ .e2��.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 569

Applying anchor-pointing to the first arm of the %<= conditional, and constant-folding to
the second arm gives us:

�(%<= 0 i) λ .�(%< i n)

λ .�(%if true) λ .e1 λ .e2�

λ .�(%if false) λ .e1 λ .e2��

λ .e2�.

Some simple constant folding reduces this to the final simplified form that expresses ex-
actly the control paths we wanted:

�(%<= 0 i) λ .�(%< i n) λ .e1 λ .e2�

λ .e2�.

Note one of the nice effects of handling conditionals this way: we no longer need a
special syntactic form in our language to handle conditionals; function calls suffice. CPS
representations can also manage this feat, but at the cost of significantly more powerful
machinery: they expose continuations as denotable, expressible, first-class values in the
language. The multi-return extension is a more controlled, limited linguistic mechanism.
The ability of multi-return function call to handle conditional control flow in a general
function-call paradigm, yet without requiring first-class continuations, suggests it would
be a useful mechanism to have in a low-level intermediate representation.

8 Compilation issues

Compiling a programming language that has the multi-return feature raises no real diffi-
culties. Standard techniques work well with only small modifications required to exploit
some of the opportunities provided by the new mechanism.

8.1 Stack management

Calling subroutines involves managing the stack – allocating and deallocating frames.
Typically, modern compilers distinguish between tail calls and non-tail calls in their man-
agement of the stack resource. The presence of multiple return points, however, introduces
some new and interesting possibilities: semi-tail calls and even super tail calls.

In the multi-return setting, there are three main cases for passing return points to a
function call:

• All ret-pts passed to called function
E.g., �(f 5) #1 #3 #2 #1�

If a function call simply passes along all of its context’s return points, in a tail-
call setting, then this is simply a straight tail call. The current stack frame can be
immediately recycled into f’s frame, and thus there is no change in the number of
frames on the stack across the call.

• Ret-pts are strict subset of caller’s ret-pts
E.g., �(f 5) #6 #4�

However, we can have a tail call that drops some of the calling context’s return
points. In this case, the caller can drop frames, collapsing the stack back to the

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

570 O. Shivers and D. Fisher

highest of the surviving frames. In this way, a call can be “super tail recursive,”
with the stack actually shrinking across a call. This aggressive resource reclamation
can require a small amount of run-time computation: in order to “shrink-wrap” the
stack prior to the call, the caller must compute the minimum of the surviving return
points, since there’s no guaranteed order on their position in the stack.

• Some ret-pts are λ expressions
If any return point is a λ expression, then we must push stack frames to hold the
pending state needed when these return points are resumed. However, we can still
shrink-wrap the stack prior to allocating these return frames, if some of the calling
context’s return points are also going dead at this call. The ability to mix #i and λ
return points in a given call means we can have calls that are semi-tail calls – both
pushing new frames and reclaiming existing ones.

8.2 Procedure-call linkage

λMR makes it clear that multiple return points can be employed as a control construct at
different levels of granularity, from fine-grained conditional branching to coarse-grained
procedure-call transfers. This is analogous to the use of λ-expressions in functional lan-
guages, which can be used across a wide spectrum of control granularity. Just as with λ-
expressions, a good compiler should be able to efficiently support uses of the multi-return
construct across this entire spectrum.

The most challenging case is the least static and largest-grain one: passing multiple
return points via a general-purpose procedure-call linkage to a procedure. There are three
cases determining the protocol used to pass return points to procedures:

• 1 ret-pt (1 register + sp)
In the normal, non-multi-return case, where we are only passing a single return
point to a procedure, we need one register (or stack slot) for the return pc. Since the
pending frame to which we will return is the one just below the called procedure’s
current frame, the stack pointer does double duty, indicating both the location of the
pending frame as well as the allocation frontier for the current frame.

• > 1 ret-pt (2n registers + sp)
In general, however, we pass each return point as a frame-pointer/return-pc pair of
values, either in registers or stack slots, just as with parameters (which should come
as no surprise to those accustomed to continuation-based compilers (Steele, 1978;
Kranz et al., 1986; Kranz, 1988; Shivers, 1988; Kelsey, 1989; Kelsey & Hudak,
1989; Shivers, 1991; Appel, 1992), since function-call continuations are just partic-
ular kinds of parameters).
However, if a procedure has more than one return point, we cannot always statically
determine which one will be the topmost pending frame on the stack when the
function is executed – in fact, this could vary from call to call. So we must separate
the rôle of the stack pointer from that of the registers that hold the frame pointers of
the return points. The stack pointer is used for allocation – it indicates the frontier
between allocated storage and unused, available memory. The return frame pointers
are for deallocation – they indicate back to where the stack will be popped on a
return.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 571

