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This paper is focused on spreading dynamics for a discrete Nicholson’s blowflies
model with time convolution kernel. This problem arises in the invasive activity of
blowflies scattered in discrete spatial environment and has distributed maturated
age. We found that for a general convolution kernel, the model can exhibit travelling
wave phenomena in a discrete spatial habitat. In particular, we determine the
minimal wave speed of travelling waves by deriving the non-existence of travelling
waves, and we demonstrate that the minimal wave speed can determine the long
time behaviour of solutions with compact initial function. Moreover, we prove that
all travelling waves are strictly increasing, which implies that the waveforms remain
monotone in the propagation process. Some numerical simulations are also presented
to confirm the analytical results.
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1. Introduction

Since Nicholson [16] declared his significant work regarding competition for food in
laboratory population of Australian sheep-blowfly (Lucia cuprina) in 1954, numer-
ous models have been developed to simulate Nicholson’s data of blowflies (see e.g.
[6, 8, 11, 17]). By taking the spatial continuous diffusion and distributed matura-
tion periods into account, Gourley and Ruan [6] proposed and analysed a diffusive
Nicholson’s blowflies equation with distributed delay

u′t(t, x) = DΔu− τu(t, x)

+ βτ

(∫ t

−∞
k(t− s)u(s, x) ds

)
exp

[
−
∫ t

−∞
k(t− s)u(s, x) ds

]
, (1.1)

where β, τ > 0, (t, x) ∈ [0,∞) × Ω, Ω is either some finite domain or the whole R
n,

and f is non-negative and integrable with
∫∞
0
f(t) dt = 1. They showed that the

zero state u = 0 is globally stable if β < 1 and the unique non-zero state u∗ = lnβ is
globally stable when 1 < β � e. For the spatial domain Ω = R, Gourley [5] further
showed the existence of travelling wave solution for (1.1) with the following special

c○ The Author(s), 2023. Published by Cambridge University Press on behalf

of The Royal Society of Edinburgh

746

https://doi.org/10.1017/prm.2023.34 Published online by Cambridge University Press

mailto:ruiwenwu@jnu.edu.cn
mailto:xuzhqmaths@126.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2023.34&domain=pdf
https://doi.org/10.1017/prm.2023.34


A discrete Nicholson’s blowflies equation with distributed delay 747

kernels

k(t) =
1
τ

e−t/τ and k(t) =
t

τ2
e−t/τ .

By recasting the wave equations into a four-dimensional system of non-delay ODEs
and employing the geometric singular perturbation method, Gourley [5] showed
that (1.1) has a travelling wave solution for τ > 0 sufficiently small. The existence of
travelling wave solutions for some other special kernels was also studied in [11, 18],
in which the theory of second-order functional differential equations was used to
establish the existence of monotone travelling wave solutions when 1 < β � e. How-
ever, the problems on the existence of the minimal wave speed and monotonicity
of travelling waves were not addressed in [5, 11, 18].

Note that the original Nicholson’s blowflies equation modelling the population of
Australian sheep-blowfly (Lucia cuprina) is the ordinary differential equation (see
[8, 16])

u′t(t) = −τu(t) + βτu(t− 1)exp[−u(t− 1)] (1.2)

after rescaling, which does not contain the spatial structure. The generalized Nichol-
son’s blowflies equation (1.1) is based on the assumption that the blowflies scattered
in a continuous spatial environment and subjected to continuous random diffusion.
In practice, however, blowflies do not necessarily spread continuously since they
can fly from one place to another. It has been observed that for the aggregated
dispersion, discrete models are more suitable than continuous models to describe
the invasion phenomenon [1]. Models involving discrete equations are referred to
as ‘patch models’, which can be found in many scientific disciplines, such as mate-
rials science, pattern formation, neural networks and population biology (see the
survey by Chow and Mallet-Paret [2]). Besides, they are also natural outcomes
of discretizing the corresponding spatial continuous model. In the literature, some
discretizations of classical continuous models have been proposed, such as the dis-
crete Fisher’s equation [28], discrete Nagumo equation [27], discrete Allen–Cahn
equation [3] and discrete Lotka–Volterra equation [7], etc., and there have been
many studies focussed on the study of propagation dynamics of various types of
discrete equations, see [4, 9, 10, 14, 19–26] and the references therein. However,
the approximation of continuous models by spatial discretization is a delicate issue,
and it is well known that there could exist essential differences between a discrete
model and its associated continuous version.

To explore the spreading dynamics of the blowflies living in discrete environment
with distributed maturated age, we consider the following formulation of the original
Nicholson’ blowflies equation in (1.2).

u′j(t) = D[uj+1(t) + uj−1(t) − 2uj(t)] − τuj(t)

+ βτ

(∫ t

−∞
k(t− s)uj(s) ds

)
exp

[
−
∫ t

−∞
k(t− s)uj(s) ds

]
, j ∈ Z.

(1.3)

It can also be regarded as the space discrete approximation of continuous model
(1.1). The main purpose of this study is to explore whether the discrete model
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(1.3) can exhibit propagation phenomenon like the continuous model (1.1), and
what the minimal wave speed is if it exists, and whether it can determine the long
time asymptotic behaviour of (1.3).

Compared with (1.1), the wave equation of (1.3) is a mixed-type which contains
both back- and forward-shifts. This mixed structure makes the study of existence of
travelling waves of discrete model (1.3) more difficult. Meanwhile, it is hard to trans-
form it into ODEs without delay such that, as the spatial continuous case studied
in [5], the geometric singular perturbation theorem works. Moreover, the theorem
of second-order functional differential equations used in [11, 18] cannot be applied
directly to (1.3) because of the effect of the difference operator. In this paper, we
shall present a different method to investigate the existence of travelling wave solu-
tions for the discrete model (1.3). Specifically, to prove the existence of travelling
wave solutions, we first apply the monotone dynamical system approach to show the
existence of travelling waves for an auxiliary system with finite distributed delay.
Then, by establishing some priori estimates, we extend this existence result to (1.3)
by employing the delay approximation technique and some comparison arguments.
In particular, by analysing the spreading properties of the solution, we can show
the non-existence of travelling wave solutions. This method enables us to obtain
the minimal wave speed of travelling wave solutions and show that it can deter-
mine the long time behaviour of the solution with compact initial function. After
the existence of travelling waves is discussed, we further consider the monotonicity
problem of the travelling waves. By adapting the sliding method, we theoretically
prove that all travelling waves of (1.3) are strictly increasing, which implies that
the waveforms of the travelling waves remain monotone increasing during the prop-
agation process. As far as we know, this is the first time that the monotonicity
of travelling wave solutions is theoretically proved for Nicholson’s blowflies model
with distributed (infinite) delay.

The paper is organized as follows. In §2, we establish some preliminary results
on the well posedness and comparison principle of solutions. In §3, we prove the
existence of travelling waves and spreading speed, and also show the consistency
of the minimal wave speed and the spreading speed. In §4, we prove that the
travelling wave solutions are strictly monotone. Some numerical simulation results
are presented in the last section to illustrate the analytical results established.

2. Preliminaries

In this section, we first establish some preliminary results on the well posedness
and comparison principle of solutions for model (1.3).

Let X := {a = {ai}i∈Z; ‖a‖X = supi∈Z |ai| <∞}. Denote by C := C((−∞, 0]; X).
For ψ = {ψi}i∈Z and φ = {φi}i∈Z in C, we write ψ � φ (ψ � φ) if ψi(s) � φi(s)
(ψi(s) > φi(s)) for any i ∈ Z, s ∈ (−∞, 0], and ψ > φ if ψ � φ but ψ �= φ. In a
similar way, we write a � (�, >)b for a, b in X. For given ω ∈ X with ω � 0, denote
Cω = {ψ ∈ C : 0 � ψ(θ) � ω, ∀θ ∈ (−∞, 0]} and Xω = {a ∈ X : 0 � a � ω}.

