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Abstract

In this paper, we prove that there are no warped product proper semi-slant submanifolds such that the
spheric submanifold of a warped product is a proper slant. But we show by means of examples the
existence of warped product semi-slant submanifolds such that the totally geodesic submanifold of a
warped product is a proper slant submanifold in locally Riemannian product manifolds.
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1. Introduction

The differential geometry of slant submanifolds has shown an increasing development
since B.-Y.Chen defined slant immersion in complex geometry as a natural
generalization of both holomorphic and totally real immersions [2—6].

In [7], Lotto introduced the notion of slant immersion of a Riemannian manifold
into an almost contact metric manifold. Recently, in [12], Li and Li defined and
studied the geometry of a semi-slant submanifold in locally Riemannian product
manifolds. The class of proper semi-slant submanifolds appears as a particular case of
the class of warped product semi-slant submanifolds because the class of proper semi-
invariant submanifolds is a particular case of the proper warped product semi-invariant
submanifolds.

Let M be an m-dimensional manifold with a tensor of type (1, 1) such that F2 = [
and F # £1. Then M is said to be an almost product manifold with almost product
structure F. If an almost product manifold M has a Riemannian metric g such
that g(FX,Y)=g(X, FY), for any X,Y e '(TM), then M is called an almost
Riemannian product manifold. We denote the Levi-Civita connection on M by V
with respect to g. If (Vx F)Y =0, for any X, Y € ['(T M), then M is called a locally
Riemannian product manifold [12].

© 2008 Australian Mathematical Society 0004-9727/08 $A2.00 + 0.00

177

https://doi.org/10.1017/5S0004972708000191 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000191

178 M. Atceken 2]

Let M be a Riemannian manifold with almost Riemannian product structure F' and
let N be an isometrically immersed submanifold in M. For each x € N, we denote by
D, the maximal invariant subspace of the tangent space 74y N of N. If the dimension
of Dy is the same for all x in N, then D, gives an invariant distribution D on N.

A submanifold N in a locally Riemannian product manifold is called a semi-
invariant submanifold if there exists on N a differentiable invariant distribution
D whose orthogonal complement DL is an anti-invariant distribution, that is,
F(D') c TN*. A semi-invariant submanifold is called an anti-invariant (invariant)
submanifold if dim(D,) =0 (dim(DxL) =0). On the other hand, it is called proper
semi-invariant if it is neither invariant nor anti-invariant.

A semi-invariant submanifold in the form N = Ny x N_ of a locally Riemannian
product manifold M is called a Riemannian product if N7 and N are totally geodesic
submanifolds of N, where N7 is an invariant submanifold and N is an anti-invariant
submanifold of M. The notion of semi-invariance in a locally Riemannian product
manifold was introduced in [1, 9, 11].

The above definitions have been generalized as follows.

(1) The submanifold N is called a semi-invariant submanifold if there exists
a differentiable distribution D : x — D, C Ty N such that D is invariant and the
complementary distribution D is anti-invariant distribution.

(2) The submanifold N is called a slant submanifold if for each nonzero vector
field X e I'(T N), the angle 6 (x) between F' X and Ty N is constant, that is, it does not
dependent on of the choice x € N and X € I'(TN).

(3) The submanifold N is referred to as semi-slant if it has two orthogonal
distributions such as D and D’ such that D is an invariant distribution and D’ is a
slant distribution.

It is well known that the notion of warped products plays an important role in
differential geometry as well as in physics. For a recent survey on warped products as
Riemannian submanifolds, we refer to [4, 5, 8].

Let Ny and N; be two Riemannian manifolds with Riemannian metrics g; and
g2, respectively, and f be differentiable function on Nj. Consider the product
manifold N1 x N, with its projection 7 : N; x Np —> Nj and n: N X Ny — N».
The warped product manifold N = N x y> N3 is the manifold Ny x N equipped with
the Riemannian metric structure such that

IX|1* = |7 X * + fAEe) X%,

for any X € I'(TN). Thus we have g = g + f2g2, where f is called the warping
function of the warped product. The warped product manifold N = Ni x 2 N> is
characterized by the fact that N; and N are totally geodesic and spheric foliations of
N, respectively. If the warping function is constant, a warped product is said to be the
Riemannian product [10].

The purpose of this paper is to investigate a new class of submanifolds of locally
Riemannian product manifolds, that is, warped product semi-slant submanifolds.
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We shall focus our attention mainly on warped product semi-slant submanifolds which
contain warped product semi-invariant submanifolds and Riemannian product semi-
slant submanifolds as a general case.

