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We leverage the snap-through response of a bistable origami mechanism to induce a
discontinuous evolution of drag with flow speed. The transition between equilibrium states
is actuated passively by airflow, and we demonstrate that large shape reconfiguration
over a small increment of flow velocity leads to a pronounced and sudden drop in drag.
Moreover, we show that systematically varying the geometrical and mechanical properties
of the origami unit enables the tuning of this drag discontinuity and the critical speed and
loading at which it occurs. Experimental results are supported by a theoretical aeroelastic
model, which further guides inverse design to identify the combination of structural
origami parameters for targeted drag collapse. This approach sheds light on harnessing
origami-inspired mechanisms for efficient passive drag control in a fluid environment,
applicable for load alleviation or situations requiring swift transitions in aerodynamic
performances.
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1. Introduction

The drag force acting on an object typically increases with the speed of the surrounding
fluid flow, as the pressure and shear stress exerted on its surface grow. For flexible bodies,
this increase can be partially offset by the deformations induced by fluid forces, as it
produces a more streamlined shape and reduced frontal area (Vogel 1984; Alben, Shelley
& Zhang 2002; Schouveiler & Boudaoud 2006; Gosselin, de Langre & Machado-Almeida
2010; de Langre, Gutierrez & Cossé 2012; Schouveiler & Eloy 2013). This reconfiguration
reduces the load compared with that of a non-deformable body; nonetheless, drag still
increases monotonically with speed, although at a lower rate. However, there are a
few instances where drag has been observed to drop sharply with velocity. One such
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phenomenon occurs due to a sudden change in flow regime, referred to as drag crisis,
which happens when the boundary layer transitions from laminar to turbulent, moving
its separation downstream and narrowing the wake (von Wieselsberger 1921; Achenbach
1972). Another scenario involves abrupt and significant shape changes in the body, which
can notably occur due to partial breakage, as observed in wind-induced tree pruning
(Lopez et al. 2014). While this process effectively provokes a sharp decrease in the drag
force and preserves the integrity of the rest of the structure, it is not reversible.

An attractive alternative is snap-through events in flexible structures, during which
the elastic system undergoes a rapid transition from one equilibrium state to another.
This process is swift, repeatable and produces significant shape changes, making it
increasingly popular in engineering for obtaining switchable optical properties, reusable
energy trapping materials, microfluidic pumps or in soft robotics (Han, Ko & Korvink
2004; Tavakol et al. 2014; Overvelde et al. 2015; Shan et al. 2015). Snapping instabilities
occur through the application of an external input such as a point load, electrostatic forces
or thermal effects, and can also be triggered by fluid flows. For example, a post-buckled
sheet snaps-through and snaps-back in response to air flowing at different speeds, thus
opening and closing an air inlet for flow regulation applications (Arena et al. 2017, 2018).
The snapping of a slender membrane or arc has also been used to modify a channel
resistance for passive control of viscous flow (Gomez, Moulton & Vella 2017; Peretz
et al. 2020) or for energy harvesting from wind-induced snapping oscillations (Kim et al.
2020, 2021). The critical flow speed to initiate the instability can be adjusted through the
nonlinear structural mechanics of the post-buckled member. Note that the system passively
responds to flows, which makes it inherently autonomous and leverages the need for
additional complex actuation. A few studies focused on the effect of such fast-changing
geometries on aerodynamic loading. In the context of wind turbines, bistable winglets
or airfoil trailing edges transition autonomously to another stable state that alleviates
excessive fluid load (Arrieta et al. 2012; Cavens, Chopra & Arrieta 2021). While reported
drag reduction is limited to about 15 % (Cavens et al. 2021), primarily due to a focus on lift
applications, it shows potential for more substantial drag drops with appropriate designs.

A promising framework for manufacturing shape-morphing structures with nonlinear
mechanical properties is the technique of origami, inspired by the Japanese art of paper
folding. A surface is equipped with a set of folds, which act as a linkage mechanism,
producing large three-dimensional shape changes along selected kinematic pathways that
are prescribed by the folding pattern. Origami has also proven to be a powerful method
to tailor targeted mechanical properties and, in particular, multistability (Li et al. 2019).
Some specimens can thus settle in more than one stable state in the absence of external
load and produce a rapid snap-through response as they pass from one equilibrium to the
other (Hanna et al. 2014; Jianguo et al. 2015; Yasuda, Chen & Yang 2016; Li et al. 2019).
It offers predictable and reversible shape transformation, with the possibility to tune the
shape and number of designated stable configurations through the fold arrangement, crease
torsional stiffness and assigned rest angle (Waitukaitis et al. 2015). Those transformable
structures with programmable snap-through mechanisms have the potential to produce a
controlled drop in drag at targeted flow conditions.

