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1. Introduction

In the theory of metric measure spaces, one of the central themes is the investigation
of the infinitesimal structure of the space under consideration, which can be exam-
ined from different perspectives. On the one hand, an analytic approach consists
in studying the behaviour of weakly differentiable functions, which make perfect
sense even in this non-smooth framework thanks to [4, 11, 41], where (equivalent)
notions of a first-order Sobolev space have been introduced. On the other hand,
a geometric viewpoint suggests that one looks at the tangent spaces, obtained by
taking limits of the rescalings of the space with respect to a suitable notion of con-
vergence, typically induced by the pointed measured Gromov–Hausdorff (pmGH)
topology [14, 17, 25] or some of its variants. However, in full generality these
objects (namely, Sobolev functions and pmGH-tangents) may have little to do with
the properties of the underlying space, as simple examples show. Fortunately, the
situation greatly improves under appropriate regularity assumptions. An instance
of this fact is given by the class of PI spaces, which are doubling metric measure
spaces supporting a weak Poincaré inequality in the sense of Heinonen–Koskela
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[26]. Indeed, as an outcome of Cheeger’s results in [11], we know that it is pos-
sible to develop a satisfactory first-order differential calculus in PI spaces, as the
latter verify a generalized form of Rademacher Theorem (concerning the almost
everywhere differentiability of Lipschitz functions). Additionally, every point of a
PI space has non-empty pmGH-tangent cone (thanks to the Gromov Compactness
Theorem) and each pmGH-tangent is a PI space itself (see [27, theorem 11.6.9]). In
the literature, also the larger class of the so-called Lipschitz differentiability spaces
(LDS), i.e., where the conclusion of Cheeger’s Differentiation Theorem is satisfied,
has been thoroughly investigated, see e.g., [7] and also [29, 30]. It was proved in
[40] that pmGH-tangents to LDS are LDS, but such tangents might be quite wild
(for instance, they can be disconnected a.e., see [39]). Let us also remark that under
slightly stronger assumptions, namely for RNP differentiability spaces (where the
LDS condition is required for Lipschitz functions with values in Banach spaces sat-
isfying the Radon–Nikodým property) the tangents behave much better than for
LDS spaces [15].

The present paper focuses on the properties of the pmGH-tangents to those met-
ric measure spaces which ‘are Hilbertian at infinitesimal scales’. In this regard, the
relevant notion is called infinitesimal Hilbertianity [18] (after [5]). This assump-
tion simply states that the 2-Sobolev space is a Hilbert space and is very natural
when dealing with various non-smooth generalizations of Riemannian manifolds,
such as Alexandrov or RCD spaces. Since infinitesimal Hilbertianity concerns the
differentials of Sobolev functions, one can expect it to be stable only in some spe-
cific circumstances. As an indicator of this issue, just consider the fact that every
metric measure space can be realized as the pmGH-limit of a sequence of discrete
spaces. A significant example of the stability of infinitesimal Hilbertianity is that
of RCD spaces, which are infinitesimally Hilbertian spaces verifying the CD(K,N)
condition, which imposes a lower bound Ric � K on the Ricci curvature and an
upper bound dim � N on the dimension, in some synthetic form. We refer to the
survey [2] and the references therein for a thorough account of the theory of CD
and RCD spaces. It was proved in [21] (after [5]) that the class of RCD(K,N)
spaces is closed under pmGH-convergence. Heuristically, even though the pmGH-
convergence is a zeroth-order concept while the Hilbertianity is a first-order one,
the stability of the latter is enforced by the uniformity at the level of the second-
order structure (encoded in the common lower Ricci bounds). Another example can
be found in [35], where it is shown that the infinitesimal Hilbertianity is preserved
along sequences of metric measure spaces where the measure is fixed, while dis-
tances monotonically converge from below to the limit distance. In this case, the
stability is in force for arbitrary metric measure spaces (with no additional regu-
larity, such as RCD spaces), but the notion of convergence is much stronger than
the pmGH one.

The problem we address in this paper is the following: given an infinitesimally
Hilbertian metric measure space (which fulfills further regularity assumptions), are
its pmGH-tangents infinitesimally Hilbertian as well? The case of RCD(K,N)
spaces is already settled, as a consequence of the previous discussion. Indeed, if
(X, d,m) is an RCD(K,N) space, then for any radius r > 0 the rescaled space
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(X, d/r,mr
x, x), where mr

x is the normalized measure

mr
x :=

m

m(Br(x))
,

is an RCD(r2K,N) space. In particular, each pmGH-tangent to (X, d,m) at x (whose
existence is guaranteed by Gromov Compactness Theorem) is an RCD(0, N) space,
thanks to the stability of the RCD condition. In fact, it is also known from [10,
20, 36] that at m-a.e. x ∈ X the unique pmGH-tangent to (X, d,m) is the
n-dimensional Euclidean space, for some n ∈ N that satisfies n � N and is indepen-
dent of the base point x. Nevertheless, besides RCD spaces, we will mostly obtain
negative results. Before passing to the statement of our first result, we fix some
more terminology. Given a point x ∈ spt(m) of a metric measure space (X, d,m),
we denote by Tanx(X, d,m) its pmGH-tangent cone (i.e., the collection of all pmGH-
tangents to (X, d,m) at x, see § 2.3). Moreover, we say that a metric measure space
(X, d,m) is m-rectifiable provided it can be covered m-a.e. by Borel sets {Ui}i∈N that
are biLipschitz equivalent to Borel sets in R

ni and satisfy m|Ui
� Hni ; notice that

we are not requiring that {ni}i∈N ⊂ N is a bounded sequence. Under a (pointwise)
doubling assumption, the m-rectifiability requirement entails a very rigid behaviour
of the pmGH-tangents, which are almost everywhere unique and consist of a finite-
dimensional Banach space, whose norm can be computed by looking at the blow-ups
of the chart maps, together with the induced (normalized) Hausdorff measure; see
proposition 3.2. Nevertheless, the ensuing result holds:

Theorem 1.1. There exists an infinitesimally Hilbertian, m-rectifiable, Ahlfors reg-
ular metric measure space (X, d,m) such that for m-a.e. point x ∈ X the tangent
cone Tanx(X, d,m) contains a unique, infinitesimally non-Hilbertian element.

We will prove theorem 1.1 in § 4. The key idea behind its proof is to construct
a space whose ‘analytic dimension’ is zero (or one), so that the associated Sobolev
space is necessarily Hilbert, but whose pmGH-tangents are two-dimensional and
not Hilbertian. This kind of situation is possible because we are not requiring the
validity of a weak Poincaré inequality. In fact, when dealing with m-rectifiable
PI spaces, the situation improves considerably, as we will see later on. However,
even in this case there can exist infinitesimally non-Hilbertian pmGH-tangents to
infinitesimally Hilbertian spaces:

Theorem 1.2. There exists an infinitesimally Hilbertian, m-rectifiable, Ahlfors
regular PI space (X, d,m) such that Tanx̄(X, d,m) contains an infinitesimally
non-Hilbertian element for some point x̄ ∈ X. In addition, one can require that
(X\{x̄}, d,m) is a Riemannian manifold.

The proof of theorem 1.2 is more involved and will be carried out in § 5. Roughly
speaking, the strategy is to define a Riemannian metric on R

2\{0} of the form ρ| · |,
where ρ is a smooth function which is discontinuous at 0, so that its induced length
distance behaves like the �1-norm when we zoom the space around 0. This way, we
obtain an infinitesimally Hilbertian space whose pmGH-tangent at 0 is not.

We point out that RCD(K,N) spaces, which are infinitesimally Hilbertian by
definition, are PI spaces [38, 42] and m-rectifiable [13, 23, 31, 36]. Therefore,
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theorem 1.2 shows that the fact that every pmGH-tangent to an RCD(K,N) space
is infinitesimally Hilbertian truly relies on the lower Ricci curvature bound, while
only being PI and m-rectifiable is not sufficient.

