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Abstract
We prove an algebraic version of the Hamilton–Tian conjecture for all log Fano pairs. More precisely, we show that
any log Fano pair admits a canonical two-step degeneration to a reduced uniformly Ding stable triple, which admits
a Kähler–Ricci soliton when the ground field k = C.
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Throughout this paper, we work over an algebraically closed field k of characteristic 0.

1. Introduction

A Kähler–Einstein metric is arguably ‘the most canonical’ metric that one can find on a Fano variety.
However, not every Fano variety admits a Kähler–Einstein metric. So it is natural to ask what kind of
structure one should look for on a general Fano variety. In fact, there are several candidates. In this note,
we will study one structure, namely the Kähler–Ricci soliton. This kind of metric has been investigated
in many previous works. While not every Fano variety itself admits a Kähler–Ricci soliton, it is expected
that any Fano variety has a unique degeneration to one with a Kähler–Ricci soliton (see, e.g., [Tia97,
Section 9]).

For a smooth Fano manifold X, the approach of using Kähler–Ricci flow to study Kähler–Ricci
solitons has been intensively studied in complex geometry literature and leads to the solution of the
Hamilton–Tian conjecture (see [TZ16, Bam18, CW20]), which says that the Gromov–Hausdorff limit
𝑋∞ of X under the Kähler–Ricci flow admits a Kähler–Ricci soliton. What is more relevant to us is that
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2 H. Blum et al.

in [CSW18] it is shown that 𝑋∞ can be realized as a (two-step) degeneration of X, and in [DS20] that the
first degeneration minimizes the H-functional among all possible R-degenerations (note that our sign
on H is opposite to the one in [DS20]).

In this paper, we will pursue a purely algebraic study of the above degeneration process by studying
the geometry of the minimizer of the non-Archimedean type functional HNA, which in particular can be
applied to a general (possibly singular) log Fano pair (𝑋,Δ). Such algebraic study, including developing
the non-Archimedean theory of the HNA-functional, was initiated in [HL20b]. There it is shown the
uniqueness of the above degeneration process. Our first main theorem of this paper is the existence of
such a degeneration for general log Fano pairs. It can be considered to be an algebraic version of the
Hamilton–Tian conjecture, though there is no metric involved. More precisely, we have the following
result.

Theorem 1.1. Let (𝑋,Δ) be a log Fano pair. Then it admits a two-step degeneration to a K-polystable
triple (𝑌,Δ𝑌 , 𝜉𝑌 ), which is indeed reduced uniformly Ding stable. In particular, it admits a Kähler–
Ricci soliton if k = C.

In the above theorem, 𝜉𝑌 = 0 if and only if (𝑋,Δ) is K-semistable. The proof of Theorem 1.1 will
be separated into two parts, contained, respectively, in Theorems 1.2 and 1.3.

By [HL20b, Theorem 1.3], it is already known that any K-semistable triple (𝑋0,Δ0, 𝜉) admits a
unique K-polystable degeneration (𝑌,Δ𝑌 , 𝜉𝑌 ) (whose proof is based on [LWX21]). Therefore, it suffices
to establish the first-step degeneration which degenerates (𝑋,Δ) to a K-semistable triple (𝑋0,Δ0, 𝜉).
To construct such a degeneration, we follow [HL20b] and study the valuation which computes ℎ(𝑋,Δ)
(i.e., the minimizer of the 𝛽). As a result, we prove the following statement, which establishes the first
half of Theorem 1.1 and gives an affirmative answer to [HL20b, Conjecture 4.10].

Theorem 1.2. Let (𝑋,Δ) be a log Fano pair. Let r be a positive integer such that 𝑟 (𝐾𝑋 + Δ) is Cartier.
Then (𝑋,Δ) has a unique valuation v computing ℎ(𝑋,Δ).

Moreover, the associated graded ring gr𝑣𝑅 for 𝑅 =
⊕

𝑚∈N 𝐻0(−𝑚𝑟 (𝐾𝑋 + Δ)) is finitely generated,
whose Proj together with the degeneration of Δ and the induced vector 𝜉𝑣 yields the first-step degener-
ation to a K-semistable triple (𝑋0,Δ0, 𝜉𝑣 ).

It was shown in [HL20b] that the uniqueness statement in the above theorem follows from the
finite generation of the gr𝑣𝑅. In this note, we first establish stronger convexity results for various non-
Archimedean functionals (see Theorem 3.7). Then we will obtain uniqueness as a consequence, without
using finite generation.

The second step to proving Theorem 1.1 is to establish the following Yau–Tian–Donaldson (YTD)
conjecture for Kähler–Ricci solitons.

Theorem 1.3 (YTD Conjecture for Kähler-Ricci Solitons). A triple (𝑋,Δ , 𝜉) is K-polystable if and
only if it is reduced uniformly Ding stable. In particular, when k = C, (𝑋,Δ , 𝜉) admits a Kähler–Ricci
soliton if and only if it is K-polystable.

In fact, in [HL20], it is proven that the reduced uniform Ding stability of (𝑋,Δ , 𝜉) is equivalent
to the existence of a Kähler–Ricci soliton, by using variational methods. Here, we verify that reduced
uniform Ding stability is equivalent to K-polystability. When X is smooth and Δ = 0, the second part of
Theorem 1.3 is proved in [DS16, CSW18].

Remark 1.4. As we already mentioned, when X is smooth, the Cheeger–Colding–Tian theory can be
used to establish Theorem 1.1, Theorem 1.2 and Theorem 1.3. In fact, one can obtain the optimal
degeneration from the study of the Hamilton–Tian conjecture on the long time behavior of Kähler–Ricci
flows on X. See [DS16, TZ16, Bam18, CW20, CSW18]. However, it seems to us it is hard to extend
these types of arguments to the more general (possibly singular) case.

Recent work of Han and Li builds an algebraic framework for studying the two-step degeneration
process. Specifically, in [HL20b], they developed the non-Archimedean theory for the HNA-functional
(based on the H-function(al) defined in [TZZZ13, He16]) and interpret the existence of the optimal
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degeneration, which is essentially equivalent to Theorem 1.2, in terms of geometric properties of the
minimizer of the 𝛽𝑋,Δ -function, which is a variant of the HNA-functional but defined on Val◦𝑋 ∪ {𝑣triv}.

From the algebro-geometric viewpoint, the study of 𝛽𝑋,Δ in [HL20b] is entirely parallel to the study
of the stability threshold of a log Fano pair or in the local setting the normalized volume function of a
Kawamata log terminal (klt) singularity. Therefore, it is natural to apply the arguments in the former
problems to the current case. Indeed, [HL20b] has made significant progress in carrying out this study,
and the main remaining step is the finite generation of the graded ring induced by minimizers of various
functions, for example, 𝛽𝑋,Δ and 𝛿𝑔 (𝑋,Δ , 𝜉).

In [LXZ22], the finite generation of the associated graded ring for the valuation computing the
stability threshold is solved. In this note, we solve the finite generation in Theorem 1.2 and Theorem 1.3
by a similar method. We also give a more straightforward argument of the uniqueness without using
the finite generation (which is needed in [HL20b]) but by establishing convexity of various functionals
based on the arguments in [XZ21].

We will also investigate a moduli approach to study general log Fano pairs with fixed h-invariant.

Theorem 1.5 (=Theorem 6.1). For a fixed dimension n, volume V, a positive integer N and a constant ℎ0,
families of n-dimensional log Fano pairs (𝑋,Δ) with (−𝐾𝑋 − Δ)𝑛 = 𝑉 , 𝑁Δ integral and ℎ(𝑋,Δ) ≥ ℎ0
are parameterized by an Artin stack MFano

𝑛,𝑉 ,𝑁 ,ℎ+0
of finite type.

In the upcoming work, we aim to show that there is a finite type Artin stack MKss
𝑛,𝑉 ,𝑁 ,ℎ0

which
parametrizes families of n-dimensional K-semistable triples (𝑋,Δ , 𝜉) with (−𝐾𝑋 − Δ)𝑛 = 𝑉 , 𝑁Δ
integral and ℎ(𝜉) = ℎ0. Moreover, MKss

𝑛,𝑉 ,𝑁 ,ℎ0
admits a proper good moduli space 𝑀

Kps
𝑛,𝑉 ,𝑁 ,ℎ0

. Then we
will study the two-step degeneration from a moduli theoretic viewpoint.

1.1. Outline of the proof

In recent years, there have been two functions on the space of valuations which have been intensively
studied in algebraic geometry. The first one is the function 𝐴𝑋,Δ ( ·)

𝑆 ( ·) of a log Fano pair (𝑋,Δ), and the
second one is the normalized volume function on a klt singularity 𝑥 ∈ (𝑋,Δ). Many of their fundamental
properties were proved in a sequence of works. The general framework for the proofs of the theorems
in this paper is largely parallel to the previous works on the study of these two functions, especially the
first one.

Step 1: The first step is to show the strict convexity of the HNA-functional. For any pair of filtrations
F0 and F1, there is a natural family (F𝑡 )𝑡 ∈[0,1] of filtrations connecting them called the geodesic (see
Section 3.1.2). To study it, we define a measure DHF0 ,F1 over R2 (called the compatible Duistermaat–
Heckman measure) that encodes DHF𝑡 for 𝑡 ∈ [0, 1] (see Section 3.1.3). Then convexity results for
various functionals, for example, ENA and 𝑆 along geodesics can be proved by doing integration over this
measure. And for LNA, the convexity is proved by interpreting it as the log canonical slope 𝜇 and then
applying results from [XZ21] to compare log canonical thresholds. As a result, this yields the convexity
of DNA and the strict convexity of HNA along geodesics (analogous results in the Archimedean setting
were proved in [Ber15]). The latter will imply the uniqueness of the minimizer.

Step 2: To prove Theorem 1.3, we will take a similar strategy to the solution of the usual YTD
conjecture for log Fano pairs. First, we will extend the usual definition of the S-invariant function to the
weighted setting with respect to a quasi-monomial valuation 𝑣0 (see Section 4.1) and then we can define
the corresponding 𝛿(𝑋,Δ , 𝑣0).

We are first interested in the special case when 𝑣0 is a valuation coming from a vector field 𝜉 induced
by a torus action. In this case, as seen in [HL20b], many criteria for testing the the K-semistability or
(reduced) uniformly K-stability of a pair (𝑋,Δ) can be extended in to the setting of triples (𝑋,Δ , 𝜉).
In particular, we extend results from [Li22] and [XZ20, Appendix] to this setting in Sections 4.2
and 4.3.
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In a similar but slightly different setting, we consider the minimizer 𝑣0 of the nonhomogeneous
function 𝛽𝑋,Δ , and we show it computes 𝛿(𝑋,Δ , 𝑣0) for the weight function 𝑔 = 𝑒−𝑥 . See Section 5.1.

Step 3: In the last step, we will show in the above two cases 𝑣0 is a monomial log canonical (lc) place
of a special Q-complement (in the sense of [LXZ22, Definition 3.3]) constructed from a weighted basis
type divisor. Then we can apply the finite generation result in [LXZ22] to show the associated graded ring
of 𝑣0 is finitely generated (see Corollary 5.7 and 5.8). This completes the proof of Theorem 1.2 and 1.3.

Finally, to prove Theorem 1.5, that is, to verify MFano
𝑛,𝑉 ,𝑁 ,ℎ+0

is an Artin stack of finite type, we first
need to show that the set of all n-dimensional log Fano pairs (𝑋,Δ) with (−𝐾𝑋 − Δ)𝑛 = 𝑉 , 𝑁Δ
integral and ℎ(𝑋,Δ) ≥ ℎ0 is bounded, and then we conclude by showing, for any Q-Gorenstein family
of (𝑋,Δ) → 𝐵 over a finite type base B, the function 𝐵 � 𝑡 ↦→ ℎ(𝑋𝑡 ,Δ 𝑡 ) is constructible and lower
semicontinuous.

2. Preliminaries

Notation and Conventions: We follow the standard notation as in [KM98, Kol13, Laz04].
A variety is a separated integral scheme of finite type over k. A pair (𝑋,Δ) consists of a normal

variety X and an effective Q-divisor Δ on X such that 𝐾𝑋 + Δ is Q-Cartier. A pair (𝑋,Δ) is called
log Fano if X is projective, (𝑋,Δ) is klt and −𝐾𝑋 − Δ is ample. A log smooth model (𝑌, 𝐸) of a pair
(𝑋,Δ) consists of a projective birational morphism 𝜋 : 𝑌 → 𝑋 and a reduced divisor E on Y such that
(𝑌, Supp(𝐸 + Ex(𝜋) + 𝜋−1

∗ Δ)) has simple normal crossing support.
Let X be a normal variety. We denote by Val𝑋 the space of real valuations 𝐾 (𝑋)× → R centered

on X whose restriction over the ground field k is trivial. We endow Val𝑋 with the weak topology. We
denote the trivial valuation on X by 𝑣triv.

For the definitions of divisorial valuations, quasi-monomial valuations and log discrepancy of valu-
ations; see, for example, [JM12, LLX20, Xu20].
Definition 2.1. Let (𝑋,Δ) be a pair. We denote by

Val◦𝑋 := {𝑣 ∈ Val𝑋 | 𝐴𝑋,Δ (𝑣) < +∞ and 𝑣 ≠ 𝑣triv}.

If (𝑋,Δ) admits a torus T-action, then we denote by ValT𝑋 the subset of Val𝑋 consisting of all T-invariant
valuations, and let ValT,◦𝑋 := Val◦𝑋 ∩ ValT𝑋 .

2.1. Filtrations

Let (𝑋,Δ) be an n-dimensional log Fano pair. Fix 𝑟 > 0 so that 𝐿 := −𝑟 (𝐾𝑋 + Δ) is an ample Cartier
divisor. We write

𝑅(𝑋, 𝐿) := 𝑅 :=
⊕
𝑚∈N

𝑅𝑚 :=
⊕
𝑚∈N

𝐻0 (𝑋,O𝑋 (𝑚𝐿))

for the section ring of L and 𝑁𝑚 := dim 𝑅𝑚.
Definition 2.2. A filtration F of R is a collection of vector subspaces F𝜆𝑅𝑚 ⊂ 𝑅𝑚 for each 𝜆 ∈ R and
𝑚 ∈ N satisfying
(F1) F𝜆𝑅𝑚 ⊂ F𝜆′𝑅𝑚 for 𝜆 ≥ 𝜆′;
(F2) F𝜆𝑅𝑚 =

⋂
𝜆′<𝜆 F𝜆′𝑅𝑚;

(F3) F𝜆𝑅𝑚 = 𝑅𝑚 for 𝜆 � 0 and F𝜆𝑅𝑚 = 0 for 𝜆 � 0;
(F4) F𝜆𝑅𝑚 · F𝜆′𝑅𝑚′ ⊂ F𝜆+𝜆′𝑅𝑚+𝑚′ .

A filtration F is a Z-filtration if F �𝜆�𝑅𝑚 = F𝜆𝑅𝑚 for all 𝜆 ∈ R and 𝑚 ∈ N. A filtration is
finitely generated if the associated graded k-algebra grF𝑅 :=

⊕
(𝑚,𝜆) ∈N×R gr𝜆F𝑅𝑚, where gr𝜆F𝑅𝑚 =

F𝜆𝑅𝑚/(∪𝜇>𝜆F 𝜇𝑅𝑚), is finitely generated.
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The translation of F by 𝑐 ∈ R is the filtration defined by G𝜆𝑅𝑚 := F𝜆−𝑚𝑟𝑐𝑅𝑚. The scaling by
𝑎 ∈ R>0 is the filtration defined by H𝜆𝑅𝑚 := F𝜆/𝑎𝑅𝑚.

A filtration F is linearly bounded if there exists 𝐶 > 0 so that F𝑚𝐶𝑅𝑚 = 0 for all 𝑚 > 0. Note that
there always exists 𝐶 > 0 so that F−𝑚𝐶𝑅𝑚 = 𝑅𝑚 for all 𝑚 > 0 by the finite generation of R combined
with (F3) and (F4).

