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Abstract

Teleparallel gravity, an empirically equivalent counterpart to general relativity, represents
the influence of gravity using torsional forces. It raises questions about theory interpretation
and underdetermination. To better understand the torsional forces of teleparallel gravity, we
consider a context in which forces are better understood: classical spacetimes. We propose a
method of incorporating torsion into the classical spacetime context that yields a classical
theory of gravity with a closed temporal metric and spacetime torsion. We then prove a
result analogous to the Trautman degeometrization theorem: that every model of Newton–
Cartan theory gives rise, non-uniquely, to a model of this theory.

1. Introduction
How should we understand gravitational influence?1 In traditional formulations of
Newtonian gravity (NG), gravitational influence is understood as a force. Gravitational
force is mediated by a gravitational potential, which is itself related to the
distribution of matter. This means that, in Newtonian gravity, massive bodies exert
attractive gravitational forces on one another. Our current best theory of gravity,
general relativity (GR), presents a different understanding of gravitational influence.
GR is thought to have taught us that gravitational influence should be properly
understood as a manifestation of spacetime curvature. In particular, massive bodies
curve spacetime and gravitational influence is a manifestation of this curvature. This
means that, unlike the flat spacetime background of traditional Newtonian gravity, GR
posits a curved spacetime that depends dynamically on the distribution of matter.

Interestingly, the lessons of GR can be applied in the non-relativistic context.
It is possible to formulate a non-relativistic (i.e., classical) theory of gravity with
curvature. This theory goes by the name of Newton–Cartan theory (NCT; sometimes
referred to as “geometrized Newtonian gravity”) and, while space is flat in this
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theory, spacetime is curved. The curvature in NCT is dynamically determined by the
matter distribution, and gravitational influences are a manifestation of the curvature
of spacetime. Models of NCT are systematically related to models of GR as well as NG.

The above picture is complicated by the existence of a gravitational theory that is
empirically equivalent to GR, but represents gravitational influence as a force and is
set on a flat spacetime background: teleparallel gravity (TPG). In contrast to NG, the
forces of TPG feature torsion (or spacetime twisting). TPG raises questions regarding
underdetermination and more fundamental conceptual questions: Which theory, GR
or TPG, describes our world?2 How should we understand the torsional forces posited
by TPG? And what is the relation between TPG and the other gravitational theories
mentioned above?

Addressing these questions will be the goal here. We suggest that to better
understand the forces of TPG, a natural place to begin is another gravitational theory
that employs forces, namely, Newtonian gravity. NG, however, is a non-relativistic
theory and gravitational force does not involve torsion. A classical theory of gravity
with torsional forces will prove to be a more informative comparison. Developing
such a theory to address the above questions will be the goal of this paper.

Beyond the motivations already outlined, formulating a classical spacetime theory
with torsion will also have implications for various projects in the physics literature.
There have been proposals for torsional classical theories to describe the fractional
quantum Hall effect (Geracie et al., 2015) and to serve as the lower-dimensional
reductions to five-dimensional (5D) quantum gravity (Christensen et al., 2014;
Bergshoeff et al., 2014; Hartong and Obers, 2015; Afshar et al., 2016; Figueroa-O’Farrill,
2020). Though we will not discuss these projects in detail, we will discuss the classical
spacetimes with torsion that they develop. In so doing, we will trouble one
assumption they share and propose an alternative treatment of time. In particular, it
is widely claimed that a classical spacetime with torsion cannot have a temporal
metric that is closed, in the sense of differential forms. As we discuss, this is not
true—or rather, it holds only in the presence of a further condition that is motivated
only by specific applications of classical spacetimes with torsion.

To build a non-relativistic theory with torsion, we begin with some background on
the theories mentioned above. We then discuss how to incorporate torsion in the non-
relativistic context and what we would expect of such a theory in terms of how it
represents space and time, as well as how it treats sources and forces. We next
consider the relation of the proposed theory to other classical theories with torsion in
the literature. Then, we state and prove a theorem, analogous to Trautman’s (1965)
degeometrization theorem, which establishes that, associated with every model of
NCT, there exists a (non-unique) model of Newtonian gravitation with torsion with
the same mass density and particle trajectories.

