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Abstract  14 

Coastlines worldwide are coming under increasing pressure due to climate change and human 15 

acƟvity. Data on shoreline change are essenƟal for coastal managers and when no long-term 16 

monitoring programs are implemented and shoreline change is typically on the order of less 17 

than 1m/yr, as observed in Ireland, aerial photography is the most valuable source of 18 

informaƟon. A well-established literature exists for automated vegetaƟon extracƟon from 19 
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digital images based on the near infrared reflectance, but there is less research available on 20 

spectrally limited colour photography. This study develops a methodology for automaƟng 21 

vegetaƟon line extracƟon from a series of historical aerial photography of the Cork coastline 22 

in the South-West of Ireland. The approach relies on the Normalised Green–Blue Difference 23 

Index (NGBDI), which is versaƟle enough to discriminate disparate coastal vegetaƟon 24 

environments, at different resoluƟons and in various lighƟng and seasonal condiƟons. An 25 

iteraƟve opƟmal threshold process and the use of LiDAR ancillary datasets resulted in an 26 

automated vegetaƟon line measurement with uncertainƟes esƟmated to be between 0.6 and 27 

1.2m. Change rates derived from the vegetaƟon lines extracted present uncertainƟes in the 28 

range of ± 0.27m/yr. This robust and repeatable method provides a valuable alternaƟve to 29 

Ɵme-consuming and subjecƟve manual digiƟsaƟon. 30 

 31 

Impact Statements 32 

Coastlines worldwide require effecƟve management, and accurate, Ɵmely data on shoreline 33 

movements are an indispensable prerequisite to inform the decisions made by coastal 34 

managers. Field coastal monitoring requires considerable human resources, it is spaƟally 35 

limited and Ɵme-consuming, but significantly it cannot be done retrospecƟvely. In places 36 

where no such programmes have been undertaken, Earth ObservaƟon satellite data can be 37 

invaluable in capturing temporal changes. But where shoreline changes, or movement of the 38 

vegetaƟon line, is typically on the order of less than 1m per year, as observed in Ireland, aerial 39 

photography is the most valuable source of regional to naƟonal scale informaƟon. While it is 40 

common pracƟce, manual digiƟsaƟon of shorelines is subjecƟve and Ɵme consuming. 41 

SubstanƟal literature is available on automated vegetaƟon feature extracƟon using near-42 

infrared reflectance but, research on more spectrally limited RGB (red-green-blue) colour 43 
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photography, commonly acquired by aerial plaƞorms, is limited to very high-resoluƟon 44 

Uncrewed Aerial Vehicles (UAV) photography. In this paper, we demonstrate the viability of 45 

automated shoreline detecƟon on aerial orthophotography making use of Colour VegetaƟon 46 

Indices developed for UAV photography. Historical archives of aerial photography are 47 

unevenly stocked with photography of varying quality and acquisiƟon condiƟons, alongside 48 

limited spectral content, making them challenging datasets to handle, but the methodology 49 

developed has proved versaƟle enough to perform well at different resoluƟons, and in 50 

different lighƟng and seasonal condiƟons, effecƟvely discriminaƟng diverse coastal vegetaƟon 51 

environments. This research provides a robust and repeatable method to extract shoreline 52 

change informaƟon from data-limited archives.  53 

 54 

IntroducƟon 55 

Following a worldwide paƩern (UNEP, 2017), the highest concentraƟons of populaƟon and 56 

acƟvity in the Republic of Ireland are found in coastal areas with 1.9 million people residing 57 

within 5km of the coast, represenƟng 40 percent of its populaƟon (CSO, 2016). Human 58 

acƟviƟes coupled with a changing climate, associated with rising sea levels and an increase in 59 

storminess, impact shoreline movements and can have major detrimental effects. Coastal 60 

erosion and flooding can eventually lead to a loss of habitats and ecosystems, damage to a 61 

range of infrastructure, and disrupƟon to social and economic systems (IPCC, 2018). Coastlines 62 

worldwide require ongoing effecƟve management, and accurate, Ɵmely data on shoreline 63 

movement are an indispensable prerequisite to inform the decisions made by coastal 64 

managers. 65 

In recent years in Ireland there has been a growing interest from stakeholders for accurate 66 

data on coastal change to beƩer address challenges faced by populaƟons, infrastructures, and 67 

https://doi.org/10.1017/cft.2024.17 Published online by Cambridge University Press

https://doi.org/10.1017/cft.2024.17


Accepted Manuscript 

 

 

ecosystems. This need was underscored in the Report of the Inter-Departmental Group on 68 

NaƟonal Coastal Change Management Strategy, published in October 2023, which idenƟfied 69 

deficiencies, including the lack of monitoring along the majority of the naƟonal coastline 70 

(Department of Housing, Local government and Heritage and the Office of Public Works, 71 

2023). The most recent naƟonal coastal erosion assessment undertaken in Ireland was the 72 

Irish Coastal ProtecƟon Strategy Study (RPS/ICPSS, 2011). The shoreline posiƟon was retrieved 73 

from manual digiƟsaƟon of aerial photography at different dates between 1973 and 2006 74 