For an element 𝑠 ∈ 𝑅𝑚 \ {0}, we set ordF (𝑠) := max{𝜆 ∈ R | 𝑠 ∈ F𝜆𝑅𝑚}. We set ordF (0) = +∞ by
convention. A basis (𝑠1, . . . , 𝑠𝑁𝑚) of 𝑅𝑚 is said to be compatible withF ifF𝜆𝑅𝑚 = span〈𝑠 𝑗 | ordF (𝑠 𝑗 ) ≥
𝜆〉 for each 𝜆 ∈ R.

Example 2.1. The following filtrations play an important role in this paper.

1. Given 𝑣 ∈ Val𝑋 , there is an induced filtration F𝑣 of R defined by

F𝜆
𝑣 𝑅𝑚 := {𝑠 ∈ 𝑅𝑚 | 𝑣(𝑠) ≥ 𝜆}.

When 𝐴𝑋,Δ (𝑣) < +∞, F𝑣 is linearly bounded [BJ20, Lemma 3.1].
2. Similarly, any effective Q-divisor G on X induces a filtration F𝐺 of R by setting

F𝜆
𝐺𝑅𝑚 := {𝑠 ∈ 𝑅𝑚 | {𝑠 = 0} ≥ 𝜆𝐺}.

3. A test configuration (X ,L) of (𝑋, 𝐿) induces a finitely generated Z-filtration of R. See [BHJ17,
Section 2.5] for details.

2.1.1. Successive minima
Given a basis (𝑠1, . . . , 𝑠𝑁𝑚) of 𝑅𝑚 compatible with F , the numbers

𝜆 (𝑚)
𝑗 := ordF (𝑠 𝑗 ) for 1 ≤ 𝑗 ≤ 𝑁𝑚

are called the successive minima of F along R. Since 𝑑
𝑑𝜆 dimF𝜆𝑅𝑚 = −

∑
𝑗 𝛿𝜆(𝑚)

𝑗
the values (𝜆 (𝑚)

𝑗 ) 𝑗

are independent of the choice of compatible basis up to reordering. We write 𝜆 (𝑚)
max = max{𝜆 ∈ R |F𝜆

𝑅𝑚 ≠ 0} and set 𝜆max := sup𝑚≥1
𝜆
(𝑚)
max
𝑚𝑟 .

2.1.2. Graded linear series
A graded linear series 𝑉• = (𝑉𝑚)𝑚∈N of L is a collection of vector subspaces 𝑉𝑚 ⊂ 𝑅𝑚 satisfying
𝑉𝑚 · 𝑉𝑚′ ⊂ 𝑉𝑚+𝑚′ . The volume of 𝑉• is the value

vol(𝑉•) := lim sup
𝑚→∞

dim𝑉𝑚
𝑚𝑛/𝑛!

.

Given a filtration F of R and 𝑠 ∈ R, we define a graded linear series 𝑉 (𝑠)
• by setting 𝑉 (𝑠)

𝑚 := F𝑚𝑟𝑠𝑅𝑚.
When the choice of filtration is not clear from context, we will denote it by 𝑉F , (𝑠)

• .
The following result is a consequence of [BC11]. See [BHJ17, Theorem 5.2].

Proposition 2.3. Let F be a linearly bounded filtration of R.

(i) For each 𝑠 < 𝜆max, vol(𝑉 (𝑠)
• ) is a limit.

(ii) The function 𝑠 ↦→ vol(𝑉 (𝑠)
• )1/𝑛 is concave on (−∞, 𝜆max) and vanishes on (𝜆max,∞) (hence, it is

continuous away from 𝑠 = 𝜆max).
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2.1.3. Base ideals
Given a linearly bounded filtration F of R, we set

𝐼𝑚,𝜆 := im(F𝜆𝑅𝑚 ⊗𝑘 O𝑋 (−𝑚𝐿) → O𝑋 ),

which is the base ideal of the linear series F𝜆𝑅𝑚. Note that 𝐼𝑚,𝜆 · 𝐼𝑚′,𝜆′ ⊂ 𝐼𝑚+𝑚′,𝜆+𝜆′ .
For each 𝜆 ∈ R, we write 𝐼 (𝜆)• for the graded sequence of ideals on X defined by setting 𝐼 (𝜆)𝑚 := 𝐼𝑚,𝜆𝑚𝑟 .

For each 𝑚 ∈ Z>0, we set

I𝑚 :=
∑
𝑖∈Z

𝐼𝑚,𝑖𝑡
−𝑖 ⊂ 𝐾 (𝑋) (𝑡) � 𝐾 (𝑋 × A1).

Note that 𝑡 �𝜆
(𝑚)
max � · I𝑚 ⊂ O𝑋

A1 since 𝐼𝑚,𝑖 = 0 for 𝑖 > 𝜆 (𝑚)
max. Therefore, I𝑚 is a fractional ideal on

𝑋A1 := 𝑋 × A1.

2.1.4. Duistermaat–Heckman measure
Given a linearly bounded filtration F of R and an integer 𝑚 > 0, we consider the probability measure
on R defined by

𝜈F𝑚 :=
1

𝑁𝑚

𝑁𝑚∑
𝑖=1

𝛿
(𝑚𝑟 )−1𝜆(𝑚)

𝑖
= −

𝑑

𝑑𝜆

dimF𝑚𝑟𝜆𝑅𝑚

𝑁𝑚
.

By [BC11] (see [BHJ17, §5.1]), 𝜈F𝑚 converges weakly as 𝑚 → ∞ to the probability measure

DHF := −
𝑑

𝑑𝜆

vol(𝑉 (𝜆)
• )

𝐿𝑛
.

The measure satisfies supp(DHF ) = [𝜆min, 𝜆max], where

𝜆min := inf{𝜆 ∈ R | vol(𝑉 (𝜆)
• ) < (𝐿𝑛)}

and 𝜆max is as defined previously.
The following statement is an extension of [BHJ17, Lemma 5.13] from divisorial valuations to

valuations with finite log discrepancy.
Lemma 2.4. If 𝑣 ∈ Val𝑋 and 𝐴𝑋,Δ (𝑣) < +∞, then 𝜆min(F𝑣 ) = 0.
Proof. It is clear that 𝜆min(F𝑣 ) ≥ 0 since F𝜆

𝑣 𝑅 = 𝑅 for 𝜆 ≤ 0. For the reverse inequality, fix a log
resolution 𝑌 → 𝑋 of (𝑋,Δ) and let 𝜉 := 𝑐𝑌 (𝑣) be the center of v on Y. Note that 𝐴𝑌 ,0 (𝑣) is finite since
𝐴𝑋,Δ (𝑣) < +∞ by assumption. An Izumi type inequality [JM12, Proposition 5.10] implies

𝑣( 𝑓 ) ≤ 𝑐 · ord𝜉 ( 𝑓 ) for all 𝑓 ∈ O𝑌 , 𝜉 ,

where 𝑐 := 𝐴𝑌 ,0 (𝑣) > 0, and, hence, F𝜆
𝑣 ⊂ F𝜆

𝑐 ·ord𝜉 𝑅 for all 𝜆 ∈ R. Therefore, 𝜆min(F𝑣 ) ≤

𝜆min(F𝑐 ·ord𝜉 ) = 0, where the equality holds by [BHJ17, Lemma 5.13], since 𝑐 · ord𝜉 is a divisorial
valuation. �

2.2. Non-Archimedean functionals

2.2.1. Energy functional
Following [BHJ17], the Monge–Ampère energy of F is given by

ENA(F) :=
∫
R

𝜆 DHF (𝑑𝜆)
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which is the barycenter of DHF . When F = F𝑣 for a valuation 𝑣 ∈ Val𝑋 with 𝐴𝑋,Δ (𝑣) < ∞,
ENA (F𝑣 ) = 𝑆(𝑣) and 𝜆max(F𝑣 ) = 𝑇 (𝑣), where 𝑆(·) and 𝑇 (·) are the expected and maximal vanishing
order appearing in [BJ20].

2.2.2. Ding-functional
The Ding invariant of a linearly bounded filtration F is defined by

DNA (F) = LNA(F) − ENA(F),

where LNA (F) = lim𝑚→∞ lct(𝑋A1 ,ΔA1 , I
1
𝑚𝑟
𝑚 ; (𝑡)) − 1 and

lct(𝑋A1 ,ΔA1 , I
1
𝑚𝑟
𝑚 ; (𝑡)) := sup{𝑐 ∈ R | (𝑋A1 ,ΔA1 , I

1
𝑚𝑟
𝑚 · (𝑡)𝑐) is sub-lc}.

This invariant was introduced in [Ber16] for test configurations and [BHJ17, Fuj19] for general filtrations.

2.2.3. HNA-functional
Following [HL20b], for a linearly bounded filtration F we set

HNA(F) = LNA(F) − 𝑆(F),

where LNA(F) is defined above and 𝑆(F) := − log
∫
R
𝑒−𝜆 DHF (𝑑𝜆). This invariant was introduced

in [TZZZ13] for holomorphic vector fields and then extended to R-test configurations in [DS20] and
linearly bounded filtrations in [HL20b]. We set

ℎ(𝑋,Δ) := inf
F

HNA(F),

where the infimum runs through all linearly bounded filtrations of F . By [HL20b, Corollary 4.7],
ℎ(𝑋,Δ) ≤ 0 and equality holds iff (𝑋,Δ) is K-semistable.

For a valuation 𝑣 ∈ Val◦𝑋 ∪ {𝑣triv}, we define

𝛽𝑋,Δ (𝑣) := 𝐴𝑋,Δ (𝑣) − 𝑆(𝑣),

where 𝑆(𝑣) = 𝑆(F𝑣 ). Note that 𝛽𝑋,Δ (𝑣triv) = 0. By [HL20b, Theorem 1.5],

ℎ(𝑋,Δ) = inf
𝑣 ∈Val◦𝑋∪{𝑣triv }

𝛽(𝑣).

We say that 𝑣 ∈ Val◦𝑋 ∪{𝑣triv} computes ℎ(𝑋,Δ) if it achieves the above infimum. By [HL20b, Theorem
4.9], there always exists a quasi-monomial valuation computing ℎ(𝑋,Δ).

3. Convexity and uniqueness

In this section, we will obtain the uniqueness of the valuation computing ℎ(𝑋,Δ). In [HL20b], this was
proved to follow from the finite generation, that is, Theorem 1.2. In this section, instead of using the
finite generation, we will take the approach of establishing more general convexity results. In fact, for
two filtrations F0 and F1, we consider a segment in the space of filtrations (F𝑡 )𝑡 ∈[0,1] , which we call the
geodesic between the two filtrations. We then introduce a probability measure on R2 that encodes DHF𝑡
for 𝑡 ∈ [0, 1]. This will allow us to deduce the convexity of a number of functionals which take the form
of integrating over the Duistermaat–Heckman measure (DH). For LNA, the proof of its convexity uses
the ideas from [XZ21] in the local setting.

Throughout, (𝑋,Δ) is a log Fano pair, 𝑟 > 0 a rational number so that 𝐿 := −𝑟 (𝐾𝑋 + Δ) is a Cartier
divisor, and 𝑅 := 𝑅(𝑋, 𝐿).
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3.1. Geodesics and DH measures

Fix two linearly bounded filtrationsF0 andF1 of R. For each integer 𝑚 > 0, choose a basis (𝑠1, . . . , 𝑠𝑁𝑚)
of 𝑅𝑚 that is compatible with both F0 and F1 simultaneously; see [AZ22, Lemma 3.1] or [BE21,
Proposition 1.14] for the existence of such a basis. For 1 ≤ 𝑖 ≤ 𝑁𝑚, we set

𝜆0, (𝑚)
𝑖 := ordF0 (𝑠𝑖) and 𝜆1, (𝑚)

𝑖 = ordF1 (𝑠𝑖).

The pairs (𝜆0, (𝑚)
𝑖 , 𝜆1, (𝑚)

𝑖 ) are unique up to reordering. For example, this follows from the observation
that − 𝜕2

𝜕𝑥𝜕𝑦 dim(F 𝑥
0 𝑅𝑚 ∩ F 𝑦

1 𝑅𝑚) =
∑
𝑖 𝛿𝜆0, (𝑚)

𝑖 ,𝜆
1, (𝑚)
𝑖

. The above basis and notation will be used in the
constructions below.

3.1.1. Relative limit measure
For each integer 𝑚 > 0, we define a probability measure on R by

𝜈F0 ,F1
𝑚 :=

1
𝑁𝑚

𝑁𝑚∑
𝑖=1

𝛿
(𝑚𝑟 )−1 (𝜆0, (𝑚)

𝑖 −𝜆
1, (𝑚)
𝑖 )

.

It was proven in [CM15] that 𝜈F0 ,F1
𝑚 converges weakly as 𝑚 → ∞ to a compactly supported probability

measure that we denote by RLMF0 ,F1 . See [BJ21, Theorem 3.3] for the statement and proof written in
our setting.

The 𝐿1-distance [BJ21, Section 3.4] between F0 and F1 is defined by

𝑑1(F0,F1) :=
∫
R

|𝜆 |RLMF0 ,F1 (𝑑𝜆).

We say F0 and F1 are equivalent if 𝑑1(F0,F1) = 0.

Proposition 3.1 [BJ21, Corollary 3.13]. If F0 and F1 are equivalent, then DHF0 = DHF1 .

3.1.2. Geodesics
Let F0 and F1 be linearly bounded filtrations of R. For 𝑡 ∈ (0, 1), we define a filtration F𝑡 of R by setting

F𝜆
𝑡 𝑅𝑚 :=

∑
𝜇 (1−𝑡)+𝜈𝑡≥𝜆

F 𝜇
0 F𝑚 ∩ F 𝜈

1 𝑅𝑚. (3.1)

It is straightforward to check that F𝑡 is a filtration of R and is linearly bounded. We will call (F𝑡 )𝑡 ∈[0,1]
the geodesic connecting F0 and F1.

An alternative way to describe F𝑡 is in terms of the basis (𝑠1, . . . , 𝑠𝑁𝑚 ) of 𝑅𝑚 fixed earlier. Indeed,
since F 𝜇

0 𝑅𝑚 ∩ F 𝜈
1 𝑅𝑚 = span〈𝑠𝑖 | 𝜆0, (𝑚)

𝑖 ≥ 𝜇 and 𝜆1, (𝑚)
𝑖 ≥ 𝜈〉, it follows that

F𝜆
𝑡 𝑅𝑚 = span〈𝑠𝑖 | 𝜆0, (𝑚)

𝑖 (1 − 𝑡) + 𝜆1, (𝑚)
𝑖 𝑡 ≥ 𝜆〉.

Therefore, the basis (𝑠1, . . . , 𝑠𝑁𝑚) is compatible with F𝑡 and ordF𝑡 (𝑠𝑖) = (1 − 𝑡)𝜆0, (𝑚)
𝑖 + 𝑡𝜆1, (𝑚)

𝑖 . As a
consequence of this observation,

𝜈F𝑡𝑚 =
1

𝑁𝑚

∑
𝑖=1

𝛿
(𝑚𝑟 )−1 (𝜆0, (𝑚)

𝑖 (1−𝑡)+𝜆1, (𝑚)
𝑖 𝑡)

. (3.2)

In the following section, will analyze a measure on R2 that encodes equation (3.2) for each 𝑡 ∈ [0, 1].
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Remark 3.2. In the language of graded norms, the definition of (F𝑡 )𝑡 ∈[0,1] appears in the work of
Reboulet in a more general setting and plays a key role in his theory of geodesics in the space of
non-Archimedean metrics on a line bundle [Reb22].