Registers used by the function-call protocol for return points can be drawn from
the same pool used for parameters, overflowing into stack slots for calls with many
return points or parameters. Thus a call that took many return points might still
be accomplished in the register set, if the call did not take many parameters, and
vice versa. We might wish to give parameters priority over ret-pts when allocating
registers in the call protocol on the grounds that (1) only one of the ret-pt values will
be used and (2) invoking a ret-pt is the last thing the procedure will do, so the ret-pt
will most likely be referenced later than the parameters. (Neither of these observa-
tions is always true; they are merely simple and reasonable heuristics. For example,
a procedure may access multiple ret-pts in order to pass them to a fully or partially
tail-recursive call. If the call is only partially tail-recursive, then the procedure may
subsequently resume after the call, accessing other parameters. These issues can be
addressed by more globally-aware parameter- and register-management techniques.)

• 0 ret-pt (0 registers + sp)
This singular case has a particularly efficient implementation: not only can we avoid
passing any ret-pc values, we can also reclaim the entire stack, by resetting sp to
point to the original stack base!
Besides being an interesting curiosity, we can actually use this property, in situations
involving the spawning of threads, to indicate to the compiler the independence of
a spawned thread from the spawning thread’s stack. The problem is that languages
which provide thread-based concurrency mechanisms typically have some kind of
“spawn” operation, which takes as its argument a thunk specifying the computa-
tion to be performed by the thread. The spawn procedure creates the new thread,
and immediately returns. However, the new thread can sometimes retain spurious
dependencies on the spawning thread’s dynamic context, such as its exception hand-
lers; this typically shows up as dependencies on the invoking thread’s continuation.
These unintended continuation captures can prevent the run-time system from free-
ing continuation-based resources, leading to mysterious space leaks and other prob-
lems (Biagioni et al., 1997). A type declaring that a procedure never returns is a static
assertion breaking the false dependency: calling such a function does not require
passing it a continuation, thus resolving the resource-management problem. We have
wished for this feature on multiple occasions when writing systems programs in
functional languages.

Note that ret-pt registers, being no different from parameter registers, are available for
general-purpose use inside the procedure body. Code that doesn’t use multiple return points
can use the registers for other needs. Multi-return function call is a pay-as-you-go feature.

8.3 Static analyses

There are some interesting static-analysis possibilities that could reveal useful information
about resource use in this function-call protocol. For example, it might be possible to do
a sort of live/dead analysis of return points to increase the aggressiveness of the pre-call
“shrink wrapping” of stack frames. An analysis that could order return points by their stack
location could eliminate the min computation used to shrink-wrap the stack over multiple
live return points. We have not, however, done any significant work in this direction.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

572 O. Shivers and D. Fisher

8.4 Callee-saves register management

One of the difficulties with the efficient compilation of exceptions is the manner in which
they conflict with callee-saves register use. If a procedure P stores a callee-saves register
away in the stack frame, an exception raised during execution of a dynamically-nested
procedure call cannot throw directly to a handler above P ’s frame – the saved register value
would be lost. Either the callee-saves registers must be dumped out to the stack for retrieval
after the handler-protected code finishes, or the control transfer to the exception’s handler
must instead “unwind” its way up from the invoking stack frame, restoring saved-away
callee-saves registers on the way out. The first technique raises the cost of establishing a
handler scope, while the second raises the cost of invoking an exception.

In contrast, it’s fairly simple to manage callee-saves registers in the multi-return set-
ting. As with any function-call protocol (even the traditional single-return one) supporting
constant-stack tail-calls, any tail call must restore the callee-saves registers to their entry
values before transferring control to the called procedure (so tail-calls have some of the
requirements of calls, and some of the requirements of returns). Multi-return procedure
calls allow for a new possibility beyond “tail call” and “non-tail call:” the “semi-tail call,”
which pushes frames and passes along existing return points, e.g.,

�(f 5) (λx.e) #1�.

We must treat this case with the tail-call restriction by restoring all callee-saves registers
to their entry values prior to transferring control to f in order to keep from “stranding”
callee-saves values in a skipped frame should f return through its second return point.

So, in short, the simple tail-call rule for managing callee-saves registers applies with no
trouble in the multi-return case. Note, however, that this rule does have a cost in our new,
semi-tail call setting: the presence of the “#1” in the example above means we can’t use
callee-saves registers to pass values between the (f 5) call point and the λx.e return point.

