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Abstract
Let T be a tree on t vertices. We prove that for every positive integer k and every graphG, eitherG contains
k pairwise vertex-disjoint subgraphs each having a T minor, or there exists a set X of at most t(k− 1)
vertices of G such that G− X has no T minor. The bound on the size of X is best possible and improves
on an earlier f (t)k bound proved by Fiorini, Joret, andWood (2013) with some fast-growing function f (t).
Moreover, our proof is short and simple.
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1. Introduction
In 1965, Erdős and Pósa [6] showed that every graph G either contains k vertex-disjoint cycles or
contains a set X ofO(k log k) vertices such that G− X has no cycles. TheO(k log k) bound on the
size of X is best possible up to a constant factor. Using their Grid Minor Theorem, Robertson and
Seymour [9] proved the following generalisation: for every planar graphH, there exists a function
fH(k) such that every graphG contains either k vertex-disjoint subgraphs each having anH minor,
or a set X of at most fH(k) vertices such that G− X has noH minor. ForH =K3, this corresponds
to the setting of the Erdős–Pósa theorem.

The theorem of Robertson and Seymour is best possible in the sense that no such result holds
when H is not planar. The original upper bound of fH(k) on the size of X depends on bounds
from the Grid Minor Theorem and is large as a result (though it is polynomial in k if we use the
polynomial version of the Grid Minor Theorem, see [4]). Chekuri and Chuzhoy [3] subsequently
showed an improved upper bound of OH(k logc k) for a fixed planar graph H, where c is some
large but absolute constant. This was in turn improved to OH(k log k) by Cames van Batenburg,
Huynh, Joret, and Raymond [2], thus matching the original bound of Erdős and Pósa for cycles.

AnOH(k log k) bound is best possible whenH contains a cycle. However, whenH is a forest, it
turns out that one can obtain a linear in k bound on the size of X, as proved by Fiorini, Joret, and
Wood [7]. Their proof gives an OH(k) bound with a non-explicit constant factor that grows very
fast as a function of |V(H)|. This is due to the use of MSO-based tools in the proof, among others.
In this short note, we give a simple proof of their result with an optimal dependence on t and k
when H is a tree.
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Theorem 1. Let T be a tree on t vertices. For every positive integer k and every graph G, either G
contains k pairwise vertex-disjoint subgraphs each having a T minor, or there exists a set X of at
most t(k− 1) vertices of G such that G− X has no T minor.

Observe that the bound on the size of X in Theorem 1 is tight: if G is a complete graph on tk− 1
vertices, then G does not contain k pairwise vertex-disjoint subgraphs each having a T minor, and
every set X of vertices such thatG− X has no T minor has size at least |V(G)| − (t − 1)= t(k− 1).

Theorem 1 follows immediately from the following more general result for forests.

Theorem 2. Let F be a forest on t vertices and let t′ be the maximum number of vertices in a compo-
nent of F. For every positive integer k and every graph G, either G contains k pairwise vertex-disjoint
subgraphs each having an F minor, or there exists a set X of at most tk− t′ vertices of G such that
G− X has no F minor.

Let us also point out the following corollary of Theorem 1 (proved in the next section).

Corollary 3. For all positive integers p and k, and for every graph G, either G contains k vertex-
disjoint subgraphs each of pathwidth at least p, or G contains a set X of at most 2 · 3p+1k vertices
such that G− X has pathwidth strictly less than p.

2. Proof
For a positive integer k, we use the notation [k] := {1, . . . , k}, and when k= 0 let [k] := ∅.

Let G be a graph. We denote by V(G) and E(G), the vertex set and edge set of G, respectively.
Let X ⊆V(G). Then G[X] denotes the subgraph of G induced by the vertices in X and G− X =
G[V(G)− X]. We define the boundary of X inG to be ∂GX := {v ∈ X | vw ∈ E(G), w ∈V(G− X)}.
We omit the subscript G when the graph G is clear from the context.

A path decomposition of G is a sequence (B1, B2, . . . , Bq) of vertex subsets of G called bags
satisfying the following properties: (1) every vertex ofG appears in a non-empty set of consecutive
bags, and (2) for every edge uv of G, there is a bag containing both u and v. The width of the path
decomposition is the maximum size of a bag minus 1. The pathwidth pw(G) of G is the minimum
width of a path decomposition of G.