3.1.3. Duistermaat—Heckman measures
For each 𝑚 > 0, we consider the probability measure on R2 defined by

𝝂𝑚 :=
1

𝑁𝑚

𝑁𝑚∑
𝑖=1

𝛿
( (𝑚𝑟 )−1𝜆0, (𝑚)

𝑖 , (𝑚𝑟 )−1𝜆1, (𝑚)
𝑖 )

=
𝜕2

𝜕𝑥𝜕𝑦

dim(F𝑚𝑟𝑥
0 𝑅𝑚 ∩ F𝑚𝑟𝑦

1 𝑅𝑚)

𝑁𝑚
.

Since F0 and F1 are assumed to be linearly bounded, we may fix 𝐶 > 0 so that F𝐶𝑚𝑟
𝑖 𝑅𝑚 = 0 and

F−𝐶𝑚𝑟
𝑖 𝑅𝑚 = 𝑅𝑚 for both 𝑖 = 0, 1. Hence, supp(𝝂𝑚) is contained in the bounded set [−𝐶,𝐶] × [−𝐶,𝐶].

Theorem 3.3. The sequence 𝝂𝑚 converges weakly as 𝑚 → ∞ to the compactly supported probability
measure

DHF0 ,F1 :=
𝜕2

𝜕𝑥𝜕𝑦

vol(𝑊 (𝑥,𝑦)
• )

𝐿𝑛
,

where 𝑊
(𝑥,𝑦)
• is the graded linear series defined by 𝑊

(𝑥,𝑦)
𝑚 = F𝑚𝑟𝑥

0 𝑅𝑚 ∩ F𝑚𝑟𝑦
1 𝑅𝑚.

We will call DHF0 ,F1 the compatible DH measure of the two filtrations. The use of the measure is
that it encodes DHF𝑡 for 𝑡 ∈ [0, 1], as well as RLMF0 ,F1 (see Proposition 3.6).

To prove Theorem 3.3, we analyze the following functions R2 → [0, 1] that are nonincreasing in
both variables:

𝑓𝑚(𝑥, 𝑦) =
dim(𝑊

(𝑥,𝑦)
𝑚 )

𝑁𝑚
and 𝑓 (𝑥, 𝑦) := lim sup

𝑚→∞
𝑓𝑚(𝑥, 𝑦) =

vol(𝑊 (𝑥,𝑦)
• )

(𝐿𝑛)
,

as well as the locus 𝑃 =
⋃

𝑚≥1 𝑃𝑚 where 𝑃𝑚 = Supp( 𝑓𝑚).

Proposition 3.4. The set P is convex and Int(𝑃) = ∪𝑚Int(𝑃𝑚)

Proof. Using property (F4) of a filtration, it follows that

𝑐𝑚𝑃𝑚 + 𝑑𝑞𝑃𝑞 ⊂ (𝑐𝑚 + 𝑑𝑞)𝑃𝑚𝑐+𝑞𝑑 for all 𝑐, 𝑑, 𝑚, 𝑞 ∈ Z>0. (3.3)

Indeed, if (𝑥, 𝑦) ∈ 𝑐𝑚𝑃𝑚 and (𝑥 ′, 𝑦′) ∈ 𝑑𝑞𝑃𝑞 , then there exist nonzero sections

𝑠 ∈ F𝑟 𝑥/𝑐
0 𝑅𝑚 ∩ F𝑟 𝑦/𝑐

1 𝑅𝑚 and 𝑠′ ∈ F𝑟 𝑥′/𝑑
0 𝑅𝑞 ∩ F𝑟 𝑦′/𝑑

1 𝑅𝑞 .

Hence,

𝑠𝑐𝑠′𝑑 ∈ F𝑟 (𝑥+𝑥′)
0 𝑅𝑚𝑐+𝑚𝑑 ∩ F𝑟 (𝑦+𝑦′)

1 𝑅𝑚𝑐+𝑚𝑑

which implies (𝑥+𝑥 ′, 𝑦+𝑦′) ∈ (𝑚𝑐+𝑞𝑑)𝑃𝑚𝑐+𝑞𝑑 as desired. Now, equation (3.3) implies: if 𝑝, 𝑞 ∈ ∪𝑚𝑃𝑚

and 𝑡 ∈ [0, 1] ∩ Q, then 𝑝(1 − 𝑡) + 𝑡𝑞 ∈ ∪𝑚𝑃𝑚. Therefore, the closure of ∪𝑚𝑃𝑚 is convex.
To show Int(𝑃) = ∪𝑚Int(𝑃𝑚), first note that the inclusion ⊃ clearly holds. To see ⊂ holds, fix

(𝑎, 𝑏) ∈ Int(𝑃). Since Int(𝑃) is open, we may choose 𝜖 > 0 so that (𝑎+ 𝜖, 𝑏+ 𝜖) ∈ Int(𝑃). Since P is the
closure of ∪𝑚𝑃𝑚 and (𝑎 + 𝜖, 𝑏 + 𝜖) ∈ 𝑃, there exists (𝑥, 𝑦) ∈ ∪𝑚𝑃𝑚 so that 𝑎 < 𝑥 and 𝑏 < 𝑦. Using that
each 𝑓𝑚 is ≥ 0 and nonincreasing in both variables, the latter implies (𝑎, 𝑏) ∈ ∪𝑚Int(𝑃𝑚) as desired. �

Proposition 3.5. On the locus R2 \ 𝜕𝑃, 𝑓 = lim𝑚→∞ 𝑓𝑚 and f is continuous.
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Proof. The statement clearly holds on R2 \ 𝑃 since 𝑓𝑚 and f are both zero on that locus. It remains to
verify the statement on Int(𝑃).

Fix (𝑎, 𝑏) ∈ Int(𝑃). Let G denote the filtration of R defined by

G𝜆𝑅𝑚 := F𝜆+𝑚𝑟𝑎
0 𝑅𝑚 ∩ F𝜆+𝑚𝑟𝑏

1 𝑅𝑚,

which is linearly bounded since both F0 and F1 are linearly bounded. Let 𝑉G, (𝑡)
𝑚 and 𝑉G, (𝑡)

• be defined
as in Section 2.1.2. If we set

𝑔𝑚(𝑡) =
dim𝑉G, (𝑡)

𝑚

𝑁𝑚
and 𝑔(𝑡) = lim sup

𝑚→∞

vol(𝑉G, (𝑡)
• )

(𝐿𝑛)
,

then 𝑔𝑚(𝑡) = 𝑓𝑚(𝑎 + 𝑡, 𝑏 + 𝑡) and 𝑔(𝑡) = 𝑓 (𝑎 + 𝑡, 𝑏 + 𝑡) since 𝑉G, (𝑡)
𝑚 = 𝑊 (𝑎+𝑡 ,𝑏+𝑡)

𝑚 . Note that, for
𝑡 < 𝜆max(G), 𝑔(𝑡) = lim𝑚→∞ 𝑔𝑚(𝑡) exists and g is continuous at t by Proposition 2.3.

We claim that 𝜆max(G) > 0. Indeed, using that 𝑔𝑚(𝑡) = 𝑓𝑚(𝑎 + 𝑡, 𝑏 + 𝑡), we see

(𝑚𝑟)−1𝜆 (𝑚)
max(G) = sup{𝑡 ∈ R | (𝑎 + 𝑡, 𝑏 + 𝑡) ∈ 𝑃𝑚}

Since (𝑎, 𝑏) ∈ Int(𝑃), Proposition 3.4 implies there exists 𝑚′ > 0 so that (𝑎, 𝑏) ∈ Int(𝑃𝑚′ ). Therefore,
𝜆 (𝑚′)

max (G) > 0 and, hence, 𝜆max(G) > 0 as desired.
Using the above claim, we see that lim𝑚→∞ 𝑓𝑚(𝑎, 𝑏) = 𝑓 (𝑎, 𝑏), and 𝑓 (𝑎 + 𝑡, 𝑏 + 𝑡) is continuous at

𝑡 = 0. Since f is nonincreasing in both variables, the latter implies that f is continuous at (𝑎, 𝑏). �

Theorem 3.3 is now an easy consequence of the previous propositions.

Proof of Theorem 3.3. As 𝑚 → ∞, 𝑓𝑚 converge pointwise to f away from a set of measure zero by
by Propositions 3.4 and 3.5. Since 0 ≤ 𝑓𝑚 ≤ 1, the dominated converges theorem implies 𝑓𝑚 → 𝑓 in
𝐿1

loc (R
2). Therefore, 𝑓𝑚 → 𝑓 as distributions and, hence, 𝝂𝑚 = 𝜕2

𝜕𝑥𝜕𝑦 𝑓𝑚 → 𝜕2

𝜕𝑥 𝜕𝑦 𝑓 as distributions,
as well. Since each distribution 𝝂𝑚 is a measure, [Hor03, Theorem 2.1.9] implies DHF0 ,F1 := 𝜕2

𝜕𝑥 𝜕𝑦 𝑓

is a measure and 𝝂𝑚
weak
−→ DHF0 ,F1 as measures. Furthermore, the measure DHF0 ,F1 is a compactly

supported probability measure since it is a weak limit of probability measures with uniformly bounded
support. �

Proposition 3.6. Fix 𝑡 ∈ [0, 1], 𝑐 ∈ R>0, and 𝑑 ∈ R. Consider the maps 𝑝, 𝑞 : R2 → R defined by
𝑝(𝑥, 𝑦) = (1 − 𝑡)𝑥 + 𝑡𝑦 and 𝑞(𝑥, 𝑦) = 𝑥 − 𝑐(𝑦 + 𝑑). The following hold:
1. 𝑝∗(DHF0 ,F1 ) = DHF𝑡 , and
2. 𝑞∗(DHF0 ,F1 ) = RLMF0 ,G , where G is filtration given by G𝜆𝑅𝑚 := F (𝜆−𝑑𝑚𝑟 )/𝑐

1 𝑅𝑚.

Proof. Observe that 𝑝∗(𝝂𝑚) = 𝜈F𝑡𝑚 and 𝑞∗(𝝂𝑚) = 𝝂F0 ,G
𝑚 . Therefore, 𝑝∗(𝝂𝑚)

weak
−→ DHF𝑡 and 𝑞∗(𝝂𝑚)

weak
−→

RLMF0 ,G . By Theorem 3.3 and the continuity of p and q, we also have 𝑝∗(𝝂𝑚)
weak
−→ 𝑝∗(DHF0 ,F1 ) and

𝑞∗(𝝂𝑚)
weak
−→ 𝑞∗(DHF0 ,F1 ). Since weak limits of measure on R2 are unique, the result follows. �

3.2. Convexity

In this section, we prove the following result on the convexity of the non-Archimedean Ding and H-
functionals.

Theorem 3.7. Let F0 and F1 be linearly bounded filtrations of R and (F𝑡 )𝑡 ∈[0,1] be the geodesic
connecting them. For 𝑡 ∈ (0, 1), the following hold:
1. DNA(F𝑡 ) ≤ (1 − 𝑡)DNA(F0) + 𝑡DNA(F1);
2. HNA(F𝑡 ) ≤ (1 − 𝑡)HNA(F0) + 𝑡HNA(F1).

https://doi.org/10.1017/fmp.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.5


Forum of Mathematics, Pi 11

Furthermore, the inequality in (ii) is strict unless there exists 𝑑 ∈ R so that 𝑑1(F0,G) = 0, where G is
the filtration defined by G𝜆𝑅𝑚 := F𝜆−𝑑𝑚𝑟

1 𝑅𝑚.

The result is an algebraic analogue of a theorem of Berndtsson on the convexity of the Ding-functional
along geodesics in the space of Kähler potentials [Ber15]. In forthcoming work, Reboulet shows that
Theorem 3.7 can in fact be deduced from Berndtsson’s convexity result when X is smooth [Reb21]. The
proof below is self-contained and purely algebraic.

To prove Theorem 3.7, we first show the convexity of LNA along geodesics. For this, we first compare
LNA with the log canonical slope of a filtration F , defined as (c.f. [XZ20, Definition 1.3 and Lemma
4.13])

𝜇(F) := 𝜇𝑋,Δ (F) := sup
{
𝑠 ∈ R | lct(𝑋,Δ; 𝐼 (𝑠)• ) ≥

1
𝑟

}
= sup

{
𝑠 ∈ R | lct(𝑋,Δ; 𝐼 (𝑠)• ) >

1
𝑟

}
.

Lemma 3.8. For any linearly bounded filtration F of R we have 𝜇(F) = LNA (F), and there exists some
valuation 𝑣 ∈ Val◦𝑋 ∪ {𝑣triv} such that

𝑟−1𝑣(𝐼 (𝜆)• ) ≥ 𝜆 + 𝐴𝑋,Δ (𝑣) − LNA(F) (3.4)

for all 𝜆 ∈ R. Moreover, if F is a finitely generated Z-filtration and LNA(F) < 𝜆max(F), then v can be
chosen to be a divisorial lc place of some Q-complement.

Recall that a valuation v is said to be an lc place of someQ-complement if there exists some effective
Q-divisor Γ ∼Q −(𝐾𝑋 + Δ) such that (𝑋,Δ + Γ) is lc and 𝐴𝑋,Δ+Γ (𝑣) = 0.

Proof. By [XZ20, Theorem 4.3], we already have 𝜇(F) ≥ LNA(F), thus it suffices to show 𝜇(F) ≤

LNA (F). By [JM12, Theorem 7.3], lct(𝑋A1 ,ΔA1 + I
1
𝑟
• ; (𝑡)) = LNA(F) + 1 is computed by some G𝑚-

invariant valuation 𝑤 ∈ Val◦
𝑋×A1 (the G𝑚-equivariant version is not proved in [JM12] but is not hard to

achieve from the proof). By [BHJ17, Lemma 4.2], up to rescaling w is the Gauss extension of a valuation
𝑣 ∈ Val◦𝑋 ∪ {𝑣triv}, that is, 𝑤( 𝑓 𝑡𝑖) = 𝑣( 𝑓 ) + 𝑖 for any 0 ≠ 𝑓 ∈ 𝐾 (𝑋) and 𝑖 ∈ Z. Since w computes the lct
and 𝑤(𝑡) = 1, we have

LNA(F) + 1 = 𝐴𝑋
A1 ,ΔA1 (𝑤) − 𝑤(I

1
𝑟
• ) = 𝐴𝑋,Δ (𝑣) + 1 − 𝑤(I

1
𝑟
• ).

Thus, 𝐴𝑋,Δ (𝑣) − LNA(F) = 𝑤(I
1
𝑟
• ) ≤ 𝑤(I

1
𝑚𝑟
𝑚 ) ≤

𝑣 (𝐼𝑚,𝑖)−𝑖
𝑚𝑟 for all 𝑚 ∈ N and 𝑖 ∈ Z. It follows that

𝑟−1𝑣(𝐼 (𝜆)• ) ≥ 𝜆 + 𝐴𝑋,Δ (𝑣) − LNA(F)

for all 𝜆 ∈ R. In particular, lct(𝑋,Δ; 𝐼 (𝜆)• ) < 𝑟−1 for any 𝜆 > LNA(F). By the definition of log canonical
slope, this implies 𝜇(F) ≤ LNA(F) and proves the first part of the lemma.

