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Alexandrov’s estimate revisited
Charles J. K. Griffin, Kennedy Obinna Idu, and Robert L. Jerrard
Abstract. Alexandrov’s estimate states that if Ω is a bounded open convex domain in R

n and
u ∶ Ω̄ → R is a convex solution of the Monge-Ampère equation det D2u = f that vanishes on ∂Ω,
then

∣u(x) − u(y)∣ ≤ ω(∣x − y∣)(∫
Ω

f )1/n for ω(δ) = Cn diam(Ω)
n−1

n δ1/n .

We establish a variety of improvements of this, depending on the geometry of ∂Ω. For example,
we show that if the curvature is bounded away from 0, then the estimate remains valid if ω(δ) is
replaced by CΩ δ

1
2
+ 1

2n . We determine the sharp constant CΩ when n = 2, and when n ≥ 3 and ∂Ω is
C2 , we determine the sharp asymptotics of the optimal modulus of continuity ωΩ(δ) as δ → 0. For
arbitrary convex domains, we characterize the scaling of the optimal modulus ωΩ . Our results imply
in particular that unless ∂Ω has a flat spot, ωΩ(δ) = o(δ1/n) as δ → 0, and under very mild nonde-
generacy conditions, they yield the improved Hölder estimate, ωΩ(δ) ≤ Cδα for some α > 1/n.

1 Introduction

Alexandrov’s estimate states that if Ω is a bounded open convex domain in R
n , and

u ∶ Ω̄ → R is a convex function such that u = 0 on ∂Ω, then there exists a constant Cn
such that

[u]1/n ≤ Cn diam(Ω) n−1
n ∣∂u(Ω)∣ 1

n .(1.1)

Here,

[u]α ∶= sup
x , y∈Ω,x≠y

∣u(x) − u(y)∣
∣x − y∣α ,(1.2)

and ∂u denotes the subgradient of u, whose definition is recalled in (2.1). For now, we
just mention that if u is C2, then ∣∂u(Ω)∣ = ∥det D2u∥L1(Ω).

Estimate (1.1) plays an important role in the regularity theory of the Monge-Ampère
equation (see, for example [4, 2]), and it is a key ingredient in some basic linear elliptic
PDE estimates (see, for example, [3], Chapter 9).

In this paper, we establish some improvements of (1.1). Before stating them, we
introduce some notation. We will write

Ccon
0 (Ω̄) ∶= {u ∈ C(Ω̄) ∶ u is convex, u = 0 on ∂Ω}
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2 C. J. K. Griffin, K. Obinna Idu, and R. L. Jerrard

and

ωΩ(δ) ∶= sup{∣u(x) − u(y)∣
∣∂u(Ω)∣1/n ∶ u ∈ Ccon

0 (Ω̄), u nonzero, x , y ∈ Ω̄, ∣x − y∣ ≤ δ} .

(1.3)

The definition immediately implies that for every u ∈ Ccon
0 (Ω̄),

[u]ωΩ ∶= sup
x , y∈Ω,x≠y

∣u(x) − u(y)∣
ωΩ(∣x − y∣) ≤ ∣∂u(Ω)∣1/n(1.4)

and that this is sharp in that it fails for some u ∈ Ccon
0 (Ω̄) if ωΩ is replaced by

any smaller function. With this notation, Alexandrov’s estimate (1.1) amounts to the
assertion that ωΩ(δ) ≤ C(Ω)δ1/n for all δ > 0.

In this paper, we give a precise description of ωΩ , depending on the geometry of
∂Ω. This allows us to show that for any bounded, convex domain Ω whose boundary
satisfies a very weak nondegeneracy condition (see (1.12)), there exists some α > 1/n
such that ωΩ(δ) ≤ C(Ω, α)δα for all δ > 0 or, in other words, that

[u]α ≤ C(α, Ω)∣∂u(Ω)∣ 1
n for all u ∈ Ccon

0 (Ω̄).(1.5)

Beyond that, we aim to characterize the range of α for which an estimate like the above
holds and to estimate the optimal constant C(α, Ω) in (1.5), in terms of the geometry
of ∂Ω.

Our first result addresses domains for which the Gaussian curvature κ of the
boundary satisfies

inf
∂Ω

κ = κ0 > 0.(1.6)

Except where stated otherwise, we do not impose any smoothness conditions beyond
those that follow from convexity, which imply that ∂Ω is twice differentiable, and
hence, the Gaussian curvature is defined, Hn−1 a.e.. The left-hand side of (1.6) should
be understood to mean the infimum over all points at which κ is defined.

Theorem 1.1 Assume that Ω ⊂ R
n is convex and bounded and that (1.6) holds. Let

α∗ ∶= 1
2 +

1
2n . Then

if n = 2 then sup
δ>0

ωΩ(δ)
δα∗

= ( 23/2

π√κ0
)

1/2

,(1.7)

If n ≥ 3 and ∂Ω is C2 , then lim
δ↘0

ωΩ(δ)
δα∗

= ( 2(n+1)/2

∣Bn
1 ∣
√
κ0

)
1/n

,(1.8)

where ∣Bn
1 ∣ denotes the volume of the unit ball in R

n .

Remark 1.2 The theorem implies that for n = 2,

[u]3/4 ≤ (
23/2

π√κ0
)

1/2

∣∂u(Ω)∣1/2 for all u ∈ Ccon
0 (Ω̄)
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Alexandrov’s estimate revisited 3

and that the estimate is sharp in the sense that it does not hold for any larger
Hölder exponent or any smaller constant. Similarly, for n ≥ 3, since ωΩ(δ) is
continuous (this follows from (1.1) and the subadditivity of ωΩ , which is easily
deduced from the definition) and constant for δ > diam(Ω), the theorem implies that
supδ>0 δ−α ωΩ(δ) < ∞, and hence that (1.5) holds, if and only if α ≤ α∗.

Note also that conclusion (1.8) may be described as an asymptotically sharp bound
for the Hölder-α∗ constant of u ∈ Ccon

0 (Ω̄) on scales ≤ δ, as δ → 0. It is natural to ask

for n ≥ 3, is it true that sup
δ>0

ωΩ(δ)
δα∗

= ( 2(n+1)/2

∣Bn
1 ∣
√
κ0

)
1/n

?

This again would yield the sharp constant in (1.5) for the critical space. We are tempted
to conjecture that the answer is “yes,” but we do not have any evidence to support this.
We believe that the requirement that Ω is C2 is unnecessary and that convexity and
(1.6) should suffice for (1.8).

Our other main result is less precise but completely general, in particular applying
to domains for which the boundary curvature may vanish. As we will see, it implies
that we can improve (1.1) to stronger Hölder norms as long as the domain satisfies a
very weak nondegeneracy condition. It requires more notation. If Ω ⊂ R

n is a convex
set, we write Ω○ to denote the polar of Ω, defined by

Ω○ ∶= {y ∈ Rn ∶ x ⋅ y ≤ 1 for all x ∈ Ω}.

For a ∈ Ω and ν ∈ Sn−1, we write

S(a, ν) ∶= {x ∈ Rn ∶ x ⋅ ν = 0, a + x ∈ Ω}
S○(a, ν) ∶= {y ∈ Rn ∶ y ⋅ ν = 0, x ⋅ y ≤ 1 for all x ∈ S(a, ν)}

= polar of S(a, ν) within the hyperplane ν⊥ = {x ∈ Rn ∶ x ⋅ ν = 0}.

If P ⊂ R
n is a k-dimensional subspace and A ⊂ P is a subset with relatively open

interior, we will write

∣A∣ ∶=Hk(A) = k-dimensional Hausdorff measure of A.

For example,

∣Ω○∣ = Ln(Ω○), ∣S○(x , ν)∣ ∶=Hn−1(S○(x , ν)), etc.

as long as S○(x , ν) has open interior within ν⊥, which will always be the case for us.
For a ∈ Ω, we will write

dΩ(a) ∶= dist(a, ∂Ω) = min
b∈∂Ω

∣a − b∣(1.9)

and

N(a) = {ν ∈ Sn−1 ∶ ∃y ∈ ∂Ω such that ∣a − y∣ = dΩ(a) and ν = y − a
∣y − a∣}(1.10)

for the set of outer unit normals at boundary points closest to a.
We now state our second main result.
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4 C. J. K. Griffin, K. Obinna Idu, and R. L. Jerrard

Theorem 1.3 Assume that Ω is a bounded, convex, and open subset of Rn . Then for
every positive δ ≤ maxa∈Ω dΩ(a),

sup
dΩ(a)=δ

sup
ν∈N(a)

( δ
2∣S○(a, ν)∣)

1/n

≤ ωΩ(δ) ≤ sup
dΩ(a)=δ

inf
ν∈N(a)

( nδ
∣S○(a, ν)∣)

1/n

.(1.11)

In principle, given a domain Ω with vanishing curvature, estimate (1.11) allows us to
determine the exact scaling of ωΩ(δ) as δ ↘ 0, and hence the exact range of exponents
α > 1/n for which estimate (1.5) holds. We illustrate this in Section 3 below with several
examples. For now, we note the following:

Corollary 1.4 For Ω as above and α > 1/n, the Hölder-α estimate (1.5) holds if and
only if

lim inf
δ→0

inf
dΩ(a)=δ

sup
ν∈N(a)

δβ ∣S○(a, ν)∣ > 0(1.12)

for β = nα − 1.