Lemma 2.1. Assume 1 < β � e. For any initial function φ = {φj}j∈Z in Cu∗ , (1.3)
has a unique solution u = {uj}j∈Z with uj ∈ C([0,+∞), [0, u∗]).
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Proof. Note that (1.3) can be rewritten as

u′j(t) = −(τ + 2D)uj(t) +M(uj)(t), j ∈ Z, t � 0. (2.1)

Then for the initial function φ = {φj}j∈Z with φj ∈ C((−∞, 0], [0, u∗]), the initial
value problem of (1.3) is equivalent to{

uj(t) = e−(τ+2D)tφj(0) +
∫ t

0
e−(τ+2D)(t−z)M(uj)(z) dz, j ∈ Z, t � 0,

uj(t) = φj(t), j ∈ Z, t ∈ (−∞, 0],
(2.2)

where

M(uj)(t) = D[uj+1(t) + uj−1(t)] + βτ

(∫ ∞

0

k(s)uj(t− s) ds
)

× exp
[
−
∫ ∞

0

k(s)uj(t− s) ds
]
.

Define an operator T = {Tj}j∈Z on Ω by

Tj(u)(t) = e−(τ+2D)tφj(0) +
∫ t

0

e−(τ+2D)(t−z)M(uj)(z) dz, j ∈ Z, t � 0,

where Ω := {u = (uj)j∈Z|uj ∈ C([0,+∞), [0, u∗]), uj(t) = φj(t), t ∈ (−∞, 0]}.Note
that 0 � M(uj)(t) � 2Du∗ + βτu∗ e−u∗

= (τ + 2D)u∗, and

0 � Tj(u)(t) � e−(τ+2D)tu∗ + (τ + 2D)u∗
∫ t

0

e−(τ+2D)(t−z) dz = u∗.

It follows that T (Ω) ⊆ Ω. Choose μ � Lf , where Lf is the Lipschitz constant of
f(u) = βτu e−u on [0, u∗]. Define a complete metric space (Ω, dμ) with

dμ(u, v) := ‖u− v‖μ, ∀u, v ∈ Ω, ‖u‖μ := sup
j∈Z,t�0

|uj(t)|e−μt.

For any u, v ∈ Ω, we have

‖M(uj) −M(vj)‖μ = sup
j∈Z,t�0

|M(uj)(t) −M(vj)(t)|e−μt

� sup
j∈Z,t�0

{D(|uj+1(t) − vj+1(t)| + |uj−1(t) − vj−1(t)|)

+ βτ
∣∣∣ (∫ ∞

0

k(s)uj(t− s) ds
)

exp
[
−
∫ ∞

0

k(s)uj(t− s) ds
]

−
(∫ ∞

0

k(s)vj(t− s) ds
)

exp
[
−
∫ ∞

0

k(s)vj(t− s) ds
]∣∣∣} e−μt

� 2D‖u− v‖μ + Lf

∫ ∞

0

k(s) e−μs ds‖u− v‖μ

� (2D + Lf )‖u− v‖μ.
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Thus,

‖Tj(u) − Tj(v)‖μ = sup
j∈Z,t�0

|Tj(u)(t) − Tj(v)(t)| e−μt

� sup
j∈Z,t�0

e−μt

∫ t

0

e−(τ+2D)(t−z)|M(uj)(z) −M(vj)(z)|dz

� sup
j∈Z,t�0

e−(τ+2D+μ)t

∫ t

0

e(τ+2D+μ)z(2D + Lf )‖u− v‖μ dz

� κ‖u− v‖μ,

where κ := 2D+Lf

τ+2D+μ < 1. By the contraction map theorem, we obtain that T has a
unique fixed point u in Ω, which is a solution of (1.3). �

Definition 2.2. A function u(t) = {uj(t)}j∈Z with uj(t) ∈ C(R, [0, u∗]) is called a
supersolution of (1.3) if there holds

u′j(t) � D[uj+1(t) + uj−1(t) − 2uj(t)] − τuj(t)

+ βτ

(∫ t

−∞
k(t− s)uj(s) ds

)
exp

[
−
∫ t

−∞
k(t− s)uj(s) ds

]
, j ∈ Z, (2.3)

for any j ∈ Z, t > 0; and a function u(t) = {uj(t)}j∈Z with uj(t) ∈ C(R, [0, u∗]) is
called a subsolution of (1.3) if there holds

u′j(t) � D[uj+1(t) + uj−1(t) − 2uj(t)] − τuj(t)

+ βτ

(∫ t

−∞
k(t− s)uj(s) ds

)
exp

[
−
∫ t

−∞
k(t− s)uj(s) ds

]
, j ∈ Z, (2.4)

for any j ∈ Z, t > 0.

Lemma 2.3. Let u1, u2 ∈ C(R,Xu∗) be, respectively, the subsolution and superso-
lution of (1.3) with u1(θ) � u2(θ) for θ ∈ (−∞, 0]. Then, u1(t) � u2(t) for any
t � 0.

Proof. Let uj(t) := u1
j (t) − u2

j (t) for j ∈ Z, t ∈ [0,+∞). Define y(t) := supj∈Z uj(t),
t ∈ [0,+∞). Next, we show that y(t) � 0 for all t � 0 to finish the proof. Suppose
that there exists t0 > 0 such that y(t0) > 0 and

y(t0) e−M0t0 = sup
t�0

y(t) e−M0t > y(s) e−M0s for s ∈ [0, t0),

where M0 is chosen such that M0 > Lf

∫∞
0
k(s) e−M0s ds, and Lf is the Lipschitz

constant of f(u) = βτu e−u on [0, u∗]. Then, there exists a sequence {jk}∞k=1 such
that ujk

(t0) > 0 and limk→+∞ ujk
(t0) = y(t0). Let {tk}∞k=1 ⊆ [0, t0] be a sequence
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such that ujk
(tk) e−M0tk = maxt∈[0,t0] ujk

(t) e−M0t. Note that

ujk
(t0) e−M0t0 � ujk

(tk) e−M0tk � y(tk) e−M0tk � y(t0) e−M0t0 . (2.5)

Then, we have limk→+∞ y(tk) e−M0tk = y(t0) e−M0t0 , and then limk→+∞ tk = t0.
By (2.5), we also have

ujk
(t0)eM0(tk−t0) � ujk

(tk) � y(t0) eM0(tk−t0).

Thus, limk→+∞ ujk
(tk) = y(t0). Note that for every k � 1,

0 �
(
ujk

(t) e−M0t
)′
|t=t−k

= [u
′
jk

(tk) −M0ujk
(tk)] e−M0tk ,

which implies that M0ujk
(tk) � u

′
jk

(tk). Since u
′
jk

(tk) = (u1
jk

(t) − u2
jk

(t))
′ |t=tk

, by
the definition of supersolution and subsolution, we have

u
′
jk

(tk) � D[ujk+1(tk) + ujk−1(tk) − 2ujk
(tk)] − τujk

(tk)

+ Lf

∫ ∞

0

k(s)|u1
jk

(tk − s) − u2
jk

(tk − s)|ds

� D[ujk+1(tk) + ujk−1(tk) − 2ujk
(tk)] − τujk

(tk)

+ Lf

∫ tk

0

k(s)[u1
jk

(tk − s) − u2
jk

(tk − s)] ds

� D[y(tk) + y(tk) − 2ujk
(tk)] − τujk

(tk) + Lf

∫ tk

0

k(s)y(tk − s) ds. (2.6)

Since y(t0) e−M0(t0−s) > y(s) for s ∈ [0, t0), it follows that

M0ujk
(tk) � D[y(tk) + y(tk) − 2ujk

(tk)] − τujk
(tk)

+ Lfy(t0)
∫ tk

0

g(s) e−M0(s+t0−tk) ds. (2.7)

Letting k → ∞ in (2.7), we obtain that

M0y(t0) � −τy(t0) + Lfy(t0)
∫ t0

0

k(s) e−M0s ds � Lfy(t0)
∫ ∞

0

k(s) e−M0s ds,

which is a contradiction since M0 > Lf

∫∞
0
k(s) e−M0s ds. Thus, we have y(t) � 0

for t ∈ [0,+∞). This completes the proof. �
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3. Travelling waves and spreading speed

