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CONDITIONS FOR THE UNIQUENESS OF THE FIXED 
POINT IN KAKUTANI'S THEOREM 

BY 

H E L G A S C H I R M E R 

ABSTRACT. Kakutani's Theorem states that every point convex and 
use multifunction <f> defined on a compact and convex set in a 
Euclidean space has at least one fixed point. Some necessary condi­
tions are given here which <f> must satisfy if c is the unique fixed 
point of 4>. It is e.g. shown that if the width of <f>(c) is greater than 
zero, then <f> cannot be lsc at c, and if in addition c lies on the 
boundary of <f>(c), then there exists a sequence {xk} which converges 
to c and for which the width of the sets <f>(xk) converges to zero. If 
the width of <f>(c) is zero, then the width of <{>(xk) converges to zero 
whenever the sequence {xk} converges to c, but in this case <f> can be 
lsc at c. 

1. Introduction. Let C be a compact and convex set contained in a Eucli­
dean space, and <f> : C -» C be a point convex and upper semi-continuous 
multifunction. Then Kakutani's fixed point theorem [7] asserts that <f> has a 
fixed point, i.e. a point c with c e <j)(c). This theorem has important applica­
tions, in particular in game theory and mathematical economics, and hence the 
question is of interest whether the existing fixed point is also unique. Usually 
this is not the case. 

Sufficient conditions which <\> must satisfy in order to have a unique fixed 
point are hardly feasable without severe restrictions on <t>, as they do not even 
exist if </> is single-valued. But we give here several necessary conditions which 
<f> must satisfy if c is the unique (or even an isolated) fixed point of <f>« They are 
local in character, and are concerned with the possible lower semicontinuity of 
<f>, and the width of the images of <f>, near the fixed point c. Theorems 1 and 2 
deal with the case where the width of </>(c) is greater than zero, and Theorem 3 
deals with the case where it is zero. The first two theorems are related to 
results by O. H. Hamilton [6], but they neither imply them, nor are they 
implied by them. 
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Examples are given which show that these theorems cannot be sharpened 
into a result which covers all cases in a uniform way, and some open problems 
are stated at the end. 

2. Results. A multifunction 4> : X - » Y from a space X to a space Y is a 
correspondence which assigns to each point x e X a non-empty set <\>{x) in Y. 
As all multifunctions in this paper satisfy continuity conditions, and as the 
definitions of the various types of continuity for multifunctions differ in the 
literature, we give the definitions used here. 

DEFINITION 1. Let X and Y be topological spaces and 4> :X—» Y be a 

multifunction. 
(i) <$> is called upper semicontinuous (use) at the point x eX if </>(x) is closed, 

and if for every open V in Y with <t>(x)c: V there exists an open neighbour­
hood U of x with <f>(U)c:V. <f> is called use if it is use at every point. 

(ii) <f) is called lower semicontinuous (lsc) at the point x e X if for every open 
V in Y with <f>(x)n V ^ 0 there exists an open neighbourhood U of x with 
</>(*') H V ^ 0 for every x'eU. <f> is called lsc if it is lsc at every point. 

Note that our definition of use is not the same as the one given in Kakutani 
[7], but it is equivalent. See e.g. [1], pp. 109-112. 

The letter C will always denote a compact and convex set contained in a 
Euclidean space E, and we assume that C and E have the same (linear) 
dimension. If A c C, then CIA and CLEA are used for the closure of A in C 
resp. in E, and Int and Bd are used analogously for the interior and the 
boundary. The fixed point set {x e C | x e <t>(x)} of the multifunction <\> : C->C 
is denoted by Fix 4>. 

We now give some necessary conditions which arise if the point convex and 
use multifunction <f> : C-+C has a fixed point which is unique. In the first 
result we only require that c is an isolated fixed point, i.e. that there exists a 
neighbourhood U(c) of c with CJU(c) H Fix <£> ={c}. 

THEOREM 1. Let <$> : C—» C be a point convex and use multifunction. If c is 
an isolated fixed point and if c e In t E <£(c), then <f> is not lsc at c. 