We omit the proof, as this follows directly from Theorem 1.3.

Remark 1.5 It is known that if S ⊂ R
n is any bounded convex set with nonempty

interior, then

∣S∣ ∣S○∣ ≥ cn ;(1.13)

see [7] for a proof with a good estimate of cn (whose sharp value is the focus of the
Mahler conjecture). Thus, (1.11) implies that there exists C = Cn such that

ωΩ(δ) ≤ Cδ1/n sup
dΩ(a)=δ

inf
ν∈N(a)

∣S(a, ν)∣1/n .(1.14)

Remark 1.6 It is not hard to check that if x ∈ ∂Ω is a point at which ∂Ω is twice
differentiable, with Gaussian curvature κ, and if ν is the outer unit normal at x, then

∣S○(x − δν, ν)∣ =
√
κ∣Bn−1

1 ∣
(2δ)(n−1)/2 (1 + o(1)) as δ → 0.(1.15)

We present the short proof in Lemma 3.4. This provides a quantitative link between the
curvature at x ∈ ∂Ω and the rate of blowup of ∣S○(x − δν, ν)∣ as δ ↘ 0. In view of this,
it is natural to interpret (1.12) as a degenerate positive curvature condition, growing
more degenerate (and yielding a weaker Hölder exponent) as β decreases.

To conclude this introduction, we note that several recent works have established
sharp estimates of Hölder seminorms of solutions of Monge-Ampère equations of the
form

det D2u = F(x , u, Du)(1.16)

for particular geometrically meaningful functions F(x , u, Du); see, for example, [1, 5,
6, 8, 9]. Some of these papers allow for domains in which the boundary curvature
can vanish, and they determine Hölder exponents that reflect the boundary behavior
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in a way that has some similarities to what we find in Theorem 1.3; see Corollary 3.1.
The proofs in these references rely on careful constructions of sub- and supersolutions
or. even in rare cases. explicit solutions. These play no role in our arguments.

2 Preliminaries, and the proof of Theorem 1.3

Like all the results in this paper, those in this section are elementary, and many if not
all (apart from the proof of Theorem 1.3, which. however, is an immediate corollary of
other results) are presumably known to experts. For the convenience of the reader, we
nonetheless provide complete proofs, mostly self-contained.

First, we recall some standard definitions. For u ∈ Ccon
0 (Ω̄) and x ∈ Ω,

∂u(x) ∶= {p ∈ Rn ∶ u(x) + p ⋅ (y − x) ≤ u(y) for all y ∈ Ω},(2.1)

and for A ⊂ Ω,

∂u(A) ∶= ∪x∈A∂u(x).(2.2)

As mentioned above, if u is C2 and strictly convex, then by the change of variables
p = Du(x),

∥det D2u∥L1(Ω) = ∫
Ω

det D2u = ∫
p∈Du(Ω)

d p = ∣∂u(Ω)∣.

(This remains true under somewhat weaker assumptions.) Given a ∈ Ω, we will write
ua ∶ Ω̄ → R to denote the function defined by

ua((1 − θ)y + θa) = −θ for every y ∈ ∂Ω and θ ∈ [0, 1].

The definition states that

ua = 0 on ∂Ω, ua(a) = −1,

and ua is linear on the line segment from any point on ∂Ω to a. When we wish to
explicitly indicate the dependence of ua on Ω, we will write uΩ,a . It is well-known
and straightforward to check that ua is convex.

Next, we define fΩ ∶ Ω → R by

fΩ(a) ∶= ∣∂ua(Ω)∣ = Ln(∂ua(Ω)) where ua = uΩ,a .

The following result implies that to understand the modulus of continuity for func-
tions u ∈ Ccon

0 (Ω̄) with ∣∂u(Ω)∣ finite, it suffices to study the asymptotics of fΩ(a) as
a → ∂Ω.

Proposition 2.1 Let Ω be a bounded, convex, open subset of Rn . Then the modulus ωΩ
defined in (1.3) satisfies

ωΩ(δ) = sup{ fΩ(a)−1/n ∶ dΩ(a) ≤ δ}.(2.3)

Proof Step 1. We first claim that for u ∈ Ccon
0 (Ω̄) and any a, b ∈ Ω, there exists ā ∈ Ω

such that

dΩ(ā) ≤ ∣a − b∣, ∣u(ā)∣ ≥ ∣u(a) − u(b)∣.(2.4)
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6 C. J. K. Griffin, K. Obinna Idu, and R. L. Jerrard

We recall the proof, which is standard. Consider a, b ∈ Ω such that u(a) ≤ u(b) ≤ 0.
Let b̄ be the point in ∂Ω on the ray that starts at a and passes through b. Then there
exists some θ ∈ (0, 1) such that b = (1 − θ)a + θb̄. We next define ā = θa + (1 − θ)b̄.
These definitions imply that

ā − b̄ = θ(a − b̄) = a − b.

Thus, dΩ(ā) ≤ ∣ā − b̄∣ = ∣a − b∣. Moreover, by convexity,

u(b) − u(a) = u((1 − θ)a + θb̄) − u(a) ≤ θ(u(b̄) − u(a))
= u(b̄) − [(1 − θ)u(b̄) + θu(a)]
≤ u(b̄) − u((1 − θ)b̄ + θa) = u(b̄) − u(ā) = ∣u(ā)∣.

Since dΩ(ā) ≤ ∣a − b∣, this proves (2.4).
Step 2. Given u ∈ Ccon

0 (Ω̄), δ > 0 and x , y ∈ Ω such that ∣x − y∣ ≤ δ, fix a ∈ Ω
such that dΩ(a) ≤ δ and ∣u(x) − u(y)∣ ≤ ∣u(a)∣, and define w(x) = u(a)ua(x). Then
u ≤ w ≤ 0 in Ω and u = w = 0 on ∂Ω, so standard arguments (see, for example,
[4, Lemma 1.4.1]) imply that

∣∂u(Ω)∣ ≥ ∣∂w(Ω)∣ = ∣u(a)∣n fΩ(a),(2.5)

with equality if and only if u = w. The definition (1.3) of ωΩ then implies that

∣u(x) − u(y)∣ ≤ ∣u(a)∣
(2.5)
≤ fΩ(a)−1/n ∣∂u(Ω)∣1/n .(2.6)

Thus, for nonzero u ∈ Ccon
0 (Ω̄),

if ∣x − y∣ ≤ δ, then ∣u(x) − u(y)∣
∣∂u(Ω)∣1/n ≤ sup

dΩ(a)≤δ
fΩ(a)−1/n .

It follows from this and the definition of ωΩ that

ωΩ(δ) ≤ sup
dΩ(a)≤δ

fΩ(a)−1/n .

However, given any a ∈ Ω such that dΩ(a) ≤ δ, consider u = ua , and fix b ∈ ∂Ω such
that dΩ(a) = ∣a − b∣. Then

∣ua(a) − ua(b)∣ = ∣ua(a)∣ = 1 = ∣∂ua(Ω)∣1/n
fΩ(a)1/n ,

and thus,

ωΩ(δ) ≥ sup
∣x−y∣≤δ

∣ua(x) − ua(y)∣
∣∂ua(Ω)∣1/n ≥ fΩ(a)−1/n whenever dΩ(a) ≤ δ. ∎

Motivated by Proposition 2.1, we record some properties of fΩ and related notions.

Lemma 2.1 ∂ua(a) = ∂ua(Ω).

Proof It is clear that ∂ua(a) ⊂ ∂ua(Ω). To prove the other inclusion, assume that
p ∈ ∂u(x0) for some x0 ∈ Ω. We must show that p ∈ ∂u(a). We may assume that
x0 ≠ a, so we can write x0 = θa + (1 − θ)y for some y ∈ ∂Ω and θ ∈ (0, 1).
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For x ∈ Ω and p ∈ Rn , we will write �x , p(z) ∶= ua(x) + p ⋅ (z − x), so that
p ∈ ∂ua(x) if and only if �x , p ≤ ua in Ω. Since ua and �x0 , p are both linear when
restricted to the segment {sa + (1 − s)y ∶ s ∈ (0, 1]}, and because x0 belongs to the
interior of this segment and ua ≥ �x0 , p on this segment, we see that ua = �x0 , p on this
segment, and in particular at x = a. Thus, �x0 , p is a supporting hyperplane at a; in fact,
�x0 , p = �a , p . It follows that p ∈ ∂ua(a). ∎

Lemma 2.2 If a ∈ Ω ⊂ Ω′, then fΩ(a) ≥ fΩ′(a).