In this section, we study the existence of travelling wave solutions and spreading
speed for (1.3). For this, we first consider the delay truncated system of (1.3)

u′j(t) = D[uj+1(t) + uj−1(t) − 2uj(t)] − τuj(t)

+ βτ

(∫ r

0

k(s)uj(t− s) ds
)

exp
[
−
∫ r

0

k(s)uj(t− s) ds
]
, j ∈ Z, (3.1)

where r > 0 is a given finite number. Since β > 1 and
∫∞
0
k(s) ds = 1, we choose r

sufficiently large so that k̂β > 1, where k̂ =
∫ r

0
k(s) ds. Then, (3.1) has two constant

steady states 0 and u∗r = 1
k̂

lnβk̂. Clearly, u∗r → u∗ as r → ∞. For such a truncated
system, we shall show that

Theorem 3.1. Assume 1 < β � e. Let uj(t) be the solution of (3.1). Then, we
have

(i) For any c > c∗r, if u0 ∈ Cu∗
r

with u0(s, j) = 0 for s ∈ [−r, 0] and j outside a
bounded interval, then lim

t→∞,|j|�ct
uj(t) = 0.

(ii) For any c < c∗r, if u0 ∈ Cu∗
r
\{0}, then lim

t→∞,|j|�ct
uj(t) = u∗r.

(iii) For any c � c∗r, (3.1) admits a travelling wave uj(t) = φ(j + ct) such that φ(ξ)
is monotone on ξ ∈ R, φ(−∞) = 0 and φ(+∞) = u∗r, while for any c < c∗r,
there exists no such travelling wave.

Here c∗r = inf
λ∈(0,∞)

μ(λ)
λ , where μ = μ(λ) is determined by

μ−D
[
e−λ + eλ − 2

]
+ τ − βτ

∫ r

0

k(s) e−μs ds = 0.

To prove theorem 3.1, we apply the results on monotone dynamical systems
[13], in which the spreading speed and travelling waves are established for abstract
semiflows {Qt}t�0 satisfying some prescribed assumptions (cf. (A1)–(A5) below).

Let C be the set of all bounded and continuous functions from [−r, 0] × Z to
R. Clearly, any element in the space C̄ := C([−τ, 0],R) can be regarded as a func-
tion in C. For any ξ > 0, we set [0, ξ] := {u ∈ R : 0 � u � ξ} and Cξ = {u ∈ C :
0 � u � ξ}. Similarly, define C̄ξ. For any u(θ) = {u(θ, j)}j∈Z =: {uj(θ)}j∈Z, v(θ) =
{v(θ, j)}j∈Z := {vj(θ)}j∈Z, we write u(θ) � v(θ) (u(θ) � v(θ)) provided uj(θ) �
vj(θ) (uj(θ) � vj(θ)), ∀ j ∈ Z, θ ∈ [−r, 0], and u > v provided u � v but u �= v. We
equip C with the compact open topology, that is, um → u in C means that the
sequence of um

j converges to uj , as m→ +∞, uniformly for j in any compact set
of Z. Define

‖u‖ =
∞∑

k=1

max|j|�k, θ∈[−r,0] |uj(θ)|
2k

, ∀u ∈ C.
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Then (C, ‖ · ‖) is a normed space. It follows that the topology in the metric space
(Cξ, ‖ · ‖) is the same as the compact open topology in Cξ. Moreover, Cξ is a complete
metric space.

Define a reflection operator R by R(φ)(x) = φ(−x), and for each y ∈ Z, a trans-
lation operator Ty by Ty(φ)(x) = φ(x− y) for all x ∈ R, respectively. For a given
map Q : Cu∗

r
→ Cu∗

r
, we impose the following hypotheses on it:

(A1) Q[R[u]] = R[Q[u]], Ty[Q[u]] = Q[Ty[u]].

(A2) Q : Cu∗
r
→ Cu∗

r
is monotone, that is, if u � w, then Q[u] � Q[w].

(A3) The set Q[Cu∗
r
](0, ·) is precompact in the space C(Z,R) equipped with com-

pact open topology, and there is an equivalent norm ‖ · ‖∗ in C̄ such that for
any number l � 0, there exists n = n(l) ∈ [0, 1) such that for any I = [a, b]Z
of the length l and any U ⊂ Cu∗

r
with U(0, ·) precompact in C(Z,R), we have

α((Q[U ])I) � nα(UI), where α is the Kuratowski measure of non-compactness
on CI .

(A4) Q : C̄u∗
r
→ C̄u∗

r
where C̄u∗

r
= {u ∈ C([−r, 0],R) : 0 � u � u∗r}, has exactly two

fixed points 0 and u∗r , and lim
t→∞Q[z] = u∗r , for z ∈ [0, u∗r ] \ {0}.

(A5) Q : Cu∗
r
→ Cu∗

r
is continuous with respect to the compact open topology.

For any u0 = {u0
j}j∈Z ∈ Cu∗

r
, (3.1) has a unique global solution u(t, u0) =

{uj(t, u0)}j∈Z with uj(θ, u0) = u0
j (θ) ∀j ∈ Z, θ ∈ [−r, 0] and 0 � u(t, u0) � u∗r , ∀t �

0. Let Qt be the associated solution map of (3.1) at t � 0. Then,

Qt(u0)(θ) = u(t+ θ, u0), ∀ θ ∈ [−r, 0], u0 = {u0
j}j∈Z ∈ Cu∗

r
.

Lemma 3.2. Assume 1 < β � e. Then, {Qt}t�0 is a monotone semiflow in Cu∗
r

such
that for each t > 0, Qt satisfies all the hypotheses (A1)–(A5) for each t > 0.

Proof. We easily observe that each time-t map is monotone and satisfies (A1) and
(A2). Now we introduce

Lt[u0](θ) =
{
u0(t+ θ) − u0(0), t+ θ < 0,
0, t+ θ � 0,−r � θ � 0.

Let St := Qt − Lt, t � 0. It is not difficult to show that for any given γ > 0,
there is an equivalent norm ‖ · ‖∗ of C̄ such that for any ψ ∈ C̄ there holds
‖Lt(ψ)‖∗ � e−γt‖ψ‖∗, ∀t � 0 (cf. [13]). Let t > 0 be given. By direct calculation, we
can show that Qt[Cu∗

r
](0, ·) = u(t, ·, Cu∗

r
) is precompact in C(Z,R), and that S(t)[U ]

is precompact in Cu∗
r

for any U ⊂ Cu∗
r

with U(0, ·) precompact in Cu∗
r
. Therefore, for

any interval I = [a, b]Z of the length l, we have

α((Qt[U ])I) � α((Lt[U ])I) + α((St[U ])I) � e−γtα(UI),

where α is the Kuratowski measure of non-compactness on the space C̄. This implies
that for each t > 0, Qt satisfies (A3) with n = e−γt. To verify monostable structure,
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we consider a spatially homogeneous model associated with (3.1)

u′(t) = −τu(t) + βτ

(∫ r

0

k(s)u(t− s) ds
)

exp
(
−
∫ r

0

k(s)u(t− s) ds
)
. (3.2)

Clearly (3.2) has exact two fixed points: 0 and u∗r . We linearize (3.2) at u = 0, and
obtain

u′(t) = −τu(t) + βτ

∫ r

0

k(s)u(t− s) ds =: Put.

We notice that s(P ) > 0, where s(P ) = max{Reμ : βτ
∫ r

0
k(s) e−μs ds− μ

− τ = 0}. Then, the equilibrium u = 0 is unstable. Together with the monotonicity
of Qt, item (A4) holds. In the following, we will show that Qt(u0) is continuous in
(t, u0) ∈ R+ × Cu∗

r
. We divide the proof into two steps.