2. Background
Let us begin by making the claims of the introduction more precise. As mentioned,
our current best theory of gravity, GR, represents gravitational influence through the

2 This question has also been addressed by Eleanor Knox (2011). Our discussion here is influenced by
her insights about TPG.
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curvature of spacetime. We take a model of that theory to be a pair, M; gab
� �

, where M
is a smooth, connected, four-dimensional, paracompact, Hausdorff manifold, and gab is
a smooth, Lorentz-signature metric on M. As a relativistic theory, GR places an upper
bound on the speed of light. This feature of GR is formalized by the metric, gab, which
determines a light cone structure. Light-like particles (i.e., photons) follow
trajectories along the cone while massive particles follow trajectories that lie inside
the light cones.

In contrast, TPG is set on a flat spacetime background and represents gravitational
influence through forces using torsion. Like GR, TPG is a relativistic theory (it posits a
Lorentz-signature metric) and, as mentioned, TPG is empirically equivalent to GR, at
least locally. We present the formal apparatus for understanding torsion below, but
let us first develop an intuition for it. The torsion tensor characterizes the twisting
of the tangent space as it is parallel transported along a curve. One can imagine
parallel transporting two end-to-end vectors along one other. When the torsion is
vanishing, this procedure yields a parallelogram. However, in spaces with torsion, the
parallelograms break because the vectors do not end up tip-to-tip. As Cai, Capozziello,
De Laurentis, and Saridakis put it:

: : : while in curved spaces considering two bits of geodesics and displacing one
along the other will form an infinitesimal parallelogram, in twisted spaces the
above procedure of displacing one geodesic bit along the other leads to a gap
between the extremities, i.e. the infinitesimal parallelogram breaks. This implies
that in performing the parallel transportation of a vector field in a space with
torsion, an intrinsic length—related to torsion—appears. (2016, 5)

A non-relativistic spacetime (i.e., that of NCT and NG) can, in general, be expressed
as M; ta; hab; r̃

� �
. M is, as before, a smooth, connected, four-dimensional, Hausdorff,

paracompact manifold. The metric of GR, however, is replaced by two degenerate
metrics: the temporal metric, ta, and the spatial metric, hab. These metrics are
orthogonal to one another (i.e., habtb � 0). If the temporal length of a vector is non-
vanishing, we characterize it as “timelike” (else, “spacelike”). Finally, we require
the derivative operator to be metric compatible (r̃atb � 0 and r̃ahbc � 0). These
conditions ensure that the metric and affine structures agree.3

3. A classical gravitational theory with torsion
We now describe the features of a gravitational theory set in (flat) spacetime with
classical metrics and torsion.

3.1. Torsion
We begin with the most pressing issue: how to represent torsion in a classical
spacetime. Since the displacement of vectors along one another is given by the
derivative operator, to derive a theory of gravity with possibly non-vanishing torsion
in the classical context, we must adjust the conditions on our derivative operator. We

3 In GR, the metric uniquely picks out a derivative operator and so it need not be explicitly specified.
Since this is not the case in classical spacetimes, one needs to specify the derivative operator explicitly.
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define a generic (i.e., not specific to the classical context) derivative operator
following Malament’s (2012) conventions but drop the last requirement DO6� �—that
the action of two derivative operators on a scalar field commute—to allow torsion.
This leaves:

Definition. r is a (covariant) derivative operator on M if it satisfies the following
conditions:

(D01) r commutes with addition on tensor fields.
(D02) r satisfies the Leibniz rule with respect to tensor multiplication.
(D03) r commutes with index substitution.
(D04) r commutes with contraction.
(D05) For all smooth scalar fields α and all smooth vector fields ξn, ξnrnα � ξ a� �.

Instead of requiring that r commute in its action on scalar fields D06� �, we set this to
be the torsion tensor.

Definition. Let r be a covariant derivative operator on the manifold M. Then, there exists
a smooth tensor field Tabc, the torsion tensor, which is defined by

2r�arb�α � rarbα � rbraα � Tcabrcα

for all smooth scalar fields α.