Proof If p ∈ ∂uΩ′ ,a(Ω′), then p ∈ ∂uΩ′ ,a(a), which implies that �a , p ≤ uΩ′ ,a in Ω′.
But it is easy to check that uΩ′ ,a ≤ uΩ,a in Ω, and it follows that �a , p ≤ uΩ,a in Ω, which
implies that p ∈ ∂uΩ,a(a).

Thus, ∂uΩ′ ,a(Ω′) ⊂ ∂uΩ,a(Ω), from which we deduce that fΩ′(a) ≤ fΩ(a). ∎

Lemma 2.3 Assume that Ω ⊂ R
n is bounded, convex, and open, with a ∈ Ω.

Then

fΩ(a) = ∣(Ω − a)○∣, where Ω − a = {x − a ∶ x ∈ Ω}.

An equivalent statement appears as an exercise (problem 3.3) in the recent text [10].

Proof We first prove the lemma for a = 0. We know from Lemma 2.1 that ∂u0(Ω) =
∂u0(0). Then

p ∈ ∂u0(0) ⇐⇒ u0(x) ≥ u0(0) + p ⋅ x for all x ∈ Ω
⇐⇒ u0(x) ≥ −1 + p ⋅ x for all x ∈ Ω̄.

Since u0(x) ≤ 0 in Ω, it follows that

p ∈ ∂u0(0) �⇒ −1 + p ⋅ x ≤ 0 for all x ∈ Ω �⇒ p ∈ Ω○.

However, if p ∈ Ω○, then �0, p(x) ∶= −1 + x ⋅ p is an affine function such that
�0, p ≤ 0 = u0 on ∂Ω and �0, p(0) = −1 = u0(0). It follows from this and the definition
of u0 that �0, p ≤ u0 in Ω, and hence that p ∈ ∂u0(0).

It follows that ∂u0(Ω) = Ω○, and hence that fΩ(0) = ∣Ω○∣.
For general a ∈ Ω, the definitions imply that for every x ∈ Ω,

uΩ,a(x) = uΩ−a ,0(x − a), and thus, ∂uΩ,a(x) = ∂uΩ−a ,0(x − a).

Thus, fΩ(a) = ∣∂uΩ,a(a)∣ = ∣∂uΩ−a ,0(0)∣ = ∣(Ω − a)○∣. ∎

Lemma 2.4 Let M ∶ Rn → R
n be an invertible linear transformation, and let

MΩ ∶= {Mx ∶ x ∈ Ω}. Then

fMΩ(Ma) = ∣det M∣−1 fΩ(a).

Proof The definitions imply that for every x ∈ Ω,

uMΩ,Ma(Mx) = uΩ,a(x).
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Thus, for every x ∈ Ω,

p ∈ ∂uMΩ,Ma(Mx)
⇐⇒ uMΩ,Ma(Mz) ≥ uMΩ,Ma(Mx) + p ⋅ (Mz − Mx) for all Mz ∈ MΩ
⇐⇒ uΩ,a(z) ≥ uΩ,a(x) + MT p ⋅ (z − x) for all z ∈ Ω.
⇐⇒ MT p ∈ ∂uΩ,a(x).

We deduce that ∂uMΩ,Ma(MΩ) = {M−T p ∶ p ∈ ∂uΩ,a(Ω)}. Now the conclusion
follows from basic properties of Lebesgue measure. ∎

Lemma 2.5 Assume that Ω ⊂ R
n is a bounded, open convex set containing the origin.

For any subspace P of Rn , define

ΩP ∶= Ω ∩ P, Ω○P ∶= {y ∈ P ∶ x ⋅ y ≤ 1 for all x ∈ ΩP}.

(Thus, Ω○P denotes the polar of ΩP within P rather than within the ambient Rn .)
Let πP ∶ Rn → P denote orthogonal projection onto P.
Then

Ω○P = πP(Ω○).

Proof We will show that (πP(Ω○))○ = (Ω○P)○ = Ω̄P , where our convention is that if
A ⊂ P is convex, then A○ denotes the polar within P, whereas if A is a convex set not
contained in P, then A○ denotes its polar in R

n . Then

y ∈ (πP(Ω○))○ ⇐⇒ y ∈ P and y ⋅ x ≤ 1 for all x ∈ πP(Ω○)
⇐⇒ y ∈ P and y ⋅ πP x ≤ 1 for all x ∈ Ω○

⇐⇒ y ∈ P and y ⋅ x ≤ 1 for all x ∈ Ω○

⇐⇒ y ∈ P ∩ (Ω○)○ = P ∩ Ω̄ = Ω̄P ,

completing the proof. ∎

Lemma 2.6 Let Ω be an open convex subset ofRn with nonempty boundary. For a ∈ Ω,
let x ∈ ∂Ω be a point such that ∣a − x∣ = dΩ(a), and let ν = x−a

∣x−a∣ . (Thus, ν ∈ N(a), in
the notation introduced in (1.10).) Then

1
n

dΩ(a)−1∣S○(a, ν)∣ ≤ fΩ(a) ≤ 2dΩ(a)−1∣S○(a, ν)∣.(2.7)

Remark 2.7 A curious consequence of (2.7) is that for a ∈ Ω, if there exist more than
one point b ∈ ∂Ω such that dΩ(a) = ∣b − a∣, then

sup
ν∈N(a)

∣S○(a, ν)∣ ≤ 2n inf
ν∈N(a)

∣S○(a, ν)∣.

Proof Step 1. After a translation and a rotation, we may assume that a = 0 and that
x = (0, . . . , 0,−δ), where δ = dΩ(a). Then −en is the outer unit normal at x, and
hence, Ω ⊂ {y ∈ Rn ∶ yn > −δ}. One can then quickly check that

{−sen ∶ 0 ≤ s ≤ 1
δ
} ⊂ Ω○.(2.8)
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Let P ∶= R
n−1 × {0}, so that ΩP = S(a, ν). It then follows from Lemma 2.5 that

S○(a, ν) = πP(Ω○).(2.9)

Now let T denote the Steiner symmetrization of Ω○ with respect to the hyperplane
xn = 0. Well-known properties of Steiner symmetrization imply that ∣T ∣ = ∣Ω○∣, that T
inherits the convexity of Ω○, and, owing to (2.8), (2.9), that

S○(a, ν) ⊂ T , {± 1
2δ

en} ⊂ T .

By convexity, T contains the cones inR
n with base S○(a, ν) ⊂ R

n−1 × {0}with vertices
at ± 1

2δ en . Each of these cones has measure 1
2δn ∣S

○(a, ν)∣. We conclude that

∣Ω○∣ = ∣T ∣ ≥ 1
δn

∣S○(a, ν)∣ = 1
n

dΩ(a)−1∣S○(a, ν)∣.

Step 2. Let P⊥ = {0n−1} ×R, the orthogonal complement of P. Since a = 0 and
dΩ(a) ≥ δ, it is clear that Ω ∩ P⊥ = ΩP⊥ ⊃ {0n−1} × (−δ, δ). It easily follows that
Ω○P⊥ ⊂ {0n−1} × (− 1

δ , 1
δ ). In addition, Lemma 2.6 implies that

πP⊥(Ω○) ⊂ Ω○P⊥ .

It follows from these facts and (2.9) that

Ω○ ⊂ S○(a, ν) × (− 1
δ

, 1
δ
),

(writing S0(a, ν) as a subset of Rn−1 rather than of Rn−1 × {0}). Thus,

∣Ω○∣ ≤ ∣S○(a, ν)∣ × 2
δ
= 2dΩ(a)−1∣S○(a, ν)∣. ∎

Proof of Theorem 1.3 Estimate (1.11) follows directly from Proposition 2.1 and
Lemma 2.6. ∎

3 Examples

Our first illustration of the utility of Theorem 1.3 addresses a class of convex sets
considered in several recent papers.

Corollary 3.1 Let Ω be a bounded, open convex subset of Rn , and assume that there
exist positive constants η and p1 , . . . , pk , with k ≤ n − 1, such that at any b ∈ ∂Ω, after
a translation and a rotation,

b = 0 and Ω ⊆ {x ∈ Rn ∶ xn > η(∣x1∣p1 + ⋅ ⋅ ⋅ + ∣xk ∣pk)}.(3.1)

Then there exists a constant C, depending on η, n, diam(Ω), such that

[u]α ≤ C∣∂u(Ω)∣1/n for all u ∈ Ccon
0 (Ω̄), where α = 1

n
(1 +

k
∑
j=1

1
p j
).