If F is finitely generated, then I𝑝𝑚 = I 𝑝
𝑚 for any sufficiently divisible 𝑚, 𝑝 ∈ N and thus w can be

chosen as a divisorial valuation. Since LNA (F) < 𝜆max(F), the valuation v cannot be the trivial one,
otherwise equation (3.4) becomes 𝜆 ≤ LNA(F) for all 𝜆 < 𝜆max(F) and therefore 𝜆max(F) ≤ LNA(F),
a contradiction. By [BHJ17, Lemma 4.1], we know that v is divisorial. Let 𝔞𝑚 = 𝐼𝑚,𝜇𝑚𝑟 . Again,
𝔞𝑝𝑚 = 𝔞𝑝𝑚 for any sufficiently divisible 𝑚, 𝑝 ∈ N as F is finitely generated. By equation (3.4), we have
𝑟−1𝑣(𝔞•) ≥ 𝐴𝑋,Δ (𝑣); thus, from the definition of log canonical slope, we see that v necessarily computes

lct(𝔞•) = 𝑚 · lct(𝔞𝑚) = 𝑚 · lct(𝑋,Δ; {𝑠 = 0})

for sufficiently divisible m and general 𝑠 ∈ F 𝜇𝑚𝑟𝑅𝑚. As 𝐾𝑋 + Δ + 1
𝑚𝑟 {𝑠 = 0} ∼Q 0, this easily implies

that v is an lc place of some Q-complement. �
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Remark 3.9. From the above proof, it is clear that if the filtration F is T-equivariant for some torus
T < Aut(𝑋,Δ), then the valuation v can be chosen to be T-invariant as well.

Remark 3.10. Lemma 3.8 immediately implies that 𝛽(F) = DNA(F) (see [XZ20, Definition 4.1] for
the definition 𝛽(F)) for any linearly bounded multiplicative filtration F .

Corollary 3.11. For any 𝑣 ∈ Val◦𝑋 , we have LNA (F𝑣 ) ≤ 𝐴𝑋,Δ (𝑣) and HNA(F𝑣 ) ≤ 𝛽𝑋,Δ (𝑣).

Proof. It is not hard to see from the definition that 𝜇(F𝑣 ) ≤ 𝐴𝑋,Δ (𝑣) (c.f. [XZ20, Proposition 4.2]),
thus the first inequality follows from Lemma 3.8. The second inequality follows from the first and the
definition of HNA and 𝛽. �

Given the equality LNA(F) = 𝜇(F) (see Lemma 3.8), we can establish the convexity of LNA using
[XZ21].

Proposition 3.12. Let F0 and F1 be linearly bounded filtrations of R and (F𝑡 )𝑡 ∈[0,1] be the geodesic
connecting them. For 𝑡 ∈ (0, 1), LNA(F𝑡 ) ≤ (1 − 𝑡)LNA(F0) + 𝑡LNA(F1).

Proof. It is not hard to see that the statement is unaffected by translation of the filtrations. Thus, by
Lemma 3.8, we may assume that, after shifting the filtrations, there exists valuations 𝑣0, 𝑣1 on X with
𝐴𝑋,Δ (𝑣𝑖) < ∞ such that LNA (F𝑖) = 𝜇(F𝑖) = 𝐴𝑋,Δ (𝑣𝑖) and 𝑣𝑖 (𝐼

(𝜆)
F𝑖 ,•) ≥ 𝑟𝜆 for all 𝜆 ∈ R and 𝑖 = 0, 1. In

particular, F𝜆
𝑖 𝑅 ⊆ F𝜆

𝑣𝑖𝑅 for all 𝜆 ∈ R.
Let (𝑌 = Spec(𝑅), Γ) denote the affine cone over (𝑋,Δ) with respect to the polarization 𝐿 =

−𝑟 (𝐾𝑋 + Δ). Let 𝑤𝑖 be the G𝑚-invariant valuation on Y given by 𝑤𝑖 (𝑠) = 𝑚𝑟 + 𝑣𝑖 (𝑠) for 𝑠 ∈ 𝑅𝑚

(informally 𝑤𝑖 = 𝑟 · ord𝑜 + 𝑣𝑖). Let 𝔟𝑡 ,• be the graded sequence of ideals on Y defined by

𝔟𝑡 ,𝑚 = 𝔞•((1 − 𝑡)𝑤0) � 𝔞•(𝑡𝑤1) :=
𝑚∑
𝑖=0

𝔞𝑚−𝑖 ((1 − 𝑡)𝑤0) ∩ 𝔞𝑖 (𝑡𝑤1).

In other words, 𝔟𝑡 ,𝑚 is generated by those 𝑠 ∈ 𝑅 with �(1 − 𝑡)𝑤0(𝑠)� + �𝑡𝑤1 (𝑠)� ≥ 𝑚. For any 𝑘 ∈ Z

and any 𝑠 ∈ F 𝑘+2
𝑡 𝑅𝑚, we have (1 − 𝑡)𝑤0(𝑠) + 𝑡𝑤1(𝑠) ≥ 𝑚𝑟 + 𝑘 + 2 by equation (3.1). It follows that s

is a section of 𝔟𝑡 ,𝑚𝑟+𝑘 (for if 𝑎 + 𝑏 ≥ 𝑘 + 2 then �𝑎� + �𝑏� ≥ 𝑘). Therefore, elements in F 𝑘+2
𝑡 𝑅𝑚 yield

sections of 𝔟𝑡 ,𝑚𝑟+𝑘 on Y for any 𝑘 ∈ Z. By [XZ21, Theorem 3.11], we have

lct(𝔟𝑡 ,•) ≤ lct(𝔞•((1 − 𝑡)𝑤0)) + lct(𝔞•(𝑡𝑤1)) ≤ (1 − 𝑡)𝐴𝑌 ,Γ (𝑤0) + 𝑡𝐴𝑌 ,Γ (𝑤1)

= 1 + (1 − 𝑡)𝐴𝑋,Δ (𝑣0) + 𝑡𝐴𝑋,Δ (𝑣1) = 1 + (1 − 𝑡)LNA(F0) + 𝑡LNA(F1).

Thus, for any rational 𝑐 > (1 − 𝑡)LNA(F0) + 𝑡LNA(F1) and any 𝑠 ∈ F 𝑐𝑚𝑟+2
𝑡 𝑅𝑚 (where m is sufficiently

divisible), as it yields a section of 𝔟𝑡 , (1+𝑐)𝑚𝑟 on Y, the pair (𝑌, Γ + 1
𝑚𝑟 {𝑠 = 0}) is not lc. Using

[Kol13, Lemma 3.1(5)], it follows that the base (𝑋,Δ + 1
𝑚𝑟 {𝑠 = 0}) is not lc for any 𝑚 ∈ N and any

𝑠 ∈ F 𝑐𝑚𝑟+2
𝑡 𝑅𝑚. By the definition of log canonical slope, this implies that 𝜇(F𝑡 ) ≤ 𝑐. By Lemma 3.8

and the fact that 𝑐 > (1 − 𝑡)LNA(F0) + 𝑡LNA(F1) was arbitrary, the result follows. �

Using the measure DHF0 ,F1 constructed in Section 3.1.3, we next describe the behavior of the
Monge–Ampère Energy and 𝑆 functionals along the geodesic.

Proposition 3.13. For 𝑡 ∈ [0, 1], ENA(F𝑡 ) = (1 − 𝑡)ENA(F0) + 𝑡ENA(F1).

Proof. Set 𝝂 := DHF0 ,F1 . We compute

ENA(F𝑡 ) =
∫
R

𝜆 DHF𝑡 (d𝜆) =
∫
R2

((1 − 𝑡)𝑥 + 𝑡𝑦) d𝝂 = (1 − 𝑡)

∫
R2

𝑥 d𝝂 + 𝑡

∫
R2

𝑦 d𝝂, (3.5)

where the second equality is by Proposition 3.6. From this, the result follows. �
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Proposition 3.14. For 𝑡 ∈ (0, 1), 𝑆(F𝑡 ) ≥ (1 − 𝑡)𝑆(F0) + 𝑡𝑆(F1). Furthermore, the inequality is strict
unless there exists 𝑑 ∈ R so that 𝑑1 (F0,G) = 0, where G is the filtration defined by G𝜆𝑅𝑚 := G𝜆−𝑚𝑟𝑑𝑅𝑚.

Proof. Set 𝝂 := DHF0 ,F1 , 𝑓 (𝑥, 𝑦) := 𝑒−𝑥 , and 𝑔(𝑥, 𝑦) := 𝑒−𝑦 . For 𝑡 ∈ [0, 1],

𝑆(F𝑡 ) = − log
∫
R2

𝑒−𝜆 DHF𝑡 (d𝜆) = − log
∫
R2

𝑒−(1−𝑡)𝑥−𝑡 𝑦 d𝝂 = − log‖ 𝑓 1−𝑡𝑔𝑡 ‖1,𝝂 ,

where the second equality is by Proposition 3.6. Hölder’s inequality implies

− log‖ 𝑓 1−𝑡𝑔𝑡 ‖1,𝝂 ≥ − log
(
‖ 𝑓 ‖1−𝑡

1,𝝂 ‖𝑔‖
𝑡
1,𝝂

)
= −(1 − 𝑡) log‖ 𝑓 ‖1,𝝂 − 𝑡 log‖𝑔‖1,𝝂

= (1 − 𝑡)𝑆(F0) + 𝑡𝑆(F1)

Furthermore, the inequality is strict unless (i) 𝑓 = 0 or 𝑔 = 0 𝝂-a.e. or (ii) there exists 𝑐 > 0 so that
𝑓 − 𝑐𝑔 = 0 𝝂-a.e.

Condition (i) cannot occur since f and g are > 0. Condition (ii) is equivalent to saying 𝑥− 𝑦−𝑑 = 0 𝝂-
a.e., where 𝑑 := − ln(𝑐). Now, if we write G for the filtration of R defined by G𝜆𝑅𝑚 := F𝜆−𝑚𝑟𝑑

1 𝑅𝑚, then

‖𝑥 − 𝑦 − 𝑑‖1,𝝂 =
∫
R2

|𝑥 − 𝑦 − 𝑑 | d𝝂 =
∫
R

|𝜆 | RLMF0 ,G (d𝜆) = 𝑑1(F ,G),

where the second is by Proposition 3.6. Therefore, (ii) holds iff 𝑑1(F ,G) = 0. �

Proof of Theorem 3.7. The result follows immediately from Propositions 3.12, 3.13 and 3.14. �

3.3. Uniqueness of valuations computing 𝒉(𝑿,𝚫)

As a consequence of the convexity results in the previous section, we prove that the minimizer of HNA

is unique.

Theorem 3.15. Assume v and w are valuations in Val◦𝑋 ∪ {𝑣triv}. If 𝑣, 𝑤 both compute ℎ(𝑋,Δ), then
𝑣 = 𝑤.

In [HL20b], the previous theorem was shown under the assumption that there exists a special R-test
configuration computing ℎ(𝑋,Δ). The latter assumption will be verified in Corollary 5.7.

Proof. Consider the geodesic (F𝑡 )𝑡 ∈[0,1] connecting F0 := F𝑣 and F1 := F𝑤 . For 𝑡 ∈ (0, 1),

HNA(F𝑡 ) ≤ (1 − 𝑡)HNA(F0) + 𝑡HNA(F1) ≤ (1 − 𝑡)𝛽𝑋,Δ (𝑣) + 𝑡𝛽𝑋,Δ (𝑤) = ℎ(𝑋,Δ),

where first inequality is Theorem 3.7 and the second Corollary 3.11. Since ℎ(𝑋,Δ) ≤ HNA (F𝑡 ), the
first inequality cannot be strict. Therefore, Theorem 3.7 further implies there exists 𝑑 ∈ R so that
𝑑1(F0,G) = 0, where G𝜆𝑅𝑚 := F𝜆−𝑚𝑟𝑑

1 𝑅𝑚.
Next, note that 𝑑 = 0, since

0 = 𝜆min(F0) = 𝜆min(G) = 𝜆min(F1) + 𝑑 = 𝑑,

where first and last inequality is by Lemma 2.4 and the second by Proposition 3.1. Therefore,
𝑑1(F0,F1) = 0. By Lemma 3.16, we conclude 𝑣 = 𝑤. �

Lemma 3.16 [HL20b, Proposition 2.27]. Assume v and w are valuations in Val◦𝑋 ∪ {𝑣triv}. If F𝑣 and
F𝑤 are equivalent, then 𝑣 = 𝑤.

This result was first proved in [HL20b] using the machinery of non-Archimedean metrics from
[BJ21]. For the sake of completeness, we give a proof which only uses the terminology introduced in
this paper.
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Proof. It is enough to show 𝑣( 𝑓 ) = 𝑤( 𝑓 ) for all 𝑓 ∈ 𝑅𝑚 and 𝑚 ∈ N. Indeed, for any 𝜆 ∈ R, we may
choose some integer 𝑚 � 0 such that O𝑋 (𝑚𝐿) ⊗ 𝔞𝜆 (𝑣) is globally generated, where 𝔞𝜆 (𝑣) := { 𝑓 ∈

O𝑋 | 𝑣( 𝑓 ) ≥ 𝜆} denotes the valuation ideal. If 𝑣( 𝑓 ) = 𝑤( 𝑓 ) for all 𝑓 ∈ 𝐻0 (𝑋,O𝑋 (𝑚𝐿) ⊗𝔞𝜆 (𝑣)) ⊆ 𝑅𝑚,
then 𝔞𝜆 (𝑣) ⊆ 𝔞𝜆 (𝑤). Switching the role of v and w gives the reverse containment. Thus, 𝔞𝜆 (𝑣) = 𝔞𝜆 (𝑤)
for all 𝜆 ∈ R, and, hence, 𝑣 = 𝑤.

Suppose now that 𝑎 = 𝑣( 𝑓 ) ≠ 𝑤( 𝑓 ) = 𝑏 for some 𝑓 ∈ 𝑅𝑚. Without loss of generality, we may
assume 𝑎 > 𝑏. Let 𝜆 = 𝜆max(F𝑤 ). Fix some 𝜀 ∈ (0, 𝑎 − 𝑏), and let p be a sufficiently large integer such
that 𝜆𝑟 ≤ (𝑎−𝑏−𝜀)𝑝. Consider the subspace𝑉𝑘 := 𝑓 𝑘 𝑝 ·𝑅𝑘 ⊆ F𝑎𝑘 𝑝

𝑣 𝑅𝑘 (𝑚𝑝+1) . For any 𝑔 ∈ 𝑉𝑘 , we have
𝑤(𝑔) ≤ 𝑏𝑘 𝑝 + 𝑘𝜆𝑟 ≤ (𝑎− 𝜀)𝑘 𝑝 by our choice of p. Thus, for any basis (𝑠1, · · · , 𝑠𝑁 ) of 𝑅𝑘 (𝑚𝑝+1) that is
compatible with both F𝑣 and F𝑤 , the part that spans F𝑎𝑘 𝑝

𝑣 𝑅𝑘 (𝑚𝑝+1) contains at least dim𝑉𝑘 = dim 𝑅𝑘

elements 𝑠𝑖 with 𝑤(𝑠𝑖) ≤ (𝑎 − 𝜀)𝑘 𝑝. In particular for these 𝑠𝑖 , we have 𝑣(𝑠𝑖) − 𝑤(𝑠𝑖) ≥ 𝜀𝑘 𝑝. It follows
that

∫
R

|𝜆 |d𝜈F𝑣 ,F𝑤
𝑘 (𝑚𝑝+1) ≥

𝜀𝑝
(𝑚𝑝+1)𝑟 · dim 𝑅𝑘

dim 𝑅𝑘 (𝑚𝑝+1)

for all 𝑘 � 0. Letting 𝑘 → ∞, we get 𝑑1(F𝑣 ,F𝑤 ) > 0, contradicting our assumption. Thus, we must
have 𝑣( 𝑓 ) = 𝑤( 𝑓 ) for all 𝑚 ∈ N and all 𝑓 ∈ 𝑅𝑚 and therefore 𝑣 = 𝑤. �

Corollary 3.17. Let (𝑋,Δ) be a log Fano pair, there is a unique valuation computing ℎ(𝑋,Δ) in
Val◦𝑋 ∪ {𝑣triv} and it is quasi-monomial.

Proof. By [HL20b, Corollary 4.9], there is a quasi-monomial valuation 𝑣 ∈ Val◦𝑋 ∪ {𝑣triv} computing
ℎ(𝑋,Δ). The uniqueness is by Theorem 3.15. �

4. Weighted stability

In this section, we provide a common ground to study the stability of both Kähler–Ricci solitons and
triples (𝑋,Δ , 𝑣0) (where 𝑣0 is the unique minimizer of 𝛽 from the previous section) in a suitably
weighted sense. The results will be applied in the next section to study the finite generation property for
various minimizers.