(RPS/ICPSS, 2011). Annual retreat rates were derived assuming a linear retreat process, and 75 

the change in posiƟon of the shoreline was measured at a very coarse resoluƟon of 1km. This 76 

analysis is now outdated and must be extended in Ɵme to account for shoreline change which 77 

has happened since 2006. Despite these limitaƟons and the dataset's focus on idenƟficaƟon 78 

of retreaƟng coastal segments, it has been the only quanƟtaƟve reference used by local 79 

authoriƟes in Ireland since 2011 (Flood and Schechtman, 2014; McKibbin, 2016; Lawlor and 80 

Cooper, 2024). 81 

Consistent archives of coastal movements over mulƟple decades are rare. In the United 82 

Kingdom, the East Riding Regional Coastal Monitoring Programme established in the late 83 

1990s, with collecƟons of beach cross-profiles at 75 different points along the coast every six 84 

months, is an example of best pracƟce (East Riding of Yorkshire Council, 2006). Moreover, 85 

annual aerial photographs from the past two decades, available through the Channel Coast 86 

Observatory (CCO), provide a valuable resource for large-scale shoreline change analysis, 87 

complemenƟng localized and resource-intensive field monitoring efforts. In places where no 88 

monitoring programmes have been undertaken, maps are invaluable for shoreline change 89 

analysis due to their historical significance. However, historical maps in Ireland are infrequent 90 

and oŌen lack precision, prevenƟng their inclusion in the study and necessitaƟng a reliance 91 
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on aerial photography. Ireland holds an archive of naƟonal photography captured periodically 92 

since 1995. The spaƟal and spectral resoluƟon of aerial photography acquired worldwide is 93 

very varied, but typically, the older the aerial photography, the less detail is available, with the 94 

first naƟonal campaign in Ireland only acquiring panchromaƟc photography for example. 95 

Aerial photography acquired in three or more spectral bands are now more common, and in 96 

Ireland, naƟonal photography was acquired in the Red, Green, and Blue (RGB) parts of the 97 

electromagneƟc spectrum up unƟl 2013, aŌer which the Near Infrared (NIR) was included. 98 

In this study, shoreline will refer to the dynamic boundary where the land meets the sea, a 99 

line subject to change from natural and human influences. The coastline encompasses the 100 

enƟre length of land along the sea. Shoreline detecƟon techniques are generally classified into 101 

datum-based methods, which uƟlise LiDAR or other elevaƟon capture technologies to create 102 

digital terrain models (DTMs), and proxy-based methods (Pollard, Brooks, and Spencer 2019). 103 

Datum-based methods are limited by infrequent image capture and inconsistent spaƟal 104 

coverage (Pardo-Pascual et al. 2018), limitaƟons which apply to Cork. Proxy-based methods 105 

rely on the detecƟon of visible indicators whether they are geomorphological, vegetaƟon, 106 

water or human features (Toure et al. 2019). The most frequently idenƟfied shoreline indicator 107 

from opƟcal images is the instantaneous waterline, as it is the most visually discernible feature 108 

(McAllister et al. 2022). However, to use instantaneous waterlines as indicators of shoreline 109 

change, they must be corrected using esƟmates of beach slope and Ɵdal height Ɵmeseries, 110 

which can be challenging to obtain in areas with observaƟon gaps (Muir et al., 2024), such as 111 

along the Cork coastline. On the contrary, the seaward edge of stable coastal vegetaƟon, the 112 

vegetaƟon line, serves as a less variable shoreline proxy (Pollard et al., 2020), effecƟvely 113 

capturing changes without the bias introduced by Ɵdal stages (Toure et al., 2019). While the 114 

vegetaƟon line may vary seasonally, it was selected as shoreline proxy given the study area 115 
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data limitaƟons. Although this proxy is ineffecƟve on arƟficial or hard cliff coasts, it is a 116 

valuable indicator of shoreline change in soŌ, sandy environments, such as Cork, where storm 117 

energy gradients drive coastal dynamics (Pollard et al., 2020; Devoy, 2008). AddiƟonally, 118 

remote sensing techniques for mapping vegetaƟon have a well-established research history 119 

(UsƟn and Gamon, 2010). VegetaƟon is tradiƟonally mapped with indices using NIR and red 120 

reflectance. The normalised difference vegetaƟon index (NDVI) is the most widely used metric 121 

when it comes to quanƟfying the health and density of vegetaƟon (Huang et al., 2021). 122 

However, historical aerial photography do not commonly include NIR informaƟon.  123 

The use of Colour VegetaƟon Indices (CVI) based only on RGB data grew with the 124 

popularisaƟon of UAV research. Most CVIs were thereby designed for cenƟmetre scale 125 

resoluƟon photography. UAVs can play a significant role in monitoring and managing coastal 126 

ecosystems (Joyce et al., 2023), however they cannot be acquired retrospecƟvely to calculate 127 

historical change rates. This research proposes a methodology to adapt the use of UAV-CVIs 128 

to much coarser historical aerial photography for the purpose of historical vegetaƟon line 129 

idenƟficaƟon. 130 

 131 

Study area and data 132 

Study area  133 

The coastline of Ireland is very irregular with a bay-headland configuraƟon resulƟng from a 134 

high wave energy regime.  Cork in the South-West of the Republic of Ireland has 1,094km of 135 

coastline (Figure 1), and it is the county recording the highest proporƟon of its populaƟon 136 

living within 100m of the coast (CSO, 2016). Cork has 422km of soŌ sandy coastline, and 91km 137 

are at risk of erosion based on the results of the Ecopro (1996) and Eurosion (Salman, 2004) 138 
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projects. The eastern part of Cork's coastline is highlighted as more vulnerable due to its 139 

geomorphological aƩributes and the higher recorded erosion rates in that area. 140 