Remark 1.3. One might wonder in theorem 1.2 what can be said about the cur-
vature of the Riemannian metric outside {x̄}. Suppose, for instance, that (X, d) is
Ahlfors n-regular and has Ricci-curvature lower bound κ(x) in a neighbourhood of
x ∈ X\{x̄}. Then, if κ ∈ Lp(X) with p > n/2, by the scaling of the Ricci-curvature
lower bound, we have that∫

(X,λd)

|κλ(x)|p dHn(x) = λn−2p

∫
(X,d)

|κ(x)|p dHn(x) → 0

as λ→ ∞, where κλ(x) is the Ricci-curvature lower bound at x for the blow-up
(X, λd, x̄). Consequently, any measured Gromov–Hausdorff tangent at x̄ will be a
flat space [37] and in particular, the tangent will be infinitesimally Hilbertian.

It is not difficult to see that by scaling down the construction steps depending on
their curvature lower bounds, the construction for theorem 1.2 in an n-dimensional
space, n � 3, could be modified to have an integrable Ricci-curvature lower bound
κ ∈ Lp(X) for any given p < n/2. Notice that in general any compact length space
can be approximated in the Gromov–Hausdorff distance by compact manifolds
having Ln/2-integrable curvature, see [6].

We also remark that the stability of integrable Ricci-curvature lower bounds in
metric measure spaces, for CD(κ,N) spaces are known for continuous lower bounds
κ ∈ Lp with p > N/2, see [32].

However, the phenomenon observed in theorem 1.2 cannot take place in a set of
points of positive measure. This is the content of the next result:

Theorem 1.4. Let (X, d,m) be an infinitesimally Hilbertian, m-rectifiable PI space.
Then for m-a.e. point x ∈ X the unique element of Tanx(X, d,m) is infinitesimally
Hilbertian.

Section 3 will be devoted to the proof of theorem 1.4, which is in fact only a
combination of several results already available in the literature.

One might wonder whether the m-rectifiability assumption in theorem 1.4 can be
dropped. In other words, a natural question is the following:

Question 1.5. Is it true that if (X, d,m) is an infinitesimally Hilbertian PI space,
then Tanx(X, d,m) contains only infinitesimally Hilbertian elements for m-a.e. x ∈
X?

We are currently unable to address this question, thus we leave it as an open
problem. We point out that a key result on PI spaces, concerning the relation
between the (analytic) differential structure and the (geometric) pmGH-tangents,
is [12, theorem 1.12] (see also the related earlier results in [11]). This result says,
roughly, that for m-a.e. point x of a PI space (X, d,m) and for every pmGH-tangent
(Y, dY,mY, q) ∈ Tanx(X, d,m), one can construct a pointed blow-up map ϕ̂ : Y →
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TxX (obtained by rescaling a chart ϕ) which is a metric submersion. Here, TxX
stands for a fibre of the tangent bundle TX, in the sense of Cheeger [11]. In the
case where (X, d,m) is infinitesimally Hilbertian, we have that TxX is Hilbert for
m-a.e. x ∈ X, see [19, § 2.5(3)]. Nevertheless, since ϕ̂ : Y → TxX is only a (possibly
non-injective) metric submersion, there might be more independent directions on
the tangent Y and thus we cannot deduce from this information that the space
(Y, dY,mY) is infinitesimally Hilbertian. It is an open problem whether the tangent
spaces can really have more independent directions on a set of positive measure. A
negative answer to this would resolve question 1.5 in the affirmative.

We conclude by mentioning that similar results hold also if one considers
pmGH-asymptotic cones instead of pmGH-tangent cones. We commit the discus-
sion on the relation between infinitesimal Hilbertianity and asymptotic cones to
Appendix A.

2. Preliminaries

Let us begin by fixing some general terminology. For any exponent p ∈ [1,∞], we
denote by ‖ · ‖p the �p-norm on R

n, namely, for every vector v = (v1, . . . , vn) ∈ R
n

we define

‖v‖p :=
{

(|v1|p + . . .+ |vn|p)1/p , if p <∞,
max {|v1|, . . . , |vn|} , if p = ∞.

For brevity, we will often write | · | in place of ‖ · ‖2. The Euclidean distance on R
n

will be denoted by dEucl(v, w) := |v − w|. By Ln we mean the Lebesgue measure on
R
n. Given an arbitrary metric space (X, d), we indicate with Br(x), or with Bd

r(x),
the open ball in (X, d) of radius r > 0 and centre x ∈ X. For any k ∈ [0,∞), we
denote by Hk or Hk

d the k-dimensional Hausdorff measure on (X, d) induced by the

gauge function E �→ ωk

(
diam(E)

2

)k
, where we set ωk := πk/2

Γ(1+k/2) and Γ is Euler’s

gamma function. Recall that if k ∈ N, then ωk = Lk (B1(0)).

2.1. Metric measure spaces

By a metric measure space (X, d,m) we mean a complete, separable metric
space (X, d), together with a boundedly-finite, Borel measure m � 0 on X. Several
(equivalent) notions of Sobolev space over (X, d,m) have been investigated in the
literature, see for instance [4, 11, 41] and [3] for the equivalence between them.
We follow the approach by Ambrosio–Gigli–Savaré [3] (which is inspired by, and
equivalent to, Cheeger’s approach [11]): we declare that a given function f ∈ L2(X)
belongs to the Sobolev space H1,2(X) provided there exists a sequence (fn)n∈N of
boundedly-supported Lipschitz functions fn : X → R such that fn → f in L2(X)
and supn∈N

∫
lip(fn)2 dm < +∞, where the slope function lip(fn) : X → [0,+∞) is

defined as

lip(fn)(x) := lim sup
y→x

|fn(y) − fn(x)|
d(y, x)

, if x ∈ X is an accumulation point,
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and lip(fn)(x) := 0 otherwise. The Sobolev norm of a function f ∈ H1,2(X) is
defined as

‖f‖H1,2(X) :=
(∫

|f |2 dm + inf
(fn)n

lim inf
n→∞

∫
lip(fn)2 dm

)1/2

,

where the infimum is taken among all sequences (fn)n∈N of boundedly-
supported Lipschitz functions converging to f in L2(X). The resulting space(
H1,2(X), ‖ · ‖H1,2(X)

)
is a Banach space. The term infinitesimally Hilbertian,

coined by Gigli in [18] (after [5]), is reserved to those metric measure spaces
whose Sobolev space is Hilbert. By analogy, we say that a metric measure space is
infinitesimally non-Hilbertian when its Sobolev space is not Hilbert.

We say that (X, d,m) is C-doubling, for some C � 1, provided m (B2r(x)) �
Cm (Br(x)) holds for every x ∈ X and r > 0. We say that (X, d,m) is k-Ahlfors
regular, for some k � 1, if there exists α � 1 such that α−1rk � m (Br(x)) � αrk

for every x ∈ X and r ∈ (0,diam(X)), where diam(X) stands for the diameter of
X. Observe that each Ahlfors regular space is in particular doubling. Moreover,
we say that (X, d,m) supports a weak (1, 2)-Poincaré inequality provided there
exist C > 0 and λ � 1 such that for any boundedly-supported Lipschitz function
f : X → R it holds that�

Br(x)

∣∣∣f −
�
Br(x)

f dm
∣∣∣ dm

� Cr

(�
Bλr(x)

lip(f)2 dm

)1/2

, for every x ∈ X and r > 0.

Finally, by a PI space we mean a doubling space supporting a weak (1, 2)-Poincaré
inequality. For a thorough account of PI spaces, we refer to [8, 27] and the references
therein.

2.2. Length distances induced by a metric

Let ρ : C → (0,+∞) be a given function, where C ⊂ R
n is any convex set. Then

we denote by dρ, or by dCρ , the length distance on C induced by the metric C × R
n 	

(x, v) �→ ρ(x)|v|. Namely, we define

dρ(a, b) := inf
γ
�ρ(γ), for every a, b ∈ C, where �ρ(γ) :=

∫ 1

0

ρ(γt)|γ̇t|dt,

while the infimum is taken among all Lipschitz curves γ : [0, 1] → C with γ0 = a and
γ1 = b. Observe that if α � ρ � β for some β > α > 0, then α dEucl � dρ � β dEucl

on C × C.

