ARTICLE

Tight bound for the Erdős–Pósa property of tree minors

Vida Dujmović¹, Gwenaël Joret², Piotr Micek³ and Pat Morin⁴

¹School of Computer Science and Electrical Engineering, University of Ottawa, Ottawa, Canada, ²Computer Science Department, Université libre de Bruxelles, Brussels, Belgium, ³Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland, and ⁴School of Computer Science, Carleton University, Ottawa, Canada

Corresponding author: Gwenaël Joret; Email: gwenael.joret@ulb.be

(Received 10 March 2024; revised 22 October 2024; accepted 30 October 2024)

Abstract

Let *T* be a tree on *t* vertices. We prove that for every positive integer *k* and every graph *G*, either *G* contains *k* pairwise vertex-disjoint subgraphs each having a *T* minor, or there exists a set *X* of at most t(k - 1) vertices of *G* such that G - X has no *T* minor. The bound on the size of *X* is best possible and improves on an earlier f(t)k bound proved by Fiorini, Joret, and Wood (2013) with some fast-growing function f(t). Moreover, our proof is short and simple.

Keywords: Graph minors; pathwidth; Erdős–Pósa property 2020 MSC Codes: Primary: 05C83

1. Introduction

In 1965, Erdős and Pósa [6] showed that every graph G either contains k vertex-disjoint cycles or contains a set X of $\mathcal{O}(k \log k)$ vertices such that G - X has no cycles. The $\mathcal{O}(k \log k)$ bound on the size of X is best possible up to a constant factor. Using their Grid Minor Theorem, Robertson and Seymour [9] proved the following generalisation: for every planar graph H, there exists a function $f_H(k)$ such that every graph G contains either k vertex-disjoint subgraphs each having an H minor, or a set X of at most $f_H(k)$ vertices such that G - X has no H minor. For $H = K_3$, this corresponds to the setting of the Erdős–Pósa theorem.

The theorem of Robertson and Seymour is best possible in the sense that no such result holds when *H* is not planar. The original upper bound of $f_H(k)$ on the size of *X* depends on bounds from the Grid Minor Theorem and is large as a result (though it is polynomial in *k* if we use the polynomial version of the Grid Minor Theorem, see [4]). Chekuri and Chuzhoy [3] subsequently showed an improved upper bound of $\mathcal{O}_H(k \log^c k)$ for a fixed planar graph *H*, where *c* is some large but absolute constant. This was in turn improved to $\mathcal{O}_H(k \log k)$ by Cames van Batenburg, Huynh, Joret, and Raymond [2], thus matching the original bound of Erdős and Pósa for cycles.

An $\mathcal{O}_H(k \log k)$ bound is best possible when H contains a cycle. However, when H is a forest, it turns out that one can obtain a linear in k bound on the size of X, as proved by Fiorini, Joret, and Wood [7]. Their proof gives an $\mathcal{O}_H(k)$ bound with a non-explicit constant factor that grows very fast as a function of |V(H)|. This is due to the use of MSO-based tools in the proof, among others. In this short note, we give a simple proof of their result with an optimal dependence on t and k when H is a tree.

© The Author(s), 2024. Published by Cambridge University Press.

Theorem 1. Let T be a tree on t vertices. For every positive integer k and every graph G, either G contains k pairwise vertex-disjoint subgraphs each having a T minor, or there exists a set X of at most t(k - 1) vertices of G such that G - X has no T minor.

Observe that the bound on the size of X in Theorem 1 is tight: if G is a complete graph on tk - 1 vertices, then G does not contain k pairwise vertex-disjoint subgraphs each having a T minor, and every set X of vertices such that G - X has no T minor has size at least |V(G)| - (t - 1) = t(k - 1). Theorem 1 follows immediately from the following more general result for forests.

Theorem 2. Let F be a forest on t vertices and let t' be the maximum number of vertices in a component of F. For every positive integer k and every graph G, either G contains k pairwise vertex-disjoint subgraphs each having an F minor, or there exists a set X of at most tk - t' vertices of G such that G - X has no F minor.

Let us also point out the following corollary of Theorem 1 (proved in the next section).

Corollary 3. For all positive integers p and k, and for every graph G, either G contains k vertexdisjoint subgraphs each of pathwidth at least p, or G contains a set X of at most $2 \cdot 3^{p+1}k$ vertices such that G - X has pathwidth strictly less than p.

2. Proof

For a positive integer k, we use the notation $[k] := \{1, ..., k\}$, and when k = 0 let $[k] := \emptyset$.