Step 1. For any initial data u0 = {u0
j}j∈Z ∈ Cu∗

r
, we have uj(t, u0) ∈ Cu∗

r
. More-

over, there exists a C, which is independent of (j, u0), such that |duj(t,u
0)

dt | � C,
∀(t, j) ∈ [0,∞) × Z. Therefore, for any j ∈ Z, uj(t, u0) is uniformly continuous for
t ∈ [0, t0 + 1] with t0 � 0. As u0 ∈ Cu∗

r
, then we know for each j ∈ Z, the uni-

form continuity result holds for uj(t, u0) on t ∈ [−r, t0 + 1]. For any ε > 0, we can
select N = N(ε) > 0 such that

∑∞
n=N+1

u∗
r

2n−1 <
ε
2 . For the above ε > 0 and t0 � 0,

there exists a η = η(ε, t0) ∈ (0,min{1, t0 + r}) such that for any |t− t0| < η and
j ∈ [−N,N ], we have |uj(t+ θ) − uj(t0 + θ)| < ε

2 . Hence,

‖Qt(u0) −Qt0(u
0)‖ =

∞∑
n=1

max|j|�n, θ∈[−r,0] |uj(t+ θ, u0) − uj(t0 + θ, u0)|
2n

=

(
N∑

n=1

+
∞∑

n=N+1

)
max|j|�n,θ∈[−r,0] |uj(t+θ, u0) − uj(t0+θ, u0)|

2n

�
N∑

n=1

ε

2n+1
+

∞∑
n=N+1

2u∗r
2n

<
ε

2
+
ε

2
= ε.

We finish the proof of step 1, which implies that for given u0 ∈ Cr∗ , Qt(u0) is
continuous in t � 0.

Step 2. In this step, for any given [0, t0] with t0 > 0, we will show that Qt(u0) is
uniformly continuous in u0 ∈ Cr∗ . Let u0(s) = φ(s) = {φj(s)}j∈Z and s ∈ [−r, 0]. It
suffices to show if φ(h) → φ (h→ ∞) in Cu∗

r
, thenQt(φ(h)) → Qt(φ) in Cu∗

r
uniformly

on [0, t0].
In order to obtain the above result, we first prove there exists a sub-

sequence {Qt(φ(h(n)
n ))}n∈N ⊂ Cu∗

r
which converges uniformly on [0, t0]. Let

u(h)(t) = Qt(φ(h)), where u(h)(t) = {uj(t, φ(h))}j∈Z is a solution of (3.1) with
φ(h)(s) = {φ(h)

j (s)}j∈Z, ∀s ∈ [−r, 0], φ(h) → φ in Cu∗
r

as h→ ∞. For each j, then
0 � uj(t, φ(h)) � u∗r and |uj(t1, φ(h)) − uj(t2, φ(h))| � C|t1 − t2|, ∀ t, t1, t2 ∈ [0, t0].
Note that {uj(t, φ(h))}∞h=1 ⊂ C([0, t0],R) is bounded and equicontinuous. Hence,
there exists a convergent subsequence {u−1(t, φ(h−1,n))}∞n=1 ⊂ {u−1(t, φ(h))}∞h=1
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which converges uniformly on [0, t0]. Furthermore, there also exists a conver-
gent subsequence {u0(t, φ(h−1,0,n))}∞n=1 ⊂ {u0(t, φ(h−1,n))}∞n=1 with {h−1,0,n}∞n=1 ⊂
{h−1,n}∞n=1. Analogously, we see there admits a convergent subsequence
{u1(t, φ(h−1,0,1,n))}∞n=1 ⊂ {u1(t, φ(h−1,0,n))}∞n=1 with {h−1,0,1,n}∞n=1 ⊂ {h−1,0,n}∞n=1.
For simplicity, write h−1,0,1,n = h

(1)
n . Thus, {u−1(t, φh(1)

n )}∞n=1, {u1(t, φh(1)
n )}∞n=1

and {u0(t, φh(1)
n )}∞n=1 are uniformly convergent on [0, t0]. Hence, the sequence

{uj(t, ψh(2)
n )}∞n=1 is uniformly convergent at j = 0,±1 on [0, t0].

From the above process, we know that at each j, there exists {uj(t, φh(n)
n )}∞n=1 ⊂

{uj(t, φ(h))}∞h=1 which converges uniformly on [0, t0]. Note that for each j, φ(h)
j → φj

in C([−r, 0],R) as φ(h) → φ in Cu∗
r

and h→ ∞. It follows for each j, there exists

{φh(n)
n

j }∞n=1 ⊂ {φ(h)
j }∞h=1 which is convergent in C([−r, 0],R). We immediately have

for each j, {uj(t, φ(h(n)
n ))}∞n=1 is uniformly convergent on [−r, t0]. Therefore, for each

j, {uj(t+ θ, φ(h(n)
n ))}∞n=1 is uniformly convergent for θ ∈ [−r, 0] on [0, t0]. It further

indicates that for each j, u(h(n)
n )

j (t+ ·) = Qt(φ(h(n)
n ))(j, ·) is uniformly convergent in

C([−r, 0],R) for t ∈ [0, t0]. Let uj(t) be a limit point of u(h(n)
n )

j (t) in C([−r, 0],R).

Then uj(t) ∈ Cu∗
r
. For any ε > 0, let N1 = N1(ε) > 0 such that

∑∞
i=N1+1

u∗
r

2i−1 <
ε
4 .

For the above ε, we choose sufficiently large N2 = N2(ε) > 0 such that |u(h(n)
n )

j

(t+ θ) − uj(t+ θ)| < ε
2 whenever n � N2, t ∈ [0, t0] and j ∈ [−N1, N1]. Then for

n � N2,

‖u(h(n)
n )

j (t) − uj(t)‖ =
∞∑

i=1

max|j|�i, θ∈[−r,0] |uj(t+ θ, φ(h(n)
n )) − uj(t+ θ)|

2i

=

(
N1∑
i=1

+
∞∑

i=N1+1

)
max|j|�i,θ∈[−r,0] |uj(t+θ, φ(h(n)

n )) − uj(t+θ)|
2i

�
N1∑
i=1

ε

2i
+

∞∑
i=N1+1

2u∗r
2i

<
ε

2
+
ε

2
= ε.

Secondly, we show that if Qt(φ(hm)) converges uniformly for t ∈ [0, t0], then
lim

n→∞Qt(φ(hn)) = Qt(φ) uniformly for t ∈ [0, t0]. In fact, if u(t) = {uj(t)}j∈Z is a

limit point of Qt(φ(hn)) as n→ ∞, then u(t) is a solution of (3.1) for ∀ t ∈ [0, t0],
that is, u(t) = Qt(φ), ∀ t ∈ [0, t0]. Thus, if lim

h→∞
φ(h) = φ, then lim

h→∞
Qt(φ(h)) =

Qt(φ) uniformly for t ∈ [0, t0]. As a result, there holds lim
φ→φ0

Qt(φ) = Qt(φ0) uni-

formly on [0, t0]. This is the end of step 2. It follows from the above two steps
that, together with ‖Qt(φ) −Qt0(φ0)‖ � ‖Qt(φ) −Qt(φ0)‖ + ‖Qt(φ0) −Qt0(φ0)‖,
Qt(u0) is continuous in (t, u0) ∈ R

+ × Cu∗
r
. Clearly, Q0 = I, and Qt′+t′′ = Qt′ ◦Qt′′ .

Hence, Qt is a semiflow of (3.1) in Cu∗
r
. We finish the proof of this lemma. �

Proof of theorem 3.1. By lemma 3.2, it follows that the semiflow Qt generated
by (3.1) satisfies all the hypotheses (A1)–(A5) for each t > 0. Then, we can apply
the spreading theorems established in [13] to obtain the existence of a minimal

https://doi.org/10.1017/prm.2023.34 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.34


756 R. Wu and Z. Xu

wave speed c∗r and its coincidence with spreading speed, that is, the conclusions
(i)–(iii) are valid. We next focus on the computation of c∗r . Consider a linearized
system of (3.1) at u = 0

u′j(t) = D [uj+1(t) + uj−1(t) − 2uj(t)] − τuj(t) + βτ

∫ r

0

k(s)uj(t− s) ds. (3.3)

Obviously, if u is a solution of (3.3), then u is a supersolution of (3.1). Let Mt be the
solution map associated with (3.3). Then Qt(u0) � Mt(u0), ∀u0 ∈ Cu∗

r
. Secondly, we

introduce the following linear system with parameter ε ∈ (0, 1)

u′j(t) = D [uj+1(t) + uj−1(t) − 2uj(t)] − τuj(t) + (1 − ε)βτ
∫ r

0

k(s)uj(t− s) ds.