Lemma 2.1. Let ρ : R
n → [α, β] be given. Suppose ρ is continuous at x ∈ R

n. Then

lim
r↘0

dρ(x+ rv, x)
r

= ρ(x)|v|, for every v ∈ R
n. (2.1)

In particular, if m � 0 is a Radon measure on R
n with m � Ln and ρ is m-a.e.

continuous, then the metric measure space (Rn, dρ,m) is infinitesimally Hilbertian.
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Proof. The identity in (2.1) is trivially verified at v = 0, so let us assume that
v 
= 0. To prove the inequality �, fix any ε > 0. Choose some r̄ > 0 satisfying
ρ(x+ rv) � ρ(x) + ε for every r ∈ (0, r̄). Calling γr : [0, 1] → R

n the constant-speed
parametrization of the interval [x, x+ rv], one has

lim sup
r↘0

dρ(x+ rv, x)
r

� lim sup
r↘0

�ρ(γr)
r

= lim sup
r↘0

∫ 1

0

ρ(x+ rsv)|v|ds� (ρ(x)+ ε) |v|,

whence it follows (by letting ε↘ 0) that lim supr↘0 dρ(x+ rv, x)/r � ρ(x)|v|.
In order to prove the converse inequality �, fix any δ > β/α. For any r > 0

we have that dρ(x+ rv, x) � βr|v|, while any Lipschitz curve γ : [0, 1] → R
2 with

γ0 = x that intersects R
2\B|·|

δr|v|(x) satisfies �ρ(γ) � αδr|v|. Then

dρ(x+ rv, x) = inf
{
�ρ(γ)

∣∣∣ γ : [0, 1] → B
|·|
δr|v|(x) Lipschitz, γ0 = x, γ1 = x+ rv

}
.

(2.2)
Now fix any ε > 0. Choose some r̄ > 0 satisfying ρ(y) � ρ(x) − ε for every y ∈
B

|·|
δr̄|v|(x). Hence, given r ∈ (0, r̄) and γ : [0, 1] → B

|·|
δr|v|(x) Lipschitz with (γ0, γ1) =

(x, x+ rv), one has

�ρ(γ) =
∫ 1

0

ρ(γt)|γ̇t|dt � (ρ(x) − ε)
∫ 1

0

|γ̇t|dt = (ρ(x) − ε) r|v|.

By recalling (2.2), we can conclude that lim infr↘0 dρ(x+ rv, x)/r � (ρ(x) − ε) |v|
and thus accordingly that lim infr↘0 dρ(x+ rv, x)/r � ρ(x)|v|, thanks to the
arbitrariness of ε > 0.

All in all, the identity in (2.1) is proved. Finally, let us pass to the verification
of the last part of the statement. Suppose that m is a Radon measure on R

n with
m � Ln and that ρ is continuous at m-a.e. point of R

n. In particular, the space
(Rn, dρ,m) is m-rectifiable and admits {(Rn, idRn)} as an atlas. Consequently, (2.1)
gives ‖ · ‖x = ρ(x)| · | for m-a.e. x ∈ R

n; see (2.5) below for the definition of ‖ ·
‖x. Hence, an application of proposition 3.1 below guarantees that (Rn, dρ,m) is
infinitesimally Hilbertian, as desired. �

It is worth pointing out that the absolute continuity assumption in the last part
of the statement of lemma 2.1 might be dropped. However, the present formulation
of lemma 2.1 is easier to achieve and sufficient for our purposes.

2.3. Tangent cones

In this paper we are concerned with tangent cones, considered with respect to
the pointed measured Gromov–Hausdorff topology, for whose definition we
refer to [21, definition 3.24]. By a pointed metric measure space (X, d,m, x) we
mean a metric measure space (X, d,m), together with a reference point x ∈ spt(m),
where spt(m) ⊂ X stands for the support of the measure m. Given any radius r > 0,
we denote by

mr
x :=

m

m (Br(x))

the normalized measure at scale r around x.
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Definition 2.2 Tangent cone. Let (X, d,m, p) be a pointed metric measure space.
Then we say that a given pointed metric measure space (Y, dY,mY, q) belongs to
the pmGH-tangent cone Tanp(X, d,m) to (X, d,m) at p provided there exists a
sequence of radii rk ↘ 0 such that

(X, d/rk, m
rk
p , p) → (Y, dY, mY, q), in the pointed measured Gromov–Hausdorff sense.

Namely, for every ε ∈ (0, 1) and L1-a.e. R > 1, there exist k̄ ∈ N and a sequence
(ψk)k�k̄ of Borel mappings ψk : BRrk

(p) → Y such that the following properties are
verified:

(i) ψk(p) = q,

(ii)
∣∣d(x, y) − rk dY

(
ψk(x), ψk(y)

)∣∣ � εrk holds for every x, y ∈ BRrk
(p),

(iii) BR−ε(q) is contained in the open ε-neighbourhood of ψk (BRrk
(p)),

(iv) m (Brk
(p))−1

ψk#

(
m|BRrk

(p)

)
⇀ mY|BR(q) as k → ∞ in duality with the space

of bounded continuous functions f : Y → R having bounded support.

When we say that Tanp(X, d,m) contains a unique element, we mean that all
its elements are isomorphic to each other in the following sense: two given pointed
metric measure spaces (Y1, dY1 ,mY1 , q1), (Y2, dY2 ,mY2 , q2) are said to be isomor-
phic provided there exists an isometric bijection i : Y1 → Y2 such that i(q1) = q2
and i#mY1 = mY2 . This notion of isomorphism of pointed metric measure spaces
is quite unnatural, as one would like to require that i is an isometric bijection only
between the supports of mY1 and mY2 , but in general this is not allowed when
working with the pointed measured Gromov–Hausdorff topology, where ‘the whole
space matters’. Nevertheless, this is not really an issue when (as in the present
paper) only fully-supported measures are considered.

Remark 2.3. As proved in [21, proposition 3.28], a given pointed metric mea-
sure space (Y, dY,mY, q) belongs to Tanp(X, d,m) if and only if there exist rk ↘ 0,
Rk ↗ ∞, εk ↘ 0, and Borel mappings ψk : BRkrk

(p) → Y such that the following
properties are verified:

(i’) ψk(p) = q,

(ii’)
∣∣d(x, y) − rk dY

(
ψk(x), ψk(y)

)∣∣ � εkrk holds for every x, y ∈ BRkrk
(p),

(iii’) BRk−εk
(q) is contained in the open εk-neighbourhood of ψk (BRkrk

(p)),

(iv’) m (Brk
(p))−1

ψk#

(
m|BRkrk

(p)

)
⇀ mY as k → ∞ in duality with the space of

bounded continuous functions f : Y → R having bounded support.

Notice that if (X, d,m) is C-doubling, then (X, d/r,mr
x, x) is C-doubling for every

x ∈ X and r > 0. Thanks to this observation, we deduce that, by combining [21,
proposition 3.33] with [22, proposition 6.3], one can readily obtain the following
result:
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Lemma 2.4. Let (X, d,m) be a doubling metric measure space and E ⊂ X a Borel
set. Then

Tanx(X, d,m) = Tanx (E, d|E×E ,m|E) , for m-a.e. x ∈ E.

2.4. Metric differential

Let us briefly recall the concept of metric differential, introduced by Kirchheim
in [33]. Let (X, d) be a metric space, E ⊂ R

n a Borel set, and f : E → X a Lipschitz
map. Being f(E) separable, we can find an isometric embedding ι : f(E) → �∞. Fix
any Lipschitz extension f̄ : R

n → �∞ of ι ◦ f : E → �∞. Then for Ln-a.e. x ∈ E the
limit

mdx(f)(v) := lim
r↘0

∥∥f̄(x+ rv) − f̄(x)
∥∥
�∞

r

exists and is finite for every v ∈ R
n. Moreover, the resulting function mdx(f) : R

n →
[0,+∞) is a seminorm on R

n, and is independent of the chosen extension f̄ , for
Ln-a.e. point x ∈ E. When f is biLipschitz with its image, mdx(f) is a norm for
Ln-a.e. x ∈ E. One also has that

lim
Rn�y→x

∥∥f̄(y) − f̄(x)
∥∥
�∞ − mdx(f)(y − x)
|y − x| = 0, for Ln-a.e. x ∈ E, (2.3)

as proved in [33, theorem 2]. We will actually need a consequence of (2.4), which we
are going to discuss below. Before passing to its statement, we fix some additional
terminology.