9 Actual use

The multiple-return mechanism is useful for many more programs besides the single filter
function we described in Section 2. Other examples would be:

• compiler tree traversals that might or might not alter the code tree;
• algorithms that insert and delete elements into finite sets represented as search trees;
• search algorithms usually expressed with explicit success and failure continuations –

these can be expressed more succinctly, and run on the stack, without needing to
heap-allocate continuations.

Functional programmers frequently write functions that take multiple continuations as
explicit functional parameters, accepting the awkward notational burden and run-time over-
head of heap-allocated continuations (which are almost always used in a stack-like man-
ner). This longstanding practice also gives some indication of the utility of multiple return
points.

We’ve found that once we’d added the mechanism to our mental “algorithm-design
toolkit,” opportunities to use it tend to pop up with surprising frequency. To pick one
example, we recently implemented a standard Scheme library for sorting (Shivers, 2003).

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 573

This library contains a function for deleting adjacent identical elements in a linked list –
which exactly fits the pattern we exploited in the “parsimonious filter” example. Since
Scheme does not have multi-return function calls, our implementation of this function
is more complex and less efficient than it needs to be. Opportunities to use multi-return
function calls also pop up in conjunction with Danvy and Goldberg’s there-and-back-again
(TABA) pattern (Danvy & Goldberg, 2005), where the multi-ret mechanism enriches the
control possibilities we can weave into our call and return interactions.

Shao, Reppy and Appel (1994) have shown how to use multiple continuations to unroll
recursions and loops in a manner that allows functions to pack lists into larger allocation
blocks4. The cost of explicit continuations renders this impractical when conditional con-
trol information must be distributed past multiple continuations; the more restricted tool of
λMR’s multiple-return points would make this feasible.

When casting about for a larger example to try out in practice, however, one particular
use took us by storm: LR parser generators (DeRemer & Pennello, 1982). A parser gener-
ator essentially is a compiler that translates a context-free grammar to a program describing
a particular kind of machine, a push-down automaton (PDA), just as a regular-expression
matcher compiles a regular expression into a program describing a finite-state automaton.
This leads us to the idea of a general PDA machine designed to implement various PDAs. It
has a stack, an input source of tokens, and a program store that holds the specification of the
particular PDA to be executed. The programs loaded into the program store are composed
of three kinds of instruction: shift, goto and reduce. (We are eliding a few features of the
machines that drive real LR parsers, such as semantic actions and error recovery, but this is
the essential core of the computational structure.) Now, once we have our PDA program,
we have two options for executing it. One path is to implement the PDA machine in some
programming language (say, for example, C), encode the PDA program as a data structure,
and then run the PDA machine on the program. That is, we execute the PDA program with
an interpreter.

The other route, of course, is to compile: translate the PDA program down to the target
language. The attraction of compiling is the transitivity of compilation – we usually have
a compiler on hand that will then map the target language all the way down to machine
language, and so we can run our parser at native-code speeds.

Translating PDA programs to standard programming languages, however, has problems.
Let’s take each of the three PDA instructions in turn. The “shift s” instruction means “save
the current state on the stack, then transfer to state s.” This one is easy to represent,
encoding state in the pc: if we represent each parser state with a different procedure,
then “shift” is just function call. The “goto s” instruction, similarly, is just a tail-recursive
function call. How about reduce? The “reduce n” instruction means “pop n states off the
stack, and transfer control to the nth (last) state thus popped.” Here is where we run into
trouble. Standard programming languages don’t provide mechanisms for cheaply returning
several frames back in the call stack. Worse, the value of n used when reducing from a given
state can vary, depending upon the value of the next token in the input stream: a particular

4 It’s a curious but ultimately coincidental fact that their paper uses the same filter-function example shown in
Section 2 – for a completely different purpose.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

574 O. Shivers and D. Fisher

state might wish to return three frames back if, say, the next token is a right parenthesis,
but five frames back if it is a semicolon.

While this is hard to do in Java or SML or other typical programming languages, it can
be done in assembler (Pennello, 1986). The problem with a parser generator that produces
assembler is that it isn’t portable, and, worse, has integration problems – the semantic
actions embedded inside the grammar are usually written in a high-level language. For
these reasons, standard parsers such as Yacc (Johnson, 1979) or Bison usually go the
interpreter route: the “parser tables” that drive the computation are just the PDA program,
which is executed by a fixed PDA machine written in C.

Multi-return calls solve this problem nicely – they give us exactly the extra express-
iveness we need to return to multiple places back on the stack. When our compiled PDA
program does a shift by calling a procedure, it passes the return points that any reduction
from that state forward might need.