Proof. Let d be the Euclidean metric and N(c, e) = {xeC\d(x,c)<e}. 
Determine e > 0 so that N(c, s)^<f>(c). If n denotes the dimension of C and 
conv the convex hull, then we can select points x1? x2,. • . , *Vi+i in N(c, e)\{c} 
for which 

N(c, 8) c conv{x1? x 2 , . . . , x ^ } c N(c, e) 

for some 0 < 8 < e. For each i = 1, 2 , . . . , n + 1 there exists a neighbourhood 
V(Xi) of Xj, open in C, so that 

N(c, 8/2) c conv{y1? y 2 , . . . , yn+1} 

whenever yt e V(Xi) for i = 1 , 2 , . . . , n + 1 . 
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Now assume, by way of contradiction, that <\> is lsc at c. Then there exist 
neighbourhoods Ut(c), open in C, with <^(x)n V ( x e ) ^ 0 for all xe Ut(c). Let 

U(c) = N(c, 8l2)n[n(Ut(c) I i = 1 ,2 , . . . , n + 1)]. 

Then JC G (7(C) implies the existence of points yt = yi(x)e<f>(x) H V(Xj), and as 
<£(x) is convex, we have 

N(c, 8/2) c conv{y1? y 2 , . . . , yn+1}c: </>(*). 

But U(c)^N(c,8/2), hence X G $ ( X ) for all xeU(c), and c cannot be an 
isolated fixed point. 

Next we consider the case where c^ IntE <£>(c), but where still IntE <t>(c) ± 0. 
This is equivalent to the assumption that w</>(c)>0, where w denotes the width 
of the compact and convex set 4>(c). (See [8], p. 157.) In this case we shall 
require that c is not only isolated, but essential according to Definition 3, 
which is modelled on the definition of an essential fixed point class. (See e.g. 
[2], p. 87.) Note that this definition does unfortunately not coincide, in the 
single-valued case, with the definition proposed by M. K. Fort, Jr. [4]. 

DEFINITION 2. (i) Let <£>, $ : C —» C be two point convex and use multifunc-
tions and I = [0,1] the unit interval. We say that <f> and ij/ are homotopic, and 
write <t>~il/, if there exists a point convex and use multifunction <I> : C x I —» C 
with $(x, 0) = <f)(x) and <ï>(x, 1) = i/f(x) for all xeC. Then <E> is called a homotopy 
from ct> to \if. 

(ii) If A <= C and <£(a) = \{f{a) for all a G A, then we say that <\> is homotopic 
to if/ relative A, and write <£> ~ i/r rel A, if there exists a homotopy $ from <£> to ^ 
such that <I>(a, t) = <£(a) = *Ma) for all a G A and f G I. 

DEFINITION 3. Let <f> : C—» C be a point convex and use multifunction and c 
be an isolated fixed point of </>. We say that c is an inessential fixed point if for 
every open neighbourhood U(c) with Fix <£ fl ClU(c) = {c} there exists a point 
convex and use multifunction i/f : C —» C so that 

(i) <Mx) = <M*) for all xeC\U(c), 
(ii) <fr~^relC\ t / (c) , 

(iii) F i x ^ n C I l / ( c ) = 0. 
Otherwise we say that c is an essential fixed point. 

THEOREM 2. Let <\> : C —» C be a point convex and use multifunction. If c is an 
essential fixed point of </>, if w<t>(c)>0 and ceBdE <f>(c), then <f> is not lsc at c, 
and there exists a sequence {xk} converging to c so that {w<f>(xk)} converges to 
zero. 

Proof, (i) We shall first show that there exists a sequence {xk} with the 
desired properties. This is clearly the case if we can show that for every positive 
integer k the open ball N(c, 1/k) contains a point xk with w</>(xk)<l/k. 

https://doi.org/10.4153/CMB-1981-053-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1981-053-5


354 H. SCHIRMER [September 

Assume by way of contradiction that for some fc0 G N+ we have w<f>{x) > l/fc0 

for all x e N(c, l/k0). We shall show that then c is inessential. For this purpose, 
let t/i(c) be any open neighbourhood of c with Fix <\> fl ClUx(c) = {c}. As 4> is 
use, there exists an open neighbourhood U2(c) with <t>(U2(c))ciN(<l>(c)9^k0)9 

where 

N(<f>(c),\kQ) = {xeC\ d(x, <f>(c))<èfc0}. 

Now let H be a support hyperplane of <t>(c) at c, and H' the hyperplane which 
is parallel to H, intersects 4>{c), and is at the distance m =min{wc/>(c)/2, |fc0} 
from H. The Euclidean space E containing C is divided by H' into two closed 
half spaces Ec and Ec~; let Ec be the one which contains c. With U(c) = 
U1(c)nU2(c)nN(c, l/fe0) define a multifunction \\f : C - » C by 

, N U ( x ) H E c - if x G [7(c), 

\ct>(x) if x£ 17(c). 

