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Abstract

We construct a new family of quintic non-Pólya fields with large Pólya groups. We show that the Pólya
number of such a field never exceeds five times the size of its Pólya group. Finally, we show that these
non-Pólya fields are nonmonogenic of field index one.
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1. Introduction

Let K be an algebraic number field and OK be its ring of integers. Let Int(OK) =
{ f ∈ K[X] | f (OK) ⊆ OK} be the ring of integer-valued polynomials on OK . Then the
number field K is said to be a Pólya field if the OK-module Int(OK) has a regular basis,
that is, a basis ( fn) such that for each n ∈ N ∪ {0}, degree ( fn) = n (see [26]). For each
n ∈ N, the leading coefficients of the polynomials in Int(OK) of degree n together with
zero form a fractional ideal of OK , denoted by Jn(K). The following result establishes
a connection between Jn(K) and the Pólya-ness of the number field K.

PROPOSITION 1.1 [1, Proposition II.1.4]. A number field K is a Pólya field if and only
if Jn(K) is principal for every integer n ≥ 1.

It follows immediately from Proposition 1.1 that if the class number of K is one,
then K is a Pólya field. However, the converse is not valid in general. That is, if the
class number hK of K is not one, then we cannot decide whether K is a Pólya field or
not: for instance, every cyclotomic field is a Pólya field (see [26, Proposition 2.6]).

Let Cl(K) denote the ideal class group of K. For each integer n ≥ 1, let [Jn(K)] be
the ideal class in Cl(K) corresponding to the fractional ideal Jn(K). The Pólya group
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Po(K) of K is defined to be the subgroup of Cl(K) generated by the elements [Jn(K)]
in Cl(K). Therefore, K is a Pólya field if and only if Po(K) = {1}.

It is an interesting problem to look for explicit families of number fields that are
Pólya or non-Pólya (for example, see [9, 10, 19, 23]). The classification of Pólya
fields of low degree is of significant interest. Towards this, Zantema [26] completely
characterised quadratic Pólya fields.

PROPOSITION 1.2 [26, Example 3.3]. Let p and q be two distinct odd primes. A
quadratic field Q(

√
d) is a Pólya field if and only if d is of one of the following forms:

(1) d = 2, or d = −1, or d = −2, or d = −p where p ≡ 3 (mod 4), or d = p;
(2) d = 2p, or d = pq where pq ≡ 1 (mod 4) and, in both cases, the fundamental unit

has norm 1 if p ≡ 1 (mod 4).

REMARK 1.3. The classification of quadratic Pólya fields can also be obtained from
Hilbert’s theorems (see [13, Satz 105 and Satz 106]).

Leriche [17] completely classified Galois cubic Pólya fields. In the same article,
Leriche also classified cyclic quartic and cyclic sextic Pólya fields. Moreover, she
obtained similar classifications for some more families of bi-quadratic and sextic
fields (see [17, Theorems 5.1 and 6.2]). Recently, there have been several attempts to
provide families of Pólya and non-Pólya fields in the remaining cases of bi-quadratic
extensions (see [9, 10, 19, 23]). In [3], the authors constructed a new family of totally
real bi-quadratic fields with large Pólya groups.

In this article, we characterise the Pólya-ness of a special family of quintic fields
arising from Lehmer qunitics. For each integer n ∈ Z, the Lehmer quintic fn(x) ∈ Z[x]
is defined by

fn(x) = x5 + n2x4 − (2n3 + 6n2 + 10n + 10)x3 + (n4 + 5n3 + 11n2 + 15n + 5)x2

+ (n3 + 4n2 + 10n + 10)x + 1.

Let θn ∈ C be a root of fn(x) = 0. If we set Kn = Q(θn), then [Kn : Q] = 5 and the fields
Kn are called Lehmer quintic fields [16]. Our main theorem is the following result.

THEOREM 1.4. Let {Kn} be the family of Lehmer quintic fields. If mn = n4 + 5n3 +

15n2 + 25n + 25 is cube free, then:

(1) Kn is a Pólya field if and only if mn is a prime or mn = 25;
(2) Po(Kn) � (Z/5Z)ω(mn)−1, where ω(t) is the number of distinct prime divisors of t.