To gain experience with multi-return procedure calls, we started with a student compiler
for Appel’s Tiger language (Appel, 1999), which one of us (Shivers) uses to teach the
undergraduate compiler course at Georgia Tech. Tiger is a fairly clean Pascal-class lan-
guage. The student compilers are written in SML, produce MIPS assembly, and feature a
coalescing, graph-coloring register allocator. One graduate of the compiler course took his
compiler and modified it to add a multi-return capability to the language. This gave us a
tool for experiments, allowing us to try out completely the notion of adding multiple-return
points to a language, from issues of concrete syntax, through static analysis and translation,
to execution. Designing the syntactic extensions was a trivial exercise, requiring only the
addition of the multi-ret form itself and modification of the declaration form for procedures.
We designed the syntax extensions with our “pay-as-you-go” criteria in mind – code that
doesn’t use multiple return points looks just like standard Tiger code.

A second undergraduate modified a LALR parser-generator tool written in Scheme by
Dominique Boucher, adding two Tiger back-ends: one compiling the recogniser to multi-
return Tiger code, and the other producing a standard “table&PDA” implementation. The
only non-obvious part of this task is the analysis to determine which return points must be
passed to a given state procedure. This is a straightforward least fixed-point computation
over the PDA’s state machine. Specifically, a state procedure must be passed return points
for any reduction it might perform, plus return points to satisfy the needs of any state to
which it might, in turn, shift.

We then built two parsers to recognise the Tiger grammar (a reasonably complex gram-
mar which we happened to have convenient to hand). The parser keeps pending state in-
formation, which drives control decisions, on the procedure call stack, and uses a separate,
auxiliary stack to store the values produced and consumed by the semantic actions. We
were pleased to discover that the return-point requirements for our sample grammars were
very limited. Of the 137 states needed to parse the Tiger grammar, 106 needed only one
return point; none needed more than two. Reductions in real grammars, it seems, are sparse.

The compiled parser, of course, ran significantly faster than the interpreted one. The
compiled PDA parsed our sample input 2.5–3.5 times faster than the interpreted PDA (see
Table 1). One source of speedup was the fact that when a state is only shifted into from
one other state, the Tiger compiler saw it as a procedure only called from one site, and
would inline the procedure. This happens quite frequently in real grammars – 78% of the

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 575

Table 1. Performance measurement for standard/table-driven and multi-return-based
LALR parsers generated from the Tiger grammar. Timings are instruction counts, measured
on the SPIM SPARC simulator. Input samples are (1) a simple loop, (2) matrix multiply,
(3) eight-queens, (4) mergesort, (5) samples 2–4 replicated multiple times

Input
input size
(symbols)

non-MR
parser MR parser

MR parser
with inlining

loop 18 78,151 9,336 8,915
matmul 121 114,987 36,025 33,386
8queens 235 164,693 70,797 65,505
merge 409 219,649 99,743 89,486
large 1,868 802,008 366,498 324,459

Tiger-grammar states can be inlined. Representing the parser directly in a high-level lan-
guage allowed it to be handled by general-purpose optimisations.

These simple experiments provide only the most basic level of evaluation, in the sense
that a real, end-to-end implementation has been successfully constructed with no serious
obstacles cropping up unforeseen, and that it performs roughly as expected.

There is still much we could have done that we have not yet done. We did not, for
example, arrange for our parsers to execute semantic actions while parsing – they are
simply recognisers. This shows off the efficiency of the actual parsing machinery to best
advantage. Our basic intent was simply to exercise the multi-return mechanism, which
function our parsers performed admirably.

10 Variations

We’ve covered a fair amount of ground in our tour of the multi-return mechanism, provid-
ing views of the feature from multiple perspectives. But we’ve left many possibilities un-
explored. We’ve pointed out some of these along the way, such as normal-order semantics
or static analyses.

10.1 Return-point syntax

One variation we have not discussed is the syntactic restriction of return points to λ ex-
pressions. This is not a fundamental requirement. The entire course of work we’ve laid
out goes through just as easily if we allow return points to be any expression at all (i.e.,
r ∈ RP ::= e | #i) and generalise the retlam schema in an equally trivial manner:

�v e� � e v.

However, it doesn’t seem to add much to the expressiveness of the language to allow
return points to be general computations themselves. One can always η-expand a return
point of the form e to λx.(e x). But allowing general expressions for return points does
introduce issues of strictness and non-termination into the semantics of return that were
not there before, and this, in turn, restricts some of the possible transformations.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

576 O. Shivers and D. Fisher

A third possibility borrows from SML’s “value restriction:” restrict return points to be
either λ expressions or variable references (Milner et al., 1997). Variable references are
useful ret-pts for real programming, as they give the ability to name and then use “join
points” in multiple locations. This is clearer and more succinct than the awkward alternate
of binding the join point to a name, and then referring to it with η-expanded return points
in the desired locations.