As a starting point, we demonstrate the potential for drag collapse with the waterbomb
base, a single vertex bistable origami mechanism that is one of the fundamental origami
units (Hanna et al. 2014; Lechenault, Thiria & Adda-Bedia 2014). This umbrella-like cell
has two stable states and features a rapid snap-through response as it transitions from one
to the other. Origami structures have already raised interest for drag control, due to their
large morphing capabilities (Cozmei et al. 2020; Zhang et al. 2021; Marzin, de Langre
& Ramananarivo 2022; Zhang, Changguo & Zhang 2022). In particular, a previous study
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on the waterbomb base showed that its extreme reconfiguration tends to reduce drag to the
point that it no longer increases with flow speed in the regime of large deformation (Marzin
et al. 2022). Here, we make use of its bistable nature, which has not been utilised before
for drag applications. We show that it produces a discontinuous evolution of drag with
flow speed, marked by a sudden and significant drop as the structure snaps through. We
systematically vary the geometrical and mechanical properties of the unit and show that
it allows us to tune the drag discontinuity and the critical speed and loading at which it
occurs. Experiments are captured by a simplified theoretical model that is further used for
inverse design, which is finding the structural origami parameters that produce a targeted
drag collapse.

2. Drag collapse through snapping

The waterbomb base consists of a disc of radius R, featuring alternating mountain and
valley folds distributed evenly around a central vertex. The present study focuses on the
traditional version of the origami waterbomb, comprising a total of eight folds. Additional
results for different numbers of folds are presented in the supplementary material available
at https://doi.org/10.1017/jfm.2024.985. The unit is rigid-foldable, meaning that facets are
considered rigid, with all movement occurring at the joints, thus simplifying the kinematic
analysis. In addition, we assume symmetry of motion, based on experimental observation,
meaning that all the mountain folds deflect by the same amount, and the same holds for
the valley folds. As a result, the mechanism reduces to a one-degree-of-freedom system
(Hanna et al. 2014, 2015), where the shape of the entire structure can be determined from
a single variable, chosen as the angle θ between a valley fold and the central axis passing
through vertex (see figure 1a).

Importantly, this unimodal origami mechanism has two stable equilibrium states and can
transition between them through snapping. When at rest, the folded unit sits in one of these
stable positions with its vertex pointing in one direction (see figure 1a i). Upon applying
an external force, the structure flattens out towards a plane that represents an unstable
equilibrium. When displaced beyond this plane, it snaps through and moves to a second
stable position with the vertex pointing in the opposite direction (see figure 1a ii). These
two stable positions are characterised by angles θ0 and θ∗

0 , and although they may look
similar in figure 1(a), they are not mirror images of each other. The relationship between
the angles of mountain and valley folds, Ψm and Ψv (measured in terms of deviation to
straightness, see figure 1a), and θ also differs on both sides of the unstable equilibrium
(Hanna et al. 2014).

The origami bistable mechanism presents the advantage of being readily tunable. The
stiffness of the folds notably influences the forces required to transition between stable
states. One additional tuning parameter is the rest configuration, characterised by the angle
θ0 in the first stable state. A compact unit (with a smaller θ0) requires more elastic energy to
pass through the unstable planar state, as it has to undergo a greater deflection. The second
equilibrium state θ∗

0 also changes correspondingly with θ0, modulating the amplitude
of the shape change upon snapping (the relationship between θ0 and θ∗

0 is illustrated in
Supplementary figure 6).

Specimens are fabricated using a technique developed in a previous study (Marzin et al.
2022) and inspired by the literature (Overvelde et al. 2016; Zuliani et al. 2018), which is
based on layer superposition. The rigid facets are laser cut from a 350-μm-thick sheet
of Mylar, which is then attached to a thinner sheet using double-sided tape, forming
the creases. These folds act as elastic hinges of specific stiffness and rest angles. Rest
angles are prescribed by utilising the thermoformable property of PET (see Appendix A).
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Figure 1. Drag collapse through flow-induced snap-through of a bistable origami unit. (a) Waterbomb base
with radius R, composed of eight alternating valley and mountain folds with respective angles ψv and ψm, and
with unimodal kinematics described by the angle θ . In the absence of loading, the bistable unit sits in one of two
stable equilibria with angle θ0 and θ∗

0 . Evolution of (b) the drag force Fd in a uniform airflow with increasing
velocity U, (c) the dimensionless frontal area S/πR2 projected in the plane perpendicular to the flow (see
schematics of the experimental set-up in the inset of b) and (d) the drag coefficient defined with respect to the
instantaneous area S. The drag collapse observed in the snapping unit (with R = 5 cm, κ = 19 × 10−3 N and
θ0 = 41◦, blue solid curves) is compared with the quadratic drag of a rigid unit with the same geometry (same
R and θ0, grey dashed curves). Three tests were conducted on the same specimen, with error bars indicating
the standard deviation (the grey zone denotes the variation in critical speed). Error bars for the drag coefficient
are omitted for readability but are provided in the supplementary material.