Moreover, there are infinitely many non-Pólya fields in the family {Kn}.

Let G be a finite group. If m > 1 is an integer, then the m-rank of G is the maximal
integer r such that (Z/mZ)r is a subgroup of G. The following folklore conjecture is
widely believed to be true but it is still open.
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CONJECTURE 1.5 [5, Conjecture 1.1]. Let d > 1 and m > 1 be two integers. Then the
m-rank of the class group of K is unbounded when K runs through the number fields
of degree [K : Q] = d.

It is known that when m = d, or more generally when m | d, this conjecture
follows from class field theory (see [5, Conjecture 1.1]). The following corollary to
Theorem 1.4 gives an alternative and elementary proof of the conjecture for the case
m = d = 5.

COROLLARY 1.6. The 5-ranks of the class groups of the non-Pólya Lehmer quintic
fields Kn are unbounded.

Recall the classical embedding problem: is every number field K contained in a field
L with class number one? In 1964, Golod and Shafarevich [6] gave a negative answer
to this question. The corresponding embedding problem for Pólya fields was confirmed
affirmatively by Leriche [18]. Leriche proved that every number field is contained in a
Pólya field, namely its Hilbert class field (see, [18, Theorem 3.3]).

A minimal Pólya field over K is a field extension L of K which is a Pólya field and
such that no intermediate field K ⊆ M � L is a Pólya field.

DEFINITION 1.7. [18, Definition 6.1] The Pólya number of K is

poK = min{[L : K] | K ⊆ L, L is a Pólya field}.

We study the Pólya number poKn
of the non-Pólya field Kn and obtain an upper

bound for poKn
in terms of the size of the corresponding Pólya group Po(Kn).

THEOREM 1.8. Let Kn be the family of Lehmer quintic fields such that mn is cube-free.
Then poKn

≤ 5|Po(Kn)|.

Let K be a number field and θ ∈ OK be a primitive element. The index [OK : Z[θ]]
is called the index of θ in K and is denoted by I(θ). The index of the number field
K is defined by I(K) = gcd{I(θ) | θ ∈ OK and K = Q(θ)}. If I(K) > 1, then the number
field K is not monogenic, that is, OK � Z[θ] for any θ ∈ K. However, the converse is
not true in general. That is, there exist nonmonogenic number fields K with I(K) = 1.
These are basically fields which are not monogenic, but not for a local reason (see [25]
for more details). In this direction, we prove the following result.

THEOREM 1.9. Let {Kn} be the family of non-Pólya Lehmer quintic fields such that mn
is cube-free. Then Kn is not monogenic and I(Kn) = 1.

In Section 2, we develop some preliminaries required to prove Theorem 1.4.
Section 3 contains the proofs of Theorem 1.4 and Corollary 1.6. In Section 4, we
study the Pólya numbers of Lehmer quintic fields and prove Theorem 1.8. In the
same section, we also study the monogenicity of the non-Pólya number fields Kn and
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give the proof of Theorem 1.9. Finally, in Section 5, we present some computations
performed with SageMath.

2. Preliminaries

In this section, we assume that the number field K is a finite Galois extension of Q
and for any prime number p, we denote the ramification index of p in K/Q by ep.

In [2], Chabert obtained a nice description for the cardinality of Po(K) for cyclic
extensions K/Q.

PROPOSITION 2.1 [2, Corollary 3.11]. Assume that the extension K/Q is cyclic of
degree n.

(1) If K is real and N(O×K) = {1}, then |Po(K)| = (
∏

p ep)/(2n).
(2) In all other cases, |Po(K)| = (

∏
p ep)/n.

When K is a cyclic number field of odd degree, all ramification indices ep are
odd and case (1) of Proposition 2.1 does not occur. We record this in the following
corollary.

COROLLARY 2.2. If K/Q is a cyclic extension of degree n and n is odd, then |Po(K)| =
(
∏

p ep)/n.

Zantema [26, Section 3] showed that Po(K) is the subgroup of Cl(K) generated by
the classes of the ambiguous ideals of K. In other words,

Po(K) = {[a] ∈ Cl(K) : aτ = a for all τ ∈ Gal(K/Q)}.