The methodology proposed to extract vegetaƟon lines from historical aerial photography and 141 

quanƟfy shoreline change is applied to the enƟre Cork coastline. However, five sites along the 142 

coast have been chosen to validate the results of this study (Figure 1). From East to West, 143 

Pilmore and Garryvoe beaches were selected as two of the sites recording the highest retreat 144 

rates in County Cork. Inchydoney and Owenahincha are two West Cork beaches with large 145 

dune systems which make them very popular beaches. Finally, Garinish Bay hosts three small 146 

sandy coves on the Beara Peninsula in the western part of County Cork. 147 

 148 

Aerial photography 149 

Tailte Éireann is the Irish agency in charge of naƟonal mapping. They completed their first full 150 

coverage of the Republic of Ireland RGB aerial photography dataset in 2000. . From 2000 151 

onwards, naƟonal coverage orthophotography datasets have been delivered periodically with 152 

increasing spaƟal and spectral resoluƟons (Table 1). 153 

Since field monitoring data exist only for a few sites for a single season and satellite imagery 154 

are unsuitable due to the magnitude of change observed, aerial images are the most 155 

valuable—and invariably the only—source of historical coastal posiƟons in Ireland. 156 

Nevertheless, working with aerial photography in Ireland can be highly challenging. Aligning 157 

the availability of survey aircraŌ on the island with cloud-free weather condiƟons at Ɵmes of 158 

high sun angles in the summer season for the whole country is nearly impossible. Achieving 159 

naƟonal coverage may entail flights spanning up to 5 years apart, occurring from March to 160 

November. The exact Ɵme and date of acquisiƟon for each photography is not always available 161 
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as these datasets have been produced by different contractors over the years with different 162 

procedures and metadata requirements.  163 

Aerial photography are orthorecƟfied by the data provider, with each pixel having x and y co-164 

ordinates represenƟng its posiƟon on the ground so that accurate measurements can be taken 165 

from them, but the uncertainty varies between the datasets (Table 1, Column 5: “PosiƟonal 166 

accuracy uncertainty (m)”).  167 

 168 

Complementary datasets 169 

Seaweed washed ashore and low-Ɵde shallow waters might have similar spectral signatures 170 

in the visible wavelengths to growing vegetaƟon, therefore ancillary datasets have been used 171 

to refine the study area and mask areas prone to misclassificaƟons in low-lying areas. LiDAR 172 

coverage of the Cork coastline is limited in frequency and spaƟal coverage, but several 173 

datasets are available, each covering different secƟons of the coastline; the eastern Cork 174 

coastline was surveyed as part of the Office of Public Works (OPW) Blom Coastal Survey in 175 

2006-2007, Cork Harbour, as part of the OPW Flimap Survey in 2007 and the OPW Coastal 176 

Aerial LiDAR survey covered the western part of the county’s coastline in 2021. To mask out 177 

low-lying areas where misclassificaƟon issues can arise, all areas under 2m of elevaƟon to the 178 

Malin Head datum on the different LiDAR Digital Surface Models (DSMs) were merged to 179 

create a low-lying areas mask. This threshold was determined through an iteraƟve opƟmal 180 

thresholding process, aimed at masking as much low-lying area as possible without 181 

compromising the accommodaƟon space for the vegetaƟon line. 182 

The choice of the vegetaƟon line proxy for shoreline posiƟon is only relevant for soŌ coasts, 183 

which are more vulnerable to change over Ɵme, and is not suitable for hard or arƟficial coasts 184 

unless they are vegetated seaward. The previous coast classificaƟon work achieved by the 185 
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Eurosion (Salman et al, 2004) and the ICPSS (RPS, 2011) projects served as guidelines to 186 

idenƟfy soŌ coastal segments. These were further refined using the NaƟonal Land Cover Map 187 

(NLCM), created by Tailte Éireann and the Environmental ProtecƟon Agency (EPA), and visual 188 

inspecƟon using the study photography database. This work resulted in a sandy shore 189 

environments zone.   190 

 191 

Methods  192 

SelecƟng a suitable CVI 193 

The use of vegetaƟon indices is a common pracƟce in remote-sensing studies, as they 194 

minimise the influence of distorƟng factors (Ruiz, 1995) as well as combining and maximising 195 

informaƟon from specific bands or parts of the electromagneƟc spectrum. Several CVIs based 196 

on colour RGB photography have been proposed to idenƟfy vegetaƟon, primarily for data from 197 

UAVs carrying RGB cameras. These CVIs include the normalised green-red difference index 198 

(NGRDI) (Torres-Sanchez et al., 2013), the visible-band difference vegetaƟon index (VDVI) 199 