(3.4)

Let Mε
t be the solution map associated with (3.4). Then Qt(u0) � M ε

t (u0), ∀u0 ∈
Cu∗

r
, ∀ t ∈ [0, 1]. Letting ε→ 0, the desired result follows. Thus, it suffices to estimate

the spreading speed for Mt. For each ϕ ∈ C([−r, 0],R), set η(t, ϕ) to be the solution
of

η′(t) = D
[
e−λ + eλ − 2

]
η(t) − τη(t) + βτ

∫ r

0

k(s)η(t− s) ds, (3.5)

with η(θ, ϕ) = ϕ(θ) and θ ∈ [−r, 0]. Then u(t) = {uj(t)}j∈Z where uj = e−λjη(t, ϕ)
is a solution of (3.3). It follows thatBt

λ(ϕ)(θ) := Mt[ϕ e−λj ](θ, 0) = η(t+ θ, ϕ), ∀θ ∈
[−r, 0]. Then Bt

λ is the solution map of (3.5). We can further verify that Bm0
λ is com-

pact, strongly positive, for any m0 > r. Since (3.5) is cooperative and irreducible,
there exists a real root μ = μ(λ) of μ−D[e−λ + eλ − 2] + τ − βτ

∫ r

0
k(s) e−μs ds =

0, which also has the greatest real part among all roots. Observe that μ(λ) �
D[e−λ + eλ − 2] − τ . It yields μ(λ) = ∞ as λ→ ∞.

Consider ψ ∈ C([−r, 0],R) by ψ(θ) = eμ(λ)θ and θ ∈ [−r, 0]. Clearly η(t, ψ) =
eμ(λ)t, ∀ t � 0. Thus, Bt

λ(ψ) = η(t+ ·, ψ) = eμ(λ)tψ, ∀ t � 0. Then Bt
λ admits a prin-

cipal eigenvalue eμ(λ)t associated with a positive eigenfunction ψ. Set t = 1. Then
eμ(λ) is the principal eigenvalue of B1

λ. By [12, lemma 3.7], μ(λ) is convex on
R. Moreover, we claim that eμ(0) > 1, where eμ(0) is the principal eigenvalue of
B1

λ at λ = 0. Indeed, let F (μ) = βτ
∫ r

0
k(s) e−μs ds− μ− τ = 0. It follows from

F (0) = βτ − τ > 0, F (∞) = −∞ and ∂F (μ)
∂μ < 0 that there exists a unique posi-

tive root of F (μ) = 0. Since μ(0) is a root of F (μ) = 0, then μ(0) > 0 and eμ(0) > 1.
Define Φ(λ) := μ(λ)

λ . From the above discussions, we know that Φ(λ) reaches the
minimum value at some finite λ∗r <∞. By [12, theorems 3.5 and 3.10], the spread-
ing speed for {Qt}t�0 is c∗r = inf

λ∈(0,+∞)
Φ(λ) = Φ(λ∗r). Moreover, (c∗r , λ

∗
r) is uniquely

determined by R1(λ, c) = 0 and ∂R1
∂λ (λ, c) = 0, λ > 0, where

R1(λ, c) = cλ−D
[
e−λ + eλ − 2

]
+ τ − βτ

∫ r

0

k(s) e−cλs ds.

This completes the proof. �
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Let

R(λ, c) := D[eλ + e−λ − 2] − cλ− τ + βτ

∫ ∞

0

k(s) e−λcs ds = 0.

The following properties can be easily verified by direct calculation.

Lemma 3.3. There exists unique c∗ > 0 such that

(i) R(λ∗, c∗) = 0, ∂
∂λR(λ∗, c∗) = 0 for some λ∗ > 0, and limr→∞ c∗r = c∗.

(ii) for every c > c∗, R(λ, c) = 0 has the smallest positive root λ1(c) and R(λ, c) <
0 for some λ > 0.

Theorem 3.4. Assume 1 < β � e. For φ ∈ C((−∞, 0], [0, u∗]X). Let u(t) = u(t;φ)
be the unique solution of (1.3) with u(t) = φ(t) for t ∈ (−∞, 0]. Then the following
conclusions are valid:

(i) If uj(t) = 0 for (j, t) outside a bounded set of Z × (−∞, 0], then

lim
t→∞, |j|�ct

uj(t) = 0 for any c > c∗.

(ii) If u(t) �≡ 0 for t ∈ (−∞, 0], then

lim
t→∞,|j|�ct

uj(t) = u∗ for any 0 < c < c∗.

Proof. By lemma 3.3, for any c > c∗, there is some λ > 0 such that R(λ, c) < 0.
For given α > 0. Define u(t) = {uj(t)}j∈Z with uj(t) := α eλ(ct−ηj), where η = 1, or
η = −1. Then, we have

D[uj+1(t) + uj−1(t) − 2uj(t)] − τuj(t) + βτ

∫ ∞

0

k(s)uj(t− s) ds− u′j(t)

= D[α eλ(ct−η(j+1)) + α eλ(ct−η(j−1)) − 2α eλ(ct−ηj)] − τα eλ(ct−ηj)

+ βτ

∫ ∞

0

k(s)α eλ(c(t−s)−ηj) ds− αcλ eλ(ct−ηj)

= α eλ(ct−ηj)R(λ, c) < 0. (3.6)

For any given c > c∗, we choose c∗ < ĉ < c and λ̂ > 0 such that R(λ̂, ĉ) < 0. By the
assumption, we can choose suitable α > 0 such that

φj(t) � α eλ̂(ĉt−ηj) for j ∈ Z, t ∈ (−∞, 0].

Note that u(t;φ) = {uj(t;φj)}j∈Z is a subsolution of

u′j(t) = D[uj+1(t) + uj−1(t) − 2uj(t)] − τuj(t) + βτ

∫ ∞

0

k(s)uj(t− s) ds. (3.7)
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By the comparison principle, we have u(t;φ) � u(t) for t � 0, that is, un(t;φj) �
α eλ̂(ĉt−ηj) for j ∈ Z, t ∈ [0,∞). Denote η = sgn{j}, j �= 0. It then follows that

uj(t;φj) � α eλ̂(ĉt−|j|) for j ∈ Z, t ∈ [0,∞).

Since c > ĉ, we have

lim
t→∞,|j|�ct

uj(t;φj) = 0.

We next prove (ii). For any given c ∈ (0, c∗). Because of limr→∞ c∗r = c∗, we may
choose r sufficiently large such that c∗r > c. Let φ̂(θ) = {φ̂j(θ)}j∈Z with

φ̂j(θ) = min{φj(θ), u∗r} for j ∈ Z, θ ∈ [−r, 0].