Next, we state some results on Lehmer quintics and their discriminants. In
[22], Schoof and Washington showed that fn(x) is irreducible for all n ∈ Z and its
discriminant is (n3 + 5n2 + 10n + 7)2(n4 + 5n3 + 15n2 + 25n + 25)4. Let θn ∈ C be a
root of fn(x) = 0. If we set Kn = Q(θn), then Kn is a cyclic field for all n ∈ Z [22,
Theorem 3.5]. We denote the ring of integers of Kn by OKn . Now we recall some results
of Jeannin [15] on the discriminant d(Kn) of Kn.

LEMMA 2.3 [15, Lemme 2.1.1]. All the prime divisors p � 5 of n4 + 5n3 + 15n2 +

25n + 25 satisfy p ≡ 1 (mod 5).

LEMMA 2.4 [15, Théorème 2.2.1]. The discriminant d(Kn) = f (Kn)4, where the
conductor f (Kn) of Kn is given by

f (Kn) = 5b
∏

p≡1 (mod 5)
vp(n4+5n3+15n2+25n+25)�0 (mod 5)

p. (2.1)
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Here vp(k) denotes the exponent of the highest power of the prime p dividing a nonzero
integer k and

b =

⎧⎪⎪⎨⎪⎪⎩
0 if 5 � n,
2 if 5 | n.

(2.2)

We quote the following result due to Erdős [4] which plays a crucial role in the
proof of our main theorem.

THEOREM 2.5 [4, Section 1]. Let f (x) be a polynomial of degree d ≥ 3 whose
coefficients are integers with highest common factor 1 and whose leading coefficient is
positive. Assume that f (x) is not divisible by the (d − 1)th power of a linear polynomial
with integer coefficients. Then there are infinitely many positive integers n for which
f (n) is (d − 1)th power free.

Next we state a deep result on power-free values of polynomials (see [11, 12, 21]).

THEOREM 2.6 [21, Theorem 1]. Let f (x) ∈ Z[x] be an irreducible polynomial of
degree d ≥ 3 and assume that f has no fixed (d − 1)th power prime divisor. Define

N′f (X) = #{p ≤ X : p prime, f (p) is (d − 1)-free}.
Then, for any C > 1,

N′f (X) = c′fπ(X) + OC, f

( X
(log X)C

)
,

as x→ ∞, where

c′f =
∏

p

(
1 − ρ

′(pd−1)
φ(pd−1)

)

and ρ′(d) = #{n (mod d) : (d, n) = 1, d | f (n)}.

Let f (x) be an irreducible polynomial with integral coefficients and f (m) > 0 for
m = 1, 2, . . . . Let ω(m) denote the number of distinct primes dividing m. For primes
p, the following result due to Halberstam [8] determines the distribution of values of
ω( f (p)).

THEOREM 2.7 [8, Theorem 2]. Let f (X) ∈ Z[X] be any nonconstant polynomial. For
all but o(X/log X) primes p ≤ X,

ω( f (p)) = (1 + o(1))log log X.

Now we state some results on the number of integral solutions of a Diophantine
equation of the type

Ym = f (X). (2.3)

When m = 2 and f (x) is a monic quartic polynomial, the following result due to Masser
[20] gives a specific bound for integral points on the curve.
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THEOREM 2.8 [20]. Consider the Diophantine equation Y2 = f (X), where f (X) is a
polynomial of degree four with integer coefficients. Assume that f (X) is monic and its
discriminant is not a perfect square. Then any integer solution (x, y) of the equation
satisfies |x| ≤ 26H( f )3, where H( f ) denotes the maximum of the absolute values of the
coefficients of f (X).

3. Proof of Theorem 1.4

PROOF. We consider the set

P = {n ∈ Z : mn = n4 + 5n3 + 15n2 + 25n + 25 is a cube-free integer}.

For n ∈ P,

mn = 5bAB2. (3.1)

Here b = 0 if n is not divisible by 5 and b = 2 otherwise, and A, B are square-free
natural numbers which are relatively prime and 5 � AB. From Lemma 2.3 and (2.1),

f (Kn) = 5bAB and d(Kn) = (5bAB)4. (3.2)

Since Kn/Q is Galois and of degree 5, we see that for any prime p, the ramification
index ep of p in Kn is given by

ep =

⎧⎪⎪⎨⎪⎪⎩
5 if p | 5AB,
1 otherwise.