Note, from the definition above, that Tabc is anti-symmetric in its lowered indices,
b and c:

Tabc � �Tacb:
As in the torsion-free case, the action of any two (possibly torsional) derivative

operators, r and r̃, can be related by a smooth tensor field Cabc , with the property
that for any smooth vector field ξa, raξ

b � r̃aξ
b � Cbanξn (and likewise for other

tensor fields). In this case we write r � r̃; Cabc
� �

. Unlike in the torsion-free case,
however, this field Cabc need not be symmetric in its lower indices. Instead, we have

2Ca bc� � � Tabc � T̃abc:

3.2. Time and space
We now consider how to represent time and space in a classical spacetime theory with
torsion. As in standard NG, we will assume that spacetime has a temporal metric ta
and spatial metric hab, both of which will be compatible with the possibly torsional
derivative operator r. In standard models of NG, without torsion, it follows from the
compatibility of the temporal metric with the (torsion-free) derivative operator that
ta is closed, i.e., datb � 0, where d is the exterior derivative. This implies that ta is
locally exact, i.e., ta � rat for some smooth time function t. Physically, the availability
of a time function means that we can have a well-defined notion of the temporal
distance between points. Indeed, if M is simply connected, then we will have a global
time function, t : M ! R. This means our spacetime consists of global simultaneity
slices stacked through time, and any two global time functions will differ only in their
assignment of the zero-point for the time scale. Compatibility with a torsional
derivative operator no longer implies that ta is closed in general. However, we will
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assume ta is closed and we will only consider derivative operators compatible with
closed temporal metrics in what follows.

The curvature of a spacetime is formalized by the Riemann curvature tensor.
Intuitively, the Riemann tensor measures the degree to which a vector fails to return
to its original value when parallel transported around a closed loop. More formally, it
measures the degree to which the second covariant derivatives fail to commute. For a
torsion-free spacetime, it is defined as

Rabcdξb � �2r̃�cr̃d�ξa:

In spaces with torsion, we adjust the definition of the Riemann tensor to include
the contribution from the torsion tensor.4 This yields

Rabcdξb � �2r�crd�ξa � Tncdrnξ
a:

There is a valuable formula relating the curvatures of two derivative operators with
torsion. If r � r̃; Cabc

� �
, then

Rabcd � R̃abcd � 2r̃�cCad�b � 2Cp�c bj jC
a
d�p � T̃mcdC

a
mb:

Note that only the torsion of r̃ appears in this equation.
Let us compare the spatiotemporal geometry of NG and NCT. NG posits that space

and time are both flat (i.e., “spacetime is flat”), implying that the Riemann tensor,
Rabcd, vanishes entirely. NCT, by contrast, only requires spatial flatness (i.e., “space is
flat”). We formalize this condition as Rabcd � 0, where indices are raised using hab, and
interpret it as saying that the parallel transport of spacelike vectors in spacelike
directions is, at least locally, path independent.5

To develop a theory most like TPG in the classical context, we will require the
curvature of our spacetime to vanish, Rabcd. This is because TPG is set on a flat
spacetime background, and we are seeking a classical theory analogous to it.

We have not, thus far, placed any constraints on the torsion tensor. Recall that in
NCT, the spatial curvature vanishes. Analogously, we propose that the spatial torsion
of our spacetime vanish (i.e., Tabc � 0). The vanishing of the spatial torsion will yield a
theory like NCT but with torsion, not curvature, encoding gravitational influence.