Let *G* be a graph. We denote by V(G) and E(G), the vertex set and edge set of *G*, respectively. Let $X \subseteq V(G)$. Then G[X] denotes the subgraph of *G* induced by the vertices in *X* and G - X = G[V(G) - X]. We define the *boundary* of *X* in *G* to be $\partial_G X := \{v \in X \mid vw \in E(G), w \in V(G - X)\}$. We omit the subscript *G* when the graph *G* is clear from the context.

A path decomposition of G is a sequence $(B_1, B_2, ..., B_q)$ of vertex subsets of G called *bags* satisfying the following properties: (1) every vertex of G appears in a non-empty set of consecutive bags, and (2) for every edge uv of G, there is a bag containing both u and v. The width of the path decomposition is the maximum size of a bag minus 1. The pathwidth pw(G) of G is the minimum width of a path decomposition of G.

A graph *H* is a *minor* of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges. Robertson and Seymour [8] proved that there exists a function $f : \mathbb{N} \to \mathbb{N}$ such that for every graph *G* and every forest *F* on *t* vertices, if $pw(G) \ge f(t)$ then *G* contains *F* as a minor. Bienstock, Robertson, Seymour, and Thomas [1] later showed that one can take f(t) = t - 1, which is best possible. Diestel [5] subsequently gave a short proof of this result. Our proof of Theorem 2 builds on the following slightly stronger result, which appears implicitly in Diestel's proof [5].

Lemma 4 ([5]). Let G be a graph, let t be a positive integer, and let F be a forest on t vertices. If $pw(G) \ge t - 1$, then there exists $Y \subseteq V(G)$ such that

- 1. G[Y] has a path decomposition (B_1, \ldots, B_q) of width at most t 1 such that $\partial Y \subseteq B_q$, and
- 2. G[Y] contains F as a minor.

We now turn to the proof of Theorem 2.

Proof of Theorem 2. We prove the following strengthening of Theorem 2: Let *G* be a graph, let *c* be a positive integer, let $t_1 \leq \cdots \leq t_c$ be non-negative integers, let T_1, \ldots, T_c be trees with $|V(T_i)| = t_i$ for every $i \in [c]$, let x_1, \ldots, x_c be non-negative integers, at least one of which is non-zero, and let $I := \{i \in [c] \mid x_i \geq 1\}$. Then either

1. *G* contains pairwise vertex-disjoint subgraphs $\{M_{i,j} \mid i \in [c], j \in [x_i]\}$ such that, for each $i \in [c]$ and $j \in [x_i]$, $M_{i,j}$ contains a T_i minor, or

Figure 1. The set Y and the graph G_{ℓ} whose boundary in G is contained in B_{ℓ} .

2. there exists $X \subseteq V(G)$ with $|X| \leq \sum_{i \in I} x_i t_i - t_{\max(I)}$ and G - X does not contain T_i as a minor for some $i \in I$.

We call the tuple (*G*, *c*, *T*₁, ..., *T_c*, *x*₁, ..., *x_c*) an *instance*. Theorem 2 follows by letting *T*₁, ..., *T_c* be the components of the forest *F* and letting $x_1 = x_2 = \cdots = x_c = k$.

Roughly, the proof describes an inductive procedure that attempts to find a pairwise disjoint collection of models, where the number of models of each tree T_i is x_i . Induction is on the number $\sum_{i \in [c]} x_i$ of models still missing from the collection. Failing to find one of the missing models at some step will establish (2).

Let $(G, c, T_1, \ldots, T_c, x_1, \ldots, x_c)$ be an instance, and let $m := \min(I)$. Then T_m is a smallest tree among T_1, \ldots, T_c such that $x_m \ge 1$, that is, such that we are still missing a model of T_m . In the base case, $\sum_{i \in [c]} x_i = x_m = 1$, and either *G* has a T_m minor and the first outcome of the statement holds, or *G* has no such minor and the second outcome holds with $X := \emptyset$, since $\sum_{i \in I} x_i t_i - t_{\max(I)} = t_m - t_m = 0$.

For the inductive case, assume that $\sum_{i \in [c]} x_i \ge 2$ and that the statement holds for instances with smaller values of the sum. If, for every $i \in I$, *G* has no T_i minor, then the second outcome of the statement holds with $X := \emptyset$ again. Thus, we may assume that *G* has a T_i minor for some $i \in I$.