4.1. Weighted 𝜹-invariants

We first introduce a weighted version of the stability threshold and then generalize results from [BJ20]
to this setting (see also [RTZ21, Section 6]).

Definition 4.1. Let 𝑣0 ∈ Val𝑋 be a quasi-monomial valuation and 𝑔 : R → R+ a continuous function.
A g-weighted (𝑚, 𝑣0)-basis type divisor is a divisor of the form

𝐷 =
1

𝑚𝑟𝑄𝑚

𝑁𝑚∑
𝑖=1

𝑔

(
𝑣0 (𝑠𝑖)

𝑚𝑟

)
· {𝑠𝑖 = 0},

where (𝑠1, · · · , 𝑠𝑁𝑚) is a basis of 𝑅𝑚 that is compatible with 𝑣0 and 𝑄𝑚 =
∑𝑁𝑚
𝑖=1 𝑔

(
𝑣0 (𝑠𝑖)
𝑚𝑟

)
. Note that

𝐷 ∈ | − 𝐾𝑋 − Δ |R. We say D is compatible with a filtration F on R if the basis (𝑠1, · · · , 𝑠𝑁𝑚) is
compatible with F . In particular, we say D is compatible with a valuation 𝑣 ∈ Val◦𝑋 (resp. an effective
Q-divisor G on X) if it is compatible with the induced filtration F𝑣 (resp. F𝐺).
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For any linearly bounded filtration F on R, let 𝝂𝑚 and 𝝂 = DHF𝑣0 ,F = lim𝑚→∞ 𝝂𝑚 denote the
measures on R2 associated to F𝑣0 and F as constructed in Section 3.1.3. We set

𝑆𝑔,𝑚(𝑣0;F) :=

∫
R2 𝑔(𝑥)𝑦d𝝂𝑚∫
R2 𝑔(𝑥)d𝝂𝑚

and 𝑆𝑔 (𝑣0;F) := lim
𝑚→∞

𝑆𝑔,𝑚(𝑣0;F) =

∫
R2 𝑔(𝑥)𝑦d𝝂∫
R2 𝑔(𝑥)d𝝂

.

It is clear that

𝑆𝑔,𝑚 (𝑣0;F) =
1

𝑚𝑟𝑄𝑚

𝑁𝑚∑
𝑖=1

𝑔

(
𝑣0(𝑠𝑖)

𝑚𝑟

)
· ordF (𝑠𝑖)

for any basis (𝑠1, · · · , 𝑠𝑁𝑚) that is compatible with both 𝑣0 and F .
Lemma 4.2. For any 𝜀 > 0, there exists a positive integer 𝑚0 = 𝑚0 (𝜀) such that

𝑆𝑔,𝑚(𝑣0;F) ≤ (1 + 𝜀)𝑆𝑔 (𝑣0;F)

for any linearly bounded filtration F of R satisfying F0𝑅 = 𝑅 and any 𝑚 ≥ 𝑚0.
This follows from essentially the same argument as [BJ20, Corollary 2.10] except we need to use an

Okounkov body that is induced by a suitable valuation.
Definition 4.3. Let 𝑤 : 𝐾 (𝑋)× → Z𝑛 be a valuation with values in the group Z𝑛 (equipped with some
total ordering). Following [KK12], we say that w is faithful if its image equals Z𝑛; we say that w has
one-dimensional leaves if dim 𝑉̂𝛼 ≤ 1 for every 𝛼 ∈ Z𝑛, where 𝑉̂𝛼 := { 𝑓 ∈ 𝐾 (𝑋) | 𝑤( 𝑓 ) ≥ 𝛼}/{ 𝑓 ∈

𝐾 (𝑋) | 𝑤( 𝑓 ) > 𝛼}. Finally, we say that w is a good valuation if it is faithful, has one-dimensional leaves
and 𝑛 = dim 𝑋 .
Lemma 4.4. Let 𝑣0 be a quasi-monomial valuation on X. Then there exists a good valuation
𝑤0 : 𝐾 (𝑋)× → Z𝑛 and 𝑢0 ∈ R𝑛

≥0 such that

𝑣0( 𝑓 ) = 〈𝑢0, 𝑤0 ( 𝑓 )〉 for all 𝑓 ∈ 𝐾 (𝑋)×.

Proof. Let r be the rational rank of 𝑣0. Since 𝑣0 is quasi-monomial, there exists a log resolution
𝜋 : 𝑌 → 𝑋 , a regular system of parameters 𝑦1, . . . , 𝑦𝑟 at a point 𝜂 ∈ 𝑌 , and 𝛼 ∈ R𝑟+ such that 𝑣0 = 𝑣𝛼. Let
𝑊 = 𝐶𝑌 (𝑣0). Possibly after further blowups, we may choose a flag𝑊• : 𝑊 = 𝑊0 ⊇ · · · ⊇ 𝑊𝑛−𝑟 = {point}
of smooth subvarieties such that each 𝑊𝑖+1 is a divisor in 𝑊𝑖 . Let 𝜈 = 𝜈𝑊•

: 𝐾 (𝑊)× → Z𝑛−𝑟 be the
induced valuation as in [LM09]. Any nonzero 𝑓 ∈ O𝑌 ,𝑊 can be written as 𝑓 = 𝑐𝛽𝑦

𝛽 + 𝑓1 for some
(uniquely determined) 𝛽 ∈ N𝑟 and 𝑐𝛽 , 𝑓1 ∈ O𝑌 ,𝑊 such that 〈𝛼, 𝛽〉 = 𝑣0 ( 𝑓 ) and 𝑣0( 𝑓1) > 𝑣0 ( 𝑓 ).
Moreover, 0 ≠ 𝑐𝛽 ∈ 𝐾 (𝑊) is well defined and does not depend on the choice of 𝑐𝛽 . Now, consider
the valuation 𝑤0 : 𝐾 (𝑋)× → Z𝑛 given by setting 𝑤0 ( 𝑓 ) = (𝛽, 𝜈(𝑐𝛽)) for 𝑓 ∈ O𝑌 ,𝑊 . It is not hard
to check from the construction that 𝑤0 is faithful and has one-dimensional leaves. Clearly, 𝑣0 ( 𝑓 ) =
〈(𝛼, 0, · · · , 0), 𝑤0 ( 𝑓 )〉. Thus, 𝑤0 is the good valuation we want. �

Proof of Lemma 4.2. Since the argument is very similar to those in [BJ20], we only sketch the proof.
By Lemma 4.4, there exists some good valuation 𝑤0 : 𝐾 (𝑋) → Z𝑛 and some 𝑢0 ∈ R𝑛

≥0 such that
𝑣0 ( 𝑓 ) = 〈𝑢0, 𝑤0 ( 𝑓 )〉. Let Σ ⊆ R𝑛 be the corresponding Okounkov body (see [KK12]), that is, the
closed convex hull of

⋃
𝑚≥1{

𝑤0 (𝑠)
𝑚𝑟 | 𝑠 ∈ 𝑅𝑚 \ {0}}. We regard the function g also as a positive function

on Σ by 𝑔(𝛼) = 𝑔(〈𝑢0, 𝛼〉). Let 𝜌 denote the Lebesgue measure on Σ and 𝜌𝑚 the atomic probability
measure supported on Σ ∩ 1

𝑚Z
𝑛 as defined in [BJ20, Section 2.2]. Note that lim𝑚→∞ 𝜌𝑚 = 𝜌 in the

weak topology of measures (see [BJ20, Theorem 2.1]). Using the argument of [BJ20, Lemma 2.2] and
the uniform continuity of g on Σ, we see that for each 𝜀 > 0 there exists 𝑚0 = 𝑚0(𝜀) such that∫

Σ
𝑓 𝑔d𝜌𝑚 ≤

∫
Σ

𝑓 𝑔d𝜌 + 𝜀
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for every 𝑚 ≥ 𝑚0 and every concave function 𝑓 : Σ → R satisfying 0 ≤ 𝑓 ≤ 1. We may then apply
the proof of [BJ20, Corollary 2.10] to the concave transform of F and conclude that (after possibly
enlarging 𝑚0) 𝑆𝑔,𝑚(𝑣0;F) ≤ (1+𝜀)𝑆𝑔 (𝑣0;F) for all linearly bounded filtrations F and all 𝑚 ≥ 𝑚0. �

When F is the filtration induced by some valuation 𝑣 ∈ Val◦𝑋 (resp. effective divisor 𝐺 ≠ 0 on X),
we will simply write 𝑆𝑔 (𝑣0; 𝑣) (resp. 𝑆𝑔 (𝑣0; 𝐺)) for 𝑆𝑔 (𝑣0,F). Let T = G𝑠𝑚 < Aut(𝑋,Δ) be a torus
subgroup of the automorphism group (we allowT = {1}). For any quasi-monomial valuation 𝑣0 ∈ ValT,◦𝑋
we set

𝛿𝑔,T(𝑋,Δ , 𝑣0) := inf
𝑣 ∈ValT,◦𝑋

𝐴𝑋,Δ (𝑣)

𝑆𝑔 (𝑣0; 𝑣)
.

We say that 𝑣 ∈ ValT,◦𝑋 computes 𝛿𝑔,T (𝑋,Δ , 𝑣0) if it achieves the above infimum. For each positive
integer m, we also set

𝛿𝑔,T,𝑚(𝑋,Δ , 𝑣0) := min{lct(𝑋,Δ; 𝐷) | 𝐷 is a T-invariant 𝑔-weighted (𝑚, 𝑣0)-basis type divisor}.

When T = {1}, we will suppress the subscript T and write 𝛿𝑔 (𝑋,Δ , 𝑣0) and 𝛿𝑔,𝑚(𝑋,Δ , 𝑣0).

Lemma 4.5. In the above setup, we have

𝛿𝑔,T (𝑋,Δ , 𝑣0) = lim
𝑚→∞

𝛿𝑔,T,𝑚(𝑋,Δ , 𝑣0).

Proof. It is not hard to check from the definition that

𝑆𝑔,𝑚 (𝑣0; 𝑣) = max{𝑣(𝐷) | 𝐷 is a 𝑔-weighted (𝑚, 𝑣0)-basis type divisor} (4.1)

and in fact 𝑆𝑔,𝑚 (𝑣0; 𝑣) = 𝑣(𝐷) for any g-weighted (𝑚, 𝑣0)-basis type divisor D that’s also compatible
with v. Moreover, when 𝑣0, 𝑣 ∈ ValT,◦𝑋 , such a divisor D can be chosen to be T-invariant by choosing
compatible basis in each component of the weight decomposition under the torus action. Hence,

𝛿𝑔,T,𝑚(𝑋,Δ , 𝑣0) = inf
𝑣 ∈ValT,◦𝑋

𝐴𝑋,Δ (𝑣)

𝑆𝑔,𝑚(𝑣0; 𝑣)
. (4.2)

Combined with Lemma 4.2, the argument in the proof of [BJ20, Theorem 4.4] then yields
𝛿𝑔,T (𝑋,Δ , 𝑣0) = lim𝑚→∞ 𝛿𝑔,T,𝑚(𝑋,Δ , 𝑣0). �

4.2. Reduced uniform stability

In this section, we define stability notions for triples (𝑋,Δ , 𝑣0) where (𝑋,Δ) is a log Fano pair, 𝑣0 is a
quasi-monomial valuation on X, and 𝑔 : R→ R+ is a continuous function.

We first define the weighted version of the non-Archimedean functional. For any linearly bounded
filtration on R, we set

DNA
𝑔 (F) := LNA(F) − 𝑆𝑔 (𝑣0;F),

JNA
𝑔 (F) := 𝜆max(F) − 𝑆𝑔 (𝑣0;F).

Note that JNA
𝑔 (F) ≥ 0. We also set ENA

𝑔 (F) := 𝑆𝑔 (𝑣0;F). If (X ,ΔX ;L) is a normal test configuration
of (𝑋,Δ), then we set DNA

𝑔 (X ,ΔX ;L) := DNA
𝑔 (F(X ,Δ;L) ) and JNA

𝑔 (X ,Δ;L) := JNA
𝑔 (F(X ,ΔX ;L) ).

Denote by Aut(𝑋,Δ , 𝑣0) the subgroup of Aut(𝑋,Δ) that leaves the valuation 𝑣0 invariant, and let
T < Aut(𝑋,Δ , 𝑣0) be a torus subgroup.
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Definition 4.6. We say that the triple (𝑋,Δ , 𝑣0) is T-equivariantly g-Ding semistable (or simply g-
Ding semistable when T = {1}) if DNA

𝑔 (X ,Δ;L) ≥ 0 for all T-equivariant normal test configurations
(X ,Δ;L) of (𝑋,Δ).

Denote by 𝑀 := Hom(T,G𝑚) the weight lattice and 𝑁 := Hom(G𝑚,T) the co-weight lattice. Then
there is a weight decomposition 𝑅𝑚 = ⊕𝛼∈𝑀𝑅𝑚,𝛼. Recall that, for any T-equivariant filtration F and
each 𝜂 ∈ 𝑁R, there is an 𝜂-twist F𝜂 of F given by

F𝜆
𝜂𝑅𝑚 =

⊕
𝛼∈𝑀

F𝜆−〈𝛼,𝜂〉𝑅 ∩ 𝑅𝑚,𝛼 .

Set Fut𝑔 (𝜂) := ENA
𝑔 (F) − ENA

𝑔 (F𝜂). It is not hard to see from the definition that Fut𝑔 does not depend
on the choice of the filtration F and is linear on 𝑁R. We define the reduced JNA

𝑔 -norm of F as

JNA
𝑔,T (F) := inf

𝜂∈𝑁R
JNA
𝑔 (F𝜂).

Definition 4.7. We say a triple (𝑋,Δ , 𝑣0) is reduced uniformly g-Ding stable if there exists a maximal
torus T < Aut(𝑋,Δ , 𝑣0) and some 𝜀 > 0 such that

DNA
𝑔 (X ,ΔX ;L) ≥ 𝜀JNA

𝑔,T (X ,ΔX ;L)

for all T-equivariant normal test configurations (X ,ΔX ;L) of (𝑋,Δ).

Note that the above definition is independent of the choice of T since any two maximal tori are
conjugate.

Lemma 4.8. Let T < Aut(𝑋,Δ , 𝑣0) be a torus. Assume that DNA
𝑔 ≥ 0 for any product test configurations

that is induced by a one parameter subgroup of T. Then Fut𝑔 ≡ 0 on 𝑁R.

Proof. Let F be the trivial filtration of R. By Lemma 3.8 and [XZ20, Lemma A.6], we have LNA(F) =
LNA (F𝜂) for any 𝜂 ∈ 𝑁R. Thus, DNA

𝑔 (F𝜂) = DNA
𝑔 (F)+Fut𝑔 (𝜂) = Fut𝑔 (𝜂). By assumption, DNA

𝑔 (F𝜂) ≥

0 for any 𝜂 ∈ 𝑁 . By linearity, Fut𝑔 ≡ 0 on N and, hence, the same holds on 𝑁R. �

We are most interested in the case 𝑣0 = wt𝜉 for some torus T < Aut(𝑋,Δ) and some 𝜉 ∈ 𝑁R. In this
case, we write (𝑋,Δ , 𝜉) instead of (𝑋,Δ , wt𝜉 ). We note that while T is not explicitly written out in the
notion (𝑋,Δ , 𝜉), it is indeed part of the data.

Theorem 4.9 [HL20]. Let (𝑋,Δ , 𝜉) be a triple over k = C. Then it admits a Kähler–Ricci g-soliton if
and only if it is reduced uniformly g-Ding stable.