Observe that u(t;φ) = {uj ;φj}j∈Z is a supersolution of (3.1). The comparison prin-
ciple indicates that u(t; φ̂) � u(t;φ) for t ∈ [0,∞), where u(t; φ̂) = {uj ; φ̂j}j∈Z is a
solution of (3.1) with u(θ) = φ̂(θ) for θ ∈ (−∞, 0]. Thus, by (ii) of theorem 3.1, we
obtain

u∗r � lim inf
t→∞,|j|�ct

uj(t;φj) � lim sup
t→∞,|j|�ct

uj(t;φj) � u∗. (3.8)

Letting r → ∞ in (3.8), we have limt→∞,|j|�ct uj(t;φj) = u∗ since u∗r → u∗ as r →
∞. This completes the proof. �

Next, we study the existence of travelling wave solutions for system (1.3).
Consider the wave equation

cφ
′
(ξ) = D[φ(ξ + 1) + φ(ξ − 1) − 2φ(ξ)] − τφ(ξ)

+ βτ

(∫ ∞

0

k(s)φ(ξ − cs) ds
)

exp
[
−
∫ ∞

0

k(s)φ(ξ − cs) ds
]
, j ∈ Z,

(3.9)

with

φ(−∞) = 0 and φ(+∞) = u∗. (3.10)

Theorem 3.5. Assume 1 < β � e. For any c � c∗, (1.3) has a monotone travelling
wave solution uj(t) = φ(j + ct) satisfying φ(−∞) = 0 and φ(+∞) = u∗, while for
any 0 < c < c∗, (1.3) has no travelling wave solution φ(j + ct) such that φ(−∞) = 0
and φ(+∞) = u∗.

Proof. For any c > c∗, since limr→∞ c∗r = c∗ and limr→∞ u∗r = u∗, there exists r̂ �
r0 such that u∗r >

1
2u

∗ and c > c∗r for all r � r̂. By (iii) of theorem 3.1, for each
r > r̂, equation (1.3) has a monotone travelling wave φr(j + ct) connecting 0 and
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u∗r . Namely, φr(ξ) satisfies the following wave equation

cφ
′
r(ξ) = D[φr(ξ + 1) + φr(ξ − 1) − 2φr(ξ)] − τφr(ξ)

+ βτ

(∫ r

0

k(s)φr(ξ − cs) ds
)

exp
[
−
∫ r

0

k(s)φr(ξ − cs) ds
]
, j ∈ Z,

(3.11)

with

φr(−∞) = 0 and φr(+∞) = u∗r .

Since φr(ξ) is bounded on R, it can be seen from (3.11) that |φ′
r(ξ)| � B for some

B > 0. We next show that φ
′
r(ξ) is equicontinuous. For any ξ1, ξ2 ∈ R, and r > r̂,

we have

|φ′
r(ξ1) − φ′r(ξ2)|

= c−1
∣∣∣D[φr(ξ1 + 1) − φr(ξ2 + 1)] + [φr(ξ1 − 1) − φr(ξ2 − 1)] − 2[φr(ξ1) − φr(ξ2)]

− τ [φr(ξ1) − φr(ξ2)] + βτ

(∫ r

0

k(s)φr(ξ1 − cs)ds
)

exp
[
−
∫ r

0

k(s)φr(ξ1 − cs) ds
]

− βτ

(∫ r

0

k(s)φr(ξ2 − cs) ds
)

exp
[
−
∫ r

0

k(s)φr(ξ2 − cs) ds
] ∣∣∣

� c−1
{
D[|φr(ξ1 + 1) − φr(ξ2 + 1)| + |φr(ξ1 − 1) − φr(ξ2 − 1)| + 2|φr(ξ1) − φr(ξ2)|]

+ τ |φr(ξ1) − φr(ξ2)| + βτ

∫ r

0

k(s)|φr(ξ1 − cs) − φr(ξ2 − cs)|ds
}
.

Because φr(ξ) is equicontinuous, then φ
′
r(ξ) is equicontinuous. Using Arzéla–Ascoli

theorem, we obtain that there exists a subsequence {φrn
(ξ)} of φr(ξ) that converges

uniformly with φ(ξ) on compact set as n→ ∞. By Lebesgue dominated convergence
theorem, we obtain

cφ
′
(ξ) = D[φ(ξ + 1) + φ(ξ − 1) − 2φ(ξ)] − τφ(ξ)

+ βτ

(∫ ∞

0

k(s)φ(ξ − cs) ds
)

exp
[
−
∫ ∞

0

k(s)φ(ξ − cs) ds
]
, (3.12)

by letting r = rn → ∞ in (3.11). This implies that uj(t) := φ(j + ct) is a solution of
(1.3). Clearly, φ(ξ) is non-decreasing on R, and satisfies φ(−∞) = 0 and φ(+∞) =
u∗. For c = c∗, let {ci}∞i=1 be a sequence with ci > c∗ and lim

n→∞ ci = c∗. Then, the

above results show that for every ci, (3.9) has a monotone solution φi(ξ) such
that lim

ξ→−∞
φi(ξ) = 0 and lim

ξ→∞
φi(ξ) = u∗. Using the above arguments again, we

can obtain that there is a monotone function φ∗(ξ) such that lim
i→∞

φi(ξ) = φ∗(ξ)

pointwise, and φ∗(ξ) satisfies (3.9) with c = c∗. Therefore, (1.3) has a monotone
travelling wave solution φ∗(j + c∗t) connecting 0 and u∗.
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For ĉ ∈ (0, c∗). Suppose by contradiction that (1.3) has a travelling wave solution
φ(j + ĉt) such that φ(−∞) = 0 and φ(+∞) = u∗. Let

ϕj(θ) := φ(j + ĉθ), j ∈ Z, θ ∈ (−∞, 0].

Define ϕ(θ) = {ϕj(θ)}j∈Z, θ ∈ (−∞, 0]. Obviously, ϕ ∈ C((−∞, 0], [0, u∗]X) and
ϕ(θ) �≡ 0 for θ ∈ (−∞, 0]. Let u(t) = {uj(t, ϕ)}j∈Z be the solution of (1.3) with
the initial data ϕ. The uniqueness of solution indicates that uj(t) := φ(j + ĉt) for
t � 0. By (ii) of theorem 3.4, it follows that

lim
t→∞,|j|�ct

uj(t) = lim
t→∞,|j|�ct

φ(j + ĉt) = u∗ for any 0 < c < c∗. (3.13)

Let c0 > 0 be such that ĉ < c0 < c∗. Note that c0t− 1 < [c0t] � c0t, ∀t � 0. Then
−[c0t] + ĉt→ −∞ as t→ ∞. Letting j = −[c0t] in equality (3.13), we have u∗ =
limt→∞ φ(−[c0t] + ĉt) = 0, which is a contradiction. This completes the proof. �

4. Monotonicity of travelling waves

In this section, we further study the monotonicity problem of travelling wave
solutions. We shall prove that any travelling wave solution is strictly monotone
increasing.

Lemma 4.1. Assume 1 < β � e. Then, any travelling wave of (3.9) and (3.10)
satisfies φ(ξ) � lnβ on R.

Proof. If φ(ξ) > lnβ at some point, then it must attain a global maximum at some
point ξ0 ∈ R, i.e. φ(ξ0) > lnβ and φ′(ξ0) = 0. We claim that φ(ξ0) � 1. In fact, by
(3.9) and the fact ue−u � 1

e for u � 0, we obtain

φ(ξ0) � β

(∫ ∞

0

k(s)φ(ξ0 − cs) ds
)

exp
[
−
∫ ∞

0

k(s)φ(ξ0 − cs) ds
]

� β

e
� 1.

Then, we have

0 = cφ
′
(ξ0) = D[φ(ξ0 + 1) + φ(ξ0 − 1) − 2φ(ξ0)] − τφ(ξ0)

+ βτ

(∫ ∞

0

k(s)φ(ξ0 − cs) ds
)

exp
[
−
∫ ∞

0

k(s)φ(ξ0 − cs) ds
]

� −τφ(ξ0) + βτ e−φ(ξ0). (4.1)

This implies that φ(ξ0) � lnβ, which is a contradiction. �

Lemma 4.2. Let φ be any travelling wave of (3.9) and (3.10). Then, φ(ξ) e−ρξ � Λ
for some ρ,Λ > 0, ξ ∈ R.