Note that (3.1) allows Ω to be completely degenerate at b in n − k − 1 directions.
In [1, 6], sharp Hölder estimates on domains satisfying (3.1) at every b ∈ ∂Ω (for

a suitable b-dependent choice of coordinates) are proved for solutions of certain
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equations of the form (1.16). Interestingly, the quantity ∑k
j=1

1
p j

also appears in the
Hölder exponents in these results, modified by other parameters appearing in the
nonlinearity on the right-hand side of (1.16).

Proof Let δ > 0 and a ∈ Ω with dΩ(a) = ∣a − b∣ = δ for some b ∈ ∂Ω. After a
translation and rotation, we may assume that (3.1) holds. We necessarily have that
a = (0, . . . , 0, δ). Indeed, suppose a i ≠ 0 for some 1 ≤ i ≤ n − 1. Then from the
supporting hyperplane {xn = 0}, we obtain

dΩ(a) ≤ dist(a, {xn = 0}) = ∣an ∣ < ∣a∣ = dΩ(a),

a contradiction, verifying the claim.
Now, relabeling coordinates, we write the unit outer normal at b as ν = −en and

have that

S(a, ν) ⊆ {x ∈ Rn−1 × {0} ∶ δ > η
k
∑
i=1

∣x i ∣p i , ∣(xk+1 , . . . xn−1)∣ < diam(Ω)} .

Thus, ∣S(a, ν)∣ is bounded by the volume of the set on the right, which is

Cδ
1

p1
+. . .+ 1

pk

for a constant C depending1 on η, p1 , . . . , pk , k, n − 1, diam(Ω). Since a was arbitrary,
(1.13) and Theorem 1.3 (or see (1.14)) imply that

ωΩ(δ) ≤ C δα .

Hence, the result on the Hölder estimate. ∎
If there is any point b ∈ ∂Ω such that after a translation and a rotation

b = 0 and Ω ⊇ {x ∈ Rn ∶ xn >
1
η
(∣x1∣p1 + ⋅ ⋅ ⋅ + ∣xk ∣pk), ∣(xk+1 , . . . , xn)∣ < h}

for some positive numbers η, p1 , . . . , pk , h, then by a similar argument to that above,
one can show that ωΩ(δ) ≥ cδα for all sufficiently small δ and the same α as above.
This would use the fact that if S is a centrally symmetric convex body in R

k , then
∣S∣ ∣S○∣ ≤ ∣Bk

1 ∣2.
The following lemma provides a way to generate a large class of examples.

Lemma 3.2 Assume that Ω ⊂ R
2 is a smooth convex set of the form

Ω = {(x1 , x2) ∈ R2 ∶ ∣x1∣ < R, h(x1) < x2 < D − h(x1)}(3.2)

for some R, D > 0, where h ∶ [−R, R] → [0,∞) is an even function, smooth on (−R, R),
such that h(0) = h′(0) = h′′(0) = 0 and h(R) = D

2 .

1Using a formula derived by Dirichlet and quoted on the “generalizations” section of the Wikipedia
page for “Volume of an n-ball,” one can check that the constant this computation yields is

C(p1 , . . . , pk , η, k, n − 1) = η−(
1

p1
+. . .+ 1

pk
) 2k Γ(1 + 1

p1
) ⋅ ⋅ ⋅ Γ(1 + 1

pk
)

Γ(1 + 1
p1
+ ⋅ ⋅ ⋅ + 1

pk
)
∣Bn−k−1

1 ∣diam(Ω)n−k−1 ,
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Assume, moreover, that the boundary curvature is nondecreasing as one moves in the
direction of increasing x1 along ∂Ω from (0, 0) toward (R, D/2).

Then, writing h−1(δ) to denote the unique positive solution of the equation h(x) = δ
for 0 < δ ≤ D/2, there exists δ0 > 0 such that

1
2
√

δh−1(δ) ≤ ωΩ(δ) ≤
√

2
√

δh−1(δ) for 0 < δ < δ0 .(3.3)

The lemma implies that given any modulus of the form ω(δ) =
√

δh−1(δ) for
h satisfying the above hypotheses, we can construct a domain for which the sharp
modulus of continuity ωΩ in the Alexandrov estimate exactly agrees with ω, up to a
factor of 2

√
2.

Proof Assume that 0 < δ < δ0, to be fixed below.
Step 1. It is clear from (3.2) and properties of h that if δ0 is sufficiently small (in fact,

here, δ0 < D/2 is sufficient), then the origin is the unique closest boundary point to
(0, δ), and hence that N(a) as defined in (1.10) consists of {−e2}. Then the definitions
imply that

S((0, δ),−e2) = (−h−1(δ), h−1(δ)) × {0}.

Recall our convention that S○(a, ν) denotes the polar within the subspace ν⊥. If a and
b are positive numbers, then (a, b)○ = [ 1

a , 1
b ], so it follows that

∣S○((0, δ),−e2)∣ =
2

h−1(δ) .

This and Theorem 1.3 imply the lower bound for ωΩ(δ) in (3.3).
Step 2. To complete the proof of the Lemma, again by Theorem 1.3, it suffices to

show that if dΩ(a) = δ and ν ∈ N(a), then

∣S○(a, ν)∣ ≥ 1
h−1(δ) ,(3.4)

if δ0 is small enough. Fix any a ∈ Ω such that dΩ(a) = δ and any b ∈ ∂Ω such that
dΩ(a) = ∣a − b∣, and let ν = b−a

∣b−a∣ . Noting from (3.2) that Ω is symmetric about the x2

axis (since h is even) and about the line x2 = D/2, we can assume that b ∈ {(x1 , x2) ∈
∂Ω ∶ 0 ≤ x1 ≤ R, x2 = h(x1)}.

Then we define Ω̃ to be the set obtained by translating b to the origin and rotating
so that Ω̃ ⊂ {(x1 , x2) ∶ x2 > 0}. This operation moves a to the point (0, δ). Next, we
let h̃1 be the function whose graph parametrizes the lower part of ∂Ω̃, defined by
h̃(x1) ∶= inf{x2 ∈ R ∶ (x1 , x2) ∈ Ω̃}. By our assumption about the monotonicity of the
boundary curvature along the short arc connecting (0, 0) to (R, D/2), we see that if
δ0 is small enough, then

curvature of ∂Ω at (x1 , h(x1)) ≤ curvature of ∂Ω̃ at (x1 , h̃(x1))

for 0 < x1 < h−1(δ0). Since h̃(0) = h̃′(0) = h(0) = h′(0), and because 0 = h′′(0) ≤
h̃′′(0), this implies that h̃(x1) ≥ h(x1) for 0 < x1 < h−1(δ0).
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Computing S○(a, ν) in the coordinate system of Ω̃, we find that S(a, ν) =
(−α, β) × {0}, where −α, β are the negative and positive solutions, respectively, of the
equation h̃(x) = δ, and thus,

∣S○(a, ν)∣ = 1
β
+ 1

α
≥ 1

β
.

But the fact that h̃ ≥ h for 0 < x1 < h−1(δ0) implies that β ≤ h−1(δ), proving (3.4). ∎

Based on the above lemma, it is straightforward to construct examples of domains
Ω ⊂ R

2 such that ωΩ(δ) ∼ δ1/p for given p > 2. Another example is obtained by taking
h(x) in (3.2) such that

h(0) = 0, h(x) = e−1/∣x ∣ for 0 < ∣x∣ < a

and extended (after choosing a small enough) so that the graph of h has increasing
curvature until the point where its tangent becomes vertical. Then the lemma implies
that for the resulting domain Ω,

1
2
( δ
∣ log δ∣ )

1/2

≤ ωΩ(δ) ≤
√

2( δ
∣ log δ∣ )

1/2

.

In this spirit, it would be straightforward to construct sets with ωΩ , for example,
having logarithmic or other corrections to Hölder moduli δα for some 1

n < α < 1
2 +

1
2n .

The next lemma shows that, loosely speaking, the scaling in the classical Alexan-
drov estimate (1.1) is almost never optimal:

Lemma 3.3 Let Ω ⊂ R
n be a convex, open domain, and assume that Ω ⊂ BR for some

R > 0. Then

∃A, δ0 > 0 such that ωΩ(δ) ≥ Aδ1/n for 0 < δ < δ0 ⇐⇒ ∂Ω has a flat spot.

In fact, if ωΩ(δ) ≥ Aδ1/n for δ ∈ (0, δ0), then there exists a supporting hyperplane P
such that

P ∩ ∂Ω contains an n − 1-dimensional ball of radius An ∣Bn−2
1 ∣

2n−1nRn−2 .

The estimate of the radius of the ball is not sharp.