2. Preliminaries

If N is an isometrically immersed submanifold in a Riemannian manifold M, then
the formulas of Gauss and Weingarten for N in M are given, respectively, by

VxY =VxY +h(X,Y) (1
and
VxV=—AyX + VyV, )

forany X,Y e '(TN) and V e I'(TN 1), where V and V denote the Riemannian
connections on M and N, respectively, & is the second fundamental form of N in M,
V+ is the normal connection on the normal bundle and A is the shape operator of N
in M. The second fundamental form and the shape operator are related by

g(AvX,Y)=g((h(X,Y), V), 3

where g denotes the Riemannian metric on M as well as N. For any a submanifold N
of a Riemannian manifold M, Gauss’s equation is given by

R(X,Y)Z=R(X,Y)Z + Anx.2)Y — Anv.yX + (Vxh) (Y, Z) — (Vyh) (X, Z),
)

for any X, Y, Z € I'(TN), where R and R denote the Riemannian curvature tensors
of M and N, respectively. The covariant derivative of % is defined by

(Vxh) (Y, Z) = Vxh(Y, Z) — h(VxY, Z) — h(Vx Z. Y). (5)
We recall the following general lemma from [10] for later use.

LEMMA 2.1. Let N =N xy Ny be a warped product manifold with warping
function f. Then:

(1) VxY eDl'(TN)foreach X,Y e I'(T Ny);

2) VxZ=VzX=X(In f)Z, foreach X e T'(TNy), Z € I'(T Ny);

3) VW= V]ZVZW —g(Z, W) ((gradf)/f), for each Z, W € T'(T N»).

Here V and V™2 denote the Levi-Civita connections on N and N, respectively.

3. Warped product semi-slant submanifolds of a locally Riemannian
product manifold

Now, let N = Nj Xy Ny be an immersed submanifold of a locally Riemannian
product manifold M and denote the orthogonal complementary of F(TN) in TN+
by V. Then we have the direct sum

TNt =F(TN)®V. (6)
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We can easily see that V is an invariant sub-bundle with respect to F. Furthermore,
for any nonzero vector X tangent to N, we put

FX=TX + X, (7)

where 7' X and wX denote the tangential and normal components of F' X, respectively.
For each nonzero vector X tangent to N at x, the angle 6(x), 0 <0(x) < (7/2),
between FX and 7y N is called the slant angle. If the slant angle is constant,
then the submanifold is also called the slant submanifold. Invariant and anti-
invariant submanifolds are slant submanifolds with slant angle 8 = 0 and 8 = (71/2),
respectively. A slant submanifold is said to be proper slant if it is neither invariant nor
anti-invariant.
In the same way, for any vector V normal to N, we put

FV =tV +nV, (8)

where tV and nV denote the tangential and normal components of F'V, respectively.

THEOREM 3.1. Let N be a submanifold of a locally Riemannian product manifold M.
Then N is a slant submanifold if and only if there exists a constant A € [0, 1] such that
T2 = Al. In this case, if 0 is the slant angle of N, then it satisfies A = cos® 6 [12].

DEFINITION 3.1. N is called a semi-slant submanifold of a locally Riemannian
product manifold M if there exist two orthogonal distributions such as D and D’ such
that:

(1) TN has the orthogonal direct sum TN = D & D’;

(2) the distribution D is an invariant distribution, that is, F (D) = D;

(3) the distribution D’ is a slant with angle 6 # 0 and 6 # (7 /2) [2].

THEOREM 3.2. Let D be a distribution on N. Then D is a slant distribution if and
only if there exists a constant A € [0, 1] such that (P T)2X = A X forany X e T'(D).
In this case, if 0 is the slant angle of D, then it satisfies > = cos> 6, where Py denotes
the orthogonal projection on D [12].

Furthermore, if N is a slant submanifold of a locally Riemannian product manifold
M with slant angle 6, then

g(TX, TY)=cos’0g(X,Y) and g(wX,wY)=sin’0g(X,Y), )

forany X, Y e ['(TN).

In this section, we study warped product semi-slant submanifolds, with warped
product in the form N = N; x s N3, in a locally Riemannian product manifold M.
First, we suppose that N is an invariant and N, is a semi-slant of M with slant angle
0 # (/2), 0. Later, N1 will be an anti-invariant submanifold and N, will be a semi-
slant submanifold of M with respect to F.

https://doi.org/10.1017/5S0004972708000191 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972708000191

[5] Warped product semi-slant submanifolds 181

THEOREM 3.3. Let M be a locally Riemannian product manifold and N be a
submanifold of M. Then there exist no warped product semi-slant submanifolds
N = Nt X ¢ Ng in M such that Nt is an invariant submanifold and Ny is a proper
slant submanifold of M.