(Wang et al. 2015), the normalised green-blue difference index (NGBDI) (Wang et al. 2015) 200 

and the Red-green-blue vegetaƟon index (RGBVI) (Bendig et al. 2015). 201 

The index chosen had to be versaƟle enough to perform well at different resoluƟons, and in 202 

different lighƟng and seasonal condiƟons to discriminate very different vegetaƟon 203 

environments. The three coves of Garinish Bay backed by grass vegetaƟon and the dunes from 204 

the sandspit of Inchydoney (Figure 1) were chosen to test five different indices. The binary 205 

classificaƟons of vegetaƟon or no vegetaƟon resulƟng from the different indices were 206 

assessed using the widely recognised overall accuracy metric, calculated as the total number 207 

of correctly classified pixels divided by the total number of pixels in the reference data. Using 208 

the 2000 photography (1m spaƟal resoluƟon), the NGBDI (EquaƟon (1)) outperformed the 209 
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NGRDI by 30%, the RGBVI by 5% and the VDVI by 9%, achieving 89% classificaƟon accuracy 210 

when compared with manual photointerpretaƟon. Using the 2018 photography (0.25m 211 

spaƟal resoluƟon), the NGBDI was once again the best performing index with an accuracy of 212 

96%, similar to the 95% performance of the RGBVI. Since the 2018 photography also contained 213 

NIR data, the performance of the NGBDI was compared to that of the commonly used 214 

Normalised Difference VegetaƟon Index (NDVI), with a very similar accuracy of 94% achieved. 215 

Using the 2021 photography (0.1m spaƟal resoluƟon), all indices performed similarly with 216 

accuracies of 97-98%, with the excepƟon of the NGRDI, which had an accuracy of 79%. AŌer 217 

tesƟng the different indices, the one which performed most consistently across the different 218 

photography sets, gave the best staƟsƟcal accuracy and generated the most coherent 219 

vegetaƟon line was the NGBDI (Eq. 1).  220 

 221 

NGBDI = (Green − Blue) / (Green + Blue)        (1) 222 

 223 

The study's regional scope, the limited uniformity of sandy environments along the Cork 224 

coastline, and large variaƟons in data acquisiƟon condiƟons precluded use of image 225 

classificaƟon methods. The extensive training required, which would have to be undertaken 226 

for each image set, would have negated the Ɵme-saving benefits of developing an automated 227 

approach. To objecƟvely differenƟate between vegetaƟon and non-vegetaƟon pixels for the 228 

varied environmental and acquisiƟon condiƟons, an iteraƟve opƟmal threshold process was 229 

implemented, with different NGBDI thresholds tested, by visual examinaƟon of the spectral 230 

signature of nearby pixels and defined according to the resoluƟon of the dataset as well as 231 

the seasonality of the acquisiƟon date.  232 
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At 1m resoluƟon, each pixel tends to represent a homogeneous area. With clear boundaries 233 

and fewer mixed pixels, the disƟncƟon between features is more pronounced and higher 234 

thresholds can be applied. A threshold value of 0.1 was chosen for both the 2000 and 2005 235 

datasets.  236 

At 0.25m resoluƟon, more details are captured in the photography. Nevertheless, the 237 

increased level of detail may not fully disƟnguish boundaries with intricate details and with 238 

more mixed pixels, it becomes challenging to precisely delineate boundaries. As a result, a 239 

more permissive threshold was needed to ensure that features of interest were captured 240 

accurately. Therefore, thresholds of 0.08 and 0.06 were chosen for the 2011-2012 and the 241 

2018 datasets respecƟvely. The 2015 photography were treated separately from the 2018 242 

photography given the season difference (April 2015 versus June 2018). The 2015 243 

photography covers the Eastern part of Cork coastline, which is more homogeneous with 244 

linear beaches backed by grass vegetaƟon and no large dune systems. In April, grass is 245 

reaching its growing peak, and its green reflectance is very disƟncƟve. These condiƟons jusƟfy 246 

the choice of a higher 0.15 threshold for the 2015 photography.  247 

At 0.1m resoluƟon, boundaries are more clearly defined, and features can be easily captured 248 

on the 2021 photography. As a result, a higher threshold of 0.15 was applied to this dataset.  249 

 250 

From a binary photograph to a vegetaƟon line 251 

Applying the selected threshold to the NGBDI output resulted in binary outputs of vegetaƟon 252 

pixels and background pixels, which had to be converted into a line feature for subsequent 253 

input to the Digital Shoreline Analysis System (DSAS) (Himmelstoss et al., 2021). The binary 254 

images were first polygonised then simplified using a double buffer process. First, a posiƟve 255 

buffer is applied, extending the vegetaƟon polygon by a distance corresponding to the 256 
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photography’s resoluƟon. As a second step, a negaƟve buffer is performed, contracƟng the 257 

vegetaƟon area by the same distance. This process helps smooth the vegetaƟon edge, 258 

simplifying its geometry.  259 

Polygons under 8m2 were usually idenƟfied as seaweed residuals or small patches of 260 

vegetaƟon not suitable to be integrated into the vegetaƟon line. Based on this observaƟon, 261 

all polygons under 8m2 and whose centroid lay within the NaƟonal Land Cover Map’s ‘Exposed 262 