3.3. Sources and forces
Finally, let us consider how we expect sources to exert (torsional) force in our theory.
It will be instructive to consider the treatment of sources and forces in the non-
torsional, classical context first. In NG, bodies are subject to gravitational forces and
force is mediated by a gravitational potential (φ). The four-velocity, ξa, of a particle
satisfies

� raφ � ξnrnξa; (1)

4 See Jensen (2005) for a derivation, though his sign conventions differ from ours.
5 Often, a stronger condition is adopted in NCT, that Rabcd � 0. Rabcd � 0 is equivalent to Rabcd � 0 if

and only if Rabcd � 0 and there exists a local unit timelike vector field ξa that is rigid and twist-free
(Malament 2012, Proposition 4.3.1). Note that Rabcd � 0 implies that Rabcd � 0 as we can simply raise the
indices: 0 � Rabpqhpchqd � Rabcd).
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where φ is a smooth, scalar field and r denotes the flat, torsion-free derivative
operator of standard NG. The right-hand side of the equation describes the
acceleration that the test point particle undergoes in the presence of the gravitational
potential, φ. The gravitational potential further satisfies Poisson’s equation, relating it
to the distribution of matter,

raraφ � 4πρ; (2)

where ρ is the Newtonian mass density function.
In NCT, like in GR, the curvature of spacetime means that inertial motion is

governed by the geodesic principle: in the absence of external (non-gravitational)
forces, bodies move along the geodesics of (curved) spacetime. The equation of
motion is given as

ξnr̃nξ
a � 0; (3)

where r̃ is the curved derivative operator of NCT.
To account for spatiotemporal curvature, NCT adopts a geometrized form of

Poisson’s equation, relating the distribution of matter to the curvature of spacetime,

Rab � 4πρtatb: (4)

As it turns out, models of NG and NCT are systematically related. The Trautman
geometrization lemma and degeometrization theorem describe these relations. Let us
consider the recovery of models of NG from NCT. This is the direction in which force
terms arise and so it will be instructive in formulating torsional forces. To build up to
the degeometrization theorem, we will first consider the derivative operators of each
theory. One can show that in the non-torsional context, one has the following result.

Proposition 1. (Malament (2012, Proposition 4.1.3)). Let M; ta; hab; r̃
� �

be a classical
spacetime. Let r � r̃; Cabc

� �
be a second derivative operator on M. Then, r is compatible

with ta and hab if and only if Cabc is of the form

Cabc � 2hant�bκc�n;

where κab is a smooth anti-symmetric field on M and the parentheses denote symmetrization.

If we permit derivative operators with torsion, a broader class of derivative
operators are compatible with the classical metrics. We now have the following
generalization of the preceding proposition.

Proposition 2. Let M; ta; hab; r̃
� �

be a classical spacetime with (possibly) non-vanishing
torsion. Let r � r̃; Cabc

� �
be another derivative operator on M also with (possibly) non-

vanishing torsion (i.e., 2Ca bc� � � Tabc � T̃abc). Then r is compatible with ta and hab if and only
if Cabc is of the form

Cabc � 2harκ r bj jc� �:
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If, in addition, we requireT̃abc � Tabc � 0, then

Cabc � 2har xrbtc � yrctb
� �

where xab is an arbitrary smooth tensor field and yrc is any smooth anti-symmetric field.

As we can see, in the presence of torsion, there is considerable freedom to define
metric-compatible derivative operators. Below, we limit our attention to flat, metric-
compatible derivative operators whose torsion has the form Tabc � 2Fa �btc� where Fab
is a smooth rank (1,1) tensor field, spacelike in the a index. This is tantamount to
stipulating that yab in Proposition 2 vanishes. This restriction clearly satisfies the
above-outlined general form and ensures that the spatial torsion vanishes.
Furthermore, as will be seen in the following theorem, we can recover the standard,
torsion-free connecting field assumed for the degeometrization theorem as a special
case of the above.

In describing the difference between the derivative operators, the connecting field
is closely related to the force field that arises in the degeometrization of a model
of NCT. In the torsion-free context, one typically assumes a connecting field of the
form Cabc � tbtcr̃aφ.6 The force term is then just the contracted connecting
field: Carnξrξn � r̃aφ.