Proof. Choose sufficiently large r > 0 and small ε > 0 such that γ := (βτ − ε)∫ r

0
k(s) ds > τ . Note that there exists small θ > 0 such that βτu e−u � (βτ − ε)u
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for u � θ. Choose M � 1 such that φ(ξ) � θ for ξ � −M . Let ξ0 = −M + cr. Then,
for ξ � ξ0, we have

βτ

(∫ ∞

0

k(s)φ(ξ − cs) ds
)

exp
[
−
∫ ∞

0

k(s)φ(ξ − cs) ds
]

� βτ

(∫ r

0

k(s)φ(ξ − cs) ds
)

exp
[
−
∫ r

0

k(s)φ(ξ − cs) ds
]

� (βτ − ε)
∫ r

0

k(s)φ(ξ − cs) ds.

Thus, we obtain that for ξ � ξ0,

cφ
′
(ξ) = D[φ(ξ + 1) + φ(ξ − 1) − 2φ(ξ)] − τφ(ξ)

+ βτ

(∫ ∞

0

k(s)φ(ξ − cs) ds
)

exp
[
−
∫ ∞

0

k(s)φ(ξ − cs) ds
]

� D[φ(ξ + 1) + φ(ξ − 1) − 2φ(ξ)] − τφ(ξ) + (βτ − ε)
∫ r

0

k(s)φ(ξ − cs) ds

= D[φ(ξ + 1) + φ(ξ − 1) − 2φ(ξ)] + (γ − τ)φ(ξ)

+ (βτ − ε)
∫ r

0

k(s)[φ(ξ − cs) − φ(ξ)] ds (4.2)

By
∫ ξ

−∞[φ(z − y) − φ(z)] dz = −y
∫ 1

0
φ(ξ − yν) dν for any y ∈ R, it follows that

cφ(ξ) � D[
∫ 1

0

φ(ξ + ν) dν −
∫ 1

0

φ(ξ − ν) dν] + (γ − τ)
∫ ξ

−∞
φ(z) dz

− (βτ − ε)
∫ r

0

csk(s)
∫ 1

0

φ(ξ − νcs) dν ds.

Thus,

(γ − τ)
∫ ξ

−∞
φ(z) dz � D[

∫ 1

0

φ(ξ − ν) dν −
∫ 1

0

φ(ξ + ν) dν] + cφ(ξ)

+ (βτ − ε)
∫ r

0

csk(s)
∫ 1

0

φ(ξ − νcs) dν ds. (4.3)

Because φ is bounded on R, there is B > 0 such that (γ − τ)
∫ ξ

−∞ φ(z) dz � B.

Then, we can define φ̃(ξ) :=
∫ ξ

−∞ φ(z) dz, ξ ∈ R. By (4.3), we obtain that

(γ − τ)
∫ ξ

−∞
φ̃(z) dz � D[

∫ 1

0

φ̃(ξ − ν) dν −
∫ 1

0

φ̃(ξ + ν) dν] + cφ̃(ξ)

+ (βτ − ε)
∫ r

0

csk(s)
∫ 1

0

φ̃(ξ − νcs) dν ds. (4.4)
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Note that
∫ 1

0
φ̃(ξ − ν) dν −

∫ 1

0
φ̃(ξ + ν) dν � 0. We have

(γ − τ)
∫ ξ

−∞
φ̃(z) dz � cφ̃(ξ) + (βτ − ε)

∫ r

0

csk(s)
∫ 1

0

φ̃(ξ − νcs) dν ds. (4.5)

Thus, for some δ > 0 there holds

(γ − τ)
∫ ξ

−∞
φ̃(z) dz � δφ̃(ξ).

Choose q1 > 0 such that q2 = δ
q1(r−τ) < 1. Then, we have

φ̃(ξ − q1) � 1
q1

∫ ξ

ξ−q1

φ̃(z) dz � 1
q1

∫ ξ

−∞
φ̃(z) dz � q2φ̃(ξ). (4.6)

Define γ = 1
q1

ln 1
q2
, and ω(ξ) = φ̃(ξ) e−γξ. Then,

ω(ξ − q1) = φ̃(ξ − q1) e−γ(ξ−q1) � q2φ̃(ξ) e−γ(ξ−q1) = ω(ξ)

which implies that ω(ξ) is bounded for ξ � 0. Thus, there exists some Λ1 > 0 such
that φ̃(ξ) e−ρξ � Λ1 for ξ ∈ R. We further obtain that there exists Λ > 0 such that

φ(ξ) e−ρξ � Λ for some Λ > 0, ξ ∈ R.

�

Lemma 4.3. Let φ be any travelling wave of (3.9) and (3.10). If φ is monotone
increasing on (−∞,−�] for some � � 0, then there exists η0 � 0 such that

φ(ξ + η) � φ(ξ) for η � η0, ξ ∈ R. (4.7)

Proof. Let f(u) := ue−u. Since f
′
(u∗) = e−u∗

(1 − u∗) < 1
β , there exists δ > 0 such

that

f
′
(u) <

1
β

for u ∈ [u∗ − δ, u∗] and a := max
u∈[u∗−δ,u∗]

f
′
(u) <

1
β
. (4.8)

Choose χ > � large enough so that

φ(ξ) � δ for ξ � −χ, u∗ − φ(ξ) � δ for ξ � χ. (4.9)

Let γ := infξ∈[−χ,+∞) φ(ξ) > 0. Note that there exists χ0 > 0 such that φ(ξ) < γ
for ξ � −χ0. Then, for every η � 0, we have φ(ξ + η) > φ(ξ) for ξ ∈ [−χ− η,−χ0].
Note by φ(+∞) = u∗ and supξ∈[−χ0,χ+μ] φ(ξ) < u∗ for any μ > 0, there exists η0 �
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0 such that for every η � η0, φ(ξ + η) > φ(ξ) for ξ ∈ [−χ0, χ+ μ]. Thus,

φ(ξ + η) > φ(ξ) for ξ ∈ [−χ− η, χ+ μ].

Note also that for every η � 0, φ(ξ + η) � φ(ξ) for ξ ∈ (−∞,−χ− η]. Thus, for any
η � η0, we have

φ(ξ + η) � φ(ξ) for ξ ∈ (−∞, χ+ μ]. (4.10)

Fix μ � cr in (4.10), where r > 0 is a fixed number such that maxu∈[0,u∗] f
′
(u)
∫∞

r

k(s)ds < 1
β − a. Define

θ̂ = inf{θ � 0|φ(ξ + η) + θ � φ(ξ) for ξ ∈ R}.

Obviously, θ̂ is well-defined, and φ(ξ + η) + θ̂ � φ(ξ) for ξ ∈ R. We next claim that
θ̂ = 0 to finish the proof. Suppose that θ̂ > 0. Define ω(ξ) := φ(ξ + η) + θ̂ − φ(ξ).
Clearly, ω(±∞) = θ̂ > 0. There exists ξ∗ such that 0 = ω(ξ∗) = min

ξ∈R

ω(ξ). Then, we

have

0 = c[φ
′
(ξ∗ + η) − φ

′
(ξ∗)]

= D{[φ(ξ∗ + η + 1) − φ(ξ∗ + 1)] + [φ(ξ∗ + η − 1) − φ(ξ∗ − 1)]

− 2[φ(ξ∗ + η) − φ(ξ∗)]}

− τ [φ(ξ∗ + η) − φ(ξ∗)] + βτ

(∫ ∞

0

k(s)φ(ξ∗ + η − cs) ds
)

× exp
[
−
∫ ∞

0

k(s)φ(ξ∗ + η − cs) ds
]

− βτ

(∫ ∞

0

k(s)φ(ξ∗ − cs) ds
)

exp
[
−
∫ ∞

0

k(s)φ(ξ∗ − cs) ds
]

� τ θ̂ + βτ

(∫ ∞

0

k(s)φ(ξ∗ + η − cs) ds
)

exp
[
−
∫ ∞

0

k(s)φ(ξ∗ + η − cs) ds
]

− βτ

(∫ ∞

0

k(s)φ(ξ∗ − cs) ds
)

exp
[
−
∫ ∞

0

k(s)φ(ξ∗ − cs) ds
]
. (4.11)