Restricting return-point expressions to λ expressions and variable references eliminates
code blowup in transformations, since large ret-pt expressions can be let-bound and re-
placed by a name before replication. It eliminates issues of control effect, since both forms
of expression can be guaranteed to evaluate in a small, finite amount of time. For a real
programming language, this is the syntax we prefer.

10.2 By-name binding

In our design, the ith ret-pt of a form is specified by making it the ith subform ri of the
multi-ret expression �e r1 . . . rm�. This is somewhat analogous to passing arguments to
procedures by position (instead of by name, as is allowed in Modula-3 or Common Lisp).
For example, when we call a print function, we must know that the first argument is the
output channel and the following argument is the string to be printed, not vice versa.

As a design exercise, one might consider a multi-return form based on some sort of
by-name binding mechanism for return points, rather than λMR’s positional design, with
its associated numeric “#i” references. This turns out to be trickier and more awkward
than one might initially suppose. By-name binding introduces the issue of requiring a new
and distinct name space for return points. More troubling is the issue of scope and name
capture – such a design would have to require that return-point bindings be dynamically,
rather than lexically, scoped, to prevent lexical capture of a return point by a procedure
passed upward. This would be counter-intuitive to programmers used to lexically-scoped
name binding. Nor would it buy much, we feel. Control is typically a sparer space than
data. It may be useful to bind a few return points at a call-point, but one does not typically
need simultaneously to bind thousands, or even dozens.

There is no shame in positional binding: besides its simplicity, it has been serving the
needs of programmers as a parameter-passing mechanism in the lion’s share of the world’s
programming languages since the inception of the field.

11 Comparisons

There are several linguistic mechanisms that are similar in nature to multi-return function
call. Four are exceptions, explicit continuations, sum types and the weak continuations of
C--.

11.1 Exceptions

Exceptions are an alternate way to implement multiple returns. We can, for example,
write the filter example using them. This is clear, since exceptions are just a second
continuation to the main continuation used to evaluate an expression.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 577

However, exceptions are, in fact, semantically different from multiple return points.
They are a more heavyweight, powerful mechanism, which consequently increases their
implementation overhead and makes them harder to analyze. This is because exceptions
are used to implement non-local control transfers, something that cannot be done with
multi-ret function calls. For example, consider the expression

sin(1/f(x))

If f raises an exception, the program can abort the entire, pending reciprocal-and-then-sine
computation by transferring control to a handler further back in the control chain.

Multi-ret function calls, in contrast, do not have this kind of global, dynamic scope. They
do not permit non-local control flow – if a function is called, it returns. This makes them
easier to analyze and permits the kind of transformations that encourage us to use them to
represent fine-grained control transfers such as local conditional branches. In short, they
make for a better wide-spectrum, general-purpose control representation, as opposed to a
control mechanism tuned for exceptional transfers.

The difference between exceptions and multi-ret function calls shows up in the formal
semantics, in the transition rule for applications. In an application (e1 e2), the evaluations
of e1, e2, and the actual function call all share the same exception context. In λMR, however,
they each have different ret-pt contexts. This is the key distinction.

Note that we can, by dint of a global program transformation, implement exceptions
using multi-ret constructs . . . just as we can implement exceptions using only regular
function calls, by turning the entire program inside-out with a global CPS transform. This
fact of formal interconvertibility amounts to more of a compilation step than a particularly
illuminating observation about practical comparison at the source-code level – which just
serves to underline the distinction between the two control features.

11.2 CPS and explicit continuations

We can also implement examples such as our parsimonious filter function by using
explicit continuations. This, however, is applying far too powerful a mechanism to the
problem. Explicit continuations typically require heap allocation, which destroys the ef-
ficiency of the technique. With multi-return function calls, there is never any issue with
the compiler’s ability to stack-allocate call frames. No analysis required; success is guar-
anteed. The multi-ret mechanism is carefully designed to provide much of the benefit of
explicit continuations while still keeping continuations implicit and out of sight. Once
continuations become denotable, expressible elements of our language, the genie is out of
the bottle, and even powerful analyses will have a difficult time reining it back in.

Note, also, that λMR still allows function calls to be syntactically composable, i.e., we
can nest function calls: f(g(x)). This is the essence of direct style; the essence of CPS is
turning this off, since function calls never return. As a result, CPS is much, much harder
for humans to read. While we remain very enthusiastic about the use of CPS as a low-level
internal representation for programs, it is a terrible notation for humans.