Thus, ∏
p

ep = 5ω(d(Kn)) = 5ω(mn). (3.3)

Now from Corollary 2.2,

|Po(Kn)| = 5ω(mn)−1. (3.4)

Thus, for n ∈ P, the Lehmer quintic field Kn is a Pólya field if and only if mn is a
prime or a square of a prime. We claim that mn is a square of a prime if and only if
mn = 25. This claim will prove Theorem 1.4(1). To prove the claim, consider the curve

Y2 = f (X) = X4 + 5X3 + 15X2 + 25X + 25. (3.5)

From Theorem 2.8, any integral solution (x, y) of (3.5) satisfies

|x| ≤ 26 × 253 = 406250.

Using a SageMath program, we find that for x ∈ [−406250, 406250], the only integral
point on the curve Y2 = f (X) is (X, Y) = (0, 5). In other words, mn is not a square for
any nonzero integer n unless mn = 25. This establishes the claim.
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We have Gal(Kn/Q) � Z/5Z. Let σ be a generator of Gal(Kn/Q) and [I] � [1] be
an ambiguous ideal class in Kn. Then

[I]5 = [I][I][I][I][I] = [I][I]σ[I]σ
2
[I]σ

3
[I]σ

4
= [N(I)] = [1],

where N(I) ∈ Q denotes the norm of the ideal I. We conclude that the order of any
nontrivial ambiguous ideal class in the class group of Kn is 5. From the structure
theorem for abelian groups,

Po(Kn) �
(
Z

5Z

)ω(mn)−1
.

This completes the proof of Theorem 1.4(2).
From (3.1), we see that mn cannot be a prime whenever 5 | n. Thus, Kn is a non-Pólya

field whenever n � 0, 5 | n and n ∈ P. Next we show that there are infinitely many such
n. To do this, we show that there are infinitely many k such that m5k is cube-free. Note
that

m5k = (5k)4 + 5(5k)3 + 15(5k)2 + 25(5k) + 25

= 25(25k4 + 25k3 + 15k2 + 5k + 1) = 25g(k). (3.6)

If h(k) = ak + b is a linear polynomial such that h(k)3 | g(k), then for t = −b/a ∈ Q,

g(t) = 0 =⇒ 25t4 + 25t3 + 15t2 + 5t + 1 = 0, (3.7)
g′(t) = 0 =⇒ 100t3 + 75t2 + 30t + 5 = 0, (3.8)
g′′(t) = 0 =⇒ 300t2 + 150t + 30 = 0. (3.9)

This contradicts the fact that t ∈ Q. Thus, from Theorem 2.5, it follows that g(k) is
cube-free for infinitely many k. Since 5 � g(k) for all k, it follows that m5k is cube-free
for infinitely many integers k. This proves that P is an infinite set and completes the
proof of the theorem. �

REMARK 3.1. From the proof of Theorem 1.4, it follows that for any n � 0, the Lehmer
quintic field K5n is non-Pólya whenever m5n is cube-free. However, there are non-Pólya
fields K5n with m5n not being cube-free (see the entry for n = −53 in Table 1).

Conjecturally, there are infinitely many n ∈ Z such that mn is prime and thus the
family {Kn} should have infinitely many Pólya fields. Under the assumption that mn is
cube-free, Theorem 1.4 asserts that there are infinitely many Pólya fields in the family
Kn only if there are infinitely many primes of the form mn.