Sediments’ class were deleted. The remaining polygons were agglomerated using an 263 

agglomeraƟon distance of 10m, a minimum area of 80m2 and a minimum hole area of 264 

10,000m2. They were finally converted into line features, and only lines within 50m of the 265 

iniƟal 2000 vegetaƟon line were kept for the DSAS analysis. VegetaƟon lines were thus created 266 

along the Cork coastline as proxies of shoreline posiƟon in 2000, 2005, 2011 or 2012, 2015 or 267 

2018, and 2021. The full workflow can be seen in Figure 2. 268 

 269 

DSAS analysis 270 

The DSAS is a freely available soŌware applicaƟon that works within the Esri ArcGIS soŌware 271 

and calculates change staƟsƟcs for a Ɵme series of shoreline vector spaƟal features 272 

(Himmelstoss et al., 2021). The DSAS first requires a baseline to build transects along which 273 

rates of change will be calculated. For consistency of measuring change using the data 274 

available to this project, the 2000 vegetaƟon line was selected. This baseline was categorised 275 

as midshore, enabling transects to account for both retreat and accreƟon. The maximum 276 

search distance was set to 30m to allow for large movements observed at sand spits, but 277 

without transects intersecƟng each other in smaller coves. Transects were located at 10m 278 

intervals and no smoothing distance was applied, as it tended to place transects 279 

inappropriately parallel to the baseline. No manual ediƟng or omission of transects crossing 280 
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the shorelines at oblique angles was performed, in order to make the process as automated 281 

as possible and avoid manual intervenƟon. This approach was feasible because, unlike the 282 

overall sinuous Cork coastline, the soŌ shore segments are relaƟvely straight. All staƟsƟcs 283 

available were calculated for each transect. The Shoreline Change Envelope (SCE) represents 284 

the distance between the most seaward and the most landward shorelines that intersect a 285 

specific transect. The end point rate (EPR) is calculated by dividing the SCE by the Ɵme elapsed 286 

between the first and last dated shorelines that intersect a given transect. A linear regression 287 

rate-of-change (LRR) staƟsƟc is calculated by fiƫng a least-squares regression line to all 288 

shoreline points for a transect (Himmelstoss et al., 2021).  289 

 290 

ValidaƟon 291 

As no pre-exisƟng dataset was available to validate the vegetaƟon lines it was decided to 292 

manually digiƟse vegetaƟon lines for each available year at the five validaƟon sites (Figure 1). 293 

Points were generated every 25cm along the manually digiƟsed vegetaƟon lines, and at each 294 

point the distance between the manually and automaƟcally derived lines was recorded to 295 

calculate the Mean Absolute Error (MAE). 296 

 297 

Results 298 

ValidaƟng the automated detecƟon of vegetaƟon lines 299 

VegetaƟon lines were generated at every soŌ-shore site along the Cork coastline for 2000, 300 

2005, 2011 or 2012, 2015 or 2018, and 2021 (Figure 3). The OPW Coastal Aerial Survey 301 

acquired in 2021 is only available for sites West from Cork Harbour, therefore, five vegetaƟon 302 

lines were produced for the three sites West of Cork Harbour (Figure 3) and only four lines for 303 
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the two sites East of Cork Harbour (Figure 1). The Mean Absolute Error (MAE) and its 304 

respecƟve standard deviaƟon for each site is recorded in Table 2.  305 

The July 2000 vegetaƟon lines record MAEs below one pixel across all sites, except for 306 

Inchydoney, where the MAE slightly surpasses 1m at 1.09m due to some embryo dunes with 307 

vegetaƟon patches being omiƩed (Figure 4 - A). Given the relaƟvely coarse resoluƟon of the 308 

orthophotography, the results accurately capture the vegetaƟon lines at each site. 309 

The results for the July 2005 vegetaƟon lines are similar, with MAEs below one pixel across all 310 

sites. The best outcomes are observed at Garryvoe beach with a MAE of 0.57m coupled with 311 

a minimal standard deviaƟon of 0.64m (Figure 4 – B). Garryvoe beach is backed by glacial Ɵlls 312 

covered by agricultural fields. In July, these grasslands display a very disƟncƟve green 313 

reflectance, making it relaƟvely easy to disƟnguish them from the sandy beach.   314 

At the 0.25m spaƟal resoluƟon of the November 2011 and March 2012 photography, several 315 

sites show their largest MAEs. When remote sensing data are captured at a higher resoluƟon, 316 

it means that smaller and more complex details of the landcover are captured. However, there 317 

is a criƟcal point where the resoluƟon might not be sufficient to capture the full complexity of 318 

the landcover features. Real-world features are indeed oŌen characterised by fractal paƩerns 319 

that exhibit details at various scales. A discrepancy between the resoluƟon and the complexity 320 

of the landcover features may lead to misinterpretaƟons or incomplete delineaƟon of 321 

landcovers. Inchydoney and Garryvoe beaches have MAEs slightly over 1m, and Owenahincha 322 

beach records a 1.66m MAE with a large standard deviaƟon at 2.16m. For all these sites, the 323 

photography have been acquired in March, which is quite early in the spring season, and the 324 

vegetaƟon is not yet at its greenest, adding complexity to its detecƟon.  325 

At Owenahincha Beach in 2012, the vegetaƟon line alternates between the most seaward 326 

vegetaƟon and more landward vegetaƟon similar to that observed at Inchydoney beach. The 327 
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algorithm misses the pioneer marram grass, which has low contrast with the sand. This occurs 328 

at a resoluƟon that introduces addiƟonal inaccuracies, complicaƟng precise boundary 329 

delineaƟon. It is important to note that although using manual digiƟsaƟon as a validaƟon 330 

source in remote sensing is a legiƟmate approach, especially when alternaƟve validaƟon 331 

sources are unavailable, it is subjecƟve and may introduce its own set of inaccuracies. 332 