Proof We first claim that for R, c > 0 and S ⊂ R
k ,

if S ⊂ BR and ∣S○∣ < c, then Br ⊂ S for r = ∣Bk−1
1 ∣

2c(2R)k−1 .(3.5)

Indeed, for r < R, suppose S ⊂ BR does not contain Br . By a rotation, we may
assume that there is a point of the form b = (0, . . . , 0, r1) with 0 < r1 < r such that
dS(0) = ∣0 − b∣ = r1. Then the plane {x ∶ xk = r1} is a supporting hyperplane at b, so
S ⊂ BR ∩ {x ∶ xk < r1}. We claim that

{(y′ , yk) ∈ Rk−1 ×R ∶ ∣y′∣ < 1
2R

, 0 < yk <
1

2r1
} ⊂ S○ .(3.6)
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This is clear, since if y = (y′ , yn) belongs to the set on the left, then one readily checks
that x ⋅ y ≤ 1 for all x ∈ S ⊂ BR ∩ {x ∶ xk < r1}, proving (3.6). It follows that

c > ∣S○∣ ≥ ∣Bk−1
1 ∣

2r1(2R)k−1 ≥
∣Bk−1

1 ∣
2r(2R)k−1 .

This cannot happen if r ≤ ∣Bk−1
1 ∣

2c(2R)k−1 . So for such r, it must be the case that Br ⊂ S,
proving (3.5).

Now assume that there exists A > 0 such that ωΩ(δ) ≥ Aδ1/n , and fix a sequence
a j ∈ Ω and ν j ∈ N(a j) such that dΩ(a j) ∶= δ j → 0, and ∣S○(a j , ν j)∣ < nA−n . The
existence of such sequences follows directly from Theorem 1.3. Upon passing to
subsequences (still labeled a j , ν j , δ j) we may assume that a j → b ∈ ∂Ω. After a
translation and a rotation, we may assume that b = 0 and Ω ⊂ {x ∈ Rn ∶ xn > 0}.

Appealing to (3.5) with k = n − 1, we find that Br ⊂ S(a j , ν j) with r = ∣Bn−2
1 ∣An

2n−1 nRn−2 .
Then the definition of S(a j , ν j) implies that

{a j + x ∶ x ⋅ ν j = 0, ∣x∣ < r} ⊂ Ω ⊂ {x ∶ xn > 0} for every j.

This implies that ν j → −en as j →∞ and a j → b = 0. Then

{a j + x ∶ x ⋅ ν j = 0, ∣x∣ < r} $→ {x ∶ x ⋅ (−en) = 0, ∣x∣ < r} = Bn−1
r × {0}

as j →∞, in the Hausdorff distance. It follows that Bn−1
r × {0} ⊂ Ω̄, and hence, since

Ω ⊂ {x ∶ xn > 0}, we conclude that Bn−1
r × {0} ⊂ ∂Ω. Thus, we have found a flat spot.

We omit the proof that if ∂Ω has a flat spot, then ωΩ(δ) ≥ cδ1/n for some c, which
is a very direct consequence of Theorem 1.3. ∎

Finally, we present the proof of a fact already stated in the introduction.

Lemma 3.4 If x ∈ ∂Ω is a point at which ∂Ω is twice differentiable, with Gaussian
curvature κ, and if ν is the outer unit normal at x, then

∣S○(x − δν, ν)∣ =
√
κ∣Bn−1

1 ∣
(2δ)(n−1)/2 (1 + o(1)) as δ → 0.(3.7)

Proof Choosing coordinates so that x = 0 and ν = −en , we find that locally near 0,
Ω has the form {x = (x′ , xn) ∈ Rn−1 ×R ∶ xn > h(x′)} for h such that h(x′) = 1

2 x′ ⋅
Qx′(1 + o(1)) as x′ → 0, with det Q = κ. From there, the definitions imply that

S(x − δν, ν) = {x′ ∈ Rn−1 ∶ h(x′) < δ} × {0}.

The expansion of h for small x′ implies that for any ε > 0, there exists δ0 > 0 such that
if 0 < δ < δ0, then

{x′ ∈ Rn−1 ∶ x′ ⋅ Qx′ < 2δ(1 − ε)} ⊂ {x′ ∈ Rn−1 ∶ h(x′) < δ}
⊂ {x′ ∈ Rn−1 ∶ x′ ⋅ Qx′ < 2δ(1 + ε)}.

Since the ellipse {x′ ∶ x′ ⋅ Qx′ < r2} has volume rn−1∣Bn−1
1 ∣/

√
det Q, we deduce (3.7)

from the standard fact that ∣E∣ ∣E○∣ = ∣Bn−1
1 ∣2 for any ellipse E in R

n−1, a consequence
of affine invariance. ∎
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4 Proof of Theorem 1.1

The proof of Theorem 1.1 is distributed among Propositions 4.1, 4.2, and 4.3. Before
starting their proofs, we give a preliminary lemma.

Lemma 4.1 Let E ⊂ R
n denote the ellipsoid

E ∶= {x ∈ Rn ∶ x2
1
�2

1
+ ⋅ ⋅ ⋅ + x2

n
�2

n
≤ 1},

let a ∶= (0, . . . , 0,−α) for some α ∈ [0, �n), and let p = (0, . . . , 0,−�n) ∈ ∂E. If α is close
enough to �n , then

fE(a) =
√
κ(p)∣Bn

1 ∣
[dE(a)(2 − �−1

n dE(a))](n+1)/2 .

Proof We recall that if S ⊂ R
n is a convex set, the support function σS is defined by

σS(y) = sup
x∈S

x ⋅ y.

It is rather clear from the definitions that

S○ = {y ∈ Rn ∶ σS(y) ≤ 1} σS−a(y) = σS(y) − a ⋅ y, σBn
1
(y) = ∣y∣.

Step 1. Let B denote the unit ball Bn
1 . Then using the properties of the support

function noted above,

fB(a) = ∣(B − a)○∣ = ∣{y ∈ Rn ∶ σB−a(y) ≤ 1}∣ = ∣{y ∈ Rn ∶ ∣y∣ − a ⋅ y ≤ 1}∣.

For a as above, by writing y = (y′ , yn) ∈ Rn−1 ×R, by squaring both sides, completing
a square, and rearranging, we find that

∣y∣ ≤ 1 + a ⋅ y = 1 − αyn ⇐⇒ (1 − α2)∣y′∣2 + (1 − α2)2(yn +
α

1 − α2 )
2 ≤ 1.

The inequality on the right defines an ellipsoid whose volume is easily found, yielding

fB(a) = ∣(B − a)○∣ = (1 − α2)−(n+1)/2∣Bn
1 ∣.

Since d∂B(a) = 1 − α, we can rewrite this as

fB(a) = ∣Bn
1 ∣

[dB(a)(2 − dB(a)] n+1
2

.

Step 2. Now let E denote a general ellipsoid as in the statement of the theorem.
Noting that

E = MB for M = diag(�1 , . . . , �n),

we find from Lemma 2.4 that

fE(a) = fMB(a) = (�1 ⋅ ⋅ ⋅ �n)−1 fB(M−1a).
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Also, since M−1a = (0, . . . , 0,−α/�n), we see that dB(M−1a) = 1 − α
�n
= �n−α

�n
.

Substituting into the above formula, we obtain

fE(a) = �
n−1

2
n

�1 ⋅ ⋅ ⋅ �n−1

∣Bn
1 ∣

[(�n − α)(2 − �n−α
�n

)] n+1
2

.

It is clear that if α is close enough to �n , then �n − α = dE(a). So to complete the proof,
we must show that κ(p) = �n−1

n /(�2
1 ⋅ ⋅ ⋅ �2

n−1). This is an easy computation. Near p, we
write ∂E as the graph

xn = g(x′), g(x′) = −�n (1 − (x2
1
�2

1
+ ⋅ ⋅ ⋅ + x2

n−1
�2

n−1
))

1/2

.

We compute that Dg(0) = 0 and D2 g(0) = �ndiag(�−2
1 , . . . , �−2

n−1), and it follows that
κ(p) = det D2 g(0) = �n−1

n /(�2
1 ⋅ ⋅ ⋅ �2

n−1), as claimed. ∎

Proposition 4.1 Let Ω ⊂ R
n be a bounded, convex open subset of Rn for n ≥ 2, and

assume that (1.6) holds. Then

lim inf
δ→0

ωΩ(δ)
δ n+1

2n
≥ ( 2(n+1)/2

∣Bn
1 ∣
√
κ0

)
1/n

.(4.1)

Proof Given ε > 0, choose a point pε ∈ ∂Ω at which ∂Ω is twice differentiable and
κ(pε) < (1 + ε)κ0. We may assume after a translation and a rotation that pε = 0 and
that there exists r > 0 such that in a neighborhood of pε ,

Ω ∩ Bn
r = {(x′ , xn) ∈ Bn

r ∶ xn > g(x′)}(4.2)

for a convex g such that

g(x′) = 1
2

n−1
∑
j=1

λ jx2
j + o(∣x′∣2) as ∣x′∣ → 0,(4.3)

with
n−1
∏
j=1

λ j = κ(pε) = κ(0), λ j > 0 for all j.