If *G* has pathwidth at least $t_m - 1$, apply Lemma 4 with $t = t_m$ and $F = T_m$, and let *Y* be the resulting subset of vertices of *G*. If *G* has pathwidth less than $t_m - 1$, simply let Y := V(G). In either case, G[Y] has pathwidth at most $t_m - 1$ and has a path decomposition (B_1, B_2, \ldots, B_q) with $|B_\ell| \leq t_m$ for all $\ell \in [q]$, and such that $\partial_G Y \subseteq B_q$. See Figure 1. Furthermore, observe that in both cases G[Y] has a T_i minor for some $i \in I$, by our assumption on *G*.

Let $\ell \in [q]$ be the smallest index such that $G_{\ell} := G[B_1 \cup \cdots \cup B_{\ell}]$ contains a T_i minor for some $i \in I$, and let i' be an index in I such that

$$G_{\ell}$$
 contains a $T_{i'}$ minor. (*)

Observe that

$$G_{\ell} - B_{\ell}$$
 has no T_i minor for every $i \in I$. (**)

We claim that

there is no edge in *G* between vertices of $G_{\ell} - B_{\ell}$ and vertices of $G - V(G_{\ell})$. (***)

To see this, suppose for a contradiction that uv is such an edge, with $u \in V(G_{\ell}) - B_{\ell}$ and $v \in V(G) - V(G_{\ell})$. First, note that $u \in B_1 \cup \cdots \cup B_{\ell-1}$. If $v \in Y$, then u and v appear together in some bag B_j of the path decomposition (B_1, B_2, \ldots, B_q) of G[Y], and $j > \ell$ since $v \notin B_1 \cup \cdots \cup B_{\ell}$. However, since $u \in B_1 \cup \cdots \cup B_{\ell-1}$ and $u \in B_j$, we conclude that u belongs also to B_{ℓ} , a contradiction. If $v \notin Y$, then $u \in \partial Y$, and thus $u \in B_q$. Again, we deduce similarly that $u \in B_{\ell}$, a contradiction. This completes the proof of (***).

Let $G' := G - V(G_\ell)$. Let $x'_i := x_i$ for each $i \in [c] - \{i'\}$ and let $x'_{i'} := x_{i'} - 1$. Let $I' = \{i \in [c] \mid x'_i \ge 1\}$. Apply induction to the instance $(G', c, T_1, \ldots, T_c, x'_1, \ldots, x'_c)$. If it results in a set of vertexdisjoint subgraphs $\{M'_{i,i} \mid i \in [c], j \in [x'_i]\}$, with $M'_{i,i}$ containing a T_i minor for each $i \in [c]$ and $j \in [x'_i]$, then we let $M_{i,j} := M'_{i,j}$ for each $i \in [c]$ and $j \in [x'_i]$, and $M_{i',x_{i'}} := G_\ell$, which using (*) results in the desired collection of vertex-disjoint subgraphs. Otherwise, we obtain a set X' of at most $\sum_{i \in I'} x'_i t_i - t_{\max(I')}$ vertices such that G' - X' does not contain T_a as a minor for some $a \in I'$. Let $X := X' \cup B_\ell$. Observe that

 $\begin{aligned} |X| &= |X'| + |B_{\ell}| \leq \sum_{i \in I'} x'_i t_i - t_{\max(I')} + t_m \leq \sum_{i \in I} x_i t_i - (t_{\max(I')} + t_{i'} - t_m) \\ &\leq \sum_{i \in I} x_i t_i - t_{\max(I)}. \end{aligned}$

To see why the last inequality holds, there are two cases to consider: (i) if max $(I') = \max(I)$, then the inequality follows immediately since $t_{i'} \ge t_m$. (ii) If max $(I') < \max(I)$, then $i' = \max(I)$ and $\max(I') \ge \min(I') = m$, so $t_{\max(I')} + t_{i'} - t_m \ge t_{i'} = t_{\max(I)}$.

Now, let us show that G - X does not contain T_i as a minor, for some $i \in I$. Let $a \in I'$ be such that G' - X' does not contain T_a as minor. We will show that we can take i = a. To do so, it is enough to show that X meets every inclusion-wise minimal subgraph of G containing a T_a minor. Let M be such a subgraph of G. Note that M is connected, since T_a is connected. Now, observe that by (***), either M is contained in G', or M is contained in $G_{\ell} - B_{\ell}$, or M contains a vertex of B_{ℓ} . In the first case, M contains a vertex of $X' \subseteq X$, by the choice of a. The second case is ruled out by (**). In the third case, M contains a vertex of $B_{\ell} \subseteq X$. Thus, we conclude that M contains a vertex of X. This concludes the proof.