In short, explicit continuations are ugly, heavyweight and powerful, while multi-return
function call is clearer, simpler, lighter weight, and less powerful.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

578 O. Shivers and D. Fisher

11.3 Sum types

Providing multiple return points to a function call is essentially providing a tuple of con-
tinuations to a function instead of just one. As Filinski (1989) has pointed out, a product
type in continuation space is equivalent to a sum type in value space. For example, we can
regard the %if function as being the converter between these two forms for the boolean
sum type.

So any function we can write with multiple continuations we could also write by having
the function return a value taken from a sum type. For example, our filter function’s
recursion could return a value from this SML datatype:

datatype α FilterVal = Identical | Sublist of α list

But this misses the point – without the tail-recursive property of the #i syntax, and the
ability to distribute the post-call conditionally-dependent processing across a branch that
happens inside the recursion, we miss the optimisation that motivated us to write the
function in the first place.

Perhaps we should write programs using sum-type values and hope for a static analysis
to transform the code to use an equivalent product of continuations. Perhaps this might
be made to work in local, simple cases – much is possible if we invoke the mythical
“sufficiently optimising compiler.” But even if we had such a compiler, it would still be
blocked by control transfers that occur across compilation/analysis units of code.

The important point is that the power of a notation lies in its ability to allow decisions
to be expressed.5 This is the point of the word “intensional” in the “intensional typing”
movement that swept the programming-language community in the 1990s (Morrisett et al.,
1996). Having multi-return function calls allows us to choose between value encodings
and pc encodings, as desired. It is a specific instantiation of a very general and powerful
programming trick: anytime we can find a means of encoding information in the pc, we
have new ways to improve the speed of our programs. Run-time code generation, first-class
functions, and first-class continuations can all be similarly viewed as means of encoding
information in the pc.

Filinski’s continuation/value duality underlies our mechanism; but the mechanism is
nonetheless what provides the distinction to the programmer – a desirable and expressive
distinction.

11.4 C-- weak continuations

Peyton Jones, Ramsey and others have developed a language, C--, intended to act as a
portable, high-level back-end notation for compilers (Ramsey & Peyton Jones, 2000). C--
has a control construct called “weak continuations” which has similarities to the multi-
return mechanism we’ve presented. Weak continuations allow the programmer to name
multiple return points within a procedure body, and then pass these as parameters to a
procedure call. However, there are several distinctions between C--’s weak continuations
and λMR’s multi-ret mechanism.

5 It is also true that the power of a notation lies in its ability to allow decisions to be glossed over or left locally
undetermined.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 579

Weak continuations are denotable, expressible values in the language. They can be
named, and produced as the value of expressions. This makes them a dangerous construct –
it is quite possible to write a C-- program that invokes a control-transfer to a procedure
whose activation frame has already been popped from the stack. (C-- also has a labelled
stack-unwinding mechanism, but this does not seem to permit the tail-recursive passing of
unwind points, so it is not eligible as a general-purpose λMR mechanism.)

There is also a difference of granularity. Languages and compilers based on λ-calculus
representations tend to assume that λ expressions and function-call are very lightweight,
fine-grain mechanisms. Some λ expressions written by the programmer turn into heap-
allocated closures, but others turn into jumps, while still others simply become register-
allocation decisions, and others vanish entirely. Programmers rely on the fact that λ expres-
sions are a general-purpose mechanism that is mapped down to machine code in a variety
of ways, some of which express very fine-grain, lightweight control and environment
structure.
λMR is consistent with this design philosophy. While we have discussed at some length

the implementation of multi-return function calls with multiple stack pointers, it should
be clear from the extended “anchor-pointing” example of Section 7 that the multi-return
facility fits into this picture of function call as a general-purpose control construct. The
translation of a multi-ret procedure call into a machine call instruction, passing multiple
stack pointers, lies at the large-granularity, heavyweight end of the implementation spec-
trum, analogous to the implementation of a λ expression as a heap-allocated closure.

We are advocating more than the pragmatic goal of allowing procedure calls to return
to older frames deeper in the stack. We are advocating extending the general-purpose
programming construct of λ expressions to include multiway branching – a semantic exten-
sion. This is an intermediate point between regular λ-calculus forms and full-blown CPS –
a design point that we feel strikes a nice balance between the multiple goals of power,
expressiveness, analysability and readability.