We first show that if/ is well defined, i.e. that i/f(x) 7̂  0 for all xeC. If 
x G C \ 17(c), this is obvious; if x = c, then wc^(c) > m implies ifj(c) = 
( ( ) (c )nE c ~^0. If x e [7(c)\{c}, then <£(x) is contained in the parallel set 

NE(<t>(c)Ako) = {xeE I d(x, ^>(c))<ifc0}. 

But the width of the compact and convex set NE(<f>(c),^k0)C)Ec is < m +5^0 < 
l/fc0, and thus w<£(x)>l/k0 implies il/(x) = 4>(x)nEc~j=0. 

$ is point convex. As the multifunction <f>' : C —» C given by 

., . { C n F - if x e 17(c), 

* ( X ) = 1C if x^ 17(c) 

is clearly use, and as ijj = <\> H <£', we see that $ is also use ([1], pp. 111-112). 
In order to see that <f> ~ \\f rel C \ 17(c), let H" be the support hyperplane of 

NE(<f)(c), ifc0) which is parallel to H and for which H lies between Hf and H". 
For 0 < f < 1, let Ht be the hyperplane between H' and H" which is parallel to 
H and whose distance from H" is d(H t, H") = f • d(H', H"). Define E? and E p 
correspondingly to Ec and Ec~ (i.e. so that Ec~~<^Ec

t~ for all t), and let 
<£t : C -> C be given by 

> ( x ) n £ r if x G 17(c), 

^ ( * ) : |>(x) if XJÉ 17(c). 

Then the multifunction <I> : C x I -» C defined by <ï>(x, t) = <f>t(x) for all x G C and 
t G I provides a homotopy rel C \ 17(c) between <t>o = <f> and c^ = i/f. As Fix ip c 
Fix <£>\{c}, we have Fix ^ H CI [7(c) = 0, and c is inessential in contradiction to 
the assumptions of Theorem 2. 

(ii) We now show that <j> cannot be lsc at c. As w<£(c)>0, there exist points 
x l5 x 2 , . . . , xn + 1 in <f>(c) (where again n is the dimension of C) for which 
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conv{x1? x 2 , . . . , Xn+x} has a width which is greater than zero. Let V(xt) be open 
neighbourhoods of Xi so that yt e Vfe) implies that w conv{y1? y 2 , . . . , y„+i}^ 
w 0 > 0 , for some constant w0. We now proceed again indirectly, and assume 
that <f> is lsc at c. As V(xi)n^>(c)7^0, there exist open neighbourhoods 
Ui(c) with <f>(x)nV(xi)j=0 for all xeUt(c). Hence if xeO(c) = 
n{Ut(c) I i = 1, 2 , . . . , n +1}, then there exist points yf G V(XJ) fl </>(*) for all 
i = 1 ,2 , . . . , n + 1, and as (j>(x) is convex, conv{y1? y 2 , . . . , yn+1}<^<f>(x). So 
w<^(x)>wo>0 for all x G 0(c), contradicting the existence of a sequence {xk} 
converging to c for which {w<f>(xk)} converges to zero. 

If the fixed point of <f> : C-+C is unique, then it is clearly isolated and 
essential. Hence we can summarise Theorems 1 and 2 as follows. 

COROLLARY. Let 4> : C —» C be a point convex and use multifunction. If c is 
the unique fixed point of <$> and if w<f>(c)>0, then 4> is not lsc at c, and if in 
addition ceBdE<£>(c), then there exists a sequence {xk} converging to c so that 
{w<f)(xk)} converges to zero. 

It remains to consider the case where wc/>(c) = 0. 

THEOREM 3. Let <f) : C —» Cbe a point convex and use multifunction. If c is an 
isolated fixed point of 4> and wcj>(c) = 0, then {w<f)(xk)} converges to zero for every 
sequence {xk} converging to c. 

Proof. Let {xk} converge to c, and e > 0 . As <f> is use, there exists an open 
neighbourhood U(c) with 4>(U(c))ciN(4>(c)9el2)cNE(4>(c)9 e/2), and as {xk} 
converges to c, there exists a k0eN+ with xk e U(c) for all k >k 0 . Now 
W(f>(c) = 0 implies wNE(<j)(c), e/2)) = e, hence w<£>(xk)<£ for all fe>fc0, and 
Theorem 3 holds. 