PROOF OF COROLLARY 1.6. From the above remark, it is enough to find integers
n such that m5n is cube-free and ω(m5n) goes to infinity as n goes to infinity. Let
g(k) = (25k4 + 25k3 + 15k2 + 5k + 1). From Theorem 2.6, for a positive proportion of
primes p, we see that g(p) is cube-free. Consequently, m5p is cube-free for a positive
proportion of prime numbers p. Now, we only consider those primes p such that m5p

is cube-free. There is a positive constant c such that for any large real number X, there
are at least cX/log X many primes. From Theorem 2.7, it follows that ω(m5p) goes to
infinity as p goes to infinity. �
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TABLE 1. Family of non-Pólya fields.

n m5n Cm5n #Po(K5n) n m5n Cm5n #Po(K5n)
−60 7966342525 1 52 1 1775 1 51

−59 7446286775 1 52 2 16775 1 52

−58 6952119275 1 52 3 71275 1 51

−57 6482966275 1 52 4 206525 1 52

−56 6037969025 1 53 5 478775 1 52

−55 5616283775 1 52 6 959275 1 51

−54 5217081775 1 53 7 1734275 1 51

−53 4839549275 1331 52 8 2905025 1 51

−52 4482887525 1 53 9 4587775 1 51

−51 4146312775 1 54 10 6913775 1 53

−50 3829056275 1 53 11 10029275 1 52

−49 3530364275 1 52 12 14095525 1 51

−48 3249498025 1 51 13 19288775 1 52

−47 2985733775 1 53 14 25800275 1 52

−46 2738362775 1 52 15 33836275 1 53

−45 2506691275 1 52 16 43618025 1 52

−44 2290040525 1 52 17 55381775 1 53

−43 2087746775 1 52 18 69378775 1 52

−42 1899161275 1 52 19 85875275 1 51

−41 1723650275 1 52 20 105152525 1 51

−40 1560595025 1 54 21 127506775 1 53

−39 1409391775 1 52 22 153249275 1 52

−38 1269451775 1 52 23 182706275 1 51

−37 1140201275 1 51 24 216219025 1 52

−36 1021081525 1 52 25 254143775 1 53

−35 911548775 1 52 26 296851775 1 52

−34 811074275 1 52 27 344729275 1 53

−33 719144275 1 51 28 398177525 1 52

−32 635260025 1 51 29 457612775 1 51

−31 558937775 1 53 30 523466275 1 52

−30 489708775 1 52 31 596184275 1 52

−29 427119275 1 53 32 676228025 1 52

−28 370730525 1 52 33 764073775 1 51

−27 320118775 1 52 34 860212775 1 52

−26 274875275 1 52 35 965151275 1 53

−25 234606275 1 51 36 1079410525 1 52

−24 198933025 1 53 37 1203526775 1 52

−23 167491775 1 53 38 1338051275 1 53

−22 139933775 1 51 39 1483550275 1 52

Continued
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TABLE 1. Continued.

n m5n Cm5n Po(K5n) n m5n Cm5n Po(K5n)
−21 115925275 1 53 40 1640605025 1 52

−20 95147525 1 53 41 1809811775 1 52

−19 77296775 1 52 42 1991781775 1 53

−18 62084275 1 53 43 2187141275 1 54

−17 49236275 1 52 44 2396531525 1 51

−16 38494025 1 52 45 2620608775 1 52

−15 29613775 1 51 46 2860044275 1 52

−14 22366775 1 52 47 3115524275 1 53

−13 16539275 1 52 48 3387750025 1 53

−12 11932525 1 52 49 3677437775 1 54

−11 8362775 1 51 50 3985318775 1 51

−10 5661275 1 51 51 4312139275 1 51

−9 3674275 1 53 52 4658660525 1 52

−8 2263025 1 52 53 5025658775 1 52

−7 1303775 1 52 54 5413925275 1 52

−6 687775 1 53 55 5824266275 1 53

−5 321275 1 52 56 6257503025 1 53

−4 125525 1 51 57 6714471775 1 53

−3 36775 1 51 58 7196023775 1 52

−2 6275 1 51 59 7703025275 1 53

−1 275 1 51 60 8236357525 1 52

4. Pólya numbers and monogenicity of Lehmer quintic fields

The genus field (respectively, genus field in the narrow sense) of K is the
maximal abelian extension ΓK (respectively, Γ′K) of K which is a compositum of
K with an absolute abelian number field and is unramified over K at all places
(respectively, all finite places) of K. The genus number of K is defined to be the degree
gK = [ΓK : K]. If K is abelian, then Leriche showed that the genus field ΓK is Pólya and
hence

poK ≤ gK , (4.1)

where poK denotes the Pólya number of K. However, Zantema proved that both the
cyclotomic and real cyclotomic fields are Pólya fields [26]. Thus, for abelian number
fields K, if f is the conductor of K and φ( f ) is the value of the Euler totient function,
then

poK ≤
φ( f )

[K : Q]
and poK ≤

φ( f )
2[K : Q]

if K is real. (4.2)
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For the general case, when K is a Galois number field (not necessarily abelian) with
class number hK ,

poK ≤ hK . (4.3)

To prove Theorem 1.8, we need the following result due to Ishida [14] on the genus
number of a cyclic number field of prime degree.