Definition 4.10. Let (𝑋,Δ , 𝜉) be a triple. We say that (𝑋,Δ , 𝜉) is g-Ding semistable if it is T-
equivariantly g-Ding semistable. We say that (𝑋,Δ , 𝜉) is g-Ding polystable if it is g-Ding semistable
and DNA

𝑔 (X ,ΔX ;L) = 0 for a weakly special T-equivariant test configuration (X ,ΔX ;L) only if it is a
product test configuration.

We say that (𝑋,Δ , 𝜉) is K-semistable (resp. K-polystable, or reduced uniformly Ding stable) if it is
g-Ding semistable (resp. g-Ding polystable, or reduced uniformly g-Ding stable) for 𝑔(𝑥) = 𝑒−𝑥 .

Remark 4.11. The above definition of K-polystability agrees with the notion in [BWN14] when T is the
torus of smallest dimension such that 𝜉 ∈ 𝑁R; see [HL20b, Remark 2.47]. Note that K-polystability of
Kähler–Ricci solitons is proved in [BWN14, Theorem 1.5]. Later, we will see that the definition indeed
does not depend on the choice of T (see Remark 5.10).

The following is the main result of this subsection.

Lemma 4.12. Let 𝑣0 be a quasi-monomial valuation on X, and let T < Aut(𝑋,Δ , 𝑣0) be a torus. Let
𝑔 : R→ R+ be a continuous function and 𝑐 ∈ [0, 1). Then the following are equivalent:
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1. DNA
𝑔 (X ,ΔX ;L) ≥ 𝑐 · JNA

𝑔,T (X ,ΔX ;L) for any T-equivariant normal test configuration (X ,ΔX ;L)
of (𝑋,Δ).

2. DNA
𝑔 (X ,ΔX ;L) ≥ 𝑐 · JNA

𝑔,T(X ,ΔX ;L) for any T-equivariant weakly special test configuration
(X ,ΔX ;L) of (𝑋,Δ).

3. DNA
𝑔 (F𝑣 ) ≥ 𝑐 ·JNA

𝑔,T (F𝑣 ) for any divisorial valuation 𝑣 ∈ ValT,◦𝑋 that is an lc place of aQ-complement.

Proof. When 𝑣0 = wt𝜉 this is treated in [HL20, Section 7] using [LX14]. Here, we present a proof
that is independent of [LX14]. It is clear that (1) implies (2). By [BLX22, Theorem A.2], (2) implies
(3). Thus, it remains to show (3) implies (1). To see this, let F be a finitely generated T-equivariant
Z-filtration of R. If LNA(F) ≥ 𝜆max(F), then we already have DNA

𝑔 (F) ≥ JNA
𝑔 (F) ≥ JNA

𝑔,T(F). Thus, to
prove (1) we may assume that LNA (F) < 𝜆max(F). By the second part of Lemma 3.8 and Remark 3.9,
there exists some divisorial lc place of a Q-complement 𝑣 ∈ ValT,◦𝑋 such that

𝑟−1𝑣(𝐼 (𝜆)• ) − 𝐴𝑋,Δ (𝑣) ≥ 𝜆 − LNA(F)

for all 𝜆 ∈ R. Since DNA
𝑔 (F) and JNA

𝑔,T (F) are both translation invariant, we may shift F so that
LNA (F) = 𝐴𝑋,Δ (𝑣). The above inequality then becomes 𝑣(𝐼 (𝜆)• ) ≥ 𝜆𝑟 and therefore F𝜆𝑅 ⊆ F𝜆

𝑣 𝑅 for
all 𝜆 ∈ R.

Let 𝜂 ∈ 𝑁R, and let G be the 𝜂-twist of F𝑣 . Then we also have F𝜆
𝜂𝑅 ⊆ G𝜆𝑅 for all 𝜆, and this clearly

implies

ENA
𝑔 (F𝜂) ≤ ENA

𝑔 (G) and 𝜆max(F𝜂) ≤ 𝜆max(G).

Since LNA (F) = 𝐴𝑋,Δ (𝑣) ≥ LNA (F𝑣 ) by Corollary 3.11, we also get LNA(F𝜂) ≥ LNA(G) by Lemma
3.8 and [XZ20, Lemma A.6]. Note that by Lemma 4.8, [BLX22, Theorem A.2] and (3) we have Fut𝑔 ≡ 0
on 𝑁R, thus DNA

𝑔 (F𝜂) = DNA
𝑔 (F) and DNA

𝑔 (G) = DNA
𝑔 (F𝑣 ).

Since

DNA
𝑔 (F) − 𝑐 · JNA

𝑔 (F) = LNA (F) − (1 − 𝑐)ENA
𝑔 (F) − 𝑐 · 𝜆max(F),

we then obtain

DNA
𝑔 (F) − 𝑐 · JNA

𝑔,T(F) ≥ DNA
𝑔 (F𝜂) − 𝑐 · JNA

𝑔 (F𝜂)

≥ DNA
𝑔 (G) − 𝑐 · JNA

𝑔 (G) = DNA
𝑔 (F𝑣 ) − 𝑐 · JNA

𝑔 (G).

As 𝜂 ∈ 𝑁R is arbitrary, this gives

DNA
𝑔 (F) − 𝑐 · JNA

𝑔,T (F) ≥ DNA
𝑔 (F𝑣 ) − 𝑐 · JNA

𝑔,T(F𝑣 ).

By (3), the right-hand side is ≥ 0. Thus, the same is true for the left-hand side. Since F is arbitrary, this
proves that (3) implies (1). �

We get the following generalized version of Fujita–Li valuative criterion [Fuj19, Li17] which treat
the case 𝑔 = 1 (see also [HL20, Theorem 5.18]).

Corollary 4.13. A triple (𝑋,Δ , 𝑣0) is T-equivariantly g-Ding semistable if and only if
𝛿𝑔,T (𝑋,Δ , 𝑣0) ≥ 1.

Proof. Assume that (𝑋,Δ , 𝑣0) is T-equivariantly g-Ding semistable. If 𝛿 := 𝛿𝑔,T(𝑋,Δ , 𝑣0) < 1, then
we may choose some 𝜀 > 0 such that (1 + 𝜀)2𝛿 < 1. Let 𝑚 � 0 be such that 𝛿𝑚 := 𝛿𝑔,T,𝑚 (𝑋,Δ , 𝑣0) <
(1 + 𝜀)𝛿. By Lemma 4.2, we may also assume that 𝑆𝑔,𝑚 (𝑣0; 𝑣) ≤ (1 + 𝜀)𝑆𝑔 (𝑣0; 𝑣) for any 𝑣 ∈ Val◦𝑋 . By
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definition, 𝛿𝑚 = lct(𝑋,Δ; 𝐷) for some T-invariant g-weighted (𝑚, 𝑣0)-basis type divisor D. Thus, if w
is a T-invariant divisorial valuation that computes the lct, we would have

𝐴𝑋,Δ (𝑤) = 𝛿𝑚𝑆𝑔,𝑚 (𝑣0; 𝑤) < (1 + 𝜀)2𝛿 · 𝑆𝑔 (𝑣0; 𝑤) < 𝑆𝑔 (𝑣0; 𝑤).

On the other hand, since 𝛿𝑚 < 1, we know that−(𝐾𝑋 +Δ+𝛿𝑚𝐷) is ample, thus gr𝑤𝑅 is finitely generated
by [BCHM10, Corollary 1.4.3]. In other words, w induces a T-equivariant test configuration of (𝑋,Δ).
As (𝑋,Δ , 𝑣0) is T-equivariantly g-Ding semistable, Corollary 3.11 gives 𝐴𝑋,Δ (𝑤) − 𝑆𝑔 (𝑣0; 𝑤) ≥

DNA
𝑔 (F𝑤 ) ≥ 0, a contradiction. Therefore, 𝛿𝑔,T(𝑋,Δ , 𝑣0) ≥ 1 when (𝑋,Δ , 𝑣0) is T-equivariantly

g-Ding semistable.
Conversely, if 𝛿𝑔,T (𝑋,Δ , 𝑣0) ≥ 1, then for any 𝑣 ∈ ValT,◦𝑋 we have 𝐴𝑋,Δ (𝑣) ≥ 𝑆𝑔 (𝑣0; 𝑣). If v is an lc

place of a Q-complement, then we also have LNA (F𝑣 ) = 𝐴𝑋,Δ (𝑣) (c.f. [XZ20, Proposition 4.2]). Thus,
DNA
𝑔 (F𝑣 ) ≥ 0 for any 𝑣 ∈ ValT,◦𝑋 that is an lc place of a Q-complement. By Lemma 4.12 (with 𝑐 = 0),

this implies that (𝑋,Δ , 𝑣0) is T-equivariantly g-Ding semistable. �

4.3. Existence of minimizer

Throughout this section, let T < Aut(𝑋,Δ) be a torus and let 𝜉 ∈ 𝑁R. We aim to prove the following
statement.

Proposition 4.14. Assume that (𝑋,Δ , 𝜉) is g-Ding semistable but not reduced uniformly g-Ding stable.
Then there exists a T-invariant quasi-monomial valuation v that is not of the form wt𝜂 for any 𝜂 ∈ 𝑁R
such that 1 = 𝛿𝑔 (𝑋,Δ , 𝜉) (:= 𝛿𝑔,T(𝑋,Δ , wt𝜉 )) is computed by v.

Proof. The argument is very similar to those in [XZ20, Appendix], so we only give a sketch. First, note
that the assumption remains true if we enlarge the torus T, and clearly if the conclusion holds for a
maximal torus containing T, then it also holds for T. Thus, we may assume that T is a maximal torus.

By Lemma 4.12 and [BLX22, Theorem 3.5], we know that there exist some integer 𝑁 > 0 and a
sequence of divisorial lc places of N-complements 𝑣𝑖 ∈ ValT,◦𝑋 (not of the form wt𝜂) such that

lim
𝑖→∞

DNA
𝑔 (F𝑣𝑖 )

JNA
𝑔,T (F𝑣𝑖 )

= 0.

By the constructibility result [XZ20, Lemma A.11] and arguing as in the proof of [XZ20, Theorem A.5],
we may assume that the 𝑣𝑖’s are lc places of the same Q-complement and after rescaling 𝑣 = lim𝑖 𝑣𝑖 ∈
ValT,◦𝑋 exists and 𝑣 ≠ wt𝜂 for any 𝜂 ∈ 𝑁R. By the following Lemma 4.15, we have lim𝑖 𝑆𝑔 (𝑣0; 𝑣𝑖) =
𝑆𝑔 (𝑣0; 𝑣). Since 𝑣𝑖 are lc places of Q-complements, it follows from Lemma 3.8 that LNA(F𝑣𝑖 ) =
𝐴𝑋,Δ (𝑣𝑖) and thus lim𝑖 DNA

𝑔 (F𝑣𝑖 ) = DNA
𝑔 (F𝑣 ). Since the function 𝑣 ↦→ 𝜆max(F𝑣 ) = 𝑇𝑋,Δ (𝑣) is also

continuous on QM(𝑌, 𝐸) by [BLX22, Proposition 2.4], we get lim𝑖 JNA
𝑔 (F𝑣𝑖 ) = JNA

𝑔 (F𝑣 ) as well. Thus,

DNA
𝑔 (F𝑣 )

JNA
𝑔,T (F𝑣 )

= lim
𝑖→∞

DNA
𝑔 (F𝑣𝑖 )

JNA
𝑔,T (F𝑣𝑖 )

= 0,

which implies DNA
𝑔 (F𝑣 ) = 𝐴𝑋,Δ (𝑣) − 𝑆𝑔 (𝑣0; 𝑣) = 0. Since 𝛿𝑔 (𝑋,Δ , 𝜉) ≥ 1 by Corollary 4.13, we see

that 𝛿𝑔 (𝑋,Δ , 𝜉) = 1 and v computes 𝛿𝑔 (𝑋,Δ , 𝜉). �

We have used the following statement in the above proof.

Lemma 4.15. Let𝑌 → 𝑋 be a proper birational map with Y regular and 𝐸 :=
∑𝑑
𝑖=1 𝐸𝑖 a reduced simple

normal crossing divisor on Y. Then the function 𝑆𝑔 (𝑣0; · ) is continuous on QM(𝑌, 𝐸).

We will deduce the result from the continuity of 𝑆(·) on QM(𝑌, 𝐸) shown in [BLX22].
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Proof. Fix a point 𝜂 ∈ Supp(𝐸) and local coordinates 𝑦1, . . . , 𝑦𝑟 ∈ O𝑌 ,𝜂 so that each 𝑦 𝑗 cuts out an
irreducible component of E at 𝜂. For 𝛼 = (𝛼1, . . . , 𝛼𝑟 ) ∈ R𝑟

≥0, write 𝑣𝛼 ∈ Val𝑋 for the associated
quasi-monomial valuation satisfying 𝑣𝛼 (𝑦 𝑗 ) = 𝛼 𝑗 .

To prove the continuity of 𝑆𝑔 (𝑣0; · ) onR𝑟
≥0, fix a convergent sequence 𝛼𝑖 inR𝑟

≥0 and set 𝛼 := lim𝑖 𝛼
𝑖 .

We aim to show lim𝑖 𝑆𝑔 (𝑣0; 𝑣𝑖) = 𝑆𝑔 (𝑣0; 𝑣), where 𝑣𝑖 := 𝑣𝛼𝑖 and 𝑣 := 𝑣𝛼.
First, note that 𝑆𝑔 (𝑣0; 𝑐𝑤) = 𝑐𝑆𝑔 (𝑣0; 𝑤) for all 𝑤 ∈ Val◦𝑋 and 𝑐 ∈ R>0. Therefore, after rescaling

the 𝛼𝑖 and removing finitely many terms, we may assume the sequence (𝛼𝑖) is nonincreasing. Hence,
𝑣𝑖 ≥ 𝑣𝑖+1 ≥ 𝑣 for all i. Next, consider the Okounkov body Σ ⊂ R𝑛 induced by the good valuation form
Lemma 4.4. Write 𝐺𝑖 and G for the concave functions Σ → R≥0 induced by the filtrations F𝑣 and F𝑣𝑖

(see [BJ20, Section 2.5]) and set vol𝑔 (Σ) =
∫
Σ
𝑔 d𝜌. Note that

|𝑆𝑔 (𝑣0; 𝑣𝑖) − 𝑆𝑔 (𝑣0; 𝑣) | =
���� 1
vol𝑔 (Σ)

∫
Σ
𝑔𝐺𝑖 d𝜌 −

1
vol𝑔 (Σ)

∫
Σ
𝑔𝐺 d𝜌

���� = 1
vol𝑔 (Σ)

∫
Σ
𝑔 |𝐺𝑖 − 𝐺 | d𝜌,

(4.3)

where the second equality uses that 𝐺𝑖 ≤ 𝐺. Using that lim𝑖 𝑆1 (𝑣0; 𝑣𝑖) = 𝑆1 (𝑣0; 𝑣) by [BLX22, Propo-
sition 2.4] and equation (4.3), we see (𝐺𝑖) converges to G a.e. Therefore, the dominated convergence
theorem implies

lim
𝑖→∞

|𝑆𝑔 (𝑣0; 𝑣𝑖) − 𝑆𝑔 (𝑣0; 𝑣) | = lim
𝑖→∞

1
vol𝑔 (Σ)

∫
Σ
𝑔 |𝐺𝑖 − 𝐺 | d𝜌 = 0,

which completes the proof. �

5. Finite generation

5.1. A valuative criterion for 𝜷̃𝑿,𝚫-minimizers

In this section, we give a valuative criterion for valuations computing h-invariant inspired by [XZ21]
in terms of weighted stability thresholds. Let us recall that in Corollary 3.17, we know the valuation
computing ℎ(𝑋,Δ) is quasi-monomial. Thus, we can apply the construction in Section 4.1. We use
the following notation: for any quasi-monomial 𝑣0 and 𝑣 ∈ Val◦𝑋 , let 𝑆(𝑣0; 𝑣) := 𝑆𝑔 (𝑣0; 𝑣), where
𝑔(𝑥) = 𝑒−𝑥 . By [HL20b] and Theorem 3.15, the unique valuation computing ℎ(𝑋,Δ) is trivial if and
only if (𝑋,Δ) is K-semistable. Hence, throughout this subsection, we assume that (𝑋,Δ) is K-unstable,
that is, ℎ(𝑋,Δ) < 0.