The set snn of all seminorms on R
n is a complete, separable metric space if

endowed with the distance Dn, which is given by

Dn(n1, n2) := sup
v∈R

n:
|v|�1

|n1(v) − n2(v)| , for every n1, n2 ∈ snn.

Then E 	 x �→ mdx(f) ∈ snn is Borel measurable, as pointed out in [24, theorem
3.1].

Lemma 2.5. Let (X, d) be a metric space. Let f : E → X be a Lipschitz map, for
some Borel set E ⊂ R

n. Then there exists a partition (Kj)j∈N of E (up to Ln-null
sets) into compact sets with the following property: given any j ∈ N, it holds that

lim
Kj�y,z→x

d (f(y), f(z)) − mdx(f)(y − z)
|y − z| = 0, for Ln-a.e. x ∈ Kj . (2.4)

Proof. The property (2.3) can be equivalently rephrased by saying that φi ↘ 0
holds Ln-a.e. on E as i→ ∞, where for every i ∈ N we define

φi(x) := sup
y∈B|·|

1/i
(x)\{x}

∣∣∥∥f̄(y) − f̄(x)
∥∥
�∞ − mdx(f)(y − x)

∣∣
|y − x| , for Ln-a.e. x ∈ E.

By applying Lusin Theorem to E 	 x �→ mdx(f) ∈ snn and Egorov Theorem to
(φi)i∈N, we obtain a sequence (Kj)j∈N of pairwise disjoint, compact subsets of E

https://doi.org/10.1017/prm.2022.18 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.18
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with Ln
(
E\⋃j∈N

Kj

)
= 0 such that Kj 	 x �→ mdx(f) is continuous and φi|Kj

→
0 uniformly as i→ ∞ for any j ∈ N. Therefore, given any j ∈ N, x ∈ Kj , and ε > 0,
we can find an index i ∈ N such that φi(y) � ε and Dn (mdy(f),mdx(f)) � ε for
every y ∈ B

|·|
1/i(x) ∩Kj , whence it follows that

|d (f(y), f(z)) − mdx(f)(y − z)|
|y − z| � φi(y) + Dn (mdy(f),mdx(f)) � 2ε

holds for every y, z ∈ B
|·|
1/(2i)(x) ∩Kj with y 
= z. This gives (2.4), as desired. �

2.5. Essentially rectifiable spaces

Let (X, d,m) be a metric measure space. Then we say that a couple (U,ϕ) is an
n-chart on (X, d,m), for some n ∈ N, provided U ⊂ X is a Borel set such that
m|U � Hn and ϕ : U → R

n is a mapping which is biLipschitz with its image. Fol-
lowing [22, 28], we say that (X, d,m) is m-rectifiable provided it admits an atlas,
i.e., a countable family A = {(Ui, ϕi)}i∈N

of ni-charts ϕi : Ui → R
ni on (X, d,m)

(for some ni ∈ N) such that {Ui}i∈N is a Borel partition of X up to m-null sets.
Notice that we do not assume that supi∈N ni < +∞. We define n : X → N as
n(x) := 0 for every x ∈ X\⋃i∈N

Ui and

n(x) := ni, for every i ∈ N and x ∈ Ui.

It can be readily checked that the function n is m-a.e. independent of the chosen
atlas A .

Given any i ∈ N and m-a.e. x ∈ Ui, we define the norm ‖ · ‖x : R
n(x) → [0,+∞)

on R
n(x) as

‖v‖x := mdϕi(x)(ϕ
−1
i )(v), for every v ∈ R

n(x). (2.5)

The fact that (ϕi)#(m|Ui
) � Ln(x) ensures that ‖ · ‖x is m-a.e. independent of the

atlas A .
We denote by Hn(x)

x the n(x)-dimensional Hausdorff measure on
(
R
n(x), ‖ · ‖x

)
and by

Hn(x)
x :=

Hn(x)
x

Hn(x)
x

(
B

‖·‖x

1 (0)
)

its normalization. Moreover, for any i ∈ N we can find a Borel function θi : Ui →
[0,+∞) such that m|Ui

= θiHni

d |Ui
. We define the density function θ : X → [0,+∞)

as θ :=
∑
i∈N

χUi
θi.

Lemma 2.5 implies that, up to refining the atlas A , it is not restrictive to assume
that

lim
Ui�y,z→x

|d(y, z) − ‖ϕi(y) − ϕi(z)‖x|
d(y, z)

= 0, for every i ∈ N and m-a.e. x ∈ Ui.

(2.6)
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3. Proof of theorem 1.4

Theorem 1.4 is a consequence of the following two results, of independent interest.

Proposition 3.1. Let (X, d,m) be an m-rectifiable space. If ‖ · ‖x is a Hilbert norm
on R

n(x) for m-a.e. point x ∈ X, then (X, d,m) is infinitesimally Hilbertian. In the
case where (X, d,m) is also a PI space, the converse implication is verified as well.

Proof. The first part of the statement follows from [28, lemma 4.1], [28, theorem
1.2], and [19, proposition 2.3.17], whereas the last part can be obtained by taking
also [28, theorem 1.3] and the results of [11] into account. Alternatively, the last
part of the statement can be deduced from [16, corollary 6.7]. �

Proposition 3.2. Let (X, d,m) be a doubling, m-rectifiable space. Then for
m-a.e. x ∈ X the tangent cone Tanx(X, d,m) consists uniquely of the space(
R
n(x), ‖ · ‖x,Hn(x)

x , 0
)
.

Proof. Let {(Ui, ϕi)}i∈N
be an atlas of (X, d,m). An application of Lusin Theorem

yields the existence of a partition (Ki
j)j∈N of Ui (up to m-null sets) into compact

sets such that each θ|Ki
j

is continuous. Moreover, lemma 2.4 gives Tanx(X, d,m) =
Tanx(Ki

j , d,m) for m-a.e. x ∈ Ki
j . Hence, we can assume without loss of generality

that X is compact, that m = θHn
d for some continuous density θ : X → [0,+∞),

and that there exists a mapping ϕ : X → R
n which is biLipschitz with its image.

Then our aim is to show that for m-a.e. x ∈ X the pointed metric measure space
(Rn, ‖ · ‖x,Hn

x , 0) is the unique element of the tangent cone Tanx(X, d,m).
Let x ∈ X be a given point where (2.6) holds and θ(x) > 0 (this property holds

m-a.e.). Fix any rk ↘ 0 and 0 < ε < 1 < R. Then (2.4) yields a sequence δk ↘ 0
such that 2δkR < ε,

|d(y, z) − ‖ϕ(y) − ϕ(z)‖x| � δkd(y, z), for every y, z ∈ Bd
Rrk

(x), (3.1)

and |θ(y) − θ(x)| � δkθ(x) for every y ∈ Bd
Rrk

(x). Define ψk(y) := ϕ(y)−ϕ(x)
rk

for
all y ∈ Bd

Rrk
(x). Then the Borel maps ψk : Bd

Rrk
(x) → (Rn, ‖ · ‖x,Hn

x , 0) verify the
conditions in definition 2.2:

(i) ψk(x) = 0 by definition.
(ii) It follows from (3.1) that
∣∣d(y, z) − rk‖ψk(y) − ψk(z)‖x

∣∣ � δkd(y, z) � εrk, for every y, z ∈ Bd
Rrk

(x).

(iii) The same estimates also show that ψk :
(
Bd
Rrk

(x), d
)→ (Rn, rk‖ · ‖x) is

Lk-biLipschitz with its image, where we set Lk := 1 + δk. In particular, we obtain
that

B
‖·‖x

R/Lk
(0) = B

rk‖·‖x

Rrk/Lk
(0) ⊂ ψk

(
Bd
Rrk

(x)
) ⊂ B

rk‖·‖x

RrkLk
(0) = B

‖·‖x

RLk
(0). (3.2)

Given that R− ε < R/Lk, we deduce from (3.2) that B‖·‖x

R−ε(0) ⊂ ψk
(
Bd
Rrk

(x)
)
.
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(iv) The Lk-biLipschitzianity of the mapping ψk|Bd
Rrk

(x) also ensures that

rnk
Lnk

Hn
x |ψk(Bd

Rrk
(x)) � ψk#

(
Hn

d |Bd
Rrk

(x)

)
� rnkL

n
k Hn

x |ψk(Bd
Rrk

(x)). (3.3)

Recalling that θ(x)(1 − δk) � θ � θ(x)Lk on Bd
Rrk

(x), we deduce from (3.2) and
(3.3) that

ψk#

(
m|Bd

Rrk
(x)

)
m
(
Bd
rk

(x)
) � Lk

1 − δk

ψk#

(
Hn

d |Bd
Rrk

(x)

)
Hn

d

(
Bd
rk

(x)
)

� L2n+1
k

1 − δk

Hn
x |B‖·‖x

RLk
(0)

Hn
x

(
B

‖·‖x

1/Lk
(0)
) =

L3n+1
k

1 − δk
Hn
x |B‖·‖x

RLk
(0)
.