Now let Eε be the ellipse

Eε = {x ∈ Rn ∶ x2
1
�2

1
+ ⋅ ⋅ ⋅ + x2

n−1
�2

n−1
+ (xn − �n)2

�2
n

< 1}

for

�n = η to be chosen, � j = (
�n

λ j(1 + ε))
1/2

.

We claim that

if η > 0 is taken to be small enough, then Eε ⊂ Ω.(4.4)
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In view of (4.2), it suffices to show that if η is small enough and x = (x′ , xn) ∈ Eε , then
x ∈ Br and xn > g(x′).

It is clear that there exists η0 > 0 such that Eε ⊂ Bn
r whenever 0 < η < η0.

Second, we use the concavity of the square root to see that

x ∈ Eε �⇒ (�n − xn)2

�2
n

≤ 1 −
n−1
∑
j=1

x2
j

�2
j

�⇒ (�n − xn)
�n

≤
⎛
⎝

1 −
n−1
∑
j=1

x2
j

�2
j

⎞
⎠

1/2

≤ 1 − 1
2

n−1
∑
j=1

x2
j

�2
j

�⇒ xn ≥
1
2

n−1
∑
j=1

�n

�2
j

x2
j =

(1 + ε)
2

n−1
∑
j=1

λ jx2
j .

Note also that the definitions imply that ∣x′∣ < C√η for (x′ , xn) ∈ Eε , so the above
inequality and (4.3) imply that there exists η1 ∈ (0, η0) such that if 0 < η < η1, then
xn > g(x′), completing the proof of (4.4).

We henceforth fix η < η1. Let aδ = (0, . . . , 0, δ) for δ < �n , and note that aδ ∈ Eε
when δ < 2�n . Note also that dΩ(aδ) = dEε(aδ) = δ for all sufficiently small δ > 0.

It follows from Lemma 2.2 that fΩ(aδ) ≤ fEε(aδ)(a), so we use (an easy modifi-
cation of) Lemma 4.1 to conclude

lim
δ↘0

δ
n+1

2 fΩ(aδ) ≤ lim
δ↘0

δ
n+1

2 fEε(aδ) = lim
δ↘0

√
κEε(0)∣Bn

1 ∣
(2 − δ

�n
)(n+1)/2

=
√
κEε(0)∣Bn

1 ∣
2(n+1)/2 ,

where κEε(0) denotes the curvature of ∂Eε at 0, which is

κEε(0) = (1 + ε)n−1κ(0) < (1 + ε)nκ0 .

Applying Proposition 2.1, we find that

lim inf
δ↘0

δ−
n+1
2n ωΩ(δ) > 1√

1 + ε
( 2(n+1)/2
√
κ0∣Bn

1 ∣
)

1/n

.

Since ε > 0 was arbitrary, conclusion (4.1) follows. ∎

Proposition 4.2 Let Ω be a bounded, open, convex subset of R2 satisfying (1.6). Then

sup
δ>0

ωΩ(δ)
δ3/4 = ( 23/2

√
κ0π

)
1/2

.

Proof We will show that for any a ∈ Ω,

fΩ(a) ≥ 1
dΩ(a) 3

2

√
κ0π

23/2 .(4.5)

In view of Proposition 2.1, this implies that

sup
δ>0

ωΩ(δ)
δ 3

4
≤ ( 23/2

√
κ0π

)
1/2

.
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This will complete the proof of the Proposition, as the opposite inequality follows from
Proposition 4.1.

To prove (4.5), fix any a ∈ Ω, and let b ∈ ∂Ω be a point such that
dΩ(a) = ∣a − b∣ =∶ δ, not necessarily small. After a rotation and a translation, we may
assume that b = (0, 0) and a = (0, δ). Clearly, Bδ(a) ⊂ Ω, and 0 ∈ ∂Bδ(a) ∩ ∂Ω. From
these facts and the convexity of Ω, one easily sees that Ω ⊂ {(x1 , x2) ∶ x2 > 0} and

∂Ω ∩ [(−δ, δ) × (0, δ)] ⊂ {(x1 , x2) ∶ 0 < x2 ≤ δ −
√

δ2 − x2
1 } .

Let I = {x1 ∶ (x1 , x2) ∈ Ω for some x2} be the projection of Ω onto the x1-axis. Then
writing the lower part of ∂Ω as the graph of a function g ∶ I → R, we have

g is convex, 0 ≤ g(x1) ≤ δ −
√

δ2 − x2
1 , Ω ⊂ {(x1 , x2) ∶ x1 ∈ I, x2 > g(x1)}.

Note that g is differentiable at x1 = 0, with g′(0) = 0.
We now claim that

g(x1) ≥
κ0

2
x2

1 for x1 ∈ I, and thus, Ω ⊂ D ∶= {(x1 , x2) ∶ x2 > κ0x2
1 /2}.(4.6)

We will prove this for x1 > 0; the argument for x1 < 0 is basically identical. Let us write
S ∶= {x1 ∈ I ∶ g is twice differentiable at x1}. To prove (4.6), we recall assumption
(1.6), which implies that

g′′(x1)
(1 + (g′(x1)2)3/2 ≥ κ0 for every x1 ∈ S .

This clearly implies that g′′(x1) ≥ κ0 in S. Since g is convex, g′ is increasing function,
so for positive x1 ∈ I, elementary real analysis yields

g′(x1) = g′(x1) − g′(0) ≥ ∫
{t∈S∶0<t<x1}

g′′(t)dt ≥ κ0x1 .

Since g′ is locally Lipschitz, we obtain (4.6) by integrating again.
In view of (4.6) and Lemma 2.2, in order to prove (4.5), it suffices to show that

fD(a) =
√
κ0π

(2δ)3/2 .(4.7)

This is a straightforward computation. First, let

M ∶= (
√

κ0
2δ 0

0 1
δ
) .

Then D̃ ∶= MD = {(x1 , x2) ∶ x2 > x2
1 } and Ma = (0, 1) = e2. By Lemma 2.4,

fD(a) =
√

κ0

2δ3/2 fD̃(e2)

and

fD̃(e2) = ∣(D̃ − e2)○∣ = ∣{y ∈ R2 ∶ σD̃−e2
(y) ≤ 1}∣.
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18 C. J. K. Griffin, K. Obinna Idu, and R. L. Jerrard

Given y ∈ R2, we compute σD̃−e2
(y) by attempting to find x that maximizes

x ↦ y ⋅ (x − e2) subject to the constraint that x ∈ D̃. It is clear that a maximum can
only occur for x ∈ ∂D̃, so one can use Lagrange multipliers to find that

σD̃−e2
(y1 , y2) =

⎧⎪⎪⎨⎪⎪⎩

+∞ if y2 ≥ 0
− y2

1
4y2

− y2 if y2 < 0.

It easily follows that

(D̃ − e2)○ = {(y1 , y2) ∶ y2
1 + 4(y2 −

1
2
)

2
≤ 1} , and hence, fD̃(e2) =

π
2

,

concluding the proof of (4.7). ∎

The remaining assertion of Theorem 1.1 is contained in the following proposition.
The idea of the proof is to approximate ∂Ω from the outside, locally, by a quadratic. We
need to be able to do this in a uniform way and. having done so, to extract information
about ∂ua(Ω) from its quadratic approximation when this approximation is only
local.

Proposition 4.3 If n ≥ 3 and ∂Ω is C2, then

lim
δ↘0

ωΩ(δ)
δ(n+1)/2n = ( 2(n+1)/2

∣Bn
1 ∣
√
κ0

)
1/n

.(4.8)

Proof In view of Proposition 4.1 and Proposition 2.1, we only need to prove that

lim inf
δ↘0

inf
dΩ(a)=δ

δ(n+1)/2 fΩ(a) ≥ ∣Bn
1 ∣
√
κ0

2(n+1)/2 .(4.9)

Step 1. We first claim that for any ε1 > 0, there exists r0 > 0 such that for any b ∈ ∂Ω,
there exists a rigid motion S (that is, the composition of a rotation and a translation)
and a convex C2 function g ∶ Bn−1

r0
→ [0,∞) such that

S(0) = b, S({(x′ , g(x′)) ∶ ∣x′∣ < r0}) ⊂ ∂Ω,

and g(0) = 0, with

∥D2 g(x′) − D2 g(0)∥ < ε1 for x′ ∈ Bn−1
r0

(0),(4.10)

where ∥ ⋅ ∥ denotes the operator norm. Informally, this states that ∂Ω is uniformly C2.
Since ∂Ω is C2 and compact, on some level this is clear, but we provide some details
nonetheless. Our proof of (4.10) will also show that there exist positive Λmin ≤ Λmax ,
independent of b ∈ ∂Ω, such that

Λmin ≤ λ1 ≤ ⋅ ⋅ ⋅ ≤ λn−1 ≤ Λmax , {λ j} = eigenvalues of D2 g(0).(4.11)

First, the compactness of ∂Ω implies that there exists R > 0, J ≥ 2 and
• maps S j ∶ Rn → R

n for j = 1, . . . , J, each one a rigid motion (the composition of a
translation and a rotation),

• C2 functions h j ∶ Bn−1
4R → [0,∞) for j = 1, . . . , J,
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such that ∣∇h j ∣ ≤ 1
4 in Bn−1

4R and

∂Ω = ∪J
j=1U j , U j ∶= S j ({(x′ , h j(x′)) ∶ x′ ∈ Bn−1

R }) .