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting
edges. Robertson and Seymour [8] proved that there exists a function f :N→N such that for every
graph G and every forest F on t vertices, if pw(G)� f (t) then G contains F as a minor. Bienstock,
Robertson, Seymour, and Thomas [1] later showed that one can take f (t)= t − 1, which is best
possible. Diestel [5] subsequently gave a short proof of this result. Our proof of Theorem 2 builds
on the following slightly stronger result, which appears implicitly in Diestel’s proof [5].

Lemma 4 ([5]). Let G be a graph, let t be a positive integer, and let F be a forest on t vertices. If
pw(G)� t − 1, then there exists Y ⊆V(G) such that

1. G[Y] has a path decomposition (B1, . . . , Bq) of width at most t − 1 such that ∂Y ⊆ Bq, and
2. G[Y] contains F as a minor.

We now turn to the proof of Theorem 2.

Proof of Theorem 2. We prove the following strengthening of Theorem 2: Let G be a graph,
let c be a positive integer, let t1 � · · ·� tc be non-negative integers, let T1, . . . , Tc be trees with
|V(Ti)| = ti for every i ∈ [c], let x1, . . . , xc be non-negative integers, at least one of which is non-
zero, and let I := {i ∈ [c] | xi � 1}. Then either

1. G contains pairwise vertex-disjoint subgraphs {Mi,j | i ∈ [c], j ∈ [xi]} such that, for each i ∈
[c] and j ∈ [xi],Mi,j contains a Ti minor, or
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Figure 1. The set Y and the graph G� whose boundary in G is contained in B�.

2. there exists X ⊆V(G) with |X|�∑
i∈I xiti − tmax (I) and G− X does not contain Ti as a

minor for some i ∈ I.

We call the tuple (G, c, T1, . . . , Tc, x1, . . . , xc) an instance. Theorem 2 follows by letting T1, . . . , Tc
be the components of the forest F and letting x1 = x2 = · · · = xc = k.

Roughly, the proof describes an inductive procedure that attempts to find a pairwise disjoint
collection of models, where the number of models of each tree Ti is xi. Induction is on the number∑

i∈[c] xi of models still missing from the collection. Failing to find one of the missing models at
some step will establish (2).

Let (G, c, T1, . . . , Tc, x1 . . . , xc) be an instance, and letm := min (I). Then Tm is a smallest tree
among T1, . . . , Tc such that xm � 1, that is, such that we are still missing amodel of Tm. In the base
case,

∑
i∈[c] xi = xm = 1, and eitherG has a Tm minor and the first outcome of the statement holds,

or G has no such minor and the second outcome holds with X := ∅, since
∑

i∈I xiti − tmax (I) =
tm − tm = 0.

For the inductive case, assume that
∑

i∈[c] xi � 2 and that the statement holds for instances
with smaller values of the sum. If, for every i ∈ I, G has no Ti minor, then the second outcome of
the statement holds with X := ∅ again. Thus, we may assume thatG has a Ti minor for some i ∈ I.

If G has pathwidth at least tm − 1, apply Lemma 4 with t = tm and F = Tm, and let Y be the
resulting subset of vertices of G. If G has pathwidth less than tm − 1, simply let Y := V(G). In
either case, G[Y] has pathwidth at most tm − 1 and has a path decomposition (B1, B2, . . . , Bq)
with |B�|� tm for all � ∈ [q], and such that ∂GY ⊆ Bq. See Figure 1. Furthermore, observe that in
both cases G[Y] has a Ti minor for some i ∈ I, by our assumption on G.

Let � ∈ [q] be the smallest index such thatG� := G[B1 ∪ · · · ∪ B�] contains a Ti minor for some
i ∈ I, and let i′ be an index in I such that

G� contains aTi′minor. (�)

Observe that

G� − B� has no Ti minor for every i ∈ I. (��)

We claim that

there is no edge inG between vertices of G� − B� and vertices ofG−V(G�). (���)

To see this, suppose for a contradiction that uv is such an edge, with u ∈V(G�)− B� and
v ∈V(G)−V(G�). First, note that u ∈ B1 ∪ · · · ∪ B�−1. If v ∈ Y , then u and v appear together in
some bag Bj of the path decomposition (B1, B2, . . . , Bq) of G[Y], and j> � since v /∈ B1 ∪ · · · ∪ B�.
However, since u ∈ B1 ∪ · · · ∪ B�−1 and u ∈ Bj, we conclude that u belongs also to B�, a con-
tradiction. If v /∈ Y , then u ∈ ∂Y , and thus u ∈ Bq. Again, we deduce similarly that u ∈ B�, a
contradiction. This completes the proof of (���).