3. Remarks. We give here some examples to show that the conclusions in 
Theorems 1, 2 and 3 cannot be strengthened, and the assumptions in Theorem 
2 cannot be weakened, to give the same result in all cases. 

EXAMPLE 1. There exists a multifunction which satisfies all assumptions of 
Theorem 1 but not all conclusions of Theorem 2. For let the multifunction <£>! 
be defined on the interval [—1,1] by 

f [ U ] « - 1 ^ * < 0 , 

<M*) = J[-1,1] if * = 0, 
[ [ -1 ,4 ] if 0<x<l . 

$ ! is use, point convex, and has 0 as an essential fixed point situated in the 
interior of <£i(0). It is not lsc at 0, but {wc^:^)} converges to \ for every 
sequence {xk} which converges to 0. 

https://doi.org/10.4153/CMB-1981-053-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1981-053-5


356 H. SCHIRMER [September 

EXAMPLE 2. There exists a multifunction <f>2 which satisfies all assumptions of 
Theorem 3 but which is lsc at an isolated fixed point. For let the multifunction 
</>2 be defined on the interval [—1,1] by 

f [ 0 , - x ] if - l < x < 0 , 

<f>2(x) = <{0} if x = 0, 

[ [ - x , 0 ] if 0 < x < l . 

<j>2 is again use and point convex, 0 is its unique fixed point, and w<f>2(0) = 0. 
But <j>2 is lsc at 0. 

EXAMPLE 3. There exists a multifunction which satisfies all assumptions of 
Theorem 2 apart from the fact that the fixed point c is only isolated but not 
essential, and for which both conclusions of Theorem 2 are false. For let the 
multifunction <f>3 be defined on the interval [—1,1] by 

f[(3, 

"l[(x-

. , , JLVJx + l ) / 2 , l ] if - l < x < 0 , 

; + l ) / 2 , l ] if 0 < x < l . 

Then <f>3 is use and point convex. It has two isolated fixed points at x = — 1 and 
x = 1, of which the first is inessential and the second essential. It is lsc at — 1, 
and {wc£>3(xk)} converges to 2 for every sequence {xk} which converges to - 1 . 

4. Some open questions. Let diam A denote the diameter of A. If A is 
compact and convex, then diam A > wA, hence we have 

PROBLEM 1. Can, in Theorems 2 and 3, and under the same assumptions, 
w<t>(xk) be replaced by diam c£>(xk)? 

We give a partial, negative, result in this direction, using the dimension 
dim</>(c) of <£(c). Note that diam<£>(c) = 0 is equivalent to dim<£(c) = 0, and 
w<£(c) = 0 is equivalent to dim <£(c)<n, if again C is M-dimensional and 
contained in an n-dimensional Euclidean space. 

PROPOSITION. Let <j> : C —» C be a point convex and use multifunction. If 
diam (f>(c) = r, where 0 < r < n, and if <fr is lsc at c, then there exists no sequence 
{xk} which converges to c and for which {diam <£>(xk)} converges to 0. 

Proof. If dim cj>(c) = r, then there exist points xl9 x 2 , . . . , xr+1 in <j>(c) which 
span an r-simplex. Analogous to part (ii) of the proof of Theorem 2 we can find 
an open neighbourhood 0(c) = fl {171(c) | i = 1 ,2 , . . . , r + 1} so that x e 0(c) 
implies the existence of points yl9 y 2 , . . . , yr+i with conv{y1? y 2 , . . . , yr+i}c= 
<f)(x) and diamconv{y1? y 2 , . . . , yr+1}^do>0 for some constant d0, and thus 
prove the Proposition. 

Therefore w<£(xk) cannot be replaced by diam<£(xk) in Theorem 3 if the 
answer to the next question is positive. 
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PROBLEM 2. Does there exist a point convex and use multifunction <f) : C —» 
C which has an isolated fixed point c with 0<d im <£>(c)<dim C and which is 
lsc at c? 

Finally we note that Kakutani's theorem has been extended to compact and 
convex sets C contained in locally convex topological linear spaces by K. Fan 
[3] and I. L. Glicksberg [5]. (See also [1], p. 251.) This gives rise to the next 
question. 

PROBLEM 3. How can the results of Theorems 1, 2 and 3 be extended to the 
case where C is a compact and convex subset of a locally convex topological 
linear space? 
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