As shown in a previous study, the folds then operate as torsional springs, exhibiting elastic
behaviour around their assigned rest angle (Marzin et al. 2022). The stiffness can be
adjusted by using different thicknesses of the thin sheet, ranging from 40–100 μm. To
measure the stiffness experimentally, a single fold is fabricated using the same process and
is tested by tracking the opening angle as an increasing torque is applied to the hinge (see
Appendix A and Supplementary figure 1). The value of the stiffness is then obtained from
the slope of the torque–angle curve. The fabrication process shows a standard deviation of
8% for κ .

We conducted tests on 10 origami units, sequentially varying the radius R = 4–7 cm,
the stiffness of the folds κ = 8–92 × 10−3 N, and the rest configuration characterised
by the angle θ0 = 32◦–66◦. These units are subjected to a steady air flow generated by
an open jet wind tunnel with a square cross-section of width 40 cm and flow speed
varied in 1–16 m s−1. An elbow arm is used upstream, to hold the unit at its vertex
in the centre of the cross-section (see the inset of figure 1b). This arm is connected to
a six-component force sensor, measuring the drag component of the fluid force in the
direction of the flow. For each measurement, we average the drag over 30 s and subtract
the drag on the support system alone. The flow-induced shape changes are characterised
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through the projected area S of the unit in the plane perpendicular to the flow, captured
by a camera placed downstream and extracted through Matlab custom image analysis.
The observed kinematics align with the unimodal mechanism described earlier, which is
rigidly foldable with motion restricted to the joint and exhibits rotational symmetry of
motion. The entire geometry of the unit can be reconstructed from S, which will be further
used as the observable to measure shape reconfiguration (the relationship between S and θ
is illustrated in Supplementary figure 5).

Figure 1(b) displays the evolution of drag with flow speed for a typical experiment (solid
blue curve), alongside the frontal area in figure 1(c), and the drag coefficient calculated
using this instantaneous area Cd = Fd/(1/2ρSU2) in figure 1(d), to isolate the effect of
shape on drag. Results are compared with the drag behaviour of a rigid cell frozen in its
initial configuration (dashed grey curves), which exhibits a classical U2 law, associated
with a relatively constant drag coefficient. Initially, the unit is in its first stable position
θ0, with the concave side facing the flow. As the flow speed gradually increases, the
cell symmetrically opens up, leading to a faster increase of drag compared with its rigid
counterpart. This enhanced drag is attributed solely to the expansion in frontal area, as
the drag coefficient actually decreases with the cell adopting a less deep, parachute-like
shape, consistent with observations from simpler geometries such as hemispherical caps
(Hoerner 1965; Ganedi et al. 2018). This drag coefficient reaches approximately Cd = 1.1
as the cell approaches the flat unstable state (close to the 1.17 value for a flat disc), after
which the unit snaps to a more compact and streamlined configuration. Note that slight cell
vibrations make it challenging to precisely attain S/πR2 = 1. The sudden reconfiguration
results in a discontinuity in the drag force on the unit, with a drop by up to 69 % among the
specimens tested in this study, produced by both the significant area reduction in figure 1(c)
and shape streamlining in figure 1(d). As U is further increased, the unit closes up. This
closing regime has been studied extensively in a previous study (Marzin et al. 2022); it
features an increase of drag that is slower than the quadratic U2 law for rigid objects,
owing to the reduction in frontal area exposed to the flow, combined with a decreasing
drag coefficient resulting from shape streamlining.

To estimate the measurement uncertainty, we conducted three repetition of the
experiments on the same specimen, re-annealed between each iteration to ensure a
consistent initial configuration. Error bars in figure 1 represent the standard deviation,
indicating relative variation in drag force and frontal area within 2 %. Small vibrations of
the unit, especially as it approaches the unstable flat state, likely contribute to variations
in the critical snapping velocity, which however remain within 2 %. Variability in the
experiments were found to mainly results from the origami fabrication process. Additional
tests conducted on five distinct units, all fabricated with identical parameters, exhibited
a higher but reasonable dispersion, with about 10 % for the drag data, 9.5 % for the
frontal area and 5 % for the critical snapping velocity (see Supplementary figure 3 and
the supplementary material for more details on sources of uncertainties and measurement
precision).