This distinction between C--’s weak continuations and λMR’s multi-ret construct is not
accidental. Both languages were carefully designed to a purpose. C-- is not intended for hu-
man programming; it is intended for programs produced by compilers. Thus C-- provides
a menu of control constructs for the compiler to use, once it has analysed the source
program and committed to a particular choice for every control transfer in the original
program. Thus, also, C-- is able to export dangerous, unchecked constructs, by pushing
the requirements for safety back to the higher-level language that was used for the original
program. The attraction of λMR’s general mechanism is the attraction of λ: it is a general-
purpose construct that allows for a particular, local use to be implemented in a variety of
ways, depending on surrounding context and other global considerations.

C-- would make a great target for λMR, but the compiler targeting C-- would translate uses
of the λMR multi-return mechanism to a wide array of C-- constructs: if/then/else statements,
loops, gotos, simple function calls . . . and weak continuations.

11.5 FORTRAN

Computational archaeologists may find it of interest that the idea of passing multiple
return points to a function goes back at least as far as FORTRAN 77 (American National

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

580 O. Shivers and D. Fisher

Standards Institute, 1978), which allows subroutines (but not “functions” – the distinction
being that functions return values, while subroutines are called only for effect) to be
passed alternate return points. Note, however, that these subroutines are not reentrant,
the return points cannot be passed to subsequent calls in a tail-recursive manner, and
FORTRAN’s procedure abstractions – subroutine and function, both – are not general, first-
class, expressible values.

12 Conclusion

The multiple-return function call has several attractions:

• It has wide-spectrum applicability, from fine-grain conditional control flow, to large-
scale interprocedural transfers. This spectrum is supported by the simplicity of the
model, which enables optimising transformations to manipulate the control and data
flow of the computation.

• It is not restricted to a small niche of languages. It is as well suited to Pascal or Java
as it is to SML or Scheme.

• It is expressive, allowing the programmer to clearly and efficiently shift between
control and value encodings of a computation. It enables the expression of algorithms
that are difficult to otherwise write with equal efficiency. As we’ve discussed, the
filter function is not the only such example – functional tree traversals, backtrack-
ing search, algorithms for persistent data structures, and LR parsers are all algorithms
that can be expressed succinctly and efficiently with multiple return points. Mul-
tiple return points bring most uses of the general technique of explicit continuation
passing into the realm of the efficient.

• The expressiveness comes with no real implementation cost. The compilation story
for multi-ret function calls has no exotic elements or heavy costs; standard techno-
logy works well. Procedure call frames can still be allocated on a stack; standard
register-allocation techniques work.

• It is a pay-as-you-go feature in terms of implementation. If a language provides
multi-ret function calls, the feature only consumes run-time resources when it is
used – essentially, a pair of registers are required across procedure transfers for each
extra return point used in the linkage.

• It is a pay-as-you-go feature in terms of syntax. Programmers can still write nested
function calls, and the notation only affects the syntax at the points where the feature
is used.

We feel it is a useful linguistic construct both for source-level, human-written program-
ming languages, and compiler internal representations. In short, it is an expressive new
feature that is surprisingly affordable.

Acknowledgements

The Tiger compiler and parser tool we described in Section 9 was implemented, in part, by
Eric Mickley and Shyamsundar Jayaraman, using code written by David Zurow, Lex Spoon
and Dominique Boucher. Matthias Felleisen provided useful discussions on the semantics

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

Multi-return function call 581

and type issues of λMR, as well as its impact on A-normal form. Peter Lee alerted us to
the impact of exceptions on callee-saves register allocation. Chris Okasaki and Ralf Hinze
pointed out entire classes of algorithms where efficient multi-return function call could
be exploited. Zhong Shao and Simon Peyton Jones provided helpful discussions of weak
continuations. Several anonymous reviewers provided thoughtful and detailed comments
that greatly improved the final version of this article.

A Derivation of the anchor-pointing transform

The challenge, from Section 7, is to use the mirror and ret-comp transforms, along with the
basic transforms of η and β reduction we inherit from the standard λ calculus, to derive the
anchor-pointing transform that compilers use to optimise their programs.

We start with

�(%if �(%if a) λ .b λ .c�) d e�.

First, η-expand the leftmost %if to λx.%if x, then apply the mirror transform to this
λ expression and its argument, converting it into a multi-ret form with the λ expression
appearing as the single ret pt:

���(%if a) λ .b λ .c� (λx.%if x)� d e�.

Apply ret-comp to collapse the outer two multi-ret forms together, producing (after a bit of
β-reduction):

��(%if a) λ .b λ .c� λx.�(%if x) d e��.

Once again we can collapse the outer pair of multi-ret forms with ret-comp, which, after a
few more administrative β-reductions to clean up gives us:

�(%if a) λ .�b λx.�(%if x) d e��

λ .�c λx.�(%if x) d e���.