THEOREM 4.1 [14, Theorem 5]. Let K be a cyclic number field of degree q, where q is
an odd prime. If t is the number of primes p such that p is totally ramified in K, then
the genus number gK of K is

gK =

⎧⎪⎪⎨⎪⎪⎩
qt if q is totally ramified in K,
qt−1 otherwise.

PROOF OF THEOREM 1.8. We have already seen in the proof of Theorem 1.4 that
the number of primes p such that p is totally ramified in Kn is ω(mn). Now applying
Theorem 4.1 to the family of number fields Kn,

gKn = 5ω(mn) =⇒ poKn
≤ 5ω(mn). (4.4)

Substituting (3.4) in (4.4),

poKn
≤ 5|Po(Kn)|. �

REMARK 4.2. Generally, poK and Po(K) are mutually independent, but here in the
case of non-Pólya Lehmer quintic fields, we have an unexpected relation.

To prove Theorem 1.9, we need the following result of Gras [7] on the monogenicity
of cyclic number fields of prime degree.

PROPOSITION 4.3 [7, Section 5]. If K is a cyclic number field of prime degree p ≥ 5,
then K is monogenic only if 2p + 1 is prime and it is the maximal real subfield of the
cyclotomic field Q(ζ2p+1).

Lastly, we recall a result of von Zylinski [24].

PROPOSITION 4.4 [24]. If K is a number field of degree n, then I(K) has only prime
divisors p satisfying p < n.

PROOF OF THEOREM 1.9. Let Kn be the family of non-Pólya Lehmer quintic fields.
We know that Gal(Kn/Q) � Z/5Z. From Theorem 1.4,

|Po(Kn)| ≥ 5. (4.5)

Since real cyclotomic fields are Pólya fields, Kn never occurs as the maximal real
subfield of a cyclotomic field. From Proposition 4.3, it follows that Kn is not
monogenic.
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Next, we aim to show I(Kn) = 1 for all nonzero n for which Kn is non-Pólya. We
recall the relation

d(θn) = [I(θn)]2d(Kn). (4.6)

As mentioned earlier,

d(θn) = (n3 + 5n2 + 10n + 7)2(n4 + 5n3 + 15n2 + 25n + 25)4.

From Lemma 2.3, (n4 + 5n3 + 15n2 + 25n + 25) is not divisible by 2 or 3. It is easily
seen that (n3 + 5n2 + 10n + 7) is also not divisible by 2 or 3. Consequently, we
conclude that I(θn) is not divisible by 2 or 3. Now, from the result of Zylinski, it follows
that I(θn) = 1. �

5. Computation

The computations summarised in Table 1 show that there are many non-Pólya fields
in the family K5n. For n ∈ {−60,−59, . . . , 59, 60}, we see that m5n is cube-free with
the only exception occurring at n = −53. For all n in this range, the Pólya group is
nontrivial. In fact, for n = −53, m5n is not cube-free but the field K5n is non-Pólya. In
Table 1, Cm5n denotes the cube part of m5n. We performed the computations using the
SageMath software. The program can be obtained by writing to the authors.
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[4] P. Erdős, ‘Arithmetical properties of polynomials’, J. Lond. Math. Soc. (2) 28 (1953), 416–425.
[5] J. Gillibert and A. Levin, ‘A geometric approach to large class groups: A survey’, in: Class Groups

of Number Fields and Related Topics (eds. K. Chakraborty, A. Hoque and P. Pandey) (Springer,
Singapore, 2020).