The results obtained for the naƟonal orthophotography mosaic 2013-2018 are quite 333 

heterogeneous. Just like Garryvoe beach, Pilmore is a long linear beach backed by grasslands 334 

and 2015 is the year where its MAE is the lowest at 0.38m, or under two pixels of this dataset 335 

(Figure 4 - D). Nevertheless, the issue related to embryo dunes and pioneer vegetaƟon patches 336 

is sƟll present at Inchydoney beach in 2018, giving a MAE close to 3m (Table 2).  337 

The last set of photography for 2021 is only available for the three sites West from Cork 338 

Harbour. The spaƟal resoluƟon is enhanced to 0.1m and the overall results are the best across 339 

the different years. MAEs are below 0.75m across all sites, and below 0.6m at the three coves 340 

of Garinish Bay (Figure 4 - E). The improved resoluƟon captures addiƟonal complexity and 341 

intricate details, allowing beƩer differenƟaƟon between features, and reaching the fractal 342 

analysis criƟcal point where the complexity can fully be captured. 343 

 344 

ValidaƟng the resulƟng change rates. 345 

Although the validaƟon of the extracted vegetaƟon lines’ posiƟon for each year is criƟcal, it is 346 

crucial to establish the degree to which posiƟonal errors, specific to each year, impact the 347 

resultant change rates. For each of the five validaƟon sites, a DSAS analysis was performed 348 

using the manually digiƟsed vegetaƟon lines and compared with the DSAS analysis based on 349 

the lines extracted using the automated method (Figure 5).  350 
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The average MAEs for End Point Rates across all sites is 0.24m/yr (Table 2). Given this result, 351 

EPRs within the range ±0.25m/yr may indicate a tendency towards stability rather than 352 

change. When shoreline change lies within the error bounds, it is not possible to indicate 353 

direcƟonal shoreline change (Pollard et al., 2020).  354 

The dune system at Owenahincha beach shows MAEs around 0.25m (Table 2, Figure 5 – C). 355 

The difference between the average rates calculated using both methods at Owenahincha is 356 

under 0.05m/yr. Although it was one of the sites that showed the largest errors when 357 

considering the posiƟonal accuracy of the individual automated vegetaƟon lines, the embryo 358 

dunes omiƩed one year are either fully integrated into the dune system or washed away on 359 

the next photography, making liƩle difference to the overall rates of vegetaƟon line change.  360 

Pilmore and Garinish Bay record the lowest MAEs (Table 2, Figure 5 – D & E), and average rates 361 

at these sites show good agreement between the automated and manual approaches, with 362 

differences of less than -0.05m/yr for Pilmore and 0.09m/yr for the three coves of Garinish 363 

bay (Table 2). At Garryvoe beach, MAEs reach 0.37m (Table 2) and even though retreat is 364 

indicated by both approaches, the difference in the average rates is 0.27m/yr (Table 2, Figure 365 

5 – B). Unlike other sites, Garryvoe beach is backed by agricultural land. In some seasons some 366 

of these fields were not vegetated and no vegetaƟon line could be extracted for the most 367 

western field on the 2011 and 2015 photography covering Garryvoe beach, which explains 368 

why some lines erroneously veer north at the west end of Figure 5 – B. As the final 369 

photography for this analysis is from 2015, a large error for this date can have greater 370 

consequences for the final EPR of this specific part of the vegetaƟon line. MAEs for the rest of 371 

the vegetaƟon line at Garryvoe beach show good agreements with the change rates derived 372 

from manual digiƟsaƟon (Figure 5 – B).  373 

 374 
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 375 

 376 

Discussion 377 

A robust alternaƟve to manual digiƟsaƟon  378 

Historical aerial photographs are oŌen the only available evidence of past coastal posiƟons, 379 

but their disparate quality, condiƟons of acquisiƟons, posiƟonal accuracy, and limited spectral 380 

content make them challenging datasets to work with. This explains why many studies have 381 

relied on manual digiƟsaƟon. The last three naƟonal or regional studies on coastal change in 382 

the Irish context made this choice; the OPW (RPS/ICPSS, 2011), the Geological Survey Ireland 383 

(GSI) (GSI, 2023) and the Northern Ireland Historical Shorelines Analysis (NIHSA) project 384 

(GroƩoli et al., 2023). In a publicaƟon from 2021, Fabbri et al.  report maximum digiƟsing 385 

errors arising from subjecƟvity of 0.3m for the Dune Foot Line and 0.85m for the Stable 386 

VegetaƟon Line on UAV photography with a spaƟal resoluƟon of 2-4 cenƟmetres. The GSI’s 387 