Let G′ := G−V(G�). Let x′
i := xi for each i ∈ [c]− {i′} and let x′

i′ := xi′ − 1. Let I′ = {i ∈ [c] |
x′
i � 1}. Apply induction to the instance (G′, c, T1, . . . , Tc, x′

1, . . . , x′
c). If it results in a set of vertex-

disjoint subgraphs {M′
i,j | i ∈ [c], j ∈ [x′

i]}, with M′
i,j containing a Ti minor for each i ∈ [c] and
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j ∈ [x′
i], then we let Mi,j := M′

i,j for each i ∈ [c] and j ∈ [x′
i], and Mi′,xi′ := G�, which using (�)

results in the desired collection of vertex-disjoint subgraphs. Otherwise, we obtain a set X′ of at
most

∑
i∈I′ x′

iti − tmax (I′) vertices such thatG′ − X′ does not contain Ta as a minor for some a ∈ I′.
Let X := X′ ∪ B�. Observe that

|X| = |X′| + |B�|�
∑

i∈I′
x′
iti − tmax (I′) + tm �

∑

i∈I
xiti − (tmax (I′) + ti′ − tm)

�
∑

i∈I
xiti − tmax (I).

To see why the last inequality holds, there are two cases to consider: (i) if max (I′)=max (I), then
the inequality follows immediately since ti′ � tm. (ii) If max (I′)<max (I), then i′ =max (I) and
max (I′)�min (I′)=m, so tmax (I′) + ti′ − tm � ti′ = tmax (I).

Now, let us show that G− X does not contain Ti as a minor, for some i ∈ I. Let a ∈ I′ be such
that G′ − X′ does not contain Ta as minor. We will show that we can take i= a. To do so, it is
enough to show that X meets every inclusion-wise minimal subgraph of G containing a Ta minor.
Let M be such a subgraph of G. Note that M is connected, since Ta is connected. Now, observe
that by (���), either M is contained in G′, or M is contained in G� − B�, or M contains a vertex
of B�. In the first case,M contains a vertex of X′ ⊆ X, by the choice of a. The second case is ruled
out by (��). In the third case,M contains a vertex of B� ⊆ X. Thus, we conclude thatM contains a
vertex of X. This concludes the proof. �

We may now turn to the proof of Corollary 3. We will use the following lemma, which is a
special case of a more general result of Robertson and Seymour [Statement (8.7) in [9]].

Lemma 5. For every graph G, for every path decomposition (B1, B2, . . . , Bq) of G, for every family
F of connected subgraphs of G, for every positive integer d, either:

1. there are d pairwise vertex-disjoint subgraphs in F , or
2. there is a set X that is the union of at most d − 1 bags of (B1, B2, . . . , Bq) such that V(F)∩

X 	=∅ for every F ∈F .

Proof of Corollary 3. It is known (and an easy exercise to show) that, for every positive integer
p, the complete ternary tree Tp of height p has pathwidth p. First, apply Theorem 1 on G with the
tree Tp. If G contains k vertex-disjoint subgraphs each containing a Tp minor, we are done. So we
may assume that the theorem produces a set X1 of at most |V(Tp)|(k− 1)� 3p+1(k− 1) vertices
such that G− X1 has no Tp minor.

By Lemma 4,G− X1 has a path decomposition (B1, B2, . . . , Bq) of width strictly less than 3p+1.
It is easily checked that every inclusion-wise minimal subgraph of G− X1 with pathwidth at least
p is connected. Apply Lemma 5 on G− X1 with the path decomposition (B1, B2, . . . , Bq), with
d = k, and with the family F of connected subgraphs of G− X1 with pathwidth at least p. If F
contains k pairwise vertex-disjoint members, we are done. So we may assume that the lemma
produces a set X2 of at most 3p+1(k− 1) vertices such that X2 hits every member of F . It follows
that G− X1 − X2 has pathwidth strictly less than p. Let X := X1 ∪ X2. Since |X|� 3p+1(k− 1)+
3p+1(k− 1)� 2 · 3p+1k, the set X has the desired properties. �
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