By (4.10), we know that ξ∗ > χ+ μ � χ+ cr. In view of (4.9), we obtain φ(ξ∗ +
η − cs), φ(ξ∗ − cs) ∈ [u∗ − δ, u∗] for any s � r. Since maxu∈[0,u∗] f

′
(u)
∫∞

r
k(s)ds <
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1
β − a, it follows that

βτ

(∫ ∞

0

k(s)φ(ξ∗ + η − cs) ds
)

exp
[
−
∫ ∞

0

k(s)φ(ξ∗ + η − cs) ds
]

− βτ

(∫ ∞

0

k(s)φ(ξ∗ − cs) ds
)

exp
[
−
∫ ∞

0

k(s)φ(ξ∗ − cs) ds
]

= βτf
′
(ζ1)

∫ r

0

k(s)[φ(ξ∗ + η − cs) − φ(ξ∗ − cs)] ds

+ βτf
′
(ζ2)

∫ ∞

r

k(s)[φ(ξ∗ + η − cs) − φ(ξ∗ − cs)] ds

>− βτaθ̂ − βτ

(
1
β
− a

)
θ̂ = −τ θ̂,

where ζ1 ∈ [u∗ − δ, u∗], ζ2 ∈ [0, u∗]. Thus, we have

τ θ̂ + βτ

(∫ ∞

0

k(s)φ(ξ∗ + η − cs) ds
)

exp
[
−
∫ ∞

0

k(s)φ(ξ∗ + η − cs) ds
]

− βτ

(∫ ∞

0

k(s)φ(ξ∗ − cs) ds
)

exp
[
−
∫ ∞

0

k(s)φ(ξ∗ − cs) ds
]

>τθ̂ − τ θ̂ = 0, (4.12)

which is a contradiction according to (??). Therefore, θ̂ = 0. This completes the
proof. �

Theorem 4.4. Assume 1 < β � e. Any travelling wave φ of (3.9) and (3.10) is
strictly monotone increasing. Moreover, each travelling wave satisfies

φ(ξ) = p(ξ) eλ1(c)ξ +O(e(λ1(c)+σ)ξ), ξ → −∞, (4.13)

where σ is some positive number, p(ξ) is a polynomial of order k, and k = 0 if
c > c∗ and k = 1 if c = c∗.

Proof. Let φ be any solution of (3.9) and (3.10) with c � c∗. Thanks to lemma 4.2,
we can define the bilateral Laplace transform L(λ) =

∫∞
−∞ e−λξφ(ξ) dξ, 0 < λ < ρ.

Applying the Laplace transform to (3.9), we obtain

R(λ, c)L(λ) =
∫ ∞

−∞
e−λξh(ξ) dξ := P (λ), (4.14)

where h(ξ) := βτ
∫∞
0
k(s)φ(ξ − cs) ds(1 − exp− ∫ ∞

0 k(s)φ(ξ−cs) ds). It is easy to see
that the analytic strip of P (λ) is broader than that of L(λ). Then, it can be deduced
from L(λ) = P (λ)/R(λ, c) that analyticity of L(λ) can be extended to the strip
0 < λ < χ until χ is the root of R(λ, c) = 0. Then, L(λ) is analytic in the strip
0 < λ < λ1(c) and P (λ) is analytic in the strip 0 < λ < λ1(c) + � for some � > 0.
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Note that (3.9) can be written as

cφ′(ξ) = L[φ](ξ) − h(ξ), (4.15)

where L[φ](ξ) := D[φ(ξ + 1) + φ(ξ − 1) − 2φ(ξ)] − τφ(ξ) + βτ
∫∞
0
k(s)φ(ξ − cs) ds.

Choose a < λ1(c) < b < λ1(c) + �, we have

φ(ξ) = O(eaξ), h(ξ) = O(ebξ), as ξ → −∞.

Then, applying [15, proposition 6.1], we have

φ(ξ) = p(ξ) eλ1(c)ξ +O(e(b−ε)ξ), ξ → −∞. (4.16)

where p is a polynomial of order k and k + 1 is the multiplicity of λ1(c) as the pole
of P (λ)/R(λ, c). The asymptotic representation (4.13) has been proved. Next, we
prove that any wave profile is strictly monotone increasing. Suppose φ is any trav-
elling wave of (3.9) and (3.10) with c � c∗. In view of the asymptotic representation
(4.13) and (3.9), we know that φ′(ξ) > 0 at minus infinity which implies that φ(ξ)
is monotone increasing on ξ ∈ (−∞,−�] for some � > 0. By lemma 4.3, there exists
η0 � 0 such that

φ(ξ + η) � φ(ξ) for η � η0, ξ ∈ R.

Define

η̃ = inf{η0 � 0|φ(ξ + η) � φ(ξ) for η � η0, ξ ∈ R}.

We claim that η̃ = 0. Suppose by contradiction that η̃ > 0. Then, we must have
φ(ξ + η̃) > φ(ξ) for ξ ∈ R. Because φ is uniformly continuous on compact set and
is monotone at minus infinite, then for any ϑ > 0, there is small ε > 0 such that

φ(ξ + (η̃ − ε)) > φ(ξ) for ξ ∈ (−∞, ϑ].

Proceeding the arguments below (4.10) in the proof of lemma 4.3, we would
obtain φ(ξ + (η̃ − ε)) � φ(ξ) for ξ ∈ R, which is a contradiction by the definition of
η̃. It then follows that φ(ξ + η) � φ(ξ) for ξ ∈ R and η � 0. Thus, φ(ξ) is non-

decreasing. Note that φ(ξ) = 1
c e−

τ+2D
c ξ

ξ∫
−∞

e
τ+2D

c zH[φ](z) dz, where H[φ](ξ) =

D[φ(ξ + 1) + φ(ξ − 1)] + βτ(
∫∞
0
k(s)φ(ξ − cs) ds)exp[−

∫∞
0
k(s)φ(ξ − cs) ds]. Dif-

ferentiating φ(ξ) = 1
c e−

τ+2D
c ξ

ξ∫
−∞

e
τ+2D

c zH[φ](z) dz yields φ′(ξ) > 0. �

5. Discussion and simulation

In this paper, we study a discrete Nicholson’s blowflies equation with distributed
delay which arises naturally from the consideration that the blowflies are distributed
in discrete environment and have distributed maturated age. We prove the existence
of travelling wave solutions for this patch model. Our method is based on the mono-
tone dynamical system approach, together with the delay approximation technique.
In particular, we obtain the minimal wave speed of travelling wave solutions, and
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Figure 1. Spread of uj(t) in different views.

show that it coincides with the spreading speed. Furthermore, we prove theoretically
that all the travelling wave solutions are strictly monotone increasing for general
kernels. This implies that the shape of the travelling wave solutions remains mono-
tone increasing during the propagation process for the case 1 < β � e. However,
the propagation dynamics is unclear in the case where β > e (i.e. the ratio of the
per capita daily adult death and the maximum per capita daily egg production is
less than 1/e). We conjecture that the travelling wave solution still exists, but not
necessarily monotone in this case. The theoretical study in this case will be more
challenging, and is currently under investigation. In this section, we shall carry out
some numerical simulations, which will confirm the theoretical results established
in our current work.

Let us consider (1.3) by taking D = 0.5, τ = 1, β =
√
e and k(s) = 1

2 e−
1
2 s. Then

u∗ = 0.5. We choose the initial data uj(θ) as

uj(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.375, |j| � 5, θ ∈ [−50, 0],

3
80

(15 − |j|), 5 � |j| � 15, θ ∈ [−50, 0],

0, else.

Figure 1 shows the spatial spread of the solution through the selected initial
data uj(θ). To demonstrate the travelling wave phenomenon, we choose the initial
function as

uj(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.5, j � 35, θ ∈ [−50, 0],

1
40

(j − 15), 15 � j � 35, θ ∈ [−50, 0],

0, else.

Our numerical experiment shows that the solution evolves promptly to a travelling
wave (see figure 2). We see that the shape of the travelling wave remains strictly
monotone in the propagation process.
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Figure 2. Travelling wave phenomenon observed for uj(t) in different views.
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