Similarly, we can estimate

ψk#

(
m|Bd

Rrk
(x)

)
m
(
Bd
rk

(x)
) � 1 − δk

L3n+1
k

Hn
x |B‖·‖x

R/Lk
(0)
.

Since Lk → 1 as k → ∞, we finally conclude that m
(
Bd
rk

(x)
)−1

ψk#

(
m|Bd

Rrk
(x)

)
⇀

Hn
x |B‖·‖x

R (0)
in duality with bounded continuous functions f : R

n → R having
bounded support. �

Proof of theorem 1.4. Let (X, d,m) be an infinitesimally Hilbertian, m-rectifiable
PI space. The last part of proposition 3.1 tells that ‖ · ‖x is a Hilbert norm
for m-a.e. x ∈ X. Hence, proposition 3.2 ensures that for m-a.e. x ∈ X the
tangent cone Tanx(X, d,m) contains only the infinitesimally Hilbertian space(
R
n(x), ‖ · ‖x,Hn(x)

x , 0
)
, yielding the sought conclusion. �

4. Proof of theorem 1.1

Let X ⊂ R
2 be given by X := C × C, where C ⊂ R is a Cantor set of positive L1-

measure. We endow X with the distance d, given by d(a, b) := ‖a− b‖1 for every
a, b ∈ X, and with the measure m := L2|X.

Proof of theorem 1.1. We check that (X, d,m) verifies theorem 1.1. It is easy to
show that it is 2-Ahlfors regular and m-rectifiable. Moreover, the space X (being
totally disconnected) cannot contain non-constant absolutely continuous curves,
thus the equivalent characterizations of H1,2(X) in [3] imply that H1,2(X) = L2(X)
and ‖f‖H1,2(X) = ‖f‖L2(X) for all f ∈ H1,2(X). Hence, trivially, the metric measure
space (X, d,m) is infinitesimally Hilbertian. Finally, it follows from lemma 2.4 that
Tana(X, d,m) = Tana

(
R

2, ‖ · ‖1,L2
)

holds for m-a.e. point a ∈ X, and it is imme-
diate to check that the norms {‖ · ‖a}a∈R2 associated with the L2-rectifiable space(
R

2, ‖ · ‖1,L2
)

satisfy ‖ · ‖a = ‖ · ‖1 for every a ∈ R
2. This fact implies (thanks to
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proposition 3.2) that for m-a.e. a ∈ X the tangent cone Tana(X, d,m) consists exclu-
sively of the space

(
R

2, ‖ · ‖1,H2
‖·‖1

, 0
)
, which is not infinitesimally Hilbertian by

proposition 3.1. �

Remark 4.1. It is also possible to provide an example of metric measure space
(X, d,m) verifying theorem 1.1 whose Sobolev space H1,2(X) is non-trivial. To this
aim, fix a Cantor set C ⊂ R of positive L1-measure and define X := C × R. We
endow the space X ⊂ R

2 with the distance d(a, b) := ‖a− b‖1 and with the measure
m := L2|X. Exactly as before, (X, d,m) is 2-Ahlfors regular, m-rectifiable, and its
tangents are m-a.e. unique and infinitesimally non-Hilbertian. The infinitesimal
Hilbertianity of (X, d,m) boils down to the fact that all norms on R are Hilbert.
Indeed, one can check that a given function f ∈ L2(X) belongs to H1,2(X) if and
only if f(x, ·) ∈W 1,2(R) holds for L1-a.e. x ∈ C and

∫
C
‖|Df(x, ·)|‖2

L2(R) dL1(x) <
+∞. Moreover, for any function f ∈ H1,2(X) we have that

‖f‖2
H1,2(X) =

∫
|f |2 dm +

∫
C

‖|Df(x, ·)|‖2
L2(R) dL1(x).

In particular, H1,2(X) is a Hilbert space, thus yielding the sought conclusion.

5. Proof of theorem 1.2

By a dyadic square in the plane we mean an open square Q ⊂ R
2 of the form

Q = Qki,j :=
(
i2k, (i+ 1)2k

)× (j2k, (j + 1)2k
)
, for some i, j, k ∈ Z.

We denote by D the family of all dyadic squares in the plane. The side-length of
a dyadic square Q ∈ D is denoted by �(Q). Consider the family W := {Qki,j : k ∈
Z, (i, j) ∈ F}, where

F := {(1, 0), (1, 1), (0, 1), (−1, 1), (−2, 1), (−2, 0),

(−2,−1), (−2,−2), (−1,−2), (0,−2), (1,−2), (1,−1)} .
Observe that W is the Whitney decomposition of R

2\{0}. Given any Q ∈ W with
�(Q) = 2k, we define the family S(Q) ⊂ D as

S(Q) :=
{
Q′ ∈ D ∣∣ Q′ ⊂ Q, �(Q′) = 2k+min{k,0}}.

It holds that S(Q) = {Q} if k � 0, while S(Q) is a collection of 4−k pairwise disjoint
dyadic squares of side-length 4k if k < 0. It also holds Q̄ =

⋃
Q′∈S(Q) Q̄

′. Define
S :=

⋃
Q∈W S(Q). Moreover, we define Nk := [−2−k, 2−k]2 ⊂ R

2 and Sk := {Q ∈
S : Q ⊂ Nk} for every k ∈ N. Observe that Nk =

⋃
Q∈Sk

Q̄ and �(Q) � 4−(k+1) for
every Q ∈ Sk.
Remark 5.1. Given any function ρ : R

2 → [1, 2], it holds that

dNk
ρ (x, y) = dρ(x, y), for every k ∈ N and x, y ∈ Nk+2.

Indeed, the dρ-distance between any two points in Nk+2 cannot exceed 2
√

2/2k+1,
while any Lipschitz curve γ in R

2 which joins two points in Nk+2 and
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intersects R
2\Nk satisfies the estimate �ρ(γ) � 2(2−(k+1) + 2−(k+2)). Given that

2
(

1
2k+1 + 1

2k+2

)
= 3

2k+1 >
2
√

2
2k+1 , we deduce that to compute the dρ-distance between

two points in Nk+2 it is sufficient to consider just those Lipschitz curves which are
contained in Nk, whence the claimed identity follows.

Given any n ∈ N, let us fix a smooth function ψn : (−1, 2)2 → [1, 2] such that
ψn = 1 on some neighbourhood of ∂([0, 1]2) and ψn = 2 in the smaller square
[2−(n+2), 1 − 2−(n+2)]2. We can further require that ψn � ψn+1 for every n ∈
N. Moreover, we define ψ∞ : [0, 1]2 → {1, 2} as ψ∞ := χ∂([0,1]2) + 2χ(0,1)2 . Notice
that ψn ↗ ψ∞ on [0, 1]2 as n→ ∞. For any Q ∈ S, we define the transforma-
tion θQ : [0, 1]2 → Q̄ as θQ(x, y) := (τQ ◦ δ�(Q))(x, y) for all (x, y) ∈ [0, 1]2, where
δλ : R

2 → R
2 is the dilation (x, y) �→ (λx, λy), while τQ : R

2 → R
2 stands for the

unique translation satisfying τQ([0, �(Q)]2) = Q. Given any k, n ∈ N, we define
ρkn : Nk → [1, 2] as

ρkn := χR∩Nk
+
∑
Q∈Sk

χQ ψn ◦ θ−1
Q ,

where we set R := R
2\⋃Q∈S Q. We point out that R consists of the origin 0 and of

the boundaries of squares in S, thus in particular it is nowhere dense; this observa-
tion will play a role in the proof of lemma 5.2. Furthermore, we define the function
ρ∞ : R

2 → {1, 2} as

ρ∞ := χR + 2χR2\R = χR +
∑
Q∈S

χQ ψ∞ ◦ θ−1
Q .