For every j, clearly, h j , Dh j , and D2h j are uniformly continuous on Bn−1
3R , and there

are only finitely many of these functions, so there exists a common C2 modulus of
continuity for {h j}J

j=1 on Bn−1
3R , by which we mean a continuous, increasing function

μ ∶ [0,∞) → [0,∞) such that μ(0) = 0 and

∣h j(x) − h j(y)∣ + ∣Dh j(x) − Dh j(y)∣ + ∣D2h j(x) − D2h j(y)∣ ≤ μ(∣x − y∣)(4.12)

for all x and y in Bn−1
3R and j = 1, . . . , J.

Now consider any b ∈ ∂Ω. Fix some x̄′ ∈ Bn−1
R (0) and j ∈ {1, . . . , J} such that

b = S j(x̄′ , h j(x̄′)). By a further translation, we may send (x̄′ , h j(x̄′)) to the origin
in R

n . Then by a rotation in R
n , we can arrange that part of the (translated and

rotated) graph of h j over B2R(x̄′) can be written as the graph over some ball Bn−1
r of a

convex C2 function g ∶ Bn−1
r → [0,∞) such that g(0) = 0 and ∇g(0) = 0. By applying

Lemma 4.2 below to h(x′) = h j(x′ − x̄′) − h j(x̄′), we find that independent of the
choice of b, the domain of the resulting function g can be taken to be Bn−1

R , and g has
a C2 modulus of continuity in Bn−1

R that can be estimated solely in terms of μ from
(4.12). This proves (4.10). Similarly, (4.11) follows from (4.25) in Lemma 4.2, which
we prove below, together with the fact that for every j ∈ {1, . . . , J}, the eigenvalues of
D2h j are bounded away from 0 in Bn−1

R , being positive on Bn−1
2R .

Step 2. We now prove (4.9).
Step 2.1: Normalization and approximation by a quadratic. Because ∂Ω is C2 and

compact, there exists δ0 > 0 such that if δ ∶= dΩ(a) < δ0, then there is a unique
b ∈ ∂Ω such that dΩ(a) = ∣a − b∣. Fix some such a and b. In view of Step 1, we may
assume after a rigid motion that a = δen = (0, . . . , 0, δ) and b = 0, and that there is a
nonnegative convex function g, vanishing at x′ = 0, such that (4.10) holds for some ε1
and r0(ε1) to be specified in a moment, and with {(x′ , g(x′)) ∶ ∣x′∣ < r0} contained
in the (rotated and translated) ∂Ω.

Fix ε > 0. Using (4.10) for a suitably small choice of ε1 and calculus, we can
guarantee that

g(x′) > (1 − ε)
2

x′ ⋅ Qx′

∣Dg(x′) − Qx′∣ < ε∣x′∣

⎫⎪⎪⎪⎬⎪⎪⎪⎭
in Bn−1

r0
, for Q = D2 g(0).(4.13)

Let M ∶= Q1/2, the positive definite symmetric square root of Q, and define

Ω̃ ∶= {(Mx′√
δ

, xn

δ
) ∶ (x′ , xn) ∈ Ω} , g̃(y′) ∶= 1

δ
g(
√

δM−1 y′).

Due to (4.11), the eigenvalues of M are bounded between Λ1/2
min and Λ1/2

max . Thus,

∣y′∣ < rδ ∶=
r0√

δΛmin
�⇒ ∣

√
δM−1 y′∣ < r0 .(4.14)
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20 C. J. K. Griffin, K. Obinna Idu, and R. L. Jerrard

The definition of g̃ is chosen so that

{(y′ , g̃(y′)) ∶ ∣y′∣ < rδ} ⊂ ∂Ω̃.

Hypothesis (1.6) implies that det Q = (curvature of ∂Ω at b = 0) ≥ κ0, so we deduce
from Lemma 2.4 that

δ(n+1)/2 fΩ(a) = ∣det M∣ fΩ̃(ã) ≥
√
κ0 fΩ̃(ã) for ã = a

δ
= en .(4.15)

In addition, using (4.14) and requiring that ε < 1
2 Λmin , we can translate properties

(4.13) into statements about g̃. It follows that(y′, g̃(y′)) ∈ ∂Ω̃ and

g̃(y′) > (1 − ε)
2

∣y′∣2

∣Dg̃(y′) − y′∣ < εΛ−1
min ∣y′∣ <

1
2
∣y′∣

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

in Bn−1
rδ

.(4.16)

Fix z′ such that ∣z′∣ < rδ/2 and let Φ(y′) ∶= z′ + y′ − Dg̃(y′). Then the second
inequality in (4.16) implies that Φ maps B̄n−1

r2
to itself, for r2 = 2∣z′∣ < rδ . Thus, the

Brouwer Fixed Point Theorem implies that Φ has a fixed point y′ in Bn−1
r2

. But
Φ(y′) = y′ exactly when Dg̃(y′) = z′. It follows that

Bn−1
rδ/2 ⊂ {Dg̃(y′) ∶ ∣y′∣ < ∣Bn−1

rδ
∣}.(4.17)

Step 2.2: finding a large subset of ∂uΩ̃,a(Ω̃).
We will write ũ ã ∶= uΩ̃, ã . We next will show that

Eε ,δ ∶=
⎧⎪⎪⎨⎪⎪⎩

s(z′ ,−1) ∶ ∣z′∣ < rδ

2
, 0 ≤ s ≤ (1 + 1

2(1 − ε) ∣z
′∣2)

−1⎫⎪⎪⎬⎪⎪⎭
⊂ ∂ũ ã(Ω̃).(4.18)

To see this, fix z′ ∈ Bn−1
rδ/2, and using (4.17), find y′ ∈ Bn−1

rδ
such that ∇g̃(y′) = z′. Let

�y′(x) ∶= (∇g̃(y′),−1) ⋅ (x − (y′ , g̃(y′)))
1 + y′ ⋅ ∇g̃(y′) − g̃(y′) .

We claim that �y′ is a supporting hyperplane to the graph of ũ ã at ã = en . We must
show that �y′(ã) = ũ ã(ã) = −1, which follows directly from the definition, and that
�a ≤ ũ ã in Ω̃. Since both �a and ũ ã are linear on line segments connecting ∂Ω̃ to ã,
it suffices to check that �a ≤ ũ ã = 0 on ∂Ω̃. This follows from noting that �y′ vanishes
exactly on the hyperplane {x ∈ Rn ∶ ν(y) ⋅ (x − y) = 0}, where y = (y′ , g̃(y′)) ∈ ∂Ω̃
and ν(y) is the outer unit normal to ∂Ω̃ at y. This is a supporting hyperplane to ∂Ω̃,
so �y′ does not change sign in Ω̃. Since �y′(ã) < 0, the claim follows.

Thus, ∇�y′(ã) ∈ ∂ũ ã(ã). Since it is clear that 0 ∈ ∂ũ ã(ã) and ∂ũ ã(ã) is convex, it
follows that the segment {s∇�y′(ã) ∶ 0 ≤ s ≤ 1} ⊂ ∂ũ ã(ã); that is,

{s(∇g̃(y′),−1) ∶ 0 ≤ s ≤ 1
1 + y′ ⋅ ∇g̃(y′) − g̃(y′)} ⊂ ∂ũ ã(a).(4.19)
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However, recalling that ∇g̃(y′) = z′, and using (4.16) and elementary inequalities,

y′ ⋅ ∇g̃(y′) − g̃(y′) ≤ y′ ⋅ z′ − (1 − ε)
2

∣y′∣2 ≤ 1
2(1 − ε) ∣z

′∣2 .

We deduce (4.18) by combining this and (4.19).
Step 2.3: conclusion of proof. Since a was an arbitrary point such that dΩ(a) = δ, it

follows from (4.18) and (4.15) that for all sufficiently small δ,

inf
dΩ(a)=δ

δ(n+1)/2 fΩ(a) ≥ √κ0∣Eε ,δ ∣.(4.20)

We will show that

lim
δ→0

∣Eε ,δ ∣ = (1 − ε)(n−1)/2 ∣Bn
1 ∣

2(n+1)/2 .(4.21)

Since ε > 0 is arbitrary, this and (4.20) imply (4.9) and thus complete the proof of the
Proposition.