[6] E. S. Golod and I. R. Shafarevich, ‘On the class field tower’, Izv. Akad. Nauk 28 (1964), 261–272.
[7] M.-N. Gras, ‘Non monogénéité de l’anneau des entires des extensions cycliques de Q de degré

premier l ≥ 5’, J. Number Theory 23 (1986), 347–353.
[8] H. Halberstam, ‘On the distribution of additive number-theoretic functions. III’, J. Lond. Math. Soc.

(2) 31 (1956), 14–27.

https://doi.org/10.1017/S0004972724000108 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000108


[12] Non-Pólya fields with large Pólya groups 479

[9] B. Heidaryan and A. Rajaei, ‘Biquadratic Pólya fields with only one quadratic Pólya subfield’,
J. Number Theory 143 (2014), 279–285.

[10] B. Heidaryan and A. Rajaei, ‘Some non-Pólya biquadratic fields with low ramification’, Rev. Mat.
Iberoam. 33 (2017), 1037–1044.

[11] H. Helfgott, ‘Power-free values, large deviations and integer points on irrational curves’, J. Théor.
Nombres Bordeaux 19 (2007), 433–472.

[12] H. Helfgott, ‘Power-free values repulsion between points, differing beliefs and the existence of
error’, in: Anatomy of Integers, CRM Proceedings and Lecture Notes, 46 (eds. J.-M. De Koninck,
A. Granville and F. Luca) (American Mathematical Society, Providence, RI, 2008), 81–88.

[13] D. Hilbert, ‘Die Theorie der algebraischen Zahlkörper’, Jahresber. Dtsch. Math.-Ver. 4
(1894–1895), 175–546.

[14] M. Ishida, The Genus Fields of Algebraic Number Fields (Springer, Cham, 1976).
[15] S. Jeannin, ‘Nombre de classes et unités des corps de nombres cycliques quintiques d’E. Lehmer’,

J. Théor. Nombres Bordeaux 8 (1996), 75–92.
[16] E. Lehmer, ‘Connection between Gaussian periods and cyclic units’, Math. Comp. 50 (1988),

535–541.
[17] A. Leriche, ‘Cubic, quartic and sextic Pólya fields’, J. Number Theory 133 (2013), 59–71.
[18] A. Leriche, ‘About the embedding of a number field in a Pólya field’, J. Number Theory 145 (2014),

210–229.
[19] A. Maarefparvar, ‘Pólya group in some real biquadratic fields’, J. Number Theory 228 (2021), 1–7.
[20] D. W. Masser, ‘Polynomial bounds for Diophantine equations’, Amer. Math. Monthly 93 (1986),

486–488.
[21] T. Reuss, ‘Power-free values of polynomials’, Bull. Lond. Math. Soc. 47 (2015), 270–284.
[22] R. Schoof and L. C. Washington, ‘Quintic polynomials and real cyclotomic fields with large class

numbers’, Math. Comp. 50 (1988), 543–556.
[23] C. W.-W. Tougma, ‘Some questions on biquadratic Pólya fields’, J. Number Theory 229 (2021),

386–398.
[24] E. von Zylinski, ‘Zur Theorie der außerwesentlichen Diskriminantenteiler algebraischer Körper’,

Math. Ann. 73(2) (1913), 273–274.
[25] Z. Wolske, Number Fields with Large Minimal Index. Thesis, University of Toronto, 2018.
[26] H. Zantema, ‘Integer valued polynomials over a number field’, Manuscripta Math. 40 (1982),

155–203.

NIMISH KUMAR MAHAPATRA, Department of Mathematical Sciences,
Indian Institute of Science Education and Research, Berhampur, India
e-mail: nimishkm18@iiserbpr.ac.in

PREM PRAKASH PANDEY, Department of Mathematical Sciences,
Indian Institute of Science Education and Research, Berhampur, India
e-mail: premp@iiserbpr.ac.in

https://doi.org/10.1017/S0004972724000108 Published online by Cambridge University Press

mailto:nimishkm18@iiserbpr.ac.in
mailto:premp@iiserbpr.ac.in
https://doi.org/10.1017/S0004972724000108

	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1.4
	4 Pólya numbers and monogenicity of Lehmer quintic fields
	5 Computation