NaƟonal Assessment of Shoreline Change Report published in 2023, reports uncertainƟes in 388 

vegetaƟon line measurements of 1m, for the 2000 and 2005 datasets and 0.5m, for the 2005-389 

2012 and 2013-2018 datasets. Although the reported uncertainty for the two laƩer datasets 390 

(0.5m) is slightly beƩer than the 0.99m MAE given for the method presented here, the 391 

uncertainty for the first two is comparable. Notably, the results from the GSI correspond to 392 

the digiƟsaƟon of County Dublin’s coast where beaches tend to be longer and straighter than 393 

the indented and varied coastline of County Cork. It is important to emphasise the subjecƟve 394 

nature of manual digiƟsaƟon, whether employed for a final product or validaƟon purposes, 395 

especially in environments involving fragmented vegetaƟon lines in dune systems. The 396 

accuracy of the posiƟon or even the existence of a true vegetaƟon line may be subject to 397 

diverse interpretaƟons from experts of equal knowledge.  398 
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Prior to this work, Cork County Council relied exclusively on ICPSS outcomes to guide 399 

discussions and management of coastal risks. Of the five validaƟon sites, only two had 400 

available outputs. For Garryvoe, the ICPSS divided the area into two segments: the western 401 

two-thirds indicated an erosion rate of 0.33m/yr, while the eastern third showed no erosion 402 

(0m/yr). In contrast, the automated method used in this study returned an average EPR of -403 

0.85m/yr for the western segment and -0.25m/yr for the eastern end. Pilmore Beach was 404 

covered by a single ICPSS segment, indicaƟng an erosion rate of 0m/yr, whereas the 405 

automated method revealed an average EPR of -0.40m/yr.  406 

Regarding sites not flagged by the ICPSS, no clear dynamic paƩerns were observed at Garinish 407 

Bay coves, as the rates fall within the margin of error. Owenahincha serves as an example of 408 

best pracƟce. AŌer experiencing severe erosion in the 1970s (Mullane and MacSweeney 409 

1977), the introducƟon of gabions, dune reshaping, and replanƟng stabilized the area, and 410 

this study reveals the steadily advancing vegetaƟon line, confirming the resilience of the 411 

managed dunes. While local concerns about dune erosion arose at Inchydoney, the analysis 412 

shows stable EPRs, with the 2000 shoreline more landward than the 2021 line. The most 413 

significant changes occur at the western end, where the Ɵp of the sand spit near the estuary 414 

is retreaƟng. These findings challenge percepƟons of criƟcal erosion while highlighƟng the 415 

limitaƟons of the EPR method. The steady retreat of the vegetaƟon line since 2012 reveals a 416 

more complex, non-linear paƩern of shoreline dynamics, that could easily be missed without 417 

intermediate aerial photographs.  418 

While these findings provide valuable data on shoreline change, they offer only a parƟal view. 419 

The next phase of the study will model near-shore condiƟons and sediment transport, and 420 

these results will be incorporated into a Coastal Vulnerability Index (CVI), assessing hazard 421 

exposure and suscepƟbility along the Cork coastline and linking coastal dynamics more 422 
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directly to vulnerable receptors. Nevertheless, this first phase of the study provides a more 423 

nuanced and locaƟon-specific understanding of shoreline change, offering a significant 424 

improvement that enables Cork County Council to make informed decisions based on actual 425 

change data. Elementary GIS skills and minimal processing Ɵme and power are sufficient to 426 

adapt and carry out this robust and repeatable automated vegetaƟon line detecƟon method 427 

and produce ready-to-use and reliable change rates at a regional scale using a DSAS. The 428 

transferability of the methodology elsewhere has been proven by its ability to deal with very 429 

different coastal environments along the Cork coastline without using site-specific thresholds. 430 

The method could be readily applied at a naƟonal scale, parƟcularly since all the datasets used 431 

provide naƟonal coverage. This method is a good illustraƟon of Vitousek at al.’s (2023) 432 

principle, where “data-poor” archives, with spaƟotemporally sparse data of disparate quality 433 

are turned into highly sought-aŌer “data-rich” coastal science products. Another advantage 434 

of this method lies in the limited data sources needed for the analysis. The addiƟon of ancillary 435 

data such as LiDAR and land cover, did not significantly affect the results, but did reduce 436 

processing Ɵme with less manual cleaning of the results required. While addiƟonal LiDAR and 437 

land cover datasets for each photography Ɵme period, could potenƟally help in recƟfying 438 

minor misclassificaƟons, the overall impact on the results is likely negligible.  439 

 440 

LimitaƟons and uncertainƟes  441 

A simple Ɵme-efficient automated method comes with limitaƟons and uncertainƟes which 442 

need to be clarified and considered when using the results. Uncertainty calculaƟons are 443 

essenƟal when interpreƟng shoreline change rates, regardless of the method used to derive 444 

them. These calculaƟons involve uncertainƟes related to the photography posiƟonal accuracy 445 

ranging here from 0.5 to 1m (Table 1), and the automated measurement uncertainƟes, which 446 
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have been esƟmated to be between 0.6 and 1.2m (Table 2) with a mean 95% confidence 447 

interval of 0.98-1m. The combinaƟon of the photography posiƟonal accuracy and the 448 

measurement uncertainƟes can be calculated using the square root of the sum of the two 449 

uncertainƟes squared (Hapke et al., 2011). This gives results ranging from ± 0.6m for the 2021 450 

dataset to ± 1.3m for the 2000 and 2005 datasets. Finally, the resulƟng shoreline change rate 451 

measurement uncertainty has been esƟmated using a 95% confidence interval to be ± 452 