To adapt this to the torsional context, we want to consider the connecting field
relating a non-torsional, flat derivative operator to a torsional one. We will capture
the impact of the torsion on the trajectories of test bodies using the above-mentioned
tensor field, Fab. In other words, we want Fab to play the role of a torsional force term.
Given a timelike geodesic of r̃ with unit tangent field ξa, the force equation we expect
to be satisfied is

ξnrnξ
a � ξnr̃nξ

a � Carnξrξn � �Fantcξnξc � �Fanξn; (5)

where r is the derivative operator of our torsional spacetime.
Finally, we want to relate the torsional force term to gravitational sources. In other

words, we want to formulate a field equation that is the torsional analog to Poisson’s
equation. It will turn out to be

δa
nr�nFab� � 2πρtb: (6)

Again, Poisson’s equation will be recovered as a special case of equation (6), but
equation (6) more generally establishes a relation between the first derivative of the
force term and the mass distribution along the temporal direction.

3.4. Comparison with other classical theories with torsion
As mentioned in Section 1, a small number of publications have recently emerged in
physics surrounding torsional classical spacetime theories. Many in this literature are
interested in incorporating torsion in the classical context to address the different
notions of time proposed by GR and quantum gravity (QG): though GR does not admit

6 A connecting field of this form satisfies the more general constraint for the connecting field between
the derivative operators of any two classical spacetime models if we take κcn from above to be t�cr̃n�φ.
That some φ exists with the necessary properties to make this derivative operator flat depends on several
background assumptions that we suppress for reasons of space.
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a global notion of simultaneity, in some formulations, QG does. To resolve this
difference, some authors have proposed taking the notion of time presented in QG as
fundamental and allowing relativistic time to emerge at large distances. Then,
motivated by the holographic principle (i.e., that a volume of space can be thought of
as encoded in the lower-dimensional boundary of that volume),7 this literature
considers 5D QG and its 4D reduction. The holography considered is between Hořava–
Lifshitz gravity and a new theory of classical gravity: twistless torsional Newton–
Cartan (TTNC) theory.8

As noted above, we typically in the classical spacetime context take ta to be closed
(i.e., datb � 0), which means it is locally exact and determines a local time function.
This is a consequence of its compatibility with any torsion-free derivative
operator. We also adopt this assumption in the torsional gravitational theory
developed here.

The TTNC formalism, by contrast, starts with NC theory but claims that taking
@µtν � 0, where @ is a (torsion-free) coordinate derivative operator, will always result
in a torsion-free spacetime. They do not require temporal metrics to be compatible with
any torsion-free derivative operator; more generally, they do not require that ta is
closed. Consider, for instance, the following claim from Christensen and collaborators:
“The boundary geometry becomes Newton–Cartan [i.e., has no torsion] : : : if and only
if τ 0� �a is taken to be closed” (Christensen et al., 2014, 25). For another illustration of
this point, consider the following passage:

The absence of torsion implies that the temporal vielbein9 τµ corresponds to a
closed one-form and that it can be used to define an absolute time in the space–
time : : : TTNC geometry is characterized by the fact that the temporal vielbein
is hypersurface orthogonal but not necessarily closed. (Bergshoeff et al., 2014, 3)

They later elaborate that the conditions under which τµ is closed coincide with
torsion vanishing (pp. 10-11).

In order to derive a hypersurface orthogonal temporal metric, such authors appeal
to Frobenius’ theorem. This allows them to argue that a spacetime admits a foliation
with a time flow orthogonal to the Riemannian spacelike slices if and only if it
satisfies the hypersurface orthogonality condition (i.e., t�a@btc� � 0). Notably, the
“hypersurface orthogonality condition” is a weaker condition than the condition that
the temporal metric be closed.

A series of questions emerge from the above discussion: Why does the TTNC
literature claim that closed temporal metrics, and metric compatibility more
generally, are in tension with torsion? And how does the theory described above

7 The projects in this literature are also sometimes motivated as attempts to find further holographic
correspondences beyond the AdS/CFT correspondence (see Christensen et al. (2014, 1)).

8 The first paper developing this theory was Christensen et al. (2014). A slew of others followed,
including Christensen et al. (2014); Bergshoeff et al. (2014); Hartong and Obers (2015); Afshar et al. (2016);
Figueroa-O’Farrill (2020).