Theorem 5.1. A quasi-monomial valuation 𝑣0 ∈ Val◦𝑋 computes ℎ(𝑋,Δ) if and only if 𝐴𝑋,Δ (𝑣) ≥

𝑆(𝑣0; 𝑣) for any valuation 𝑣 ∈ Val◦𝑋 and 𝐴𝑋,Δ (𝑣0) = 𝑆(𝑣0; 𝑣0).

Proof. We first show the ‘if’ part. It suffices to show that 𝛽𝑋,Δ (𝑣) ≥ 𝛽𝑋,Δ (𝑣0) for any valuation
𝑣 ∈ Val◦𝑋 . Let F0 := F𝑣0 and F1 := F𝑣 . Let 𝝂 denote the compatible measure of F0 and F1 from Section
3.1.3. From the definitions, we know that

𝑆(𝑣0; 𝑣0) =

∫
R2 𝑥𝑒−𝑥𝑑𝝂∫
R2 𝑒−𝑥𝑑𝝂

, and 𝑆(𝑣0; 𝑣) =

∫
R2 𝑦𝑒−𝑥𝑑𝝂∫
R2 𝑒−𝑥𝑑𝝂

. (5.1)

Consider the following function 𝑓 : [0, 1] → R given by

𝑓 (𝑡) := (1 − 𝑡)𝐴𝑋,Δ (𝑣0) + 𝑡𝐴𝑋,Δ (𝑣) + log
∫
R2

𝑒−(1−𝑡)𝑥−𝑡 𝑦𝑑𝝂.
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It is clear that 𝑓 (0) = 𝛽𝑋,Δ (𝑣0) and 𝑓 (1) = 𝛽𝑋,Δ (𝑣). By Hölder’s inequality as in the proof of
Proposition 3.14, we know that 𝑓 (𝑡) is convex in t. Moreover, we have

𝑓 ′(0) = 𝐴𝑋,Δ (𝑣) − 𝐴𝑋,Δ (𝑣0) +

∫
R2 (𝑥 − 𝑦)𝑒−𝑥𝑑𝝂∫
R2 𝑒−𝑥𝑑𝝂

= (𝐴𝑋,Δ (𝑣) − 𝑆(𝑣0; 𝑣)) − (𝐴𝑋,Δ (𝑣0) − 𝑆(𝑣0; 𝑣0)) ≥ 0.

Thus, 𝑓 (1) ≥ 𝑓 (0) and the ‘if’ part is proved.
Next, we show the ‘only if’ part. Let (F𝑡 )𝑡 ∈[0,1] be the geodesic of filtrations connecting F0 and F1.

Since 𝑣0 computes ℎ(𝑋,Δ), we know that HNA (F𝑡 ) ≥ HNA (F0) = 𝑓 (0) for any 𝑡 ∈ [0, 1]. Recall that

HNA(F𝑡 ) = LNA(F𝑡 ) − 𝑆(F𝑡 ) = LNA (F𝑡 ) + log
∫
R2

𝑒−(1−𝑡)𝑥−𝑡 𝑦𝑑𝝂.

By Proposition 3.12 and Corollary 3.11, we obtain

LNA(F𝑡 ) ≤ (1 − 𝑡)LNA(F0) + 𝑡LNA(F1) ≤ (1 − 𝑡)𝐴𝑋,Δ (𝑣0) + 𝑡𝐴𝑋,Δ (𝑣).

Hence, we have HNA (F𝑡 ) ≤ 𝑓 (𝑡) which implies that 𝑓 (𝑡) ≥ 𝑓 (0) for all 𝑡 ∈ [0, 1] and thus 𝑓 ′(0) ≥ 0,
that is,

𝐴𝑋,Δ (𝑣) − 𝑆(𝑣0; 𝑣) ≥ 𝐴𝑋,Δ (𝑣0) − 𝑆(𝑣0; 𝑣0).

Since 𝑣 ∈ Val◦𝑋 is arbitrary, the above inequality remains true if we replace v by 𝜆𝑣 for any 𝜆 ∈ R>0,
that is,

𝜆(𝐴𝑋,Δ (𝑣) − 𝑆(𝑣0; 𝑣)) ≥ 𝐴𝑋,Δ (𝑣0) − 𝑆(𝑣0; 𝑣0).

Thus, we have 𝐴𝑋,Δ (𝑣) ≥ 𝑆(𝑣0; 𝑣) for any 𝑣 ∈ Val◦𝑋 and 𝐴𝑋,Δ (𝑣0) ≤ 𝑆(𝑣0; 𝑣0), which implies that
𝐴𝑋,Δ (𝑣0) = 𝑆(𝑣0; 𝑣0). This finishes the proof. �

The previous theorem immediately implies the following corollary.

Corollary 5.2. Let 𝑔(𝑥) = 𝑒−𝑥 , and let 𝑣0 ∈ Val◦𝑋 be the valuation computing ℎ(𝑋,Δ). Then
𝛿𝑔 (𝑋,Δ , 𝑣0) = 1 and is computed by 𝑣0.

5.2. 𝜹𝒈-minimizers

In this section, we fix a continuous function 𝑔 : R→ R>0, a torus T < Aut(𝑋,Δ) and a quasi-monomial
valuation 𝑣0 ∈ ValT,◦𝑋 . Let 𝑁 = Hom(G𝑚,T) and 𝑁R = 𝑁 ⊗Z R as before.

Question 5.3. Assume that 𝛿𝑔,T(𝑋,Δ , 𝑣0) ≤ 1. Let 𝑣 ∈ ValT,◦𝑋 be a valuation that computes
𝛿𝑔,T (𝑋,Δ , 𝑣0). Is the associated graded ring gr𝑣𝑅 := grF𝑣 𝑅 finitely generated?

We give an affirmative answer in two special cases, which is enough for our applications.

Theorem 5.4. Let 𝑣 ∈ ValT,◦𝑋 be a quasi-monomial valuation that computes 𝛿𝑔,T(𝑋,Δ , 𝑣0). Assume that
𝛿𝑔,T (𝑋,Δ , 𝑣0) ≤ 1 and that 𝑣 = (𝑣0)𝜉 or 𝑣0 = wt𝜉 for some 𝜉 ∈ 𝑁R. Then gr𝑣𝑅 is finitely generated.

For the proof, we first recall a statement that can be extracted from the proof of [LXZ22, Lemma 3.1].

Lemma 5.5. Let v be a quasi-monomial valuation on X. Assume that there exists a sequence of Q-
divisors 𝐷𝑚 (𝑚 ∈ N) such that (𝑋,Δ + 𝐷𝑚) is lc and −(𝐾𝑋 +Δ + 𝐷𝑚) is semiample for all m and that
lim𝑚→∞ 𝑣(𝐷𝑚) = 𝐴𝑋,Δ (𝑣). Then v is an lc place of (𝑋,Δ + Γ) for some Q-complement Γ of (𝑋,Δ).
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Proof. We only sketch the proof since the argument is almost the same as in [LXZ22, Lemma 3.1]. After
rescaling, we assume that 𝐴𝑋,Δ (𝑣) = 1. Since v is quasi-monomial, we have 𝑣 ∈ QM(𝑌, 𝐸) for some
log smooth model (𝑌, 𝐸) → (𝑋,Δ). Let 𝔞𝑚 = 𝔞𝑚 (𝑣) (𝑚 ∈ N) be the valuation ideals. By the proof of
[LXZ22, (3.1)] (which only uses the fact that v is quasi-monomial), we know that, for any 𝜀 ∈ (0, 1),
there exists 𝜀0 > 0 and divisorial valuations 𝑣𝑖 = ord𝐹𝑖 ∈ QM(𝑌, 𝐸) (𝑖 = 1, · · · , 𝑟) such that v is in the
convex hull of 𝑣1, · · · , 𝑣𝑟 and 𝐴

𝑋,Δ+𝔞
1−𝜀0
•

(𝐹𝑖) < 𝜀 for all i. By assumption, we have 𝑣(𝐷𝑚) > 1− 𝜀0 for
sufficiently large m and for such m we obtain

𝐴𝑋,Δ+𝐷𝑚 (𝐹𝑖) ≤ 𝐴
𝑋,Δ+𝔞

1−𝜀0
•

(𝐹𝑖) < 𝜀. (5.2)

By [BCHM10, Corollary 1.4.3], we get a Q-factorial birational model 𝑝 : 𝑋 → 𝑋 that extracts exactly
the divisors 𝐹𝑖 . By assumption, all (𝑋,Δ + 𝐷𝑚) (𝑚 ∈ N) have Q-complements. Together with equation
(5.2), this implies that (𝑋, 𝑝−1

∗ Δ + (1− 𝜀)
∑𝑟
𝑖=1 𝐹𝑖) has Q-complements as well. Using [LXZ22, Lemma

3.2], we conclude that Q-complements also exist for (𝑋, 𝑝−1
∗ Δ +

∑𝑟
𝑖=1 𝐹𝑖) as long as 𝜀 is sufficiently

small. Since v is in the complex hull of ord𝐹𝑖 , this yields a Q-complement Γ of (𝑋,Δ) that has v as an
lc place. �

Lemma 5.6. There exists some constant 𝑐 > 0 such that 𝑆𝑔 (𝑣0; 𝐺) > 𝑐 for all effective Q-divisors
𝐺 ∼Q −(𝐾𝑋 + Δ) on X. In particular, for any 𝑚 � 0 and any g-weighted (𝑚, 𝑣0)-basis type divisor D
that is compatible with G, we have 𝐷 ≥ 𝑐𝐺.

Proof. Let 𝑇 = 𝑇𝑋,Δ (𝑣0) < ∞, and let

𝑐0 =
inf𝑥∈[0,𝑇 ] 𝑔(𝑥)

sup𝑥∈[0,𝑇 ] 𝑔(𝑥)
> 0.

Let 𝝂 denote the compatible DH measure associated to F𝑣0 and F𝐺 as in Section 3.1.3. Then 𝝂 is
supported in [0, 𝑇] × R and we have

𝑆𝑔 (𝑣0; 𝐺) =

∫
R2 𝑦𝑔(𝑥)d𝝂∫
R2 𝑔(𝑥)d𝝂

≥ 𝑐0 ·

∫
R2 𝑦d𝝂∫
R2 d𝝂

= 𝑐0 · 𝑆𝑋,Δ (𝐺) =
𝑐0

𝑛 + 1
,

where the last equality is by [LXZ22, Lemma 2.20]. Thus, we may take, for example, 𝑐 = 𝑐0
3𝑛 . �

We are now ready to prove Theorem 5.4.

Proof of Theorem 5.4. The plan is to use Lemma 5.5 to show that v is a monomial lc place of a special
complement (in the sense of [LXZ22, Definition 3.3]) and then apply [LXZ22, Theorem 4.2] to get
the finite generation. To this end, let 𝜋 : (𝑌, 𝐸 =

∑𝑟
𝑖=1 𝐸𝑖) → (𝑋,Δ) be a T-equivariant log smooth

model such that QM(𝑌, 𝐸) is a simplicial cone whose interior contains v, 𝐶𝑌 (𝑣) = ∩𝑟𝑖=1𝐸𝑖 , and there is
a 𝜋-exceptional and 𝜋-ample Q-divisor −𝐹 on Y.

Let 𝐺𝑌 be a T-invariant Q-divisor in the ample Q-linear system | − 𝜋∗(𝐾𝑋 +Δ) − 𝜀𝐹 |Q (0 < 𝜀 � 1)
whose support does not contain 𝐶𝑌 (𝑣0) (such 𝐺𝑌 exists because there is some T-invariant element Γ
in 𝐻0 (𝑌, 𝑚(−𝜋∗(𝐾𝑋 + Δ) − 𝜀𝐹)) for sufficiently divisible m with 𝑣0 (Γ) ≠ 0). Let 𝐺 := 𝜋∗𝐺𝑌 . For
any 𝑚 ∈ N, let 𝐷𝑚 ∈ | − 𝐾𝑋 − Δ |R be a T-invariant g-weighted (𝑚, 𝑣0)-basis type divisor that is also
compatible with both v and G. Such divisors exist because:

• Both v and G are T-invariant (so we can choose compatible basis in each individual piece in the
weight decomposition), and

• By our assumption, any T-invariant basis that is compatible with both v and G is automatically
compatible with 𝑣0.

https://doi.org/10.1017/fmp.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.5


Forum of Mathematics, Pi 23

By Lemma 5.6, there exists some 𝑐 ∈ Q+ such that 𝐷𝑚 ≥ 𝑐𝐺 for all 𝑚 � 0. Let 𝛿𝑚 =
min{𝛿𝑔,T,𝑚(𝑋,Δ , 𝑣0), 1}. Then (𝑋,Δ + 𝛿𝑚𝐷𝑚) is lc and lim𝑚→∞ 𝛿𝑚 = 𝛿𝑔,T (𝑋,Δ , 𝑣0) by Lemma 4.5
and the assumption that 𝛿𝑔,T (𝑋,Δ , 𝑣0) ≤ 1.

Since v computes 𝛿𝑔,T (𝑋,Δ , 𝑣0), we also have

lim
𝑚→∞

𝛿𝑚𝑣(𝐷𝑚) = 𝛿𝑔,T(𝑋,Δ , 𝑣0)𝑆𝑔 (𝑣0; 𝑣) = 𝐴𝑋,Δ (𝑣).

Note that by construction 𝐷𝑚 =
∑

𝜆𝑖𝐷
(𝑖)
𝑚 for some 𝜆 ∈ R+ and some effective Q-divisors 𝐷 (𝑖)

𝑚 ∼Q

−(𝐾𝑋 + Δ). Thus, by perturbing the coefficients 𝜆𝑖 , for each 𝑚 � 0 we get a Q-divisor 𝐷 ′
𝑚 =

∑
𝜆′
𝑖𝐷

(𝑖)
𝑚

such that 𝛿𝑚𝐷𝑚 > 𝐷 ′
𝑚 ≥ 1

2𝑐𝐺 and lim𝑚→∞ 𝑣(𝐷 ′
𝑚) = 𝐴𝑋,Δ (𝑣). It follows that (𝑋,Δ + 𝑐𝐺 + 𝐷𝑚) is lc

and −(𝐾𝑋 + Δ + 𝑐𝐺 + 𝐷𝑚) is ample where 𝐷𝑚 = 𝐷 ′
𝑚 − 1

2𝑐𝐺. By Lemma 5.5, we see that v is an lc
place of (𝑋,Δ + 1

2𝑐𝐺 + Γ) for some Q-complement Γ of (𝑋,Δ + 1
2𝑐𝐺). Recall the 𝜋−1

∗ 𝐺 is ample and
does not contain 𝐶𝑌 (𝑣). By [LXZ22, Theorem 4.2], this implies that gr𝑣𝑅 is finitely generated. �

Corollary 5.7. Assume that (𝑋,Δ) is not K-semistable. Let 𝑣0 ∈ Val◦𝑋 be the unique valuation computing
ℎ(𝑋,Δ). Then gr𝑣0

𝑅 is finitely generated.