To establish (4.21), note first that Eε ,δ forms an increasing family of sets as δ ↘ 0.
Thus, the Monotone Convergence Theorem implies that limδ→0 ∣Eε ,δ ∣ = ∣Eε ,0∣, for

Eε ,0 ∶= ∪δ>0Eε ,δ =
⎧⎪⎪⎨⎪⎪⎩

s(p′ ,−1) ∶ p′ ∈ Rn−1 , 0 ≤ s ≤ (1 + 1
2(1 − ε) ∣p

′∣2)
−1⎫⎪⎪⎬⎪⎪⎭

.

We claim that, in fact,

Eε ,0 = {(q′ , qn) ∈ Rn ∶ 2
(1 − ε) ∣q

′∣2 + 4(qn +
1
2
)2 ≤ 1} =∶ Eε ,0 .(4.22)

Indeed, both Eε ,0 and Eε ,0 are contained in the set {0} ∪ {(q′ , qn) ∶ qn < 0}. It is clear
that the origin belongs to both sets. Any point with (q′, qn)with qn < 0 can be written

(q′ , qn) =
t(p′ ,−1)

1 + 1
2(1−ε) ∣p′∣2

for some p′ ∈ Rn−1 and t > 0.(4.23)

Then

∣q′∣2 = t2 ∣p′∣2
(1 + 1

2(1−ε) ∣p′∣2)2

and

4(qn +
t
2
)2 = (2qn + t)2 = t2

(−1 + 1
2(1−ε) ∣p

′∣2)
2

(1 + 1
2(1−ε) ∣p′∣2)2 ,

from which we see that
2

(1 − ε) ∣q
′∣2 + 4(qn +

t
2
)2 = t2 .
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One then checks that
2

(1 − ε) ∣q
′∣2 + 4(qn +

1
2
)2 = 1 + 4(1 − t)qn .

For qn < 0, the right-hand side is larger than 1 if and only if t > 1. Thus,

0 < t ≤ 1 in (4.23) ⇐⇒ (q′ , qn) ∈ Eε ,0 .

Since (q′ , qn) ∈ Eε ,0 if and only if 0 < t ≤ 1 in (4.23), this implies (4.22).
And it is clear that ∣Eε ,0∣ = (1−ε)(n−1)/2 ∣Bn

1 ∣

2(n+1)/2 , proving (4.21). ∎

Finally, we establish the lemma used above. In the proof, we find it helpful to write
points x = (x′ , xn) ∈ Rn = R

n−1 ×R as column vectors (x′
xn
).

Lemma 4.2 Let h ∈ C2(Bn−1
2R ) satisfy h(0) = 0 and ∥∇h∥L∞ ≤ 1

4 .
Then there exists a rotation S ∈ SO(n) and a function g ∈ C2(Bn−1

R ) such that
∇g(0) = 0,

{( y′

g(y′)) ∶ ∣y
′∣ < R} ⊂ {S( x′

h(x′)) ∶ ∣x
′∣ < 20R/11} ,(4.24)

and such that the C2 modulus of continuity of g can be estimated in terms only of the C2

modulus of continuity of h in Bn−1
20R/11. Moreover,

gy i y j(0) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1 + m2)−1/2hx i x j(0) if i , j ≤ n − 2
(1 + m2)−1hx i x j(0) if i < j = n − 1 or j < i = n − 1
(1 + m2)−3/2hx i x j(0) if i = j = n − 1 ,

(4.25)

for some m ∈ [− 1
4 , 1

4 ], and if h is convex, then g is convex.

The conclusion of the lemma is a little stronger than we need for the proof of
Proposition 4.3.

Proof We may assume by a suitable choice of coordinates that ∇h(0) = men−1 for
some m ∈ [− 1

4 , 1
4 ], where en−1 is the standard basis vector along the xn−1 axis.

We then define (temporarily adopting column vector notation for ease of reading)

S

⎛
⎜⎜⎜⎜⎜
⎝

x1
⋮

xn−2
xn−1
xn

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

x1
⋮

xn−2
αxn−1 + βxn
−βxn−1 + αxn

⎞
⎟⎟⎟⎟⎟
⎠

, α = 1√
1 + m2

, β = m√
1 + m2

.

Clearly, S ∈ SO(n). Note that α ≥ 4/
√

17 > 4/5 and ∣β∣ ≤ 1/
√

17 < 1/4. We next define
Φ ∶ Bn−1

2R → R
n

S( x′

h(x′)) =∶ Φ(x′) = ( ϕ(x′)
ϕn(x′)),
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where we will write the components of ϕ as (ϕ1 , . . . , ϕn−1), for ϕ and ϕn taking values
in R

n−1 and R, respectively. We now define

ψ = ϕ−1 , g = ϕn ○ ψ.

We now verify that these functions have the stated properties.
Proof that g is well-defined on Bn−1

R : From the definitions, we see that

∂ i ϕ j = δ j
i if j ≤ n − 2, Dϕn−1 = αen−1 + βDh.(4.26)

Thus, writing ∥A∥ to denote the operator norm of a matrix A and Ik the k × k identity
matrix, we check that

∥Dϕ − In−1∥ ≤ ∣1 − α∣ + ∣β∣ < 9
20

everywhere in Bn−1
2R .(4.27)

Now fix any y′ ∈ Bn−1
R , and define Φ(x′) = y′ + x′ − ϕ(x′). Then for any x′ , z′ ∈ Bn−1

2R ,

∣Φ(x′) − Φ(z′)∣ = ∣∫
1

0

d
ds

Φ(sx′ + (1 − s)z′) ds∣ ≤ sup
Bn−1

2R

∥Dϕ − In−1∥ ∣x′ − z′∣

≤ 9
20
∣x′ − z′∣.(4.28)

Thus, Φ is a contraction mapping. Note also, that when y = 0, we find from (4.28) that
∣ϕ(x′) − x′∣ ≤ 9

20 ∣x
′∣. So if ∣x′∣ ≤ 20R/11, then

∣Φ(x′)∣ ≤ ∣y′∣ + ∣ϕ(x′) − x′∣ ≤ 20R
11

.

So Φ maps Bn−1
20R/11 to itself, and the Contraction Mapping Principle thus implies that

there is a unique z′ ∈ Bn−1
20R/11 such that Φ(z′) = z′, which says exactly that ϕ(z′) = y′.

These facts imply that ϕ−1 = ψ is well-defined in Bn−1
R , taking values in Bn−1

20R/11, and
hence that g is well-defined in Bn−1

R as well.
Proof that (4.24) holds: The definitions imply that if y′ = ϕ(x′), then g(y′) =

ϕn(x′), and thus,

( y′

g(y′)) = (
ϕ(x′)

ϕn(x′)) = Φ(x′) = S( x′

h(x′)).

We deduce (4.24) from this and remarks above about the range of ψ.
Proof that ∇g(0) = 0: We compute

gy i = (ϕn
xk
○ ψ)ψk

y i
.(4.29)

Since ϕ(0) = 0, it is clear that ψ(0) = 0. It thus suffices to check that ∇ϕn(0) = 0. This
follows from the choice of α and β, which guarantees that

ϕn
xk
(0) =

⎧⎪⎪⎨⎪⎪⎩

αhxk(0) = 0 if k ≤ n − 2
−β + αhxn−1(0) = 0 if k = n − 1.
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C2 modulus of continuity of g: By differentiating (4.29), we obtain

gy i y j = (ϕn
xk x l

○ ψ)ψk
y i

ψ l
y j
+ (ϕn

xk
○ ψ)ψk

y i y j
.(4.30)

Moreover,

ψ i
y j
= [(Dϕ)−1 ○ ψ]i

j , ψ i
y j yk

= −(ϕm
xa xb

○ ψ)ψ i
ym

ψa
y j

ψb
yk

.

For every x′ ∈ Bn−1
2R , it follows from (4.27) that Dϕ(x′) belongs to the compact

set {A ∈ Mn−1 ∶ ∥A− I∥ ≤ 9/20} on which the map A ↦ A−1 is smooth and hence
bounded and Lipschitz. Hence, Dψ is bounded in Bn−1

R , and ψ is Lipschitz continuous.
Then elementary estimates show that first Dψ and then D2ψ have moduli of continuity
estimated only in terms of the C2 modulus of continuity of ϕ, which in turn is
controlled by the C2 modulus of continuity of h. Then similar arguments show that
the C2 modulus of continuity of g can be estimated only in terms of that of h.

Formula for D2 g(0). Computing as in our verification that ∇g(0) = ∇ϕn(0) = 0,
and recalling that ψ(0) = 0, one easily checks that D2ϕn(0) = αD2h(0). Similarly,
nothing from the definitions that ∂n−1ϕn−1(0) = α + βm = 1/α, one checks that

Dϕ(0) = diag(1, . . . , 1, 1
α
), and so Dψ(0) = diag(1, . . . , 1, α).

We deduce (4.25) from these facts and (4.30).
Finally, it is clear that if h is convex, then g is convex, as then the graph of g is part

of the lower boundary of a convex set. ∎
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