9 It is common to see formulations of classical gravity with torsion presented with the vielbein
formalism typical of presentations of TPG. One can simply think of the temporal vielbein here as the
temporal metric.
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incorporate torsion and a closed temporal metric, and thus a notion of absolute time?
The answers lie in the form of the connection assumed by the TTNC literature.

Geracie and collaborators define a spacetime derivative operator r � @;Γa
bc� �,

where they require the form of the connecting field Γa
bc to be

Γa
bc � va@btc �

1
2
han @bĥcn � @cĥbn � @nĥbc

� �
;

where va is a unit timelike field, and ĥab is a spatial projection field determined by va

such that hanĥnb � δab � vatb (2015, equation (77)).10 This definition is motivated by
the standard definition of a Levi-Civita derivative operator, and the terms in the
parentheses are always symmetric in b; c. It follows that the torsion is given by
Tabc � 2Γa

bc� � � 2va@�btc� (see, e.g., Geracie et al., 2015, equation (79)). (Indeed, the
name “twistless torsional NCT,” then, comes from the fact that torsion vanishes on
spacelike hypersurfaces but not in general.)

And so it is true that if ta is closed, the torsion of this derivative operator would
vanish. However, this is only because they have adopted such a strict definition for their
connection. Put differently, their connection ensures that the only way to allow torsion
is to sacrifice having a closed temporal metric. But there are many other torsional
derivative operators that are compatible with a closed temporal metric. Once we
allow for a broader class of connections, as is done in the present paper, we recover
metric compatibility and a notion of absolute time.

Classical spacetimes with torsion have also been the subject of philosophical
analysis. In particular, James Read and Nicholas Teh (2018) have developed a method
for “teleparallelizing” in the classical context. A central aim of their project is to show
the relation between this classical theory and its relativistic counterpart, TPG. They
begin with NCT and teleparallelize to construct a classical spacetime with torsion. Their
procedure involves a “mass torsion” term that plays the role of a force.11 Contrary to
the results derived in the present paper, they claim their teleparallelization method
yields standard NG. Their proposal is interesting in its own right. However, we would
argue that the spacetime developed in the present paper, in so far as it features
spacetime torsion instead of mass torsion, is a stronger analog to a classical TPG.

4. Degeometrization with torsion
We now state and prove a theorem analogous to the Trautman degeometrization
theorem. This result establishes that for every model of NCT there is a corresponding
model of the classical analog to TPG described above.

Theorem. Let M; ta; hab; r̃
� �

be a classical spacetime (without torsion) satisfying

R̃ab � 4πρtbtc; (7)

10 We have translated their formalism to match our notation.
11 For a more recent project along these lines, see Schwartz (2023). Schwartz’s main aim is to

formulate a large-speed-of-light limit of TPG but, as part of this project, he formulates a torsional
classical theory. He generalizes Read and Teh’s results beyond the gauge-fixed situation they consider.
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R̃abcd � 0; (8)

for some smooth scalar field ρ. Then, given any point p in M, there is an open set O containing p
and a pair r; Fab� � on O, where r is a derivative operator and Fab is a smooth rank (1,1) tensor
field, which together satisfy the following conditions:

(i) r is compatible with ta and hab;
(ii) r is flat;
(iii) r has torsion Tabc � 2Fa �btc�;
(iv) For all timelike curves with unit tangent field ξa, ξnr̃nξ

a � 0 if and only if
ξnrnξ

a � �Fanξn; and
(v) ra; Fab� � together satisfy the field equations δnar�nFab� � 2πρtb.

The pair r; Fab� � is not unique. Moreover, there exist pairs r; Fab� �, satisfying the conditions
above, for which the torsion is non-vanishing.