PROOF. We suppose that N = N7 x s Ny is a warped product proper semi-slant
submanifold of a locally Riemannian product manifold M such that N7 is invariant
and Ny is a proper slant submanifold of M. We denote the projections onto I' (7 Nt)
and I'(T'Ng) by P; and P», respectively. Then for any vector Z € I'(T N), we can put

Z=PZ+ P,Z, (10)
and using (7) gives
FZ=FPIZ+FP,Z=TPIZ+TP,Z+wP,Z. (11)

By using the Gauss—Weingarten formulas, (7), (8) and considering Lemma 2.1(2) we

obtain o o
VuFX =FVyX,

TXIn(HU+hU, TX)=XIn(f)TPU + X In(f)oPU (12)
+th(U, X) +nh(U, X),
for any X e ['(TNt) and U € I'(T Ng). Then, comparing tangential and normal
components in (12) respectively, we obtain
TX In(f)U =X In(/)HT P,U + th(U, X) (13)
and
h(U, TX)=XIn(f)wP,U + nh(U, X). (14)

In the same way, we arrive at

VxFU = FVyU,
VxTPU +VxwP,U = FVxU + Fh(U, X),
VxT P U + h(X, TP,U) — Awp,uX + VywPoU = F(X In(f)U) + Fh(X, U)
=X In(f)T P,U
+ X In(fwPU

+th(X,U) +nh(X, U),
(15)
forany X € ['(T Nt) and U € I'(T Ny). Taking into account the tangential and normal
components of (15) respectively, we obtain

AwpuX =—th(U, X) (16)
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and
h(X, TPU)+ V,%a)PzU =X In(f)wPU +nh(X, U). a7
By using (3) and (16), it is easily seen that

8(AwpuX, U) = —g(th(U, X), U) = —g(Fh(U, X), U) = —g(h(U, X), FU),
g, X), oP,U) = —g(h(U, X), o PU),

that is,
gh(U, X), oPU) =0. (13)

On the other hand, replacing X by T X in (14) and taking into account 7 N1 being
invariant, we obtain

TX In(f)g(wPyU, wPyU) = g(h(U, X) — nh(U, TX), o P,U)

=ghU, X), wPU) — gnh(U, X), wPU)
=g, X), oP,U) =0,

forany X e I'(T Nt) and U € I'(T Ny). Thus,
TX In(f) sin® 0g(P,U, P,U) = 0.

Since Ny is a proper slant submanifold, g is a Riemannian metric and P,U is a
nonnull vector, we arrive at T X In(f) = 0, that is, the warping function f is constant.
Hence, the proof is complete. O

THEOREM 3.4. Let M be a locally Riemannian product manifold and N be a
submanifold of M. Then there exist no warped product semi-slant submanifolds
N =Ny Xy Ny in M such that N, is an anti-invariant submanifold and Ny is a
proper slant submanifold of M.

PROOF. We suppose that N = N x s Ny is a warped product semi-slant submanifold
such that N is an anti-invariant submanifold and Ny is a proper slant submanifold of
a locally Riemannian product manifold M. Then for any vectors X, Y tangent to N
and U tangent to Ny,

VuFX=FVyX,
—AwxU + ViwX = F(X In(f)U) + th(U, X) 4+ nh(U, X). (19)

From the tangential components of (19), we obtain

—AwxU = X In(f)T PU + th(U, X). (20)
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Furthermore, from equations (1), (2), (7), (8), (11) and considering Lemma 2.1,
VxFU = FVxU,

VxT P, U +VxwP,U = FVxU + Fh(X, U),
VxTPU + h(X, TPU) — Awp,uX + VywPoU = F(X In(f)U) + th(X, U)

+nh(X, U)
=XIn(/)TP,U
+ X In(fHwP U
+th(X,U) +nh(X, U).
(21
From the tangential components of (21),
App,uX = —th(X, U). 22)

In the same way, making use of (1), (2), taking account of N, being anti-invariant in
M and totally geodesic in N, we obtain

VyFX = FVyX,
—ApxY 4+ ViwX = FVy X +th(X, Y) + nh(X, Y),

which gives
ApxY =—th(X,7Y),
which is also equivalent to
AwxY = Ay X. (23)
On the other hand, (3) and the symmetry of F and A lead to

g(AuxY, W) = g(h(Y, W), 0X) = g(h(Y, W), FX) = g(VwY, FX)
= ¢(VwFY, X) =g(VwoY, X) = —g(Aur X, W),

forany X, Y e '(TN1) and W € I'(T N), which implies that
AwxY = —Ayy X. (24)
From (23) and (24), we conclude that
ApxY =0 and th(X,Y)=0, (25)
forany X, Y € I'(T N). Thus, from (22) and (25), we obtain

gh(U, X), wPU)=0 and gh(X,Y), oP,U)=0.
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Furthermore, making use of (22), by direct calculations, we obtain
App,uX =ApxTPU =th(X, U) =0. (26)
From (20) and (26),
—XIn(fg(TPU, TPU) =g(Au,xU, TPU) +g(th(U, X), TPRU) (27)