Observe that ρkn ↗ ρ∞ on Nk as n→ ∞. As we are going to check, this implies
that

dNk

ρk
n

(x, y) ↗ dNk
ρ∞(x, y), as n→ ∞, for every x, y ∈ Nk. (5.1)

In order to prove it, fix points x, y ∈ Nk. For any n ∈ N, pick a constant-speed Lip-
schitz curve γn : [0, 1] → Nk such that (γn0 , γ

n
1 ) = (x, y) and �ρk

n
(γn) � dNk

ρk
n

(x, y) +
1/n. Given s, t ∈ [0, 1] with s < t, we can estimate

dEucl(γns , γ
n
t )

t− s
�

dNk

ρk
n

(γns , γ
n
t )

t− s
� �ρk

n
(γn) � dNk

ρk
n

(x, y) +
1
n

� dρ∞(x, y) + 1.

This shows that the curves {γn}n∈N are equiLipschitz with respect to dEucl.
Hence, an application of the Arzelà–Ascoli Theorem guarantees the existence of
a subsequence {ni}i∈N and of a Lipschitz curve γ : [0, 1] → Nk such that γni → γ
uniformly as i→ ∞. Being each �ρk

n
lower semicontinuous with respect to uniform

convergence, for any n ∈ N we obtain that

�ρk
n
(γ) � lim

i→∞
�ρk

n
(γni) � lim

i→∞
�ρk

ni
(γni) � lim

i→∞

(
dNk

ρk
ni

(x, y) +
1
ni

)
= lim
m→∞ dNk

ρk
m

(x, y).

Therefore, we obtain (5.1) by using the Monotone Convergence Theorem, which
yields

dρ∞(x, y) �
∫ 1

0

ρ∞(γt)|γ̇t|dt = lim
n→∞

∫ 1

0

ρkn(γt)|γ̇t|dt � lim
m→∞ dNk

ρk
m

(x, y) � dρ∞(x, y).
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Given that dρ∞ � 2 dEucl, the function dNk
ρ∞ is continuous on Nk ×Nk, thus

(5.1) implies that dNk

ρk
n
→ dNk

ρ∞ uniformly on the compact set Nk ×Nk as n→
∞. Hence, we can choose n(k) ∈ N so that dNk

ρk
(a, b) � dNk

ρ∞(a, b) − 4−(k+2) �
dρ∞(a, b) − 4−(k+2) for all a, b ∈ Nk, where we set ρk := ρkn(k). We can assume with-
out loss of generality that N 	 k �→ n(k) ∈ N is strictly increasing. We now define
the auxiliary function m : S → N as

m(Q) :=
{
n(k), if Q ∈ Sk\Sk+1 for some k ∈ N,
0, if Q ∈ S\S0.

Finally, we define the function ρ : R
2 → [1, 2] as

ρ := χR +
∑
Q∈S

χQ ψm(Q) ◦ θ−1
Q .

Observe that ρ is smooth on R
2\{0}. Given that ρ � ρk on Nk for any k ∈ N by

construction, we deduce that dNk
ρ � dNk

ρk
and thus

dρ(a, b) � dρ∞(a, b) − 1
4k+2

, for every k ∈ N and a, b ∈ Nk+2, (5.2)

where we used that dρ = dNk
ρ � dNk

ρk
� dρ∞ − 4−(k+2) on Nk+2 ×Nk+2 by remark

5.1.

Lemma 5.2. Let k � 2 be given. Then it holds that

‖a− b‖1 − 1
4k

� dρ(a, b) � ‖a− b‖1 +
1
4k
, for every a, b ∈ Nk. (5.3)

Proof. By continuity, it is sufficient to check the validity of the statement when
a, b ∈ Nk\R.

Upper bound. Call Qa (resp. Qb) the unique element of Sk containing a (resp.
b). We can find two points a′ ∈ ∂Qa and b′ ∈ ∂Qb such that ‖a′ − b′‖1 � ‖a− b‖1.
We can also require that each of the segments [a, a′] and [b′, b] is either horizontal
or vertical. Hence, calling γa (resp. γb) the constant-speed parametrization of the
interval [a, a′] (resp. of [b′, b]), we have that �ρ(γa) � 2�(Qa) and �ρ(γb) � 2�(Qb).
We can construct a polygonal curve γ̃ : [0, 1] → R with γ̃0 = a′, γ̃1 = b′, and �ρ(γ̃) =
‖a′ − b′‖1. Then the concatenation γ := γa ∗ γ̃ ∗ γb satisfies

�ρ(γ) = �ρ(γa) + �ρ(γ̃) + �ρ(γb) � 2�(Qa) + ‖a′ − b′‖1 + 2�(Qb) � ‖a− b‖1 +
1
4k
.

Since the curve γ joins a and b, we can conclude that the upper bound in (5.3) is
verified.

Lower bound. Fix any Lipschitz curve γ : [0, 1] → R
2 joining a and b. We denote

by H ⊂ R
2 (resp. V ⊂ R

2) the intersection between R and R × {j2k : j, k ∈ Z}
(resp. {i2k : i, k ∈ Z} × R). Notice that H ∩ V is a countable family. We write
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[0, 1] = IM ∪ IH ∪ IV , where we define

IM :=
{

t∈ [0, 1]
∣∣ γt∈ R

2\R
}

, IH :=
{
t∈ [0, 1]

∣∣ γt∈ H
}

, IV :=
{
t∈ [0, 1]

∣∣ γt ∈ V
}

.

Denote a = (a1, a2), b = (b1, b2), and γ = (γ1, γ2). Then γ1 is a Lipschitz curve in
R that joins a1 and b1, so that |a1 − b1| �

∫ 1

0
|γ̇1
t |dt. For any i, k ∈ Z it holds that

γ1
t = i2k for every t ∈ γ−1({i2k} × R) and thus γ̇1

t = 0 for a.e. t ∈ γ−1({i2k} × R).
This implies γ̇1

t = 0 for a.e. t ∈ IV , so that |a1 − b1| �
∫
IM∪IH

|γ̇1
t |dt. Similarly, one

has |a2 − b2| �
∫
IM∪IV

|γ̇2
t |dt. Therefore, we can estimate

�ρ∞(γ) =
∫
IM

2|γ̇t|dt+
∫
IH

|γ̇t|dt+
∫
IV

|γ̇t|dt

�
∫
IM

|γ̇1
t | + |γ̇2

t |dt+
∫
IH

|γ̇1
t |dt+

∫
IV

|γ̇2
t |dt

=
∫
IM∪IH

|γ̇1
t |dt+

∫
IM∪IV

|γ̇2
t |dt � |a1 − b1| + |a2 − b2| = ‖a− b‖1.

Thanks to the arbitrariness of γ, we deduce that dρ∞(a, b) � ‖a− b‖1. Recalling
(5.2), we can finally conclude that the lower bound in (5.3) is verified, whence the
statement follows. �

We endow the smooth manifold M := R
2\{0} with the Riemannian metric g,

which is defined as gx(v, w) := ρ(x)〈v, w〉. Call m the 2-dimensional Hausdorff mea-
sure on (R2, dρ). Given that the restriction of dρ to M is (by definition) the length
distance induced by the Riemannian metric g, we have that m|M coincides with the
volume measure of (M, g). By exploiting the fact that dEucl � dρ � 2 dEucl, one can
also deduce that L2 � m � 2L2, thus in particular (R2, dρ,m) is an m-rectifiable,
2-Ahlfors regular PI space. Moreover, lemma 2.1 ensures that the metric measure
space (R2, dρ,m) is infinitesimally Hilbertian.

Proof of theorem 1.2. The metric measure space (R2, dρ,m) constructed above sat-
isfies the assumptions of theorem 1.2. We will prove that Tan0(R2, dρ,m) contains
an infinitesimally non-Hilbertian element of the form

(
R

2, ‖ · ‖1, μ, 0
)
, for some

boundedly-finite Borel measure μ with 0 ∈ spt(μ). Given any k ∈ N, we define
rk := 1/(k2k), Rk := k, εk := k/2k, and

ψk(a) :=
a

rk
, for every a ∈ B

dρ

Rkrk
(x).