Proof. By [HL20b, Theorem 1.5], 𝑣0 is quasi-monomial. So the result follows immediately from
Corollary 5.2 and Theorem 5.4 (with 𝑔(𝑥) = 𝑒−𝑥 and T = {1}). �

Proof of Theorem 1.2. By Corollary 5.7, we know that v yields a special R-test configuration in the
sense of [HL20b, Definition 2.8]. Thus, by [HL20b, Theorem 1.6], we know that (𝑋0,Δ0, 𝜉𝑣 ) is a
K-semistable triple. �

Corollary 5.8. Any quasi-monomial valuation 𝑣 ∈ ValT,◦𝑋 computing 𝛿𝑔 (𝑋,Δ , 𝜉), where 𝜉 ≠ 0, has a
finitely generated associated graded ring.

Proof. In view of Theorem 5.4, it suffices to show that 𝛿𝑔 (𝑋,Δ , 𝜉) ≤ 1. Indeed, we will prove a stronger
statement:

𝛿𝑔,T,𝑚(𝑋,Δ , 𝑣0) ≤ 1 (5.3)

for all 𝑣0 ∈ ValT,◦𝑋 , 𝑚 ∈ N and all positive functions 𝑔 ∈ 𝐶0(R), as long as T ≠ {1}. To see this, let
D be a T-invariant g-weighted (𝑚, 𝑣0)-basis type divisor. If (𝑋,Δ + 𝐷) is klt, then after perturbing the
coefficients of D as in the proof of Theorem 5.4, we get a T-invariant Q-divisor 𝐷 > 𝐷 proportional to
−(𝐾𝑋+Δ) such that (𝑋,Δ+𝐷) is still klt and 𝐾𝑋+Δ+𝐷 is ample. So such pairs have finite automorphism
groups and this is a contradiction as T < Aut(𝑋,Δ + 𝐷) by construction. Thus, (𝑋,Δ + 𝐷) is not klt
and lct(𝑋,Δ; 𝐷) ≤ 1. This proves equation (5.3). �

Corollary 5.9. Any g-Ding polystable triple (𝑋,Δ , 𝜉) is also reduced uniformly g-Ding stable. In
particular, it admits a Kähler–Ricci g-soliton when k = C.

Proof. The proof is very similar to that of [LXZ22, Theorem 5.2]. Let T < Aut(𝑋,Δ , 𝜉) be a maximal
torus such that 𝜉 ∈ 𝑁R. Assume to the contrary that (𝑋,Δ , 𝜉) is g-Ding polystable but not reduced
uniformly g-Ding stable. Then by Proposition 4.14, we know that 𝛿𝑔 (𝑋,Δ , 𝜉) = 1 is computed by some
quasi-monomial valuation 𝑣 ∈ ValT,◦𝑋 that is not of the form wt𝜂 . By Corollary 5.8, the associated
graded ring gr𝑣𝑅 is finitely generated. Let 𝜋 : (𝑌, 𝐸) → (𝑋,Δ) be a T-equivariant log smooth model
such that QM(𝑌, 𝐸) is a simplicial cone containing v and that its dimension is the same as the rational
rank of v. As in [Xu21, Claim 3.10], this implies that in a neighbourhood of v in QM(𝑌, 𝐸), the function
𝑤 ↦→ 𝑆𝑔 (𝑣0; 𝑤) is linear, and we have gr𝑤𝑅 � gr𝑣𝑅.

Thus, 𝛿𝑔 (𝑋,Δ , 𝜉) is also computed by some T-invariant divisorial valuation 𝑤 ∈ QM(𝑌, 𝐸) that
is sufficiently close to v. In particular, DNA

𝑔 (F𝑤 ) ≤ 𝐴𝑋,Δ (𝑤) − 𝑆𝑔 (𝑣0; 𝑤) = 0 (the first inequality is
by Corollary 3.11) and 𝑤 ≠ wt𝜂 for any 𝜂 ∈ 𝑁R. It induces a nonproduct type T-equivariant test
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configuration (X ,ΔX ,L) such that DNA
𝑔 (X ,ΔX ,L) ≤ 0. This contradicts the g-Ding polystability of

(𝑋,Δ , 𝜉) and proves the first part of the corollary. The remaining part follows from Theorem 4.9. �

Proof of Theorem 1.3. By [BWN14, Theorem 1.5], (𝑋,Δ , 𝜉) is K-polystable if it admits a Kähler–
Ricci soliton. Thus, the result follows immediately from Theorem 4.9 and Corollary 5.9 by setting
𝑔(𝑥) = 𝑒−𝑥 . �

Remark 5.10. The above proof that reduced uniform Ding stability implies K-polystability uses Kähler–
Ricci solitons, but it can be proved algebraically. Though, there is some subtlety, since the data of a triple
(𝑋,Δ , 𝜉) includes a torus T so that 𝜉 ∈ 𝑁𝑅 := Hom(G𝑚,T) ⊗Z R and T is not necessarily maximal.
While the K-polystability of (𝑋,Δ , 𝜉) is with respect to T, reduced uniform Ding stability is defined
using a maximal torus T < Tmax < Aut(𝑋,Δ).

To prove the equivalence, observe that if (𝑋,Δ , 𝜉) is reduced uniformly Ding stable, then it is K-
polystable with respect to Tmax by [HL20, Proposition 5.16]. To show it is K-polystable with respect to
T, first by [HL20b, (168) or (189)], it follows that (𝑋,Δ , 𝜉) is K-semistable with respect to T. Then by
verbatim applying the proof of [LWX21, Theorem 3.7] (see also [HL20b, Section 8]), we know the K-
polystablity of (𝑋,Δ , 𝜉) with respect to Tmax implies the K-polystability of (𝑋,Δ , 𝜉) with respect to T.

Proof of Theorem 1.1. It is a combination of Theorem 1.2, [HL20b, Theorem 1.3] and Theorem 1.3. �

As an application, we show the following theorem, which generalizes [WZ04] from the smooth case
to general toric log Fano pairs. See also [HL20, Section 8].

Theorem 5.11. For any toric log Fano pair (𝑋,Δ) over C, there exists a vector 𝜉 ∈ 𝑁R :=
Hom(G𝑚,T) ⊗Z R where T is the maximal torus acting on (𝑋,Δ), such that (𝑋,Δ , 𝜉) admits a Kähler–
Ricci soliton.

Proof. By Corollary 3.17, there is a unique valuation 𝑣 ∈ Val𝑋 which computes ℎ(𝑋,Δ). By the
uniqueness, v is T-invariant, that is, 𝑣 = wt𝜉 for some 𝜉 ∈ 𝑁R. Therefore, the K-semistable triple
produced in Theorem 1.2 is (𝑋,Δ , 𝜉).

Since (𝑋,Δ , 𝜉) is K-semistable and toric, it is reduced uniformly Ding stable by Theorem 4.12.
Indeed, condition (3) of the theorem holds trivially, since any 𝑤 ∈ ValT,◦𝑋 is of the form 𝑤 = wt𝜂 for
some 𝜂 ∈ 𝑁R and, hence, satisfies JNA

𝑔,T (𝑤) = 0 where 𝑔 = 𝑒−𝑥 . Therefore, (𝑋,Δ , 𝜉) admits a Kähler–
Ricci soliton by [HL20]. �

6. Moduli stack

In this section, we will prove Theorem 1.5. It suffices to verify the boundedness and openness; see
Theorem 6.3 and Theorem 6.4.

Theorem 6.1. For a fixed dimension n, volume V, a positive integer N and a negative constant ℎ0 < 0,
families of n-dimensional log Fano pairs (𝑋,Δ) with (−𝐾𝑋 − Δ)𝑛 = 𝑉 , 𝑁Δ integral and ℎ(𝑋,Δ) ≥ ℎ0
are parameterized by an Artin stack MFano

𝑛,𝑉 ,𝑁 ,ℎ+0
of finite type.

The following result gives the boundedness.

Proposition 6.2. Let (𝑋,Δ) be a log Fano pair, and let 𝑐 ∈ R. Assume that 𝛽𝑋,Δ (𝑣) ≥ 𝑐 for all divisorial
valuations v on X. Then 𝛼(𝑋,Δ) ≥ 𝛼 for some constant 𝛼 > 0 that only depends on c and dim(𝑋).

Here, 𝛼(𝑋,Δ) denotes Tian’s 𝛼-invariant. In the proof, we use that 𝛼(𝑋,Δ) equals inf𝑣
𝐴𝑋,Δ (𝑣)
𝑇 (𝑣) ,

where the infimum runs through all divisorial valuations on X; see, for example, [BJ20].

Proof. It suffices to find some constant 𝑀 = 𝑀 (𝑐, 𝑛) > 0 that only depends on c and 𝑛 = dim(𝑋)
such that 𝑇 (𝑣) ≤ 𝑀 for all divisorial valuations v with 𝐴𝑋,Δ (𝑣) = 1. For now, fix any such v and let
F = F𝑣 , 𝑇 = 𝑇𝑋,Δ (𝑣), 𝑆 = 𝑆(𝑣). We will apply a modified argument from [BJ20, Lemma 2.6]. Let
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𝑓 (𝜆) = vol(𝑉 (𝜆)
• )

𝐿𝑛 . Note that 𝑓 (0) = 1, 𝑓 (𝑇) = 0 and DHF = − 𝑓 ′(𝜆)d𝜆. By [Laz04, Theorem 11.4.9],
the function 𝜆 ↦→ 𝑓 (𝜆)

1
𝑛 is concave on (0, 𝑇), thus

𝑓 (𝜆) ≥

(
1 −

𝜆

𝑇

)𝑛
.

On the other hand, integration by parts yields

𝑒−𝑆 =
∫ 𝑇

0
𝑒−𝜆DHF (d𝜆) = 1 −

∫ 𝑇

0
𝑒−𝜆 𝑓 (𝜆)d𝜆,

hence 𝑒−𝑆 ≤ 1 −
∫ 𝑇

0 𝑒−𝜆
(
1 − 𝜆

𝑇

)𝑛 d𝜆. We may further rewrite the right-hand side as

∫ ∞

0
𝑒−𝜆d𝜆 −

∫ 𝑇

0
𝑒−𝜆

(
1 −

𝜆

𝑇

)𝑛
d𝜆 =

∫ 𝑇

0
𝑒−𝜆

[
1 −

(
1 −

𝜆

𝑇

)𝑛]
d𝜆 +

∫ ∞

𝑇
𝑒−𝜆d𝜆

≤

∫ 𝑇

0

𝑛𝜆

𝑇
𝑒−𝜆d𝜆 +

∫ ∞

𝑇
𝑒−𝜆d𝜆

≤
𝑛

𝑇
+ 𝑒−𝑇 .

By assumption, 1 − 𝑆 = 𝛽(𝑣) ≥ 𝑐, hence 𝑒−𝑆 ≥ 𝑒𝑐−1. It follows that

𝑛

𝑇
+ 𝑒−𝑇 ≥ 𝑒𝑐−1.

From this, we deduce that T is bounded from above by some constant that only depends on c and n. The
proof is now complete. �

Theorem 6.3. Fixed positive integers n, N, a positive number 𝑉0 and a constant ℎ0. Denote by P the
set of n-dimensional log Fano pairs (𝑋,Δ) with 𝑁 · Δ integral which satisfy (−𝐾𝑋 − Δ)𝑛 ≥ 𝑉0 and
ℎ(𝑋,Δ) ≥ ℎ0. Then P is bounded.

Proof. For fixed 𝛼0 > 0, the set of log Fano pairs (𝑋,Δ) with 𝑛 = dim(𝑋), 𝑁 · Δ integral and
(−𝐾𝑋 − Δ)𝑛 ≥ 𝑉0, and 𝛼(𝑋,Δ) > 𝛼0 are bounded by [Che20] [Jia20] [XZ21]. Applying Proposition
6.2 then completes the proof. �

Next, we will prove the openness. It suffices to show the following theorem.

Theorem 6.4. Let (𝑋,Δ) → 𝐵 be a locally stable family of log Fano pairs over a scheme B of finite
type. Then

ℎ : 𝑡 → ℎ(𝑋𝑡 ,Δ 𝑡 ), 𝑡 ∈ 𝐵

is a constructible and lower semicontinuous.

Proof. By passing to a resolution of 𝐵red, we may assume B is smooth. By the proof of Theorem 5.4,
we know that the minimizer of 𝛽𝑋,Δ is an lc place of a Q-complement. Then as showed in [BLX22,
Theorem 3.5],

ℎ(𝑋𝑡 ,Δ 𝑡 ) = min
𝑣
{𝛽𝑋𝑡 ,Δ𝑡 | 𝑣 is an 𝑁-complement},

for some constant N which only depends on dim 𝑋 and coefficients of Δ . Then the rest of the proof is
similar to the one in [BL22, BLX22]. For the sake of completeness, we give a sketch here.

We know that there is a finite type variety 𝜙 : 𝑆 → 𝐵 with a relative Cartier divisor 𝐷 ⊂ 𝑋 ×𝐵 𝑆 over
S such that
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1. For any 𝑠 ∈ 𝑆, the fiber 𝐷𝑠 is an N-complement of (𝑋𝑡 ,Δ 𝑡 ), where 𝑡 = 𝜙(𝑠), and (𝑋𝑡 , 𝐷𝑠 + Δ 𝑡 ) is
log canonical but not klt, and

2. For any N-complement Γ𝑡 of (𝑋𝑡 ,Δ 𝑡 ), there is a point 𝑠 ∈ 𝑆, such that 𝐷𝑠 � Γ𝑡 .

After resolving and stratifying S, as well as passing to a finite base change, we can assume S is a union
of its smooth connected component 𝑆𝑖 such that (𝑋 ×𝐵 𝑆𝑖 ,Δ ×𝐵 𝑆𝑖 + 𝐷 ×𝑆 𝑆𝑖) admits a fiberwise log
resolution.

For a fixed i, we can identify the dual complex CW 𝑖 := DMR(𝑋𝑡 ,Δ 𝑡 +𝐷𝑡 ) for any 𝑡 ∈ 𝑆𝑖 . We claim
𝛽𝑋𝑡 ,Δ𝑡 (𝑣𝑡 ) does not depend on t, for different valuations 𝑣𝑡 correspond to the same point of CW 𝑖 . This
is obvious for 𝐴𝑋𝑡 ,Δ𝑡 (𝑣𝑡 ). It also proved in [BLX22], using the invariance of plurigenera ([HMX13]),
for 𝑣𝑡 corresponding to the same point of CW over any 𝑡 ∈ 𝑆𝑖 , the induced DH-measure DHF𝑣𝑡 on R is
the same. Therefore,

𝑆(F𝑣𝑡 ) = − log
∫
R

𝑒−𝜆 DHF𝑣𝑡 (𝑑𝜆)

does not depend on t.
Hence, for each i, we can define 𝑎𝑖 = min{𝛽(𝑣𝑡 ) | 𝑣𝑡 ∈ CW 𝑖}, and we know that ℎ(𝑋𝑡 ,Δ 𝑡 ) =

min{𝑎𝑖 | 𝑡 ∈ 𝜙(𝑆𝑖)}, which implies that ℎ(𝑋𝑡 ,Δ 𝑡 ) is constructible.
In light of the above constructibility result, to prove the lower semicontinuity of h it suffices to

consider the case when B is the spectrum of a DVR R essentially of finite type over k. Let K denote
the fraction field of R and 𝜅 the residue field. By the properness of the flag variety, we know that any
filtration F𝐾 on

⊕
𝑚 𝐻0 (−𝑚𝑟 (𝐾𝑋𝐾 + Δ𝑋𝐾 )) extends to a filtration F𝜅 on

⊕
𝑚 𝐻0(−𝑚𝑟 (𝐾𝑋𝜅 + Δ𝑋𝜅 ))

(see [BL22]). By Lemma 3.8 and the lower semicontinuity of the log canonical threshold,

LNA(F𝐾 ) = 𝜇(F𝐾 ) ≥ 𝜇(F𝜅 ) = LNA (F𝜅 ).

Since DHF𝐾 (𝑑𝜆) = DHF𝜅 (𝑑𝜆), we also have 𝑆(F𝐾 ) = 𝑆(F𝜅 ). Therefore, h is lower semicontinuous. �
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