We may now turn to the proof of Corollary 3. We will use the following lemma, which is a special case of a more general result of Robertson and Seymour [Statement (8.7) in [9]].

Lemma 5. For every graph G, for every path decomposition $(B_1, B_2, ..., B_q)$ of G, for every family \mathcal{F} of connected subgraphs of G, for every positive integer d, either:

- 1. there are d pairwise vertex-disjoint subgraphs in \mathcal{F} , or
- 2. there is a set X that is the union of at most d 1 bags of $(B_1, B_2, ..., B_q)$ such that $V(F) \cap X \neq \emptyset$ for every $F \in \mathcal{F}$.

Proof of Corollary 3. It is known (and an easy exercise to show) that, for every positive integer p, the complete ternary tree T_p of height p has pathwidth p. First, apply Theorem 1 on G with the tree T_p . If G contains k vertex-disjoint subgraphs each containing a T_p minor, we are done. So we may assume that the theorem produces a set X_1 of at most $|V(T_p)|(k-1) \leq 3^{p+1}(k-1)$ vertices such that $G - X_1$ has no T_p minor.

By Lemma 4, $G - X_1$ has a path decomposition (B_1, B_2, \ldots, B_q) of width strictly less than 3^{p+1} . It is easily checked that every inclusion-wise minimal subgraph of $G - X_1$ with pathwidth at least p is connected. Apply Lemma 5 on $G - X_1$ with the path decomposition (B_1, B_2, \ldots, B_q) , with d = k, and with the family \mathcal{F} of connected subgraphs of $G - X_1$ with pathwidth at least p. If \mathcal{F} contains k pairwise vertex-disjoint members, we are done. So we may assume that the lemma produces a set X_2 of at most $3^{p+1}(k-1)$ vertices such that X_2 hits every member of \mathcal{F} . It follows that $G - X_1 - X_2$ has pathwidth strictly less than p. Let $X := X_1 \cup X_2$. Since $|X| \leq 3^{p+1}(k-1) + 3^{p+1}(k-1) \leq 2 \cdot 3^{p+1}k$, the set X has the desired properties.

Acknowledgements

This work was done during a visit of Gwenaël Joret and Piotr Micek to the University of Ottawa and Carleton University. The research stay was partially funded by a grant from the University of Ottawa.

Funding statement

G. Joret is supported by a PDR grant from the Belgian National Fund for Scientific Research (FNRS). V. Dujmović is supported by NSERC and a University of Ottawa Research Chair. P. Micek is supported by the National Science Center of Poland under grant UMO-2023/05/Y/ST6/00079 within the WEAVE-UNISONO program. P. Morin is supported by NSERC.

References

- Bienstock, D., Robertson, N., Seymour, P. and Thomas, R. (1991) Quickly excluding a forest. J. Comb. Theory, Series B 52 274–283.
- [2] Cames van Batenburg, W., Huynh, T., Joret, G. and Raymond, J. F. (2019) A tight Erdős-Pósa function for planar minors. Adv. Comb. 10.
- [3] Chekuri, C. and Chuzhoy, J. (2013) Large-treewidth graph decompositions and applications. In Proceedings of the 45th annual ACM Symposium on Theory of Computing, ACM. pp. 291–300.
- [4] Chekuri, C. and Chuzhoy, J. (2016) Polynomial bounds for the grid-minor theorem. J. ACM 63 40:1-40:65.
- [5] Diestel, R. (1995) Graph minors 1: A short proof of the path-width theorem. Comb. Prob. Comp. 4 27–30.
- [6] Erdős, P. and Pósa, L. (1965) On independent circuits contained in a graph. Canadian J. Math. 17 347–352.
- [7] Fiorini, S., Joret, G. and Wood, D. R. (2013) Excluded forest minors and the Erdős-Pósa property. Comb. Prob. Comp. 22 700–721.
- [8] Robertson, N. and Seymour, P. D. (1983) Graph minors. I. excluding a forest. J. Comb. Theory Series B 35 39-61.
- [9] Robertson, N. and Seymour, P. D. (1986) Graph minors. V. Excluding a planar graph. J. Comb. Theory Series B 41 92-114.

Cite this article: Dujmović V, Joret G, Micek P, and Morin P (2024). Tight bound for the Erdős–Pósa property of tree minors. *Combinatorics, Probability and Computing*. https://doi.org/10.1017/S0963548324000415