Let us check that the Borel maps ψk : Bdρ

Rkrk
(0) → R

2 satisfy the conditions in
remark 2.3, when the target R

2 is endowed with the norm ‖ · ‖1 and a suitable
measure μ with 0 ∈ spt(μ).

(i’) By definition, ψk(0) = 0 for every k ∈ N.
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(ii’) Let k � 2 be fixed. Since dEucl � dρ, we have that Bdρ

Rkrk
(0) = B

dρ

2−k(0) ⊂ Nk.
Therefore,

∣∣dρ(a, b) − rk‖ψk(a) − ψk(b)‖1

∣∣ = |dρ(a, b) − ‖a− b‖1| � 1
4k

= εkrk

holds for every a, b ∈ B
dρ

Rkrk
(x), where the inequality follows from lemma 5.2.

(iii’) Fix any k � 2 and v ∈ B
‖·‖1
Rk−εk

(0). Given that ‖rkv‖1 < (Rk − εk)rk =

2−k − 4−k < 2−k, one has a := rkv ∈ B
‖·‖1

2−k (0) ⊂ Nk. Hence, lemma 5.2 ensures that
dρ(a, 0) � ‖a‖1 + 4−k < 2−k, which implies that a ∈ B

dρ

2−k(0) = B
dρ

Rkrk
(0) and thus

v = ψk(a) ∈ ψk
(
B

dρ

Rkrk
(0)
)
, as desired.

(iv’) We aim to find a boundedly-finite Borel measure μ � 0 on
(
R

2, ‖ · ‖1

)
such

that

μk :=

ψk
#

(
m|

B
dρ
Rkrk

(0)

)

m
(
B

dρ
rk

(0)
) ⇀ μ, in duality with compactly-supported, continuous functions,

up to a subsequence in k. Up to a diagonalization argument, it is sufficient to show
that for any compact set K ⊂ R

2 the sequence μk|K weakly subconverges to some
finite Borel measure on K in duality with continuous functions on K. In turn, to
obtain the latter condition it is enough to prove that supk∈N μk(K) < +∞. Let us
check it: for any k ∈ N, we can estimate

μk(K) =
m
(
(ψk)−1(K) ∩Bdρ

2−k(0)
)

m
(
B

dρ
rk (0)

) (�)

� m(rkK)

m
(
B

‖·‖2

rk/2
(0)
) � 2L2(rkK)

L2
(
B

‖·‖2

rk/2
(0)
) =

8L2(K)
π

,

where in the starred inequality we used the fact that dρ � 2 dEucl and thus
B

‖·‖2

rk/2
(0) ⊂ B

dρ
rk (0). Finally, we aim to show that 0 ∈ spt(μ), or equivalently that

lim supk→∞ μk

(
B

‖·‖2
δ (0)

)
> 0 holds for every δ ∈ (0, 1). Given any such δ, we can

find k̄ ∈ N and Cδ > 0 such that Rk/2 > δ and m
(
B

‖·‖2
δrk

(0)
)

� Cδ m
(
B

‖·‖2
rk (0)

)
for

every k � k̄; for the latter property, we are using the fact that
(
R

2, ‖ · ‖2,m
)

is
doubling. In particular, B‖·‖2

δrk
(0) ⊂ B

‖·‖2
Rkrk/2

(0) for all k � k̄. Hence,

μk

(
B

‖·‖2
δ (0)

)
=

m
(
B

‖·‖2
δrk

(0) ∩Bdρ

Rkrk
(0)
)

m
(
B

dρ
rk

(0)
) �

m
(
B

‖·‖2
δrk

(0) ∩B‖·‖2
Rkrk/2

(0)
)

m
(
B

‖·‖2
rk

(0)
) � Cδ, for all k� k̄.

All in all, we proved that
(
R

2, ‖ · ‖1, μ, 0
) ∈ Tan0(R2, dρ,m). Since ‖ · ‖1 is a

non-Hilbert norm, we conclude from [34, lemma 4.4] that
(
R

2, ‖ · ‖1, μ
)

is not
infinitesimally Hilbertian, thus completing the proof of theorem 1.2. �

Remark 5.3. Theorem 1.2 could be modified so that for any closed set F ⊂ R
2

of Lebesgue measure zero, there exists a distance dF on R
2 so that (R2, dF ,m) is

an infinitesimally Hilbertian, m-rectifiable, Ahlfors regular PI space, and the set of
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points x̄ ∈ R
2 for which Tanx̄(R2, dF ,m) contains an infinitesimally non-Hilbertian

element is exactly F . Indeed, the only modifications needed in the construction are
to take W to be the Whitney decomposition of R

2\F and to define the function
ρ : R

2 → [1, 2] as 2 on F and elsewhere via the same definitions as in the proof
above. Then the infinitesimal Hilbertianity of the space (R2, dF ,m) follows from
the fact that F has zero measure, while the infinitesimal non-Hilbertianity of the
tangents at x̄ ∈ F follows as above. Notice that since F has zero measure and ρ = 2
on F , the tangent spaces at every point x̄ ∈ F are isomorphic to

(
R

2, ‖ · ‖1, μx̄, 0
)

for suitable measures μx̄. In the case F = {0} the function ρ was defined to be 1
on F in order to make ρ lower semicontinuous. This allowed the soft argument via
uniform convergence leading to the existence of n(k). On a general F we cannot
define ρ to be identically 1, as we might then fail to be infinitesimally non-Hilbertian
at the tangents. To overcome this, one could, for example, make a more quantitative
argument in the lower bound in lemma 5.2. We chose to formulate theorem 1.2 only
in the simplest case F = {0} since the more general case contains essentially no new
ideas and only slightly complicates the presentation.
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Appendix A. Infinitesimal Hilbertianity and asymptotic cones

As one might expect, the infinitesimal Hilbertianity condition has little to do with
the large-scale geometry of the space under consideration. Indeed, as shown by
theorem A.1 below, it is rather easy to construct a ‘nice’ infinitesimally Hilbertian
metric measure space whose asymptotic cone is not infinitesimally Hilbertian. This
is a folklore result, which we discuss in details for the reader’s usefulness; similar
constructions are typical in homogenization theory, see for instance [1] and [9].
Theorem A.1 could be obtained by constructing a length distance on R

2 induced
by similar weights as the ones used in § 5. We opted to provide here an alternative
and simpler construction. Before passing to the actual statement, let us briefly recall
the relevant terminology.

Let (X, d,m) be a metric measure space. Then we say that a given pointed metric
measure space (Y, dY,mY, q) is a pmGH-asymptotic cone of (X, d,m) provided
there exists a sequence of radii Rk ↗ +∞ such that for some (and thus any) point
p ∈ spt(m) it holds that

(X, d/Rk, m
Rk
p , p) → (Y, dY, mY, q), in the pointed measured Gromov–Hausdorff sense.
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Namely, for every ε ∈ (0, 1) and L1-a.e. R > 1, there exist k̄ ∈ N and a sequence
(ψk)k�k̄ of Borel mappings ψk : BRRk

(p) → Y such that the following properties
are verified:

(i”) ψk(p) = q,

(ii”)
∣∣d(x, y) −Rk dY

(
ψk(x), ψk(y)

)∣∣ � εRk holds for every x, y ∈ BRRk
(p),

(iii”) BR−ε(q) is contained in the open ε-neighbourhood of ψk (BRRk
(p)),

(iv”) m (BRk
(p))−1

ψk#

(
m|BRRk

(p)

)
⇀ mY|BR(q) as k → ∞ in duality with the

space of bounded continuous functions f : Y → R having bounded support.

Theorem A.1. There exists an infinitesimally Hilbertian, m-rectifiable, Ahlfors
regular PI space having a unique, infinitesimally non-Hilbertian asymptotic cone.

Proof. We endow the grid X := (Z × R) ∪ (R × Z) in the plane R
2 with the distance

d, given by d(a, b) := ‖a− b‖∞ for every a, b ∈ X, and with the measure m := H1
d|X.

Consider also the space
(
X × [0, 1], d × dEucl,m ⊗ L1|[0,1]

)
, where m ⊗ L1|[0,1] stands

for the product measure and

(d × dEucl) ((a, t), (b, s)) :=
√

d(a, b)2 + |t− s|2, for every a, b ∈ X and t, s ∈ [0, 1].