Mirror �b λx.�(%if x) d e�� and β-reduce the resulting redex, which collapses the
subterm down to �(%if b) d e�; likewise for the c arm. This gives us the desired final
term:

�(%if a) λ .�(%if b) d e�

λ .�(%if c) d e��.

References

American National Standards Institute, Inc. (1978) American National Standard Programming
Language FORTRAN. X3.9-1978, April. Available at http://www.fortran.com/F77_std/

rjcnf.html

Appel, A. W. (1992) Compiling with Continuations. Cambridge University Press.

Appel, A. W. (1999) Modern Compiler Implementation in ML. Cambridge University Press.

Baader, F. & Nipkow, T. (1998) Term Rewriting and All That. Cambridge University Press.

Barendregt, H. (1984) The Lambda Calculus. North Holland, revised edition.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

582 O. Shivers and D. Fisher

Biagioni, E., Cline, K., Lee, P., Okasaki, C. & Stone, C. (1997) Safe-for-space threads in Standard
ML. In Proceedings of the Second ACM SIGPLAN Workshop on Continuations (CW’97), Paris.

Church, A. (1941) The Calculi of Lambda-conversion. Annals of Mathematics Studies, Number 6,
Princeton University Press.

Danvy, O. & Goldberg, M. (2005) There and back again. Fundamenta Informaticae, 66(4), 397–413.

DeRemer, F. & Pennello, T. (1982) Efficient computation of LALR(1) look-ahead sets. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(4), 615–649.

Filinksi, A. (1989) Declarative Continuations and Categorical Duality. Master’s thesis, Computer
Science Department, University of Copenhagen (August 1989). DIKU Report 89/11.

Fisher, C. & LeBlanc, R. (1988) Crafting a Compiler. Benjamin Cummings.

Johnson, S. C. (1979) Yacc: Yet another compiler compiler. Tech report CSTR-32, AT&T Bell
Laboratories.

Kelsey, R. (1989) Compilation by Program Transformation. PhD dissertation, Yale University.
Research Report 702, Department of Computer Science.

Kelsey, R. & Hudak, P. (1989) Realistic compilation by program transformation. In Proceedings of
the 16th Annual ACM Symposium on Principles of Programming Languages (POPL).

Kranz, D. (1988) ORBIT: An Optimizing Compiler for Scheme. Ph.D. dissertation, Yale University.
Research Report 632, Department of Computer Science.

Kranz, D., Adams, N., Kelsey, R., Rees, J, Hudak, P. & Philbin, J. (1986) ORBIT: An optimizing
compiler for Scheme. In Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction.
(Published as SIGPLAN Notices, 21(7), 219–233. Association for Computing Machinery.)

Milner, R. (1978) A theory of type polymorphism in programming. Journal of Computer & System
Sciences, 17, 348–375.

Milner, R., Tofte, M., Harper, R. & MacQueen, D. (1997) The Definition of Standard ML (Revised).
MIT Press.

Morrisett, G., Tarditi, D., Cheng, P., Stone, C., Harper, R. & Lee, P. (1986) TIL: A type-directed
optimizing compiler for ML. 1996 SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pp. 181–192. Philadelphia.

Pennello, T. J. (1986) Very fast LR parsing. In Proceedings of the SIGPLAN ’86 Symposium on
Compiler Construction, pp. 145–151.

Ramsey, N. & Peyton Jones, S. (2000) A single intermediate language that supports multiple
implementations of exceptions. Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation (PLDI). SIGPLAN Notices, 35(5), 285–298.

Shao, Z., Reppy, J. H. & Appel, A. W. (1994) Unrolling lists. In Proceedings of the 1994 ACM
Conference on Lisp and Functional Programming (LFP), Orlando, Florida, pp. 185–195.

Shivers, O. (1988) Control-flow analysis in Scheme. In Proceedings of the SIGPLAN ’88 Conference
on Programming Language Design and Implementation (PLDI).

Shivers, O. (1991) Control-Flow Analysis of Higher-Order Languages. Ph.D. dissertation, Carnegie
Mellon University. Technical Report CMU-CS-91-145, School of Computer Science.

Shivers, O. (2003) SRFI-32: Sort libraries. Scheme Request for Implementation 32, July 2002.
Available at URL http://srfi.schemers.org/.

Steele Jr., G. L.(1978) RABBIT: A Compiler for SCHEME. Masters Thesis, MIT AI Lab. Technical
Report 474.

Wand, M. (1987) Complete type inference for simple objects. In Proceedings of the Second
Symposium on Logic in Computer Science, Ithaca, New York, pp. 37–44.

https://doi.org/10.1017/S0956796806006009 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806006009