0.27m/yr, which is once again comparable to the manual digiƟsaƟon uncertainƟes presented 453 

by the GSI (2023). It is sƟll valuable to draw robust conclusions from shoreline change with 454 

relaƟvely higher error terms when calculated over longer periods where the main shoreline 455 

processes can be considered disƟnct from the errors (Pollard et al., 2020). The error terms 456 

presented in this study are sƟll much lower than the ones presented in recent remote sensing 457 

studies on shoreline change with 2.37 to 7.97m for shorelines detected with VEdge_Detector 458 

(Rogers et al. 2021) and 9.3 to 27.9m for delineaƟons from VedgeSat (Muir et al. 2024). The 459 

difference is largely explained by the resoluƟon of the source images. VEdge_detector and 460 

VedgeSat are working with satellite images with coarser resoluƟons and therefore larger 461 

errors but over longer and denser Ɵmeseries unveiling different coastal dynamic processes. 462 

LimitaƟons have been idenƟfied in relaƟon to specific environments and condiƟons. Dune 463 

system progression can take the form of small embryo dunes which tend to be missed out by 464 

the automated method. Change rates in these environments tend to be smoothed by the 465 

method as early progression or washing away of the small dunes generally occurs.  Seasonality 466 

is an important parameter to take into consideraƟon while working with vegetaƟon features 467 

using visible wavelengths. It is always easier to capture vegetaƟon at its growing peak while it 468 

is at its greenest, although the Ɵming of this may differ for different vegetaƟon species, and 469 

indeed even between years depending on the weather. The marram grass in dune systems 470 
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and agricultural grasslands in Ireland do not display the same phenology. Marram grass’ green 471 

appearance is altered in July and August when it flowers, while grasslands reach their seasonal 472 

peak in these months. Late autumn and early spring photography give poorer results. 473 

The choice of a vegetaƟon line to serve as shoreline-proxy is not always ideal as some back 474 

beach environments might not always be vegetated, culƟvated areas can be ploughed for 475 

example and these misclassificaƟons have greater consequences if they occur on the first or 476 

last photography in the Ɵmeseries. Extra care and verificaƟon is needed in these instances. 477 

However, the vegetaƟon line was chosen as the best proxy opƟon for the available data and 478 

its effecƟveness in detecƟng storm-driven changes (Pollard et al., 2020), which are a 479 

significant driver of shoreline change along the Cork coastline (Devoy, 2008). Finally, spaƟal 480 

resoluƟon is a criƟcal parameter in any remote sensing workflow. This methodology is a good 481 

illustraƟon of the importance of recognising the fractal dimension of features of interest. An 482 

improved resoluƟon might not always improve results, and for many sites the 0.25m 483 

photography gives poorer results than the 1m photography, while the 0.1m photography gives 484 

the best outcomes due to complex vegetaƟon edges being captured more precisely. This 485 

finding suggests that future data collecƟon should carefully consider the opƟmal resoluƟon 486 

for capturing boundary details. While higher resoluƟons may seem advantageous, they can 487 

introduce inaccuracies at certain levels. Therefore, a lower resoluƟon might be acceptable for 488 

accurate boundary delineaƟon without sacrificing detail (e.g., 1-m photography, as used in 489 

this research). IdenƟfying the ideal frequency and Ɵming of aerial imagery acquisiƟon is 490 

challenging, as aerial imagery is typically collected for mulƟple purposes. Capturing shoreline 491 

change using a vegetaƟon line proxy is a specific applicaƟon that would benefit from annual 492 

acquisiƟon, Ɵmed when the vegetaƟon of interest has the greatest contrast with its 493 

background. Though the opƟmal Ɵming may vary depending on the area and vegetaƟon type, 494 
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this study demonstrates that valuable insights can sƟll be gained from aerial imagery even 495 

when acquisiƟon condiƟons are not ideal.  496 

 497 

Conclusion 498 

This research has demonstrated the viability of automated detecƟon of vegetaƟon lines on 499 

aerial orthophotography, making use of CVIs developed for very high-resoluƟon UAV 500 

photography. The NGBDI proved to be versaƟle enough to disƟnguish the vegetaƟon line for 501 

very different temperate coastal vegetaƟon environments on photography with different 502 

spaƟal resoluƟons, acquired in different light and seasonal condiƟons. In most instances, 503 

vegetaƟon lines extracted using the automated method are within 1m of the manually 504 

digiƟsed line, with a measurement uncertainty similar to that achieved by manual digiƟsaƟon, 505 

even though the uncertainty of the automated method is more variable across the dataset. 506 

The uncertainty is determined to be ± 0.27m/yr when looking at the consequent shoreline 507 

change rates, which are the much-needed end products. This automated method provides a 508 

reliable soluƟon for local authoriƟes and coastal managers with limited data sources, Ɵme, 509 

and remote sensing knowledge.   510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 
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