It is easy to see that
(
X × [0, 1], d × dEucl,m ⊗ L1|[0,1]

)
is (m ⊗ L1|[0,1])-

rectifiable, 2-Ahlfors regular, and PI. Using proposition 3.1, one can deduce
that

(
X × [0, 1], d × dEucl,m ⊗ L1|[0,1]

)
is infinitesimally Hilbertian. Observe

also that, by virtue of the fact that [0, 1] is bounded, the spaces(
X × [0, 1], d × dEucl,m ⊗ L1|[0,1]

)
and (X, d,m) have the same pmGH-asymptotic

cones. Therefore, to conclude it suffices to prove the following claim: the unique
asymptotic cone of (X, d,m) is given by the infinitesimally non-Hilbertian space(
R

2, ‖ · ‖∞, 8−1L2, 0
)
. To this aim, fix any ε ∈ (0, 1), R > 1, and Rk ↗ +∞. We

define the Borel maps ψk : Bd
RRk

(0) → R
2 as ψk(a) := a/Rk for every a ∈ Bd

RRk
(0).

Our goal is to show that the sequence (ψk)k∈N verifies the items (i”), (ii”), (iii”),
and (iv”) above, with target

(
R

2, ‖ · ‖∞, 8−1L2, 0
)
.

(i”) ψk(0) = 0 by construction.
(ii”) It follows from the fact that ψk is an isometry from

(
Bd
RRk

(0), d
)

to(
R

2, Rk‖ · ‖∞
)
.

(iii”) Pick k̄ ∈ N so that 1/Rk̄ < ε. Let v ∈ B
‖·‖∞
R−ε (0) and k � k̄ be given. Since

Rkv ∈ B
‖·‖∞
RRk

(0), we can find a ∈ X ∩B‖·‖∞
RRk

(0) = Bd
RRk

(0) with ‖a−Rkv‖∞ < 1.

This yields
∥∥ψk(a) − v

∥∥
∞ < ε, thus accordingly B

‖·‖∞
R−ε (0) is contained in the ε-

neighbourhood of ψk
(
Bd
RRk

(0)
)
, as desired.

(iv”) For any i, j ∈ Z and k ∈ N, we define the sets Qij := (i− 2−1, i+
2−1) × (j − 2−1, j + 2−1) and Sk :=

⋃
|i|,|j|<�RRkQij , where �λ� ∈ N stands

for the integer part of λ ∈ [0,+∞). Notice that m
(
B

‖·‖∞
�RRk+1(0)\Sk

)
=

20�RRk� − 18 =: ak and thus m
(
Bd
RRk

(0)\Sk
)

� ak. Moreover, calling S̃k :=

Sk/Rk, we have L2
(
B

‖·‖∞
R (0)\S̃k

)
� 8R

(
(2Rk)−1 +R− �RRk�/Rk

)
=: bk. Fix
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any bounded, continuous function f : R
2 → [0,+∞) having compact sup-

port. Pick C > 0 such that f � C. Given that X ∩B‖·‖∞
�Rk(0) ⊂ Bd

Rk
(0) and

m
(
B

‖·‖∞
�Rk(0)

)
= 8�Rk�2 − 4�Rk�=: ck, we deduce that

∣∣∣∫B‖·‖∞
R (0)\S̃k

f dL2
∣∣∣ � Cbk

and
∣∣∣∣m−1

k

∫
Bd

RRk
(0)\Sk

f ◦ ψk dm

∣∣∣∣ � Cak/ck, where we set mk := m
(
Bd
Rk

(0)
)
. Now

fix any δ > 0 and choose k̄ ∈ N such that |f(a) − f(b)| � δ for every a, b ∈ R
2 with

‖a− b‖∞ < 1/Rk̄. Setting ρk := m−1
k

∑
|i|,|j|<�RRk f ((i, j)/Rk) for every k � k̄, we

obtain that∣∣∣∣∣ 1
mk

∫
f dψk#

(
m|Bd

RRk
(0)

)
− 1

8

∫
B

‖·‖∞
R (0)

f dL2

∣∣∣∣∣
�
∣∣∣∣ 1
mk

∫
Sk

f ◦ ψk dm − 1
8

∫
S̃k

f dL2

∣∣∣∣+ C

(
ak
ck

+
bk
8

)

�
∣∣∣∣ 1
mk

∫
Sk

f ◦ ψk dm − ρk

∣∣∣∣+
∣∣∣∣ρk − 1

8

∫
S̃k

f dL2

∣∣∣∣+ C

(
ak
ck

+
bk
8

)
.

The first addendum in the last line of the above formula can be estimated as

∣∣∣∣ 1
mk

∫
Sk

f ◦ ψk dm − ρk

∣∣∣∣ � 1
ck

∑
|i|,|j|<�RRk

∣∣∣∣∣
∫
Qij

f ◦ ψk dm − f ((i, j)/Rk)

∣∣∣∣∣
=

1
ck

∑
|i|,|j|<�RRk

∣∣∣∣∣
�
Qij/Rk

f d
(
H1

|·||X/Rk

)
− f ((i, j)/Rk)

∣∣∣∣∣
� 1
ck

∑
|i|,|j|<�RRk

δ =
(2�RRk� − 1)2 δ

ck
,

while the second one can be estimated as

∣∣∣∣ρk − 1

8

∫
S̃k

f dL2
∣∣∣∣ � 1

8R2
k

∑
|i|,|j|<�RRk

∣∣∣∣∣8R2
k

mk
f ((i, j)/Rk) −

�
Qij/Rk

f dL2

∣∣∣∣∣
� 1

8R2
k

∑
|i|,|j|<�RRk

(∣∣∣∣∣8R2
k

mk
− 1 |C+| f ((i, j)/Rk) −

�
Qij/Rk

f dL2

∣∣∣∣∣
)

� (2�RRk� − 1)2

ck

(∣∣∣∣∣8R2
k

mk
− 1

∣∣∣∣∣C + δ

)
.

Since Bd
Rk

(0) ⊂ B
‖·‖∞
�Rk+1(0), we also have mk � m

(
B

‖·‖∞
�Rk+1(0)

)
= 8�Rk�2 +

12�Rk� + 4. Then

lim
k→∞

ak
ck

= lim
k→∞

bk = 0, lim sup
k→∞

(2�RRk� − 1)2

ck
� R2

2
, lim

k→∞

∣∣∣∣8R2
k

mk
− 1
∣∣∣∣ = 0.
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Therefore, by letting k → ∞ in the previous estimates we deduce that

lim sup
k→∞

∣∣∣∣∣ 1
m
(
Bd
Rk

(0)
) ∫ f dψk#

(
m|Bd

RRk
(0)

)
− 1

8

∫
B

‖·‖∞
R (0)

f dL2

∣∣∣∣∣ � R2δ.

By arbitrariness of δ and f , we conclude that m
(
Bd
Rk

(0)
)−1

ψk#

(
m|Bd

RRk
(0)

)
⇀

8−1L2|
B

‖·‖∞
R (0)

in duality with bounded continuous functions having compact
support, as desired. �

Remark A.2. It is easy to show that the space X × [0, 1] in theorem A.1 can be
additionally required to be a Riemannian manifold. Indeed, it simply suffices to
smoothen the boundary of the set⋃

x∈X×[0,1]

BR
3

rx
(x) ⊂ R

3, where rx :=
1

max{4, |x|} ,

in order to obtain an embedded submanifold with the desired properties.
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Mathematics, vol. 17 (Zürich: European Mathematical Society (EMS), 2011).
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Math. J. 53 (2004), 1127–1150.

31 M. Kell and A. Mondino. On the volume measure of non-smooth spaces with Ricci curvature
bounded below. Ann. Sc. Norm. Super. Pisa Cl. Sci. 18 (2018), 593–610.

32 C. Ketterer. Stability of metric measure spaces with integral Ricci curvature bounds. J.
Funct. Anal. 281 (2021), 109142.

33 B. Kirchheim. Rectifiable metric spaces: Local structure and regularity of the Hausdorff
measure. Proc. Am. Math. Soc. 121 (1994), 113–123.
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