Proof. Existence follows from the Trautman degeometrization theorem (Malament,
2012, Proposition 4.2.5). Fix any classical spacetime M; ta; hab; r̃

� �
satisfying R̃abcd � 0

and R̃ab � 4πρtatb for some smooth scalar field ρ. Choose a point p and a rigid and
twist-free field ηa defined on some neighborhood of p, and let ϕa � ηnr̃nη

a be the
acceleration field associated with ηa. Then the pair r; Fab� �, where Fab � ϕatb and
r � r̃; Fabtc

� �
, satisfies conditions (i)–(v), with torsion Tabc � 2ϕat�btc� � 0, by

arguments given in Malament’s proof. Indeed, in this case the field equation
δnar�nFab� � 2πtb reduces to

2πtb �
1
2
δna rnϕ

atb � rbϕ
atn� � � 1

2
tbraϕ

a;

and the resulting structure is a model of ordinary NG with gravitational field ϕa. (If
one assumed further that R̃abcd � R̃cdab, one could conclude that ϕa � raϕ for some
smooth scalar field ϕ, possibly on a subneighborhood of O.)

Non-uniqueness also follows from the Trautman degeometrization theorem. We
wish to show, however, that there exist pairs r; Fab� � satisfying conditions (i)–(v) with
non-vanishing torsion. We do so by direct construction. Let r � r̃; ϕatbtc

� �
be the flat

derivative operator (without torsion) considered above. Choose any spacelike vector
xa at p, and extend it to a neighborhood of p by parallel transport via r.
Finally, let ψ be any smooth scalar field defined near p whose gradient is non-
vanishing, spacelike, and normal to xa. Now define F̂ab � xarbψ and F̌ab � ϕatb � F̂ab.
Then the pair ř; F̌ab

� �
, where ř � r; F̂abtc

� �
, satisfies conditions (i)–(v) with torsion

Tabc � 2xat�crb�ψ≠ 0.
To see that (i) is satisfied, observe that řatb � tnF̌natb � 0; and

řahbc � Fbatnhnc � Fcatnhbn � 0. For (ii), note that since r is flat and torsion-free,
and xa is constant with respect to r, we have

Řabcd � 2xatbr�crd�ψ� 2xptpxatbr�cψrd�ψ � 0;

where the first term vanishes because r is torsion-free and the second because xa is
spacelike. (iii) follows from the definition of ř and the fact that r is torsion-free.
(iv) follows because, for all unit timelike vector fields ξa,
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ξnr̃nξ
a � 0 , ξnrnξ

a � �Fanξn , ξnřnξ
a � �ϕa � F̂anξn � �F̌anξn:

Finally, (v) is satisfied because

δnař�nFab� � δnař�n ϕatb� � xarb�ψ
� � � 2πρtb � δnař�nxařb�ψ�

� 2πρtb � xnř�nřb�ψ � 2πρtb �
1
2
xnTanbřaψ

� 2πρtb � xnxat�brn�ψřaψ � 2πρtb;

where in the first equality we use the facts that 0 � raxb � řaxb � F̂batbxb � řaxb

and that r and ř agree on scalar fields (because all derivative operators do); while in
the final equality we use the fact that řaψ is normal to xa. □

5. Discussion
The general proof strategy is to leverage the original Trautman degeometrization
theorem results. We show that NG can be recovered as a special (torsion-free) case of
the theorem presented above. By broadening the class of allowed derivative
operators, the non-uniqueness results establish the possibility of a classical spacetime
with non-vanishing torsion.

There are some important differences between our result and the Trautman
theorem. We do not give necessary and sufficient conditions to construct new
pairs r; Fab� � from old ones satisfying (i)–(v). This is because, unlike the situation
with vanishing torsion, the derivative operators associated with models of the
torsional theory (for some model of NCT) do not appear to form an affine space.
Nonetheless, we are able to establish the non-uniqueness of torsional models, and
we give a general strategy for constructing alternative models with torsion
associated with a given model of NCT. It would be interesting to provide a
complete description of this space.

We also do not require our model of NCT to satisfy Rabcd � Rcdab, as the Trautman
theorem does. This is because the role of that condition is to ensure that a certain
field ϕa is closed, and therefore locally exact. We do not invoke that field in the result,
and so we drop the condition. In that sense, we generalize the Trautman theorem.
Finally, we note that more general versions of the theory (and theorem) discussed
here are almost certainly possible. For instance, one might consider force fields for
which yab from Proposition 2 is non-vanishing, among other variations (Malament,
2012, cf. Section 4.5).
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