=ghU, TPU), wX)+gth(U, X), TPU)
=g(th(U, X), TPU) =

From (9) and (27) we conclude that
X In(f)g(TPU, TPU)=XIn(f) cos’ 0g(PU, PU) =

Since Ny is a proper slant submanifold, g is a Riemannian metric and P,U is a
nonzero vector, we can derive X In(f) = 0, that is, the warping function f is constant.
Hence the proof is complete. O

CONCLUSION 3.1. It is easy to see from Theorems 3.3 and 3.4 that there exist no
warped product semi-slant submanifolds N = Nj x s Ny in a locally Riemannian
product manifold M such that Nj is invariant (anti-invariant) and Ny is proper slant
submanifold of M. But we can find the warped product semi-slant submanifolds
N = Ny x ¢ Nt (see Example 3.1) (N =Ny x s N (see Example 3.2)) such that
Np is proper slant and N7 is invariant (N is anti-invariant) in a locally Riemannian
product manifold M.

Next, to illustrate these cases, we shall give two examples.

EXAMPLE 3.1. Let N be a submanifold of R3=R*x R* with coordinates
(x1, X2, X3, X4, X5, X6, X7, Xg) given by

¢B,a,v,u)=(u+v,u —v, ucosuo,usina, «/gu, 2v, u cos B, u sin ).

It is easy to see that the tangent bundle of N is spanned by

. 0 0 . 0 0
Z1=—u smﬂa— + u cos ,38—, Zy)y=—usinoe— —+ ucoso—,

X7 X 0x3 x4
a d d
8x1 x> 8x6’
0 d a d a d
Z4=——i———l—cosa——l—sma——l—\/_——i—cosﬂ—+ 1nﬂ—.
0x] 0x2 0x3 0x4 Xg

Then, with respect to the Riemannian product structure F and usual metric tensor of
R =R* x R?*, F(T N) becomes

9 9 ?
FZi=-27,, FZy=7y, FZz=— " 2%
8x1 0x2 8x6
Zi= " -+ ° . ° 4 L5 B g
= — —_— coso—— Slna—— ——COS ——Sln —.
YT 93 9x2 9x6
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It is easily to check that
_l(g(FZ3, Z3)) _1<g(FZ4, Z4)) _1< 1)
cos —————— | =cos ——— | =cos —— .
I1FZ3|l.11Z3 ]l I1FZ4l. 1 Z4]l 3
Then N7 and Ny can be taken as follows:

TNt =Span{Z, Z3} and T Ny = Span{Z3, Z4}.

Thus Ny is a slant submanifold with slant angle 6 = cos (=1 /3). Furthermore, the
metric tensor of N = Ny x s Ny is given by

gy = (6dv? +9du®) + u*(da® + dB?) = gn, + u’gn,.

Thus N = Ny x,2 Nr is a warped product semi-slant submanifold of R® with warping
function f =u.

EXAMPLE 3.2. We consider the submanifold N in R'0 = R* x R® given by

o, v,a) = (x/gu,

2kv . . .
———,ucoso, —u sin o, —u cos o, —u Sin o, —k sin u,
vk +1
— ksinv, k cos u, k cos v),

where k is a constant which is not zero. We can easily see that the tangent bundle of
N is spanned by vectors

B 0 . 0 ad . 0
Z = V3— +cosa— — sina— — cos @ — — sin @ —
axq 9x3 x4 0xs 0x6
0
—kcosu— —ksinu—,
X7 0x9
2k 0 d
Zy= —— —kcosv— —ksinv—,
k2 +10x2 dxg dx10
. 0 el . d 0
Z3=—usine— —uUCOSA¥—— +usinoe— —ucosa—.
0x3 0Xx4 dXxs d0x6

Since F'Z3 is orthogonal T N and

_1<g(le, Zl)) _1<8(F22, Zz)) _1(3—k2>

6 = cos ————— ) =cos ———— ) =cos 5 )

(VAR RPN I Z2|I.11 F Zs || 5+k

N, and Ny can be taken as follows: TN = Span{Z3} is an anti-invariant distribution
and TNy =Span{Z;, Z,} is a slant distribution. Here F and g denote the

Riemannian product structure and usual metric tensor of R0 = R* x RS, respectively.
Furthermore, the metric tensor of N = Ng x y N is given by

k* + 5k?

= (5 + k?) du®
gn =0+ )u—l—(k2+1

) dv? +2u” do* = 8Ny + 2u2gNL.
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Thus N = Ny x /5, N1 is a warped product semi-slant submanifold with slant angle
0 =cos 13 — kz)/(S + k2)) and warping function f = V2u.
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