We thus observe a non-continuous evolution of drag with flow speed with a marked
collapse. This behaviour can be described by selected observable parameters, namely the
critical flow velocity of the snapping Uc, the maximum drag force reached just before
snapping Fd,max and the subsequent drag drop �Fd. These parameters are prominent
features characterising the discontinuity but are also relevant for practical applications,
such as designing protection devices or valves. They determine a maximum load, the
amount of load reduction, or the critical speed at which the structure would operate.
In the following section, we investigate how those quantities are related to the origami
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Figure 2. Influence of the origami structural parameters on drag. Evolution of (a,c,e) the drag force Fd and
(b,d, f ) the dimensionless frontal area S/πR2 as a function of flow velocity U, for origami units with different
(a,b) radii R, (c,d) fold stiffness κ and (e, f ) rest angle θ0. The unit R = 5 cm, κ = 19 × 10−3 N and θ0 = 41◦
is common to all graphs.

geometrical and mechanical properties, specifically its size R, rest configuration θ0 and
fold stiffness κ .

3. Aeroelastic mechanism

We first vary the radius R of the unit, while keeping the stiffness at κ = 19 × 10−3 N
and the rest angle at θ0 = 41◦. Note that fabrication produces a small variability in the
rest angle among specimens, which is visible in figure 2(b) in the 6 % dispersion in the
dimensionless frontal area in the absence of flow (U = 0). As shown in figure 2(a,b),
all units exhibit the characteristic behaviour described earlier, that is a non-continuous
evolution of drag with flow speed with a sudden drop associated with the snap-through of
the origami unit. However, bigger units (darker orange curves) initially experience a higher
fluid loading, because of the larger area exposed to the flow. As a result, they reach the flat
state S/πR2 = 1 faster and flip at a lower critical speed (see figure 2b). Interestingly, in
figure 2(a), the maximum drag Fd,max experienced by the units before snapping is the
same, and they feature similar jumps amplitude �Fd. Changing the radius of the unit thus
primarily shifts the critical velocity Uc at which the drag collapse occurs, while preserving
Fd,max and �Fd.

Figure 2(c,d) shows the results for origami cells with different fold stiffness, but the
same size R = 5 cm and rest angle θ0 = 41◦ (with a similar degree of variability as
earlier). Stiffer units (darker blue curves) deploy slower with increasing U owing to larger
resistance to deformation, and reach the flat state at larger critical velocities (see figure 2d).
The most rigid one does not reach this unstable point within the range of flow covered
here. Snapping at larger speeds Uc results both in higher drag peak values Fd,max and
larger jumps �Fd (see figure 2c). Stiffness thus affects all three drag features, offering an
additional lever for control.
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Figure 3. Aeroelastic mechanism. (a) Evolution of the dimensionless drag Fd = Fd/κ as a function of the
Cauchy number Cy = ρU2R2/κ for origami units with different radii R and fold stiffness κ (with the same rest
angle θ0 = 41◦). The inset shows the reconfiguration number R = Fd/Fd,r, which compares the drag force
Fd with that of a rigid unit having the same geometry Fd,r. (b) Plot of Fd as a function of Cy for units with
different initial degree of opening θ0 (with the same R = 5 cm and κ = 19 × 10−3 N). Experimental force data
are compared with theoretical predictions (solid curves).

Finally, we vary the degree of opening of the cell rest state θ0, while keeping the size
and stiffness constant as R = 5 cm and κ = 19 × 10−3 N, respectively. Starting from a
more compact rest state (lighter green curves) delays the flipping towards higher flow
velocities, as depicted in figure 2( f ). Intuitively, reaching the flat state that is further away
requires greater work from fluid loading. As was the case for the κ-series of units, snapping
at greater Uc results in larger maximal drag Fd,max in figure 2(e). As mentioned earlier
and illustrated in the schematics of figure 2( f ), changing θ0 also affects the degree of
closure of the second stable state. Small θ0 (light green) results in a larger collapse in
the frontal area post-snapping compared with units initially more opened (dark green) in
figure 2( f ). It correspondingly leads to larger jumps in drag �Fd in figure 2(e). The rest
angle thus completes the set of three parameters that will allow us to adjust the three drag
characteristics Uc, Fd,max and �Fd.

The trends observed through variations in parameters reflect the interplay between
external fluid loading and elastic restoring forces of the origami unit, which governs the
unit’s reconfiguration process. This fluid–elastic competition can be analysed in terms of
Cauchy number Cy, as introduced in a previous study (Marzin et al. 2022) and frequently
used in the literature (Alben et al. 2002; Gosselin et al. 2010; de Langre et al. 2012). This
dimensionless number examines the relative magnitudes of the work done by fluid forces,
ρU2R3, and the elastic energy of folding, κR:

Cy = ρU2R2

κ
. (3.1)

In figure 3(a), drag measurements are re-plotted in the dimensionless form Fd = Fd/κ
as a function of Cy, using the fold stiffness κ as a characteristic force scale, in line with
Marzin et al. (2022). Here, we only report data for units with different stiffness κ and
radius R, which share the same initial rest configuration θ0. Data collapse onto a master
curve, with a drag peak and subsequent jump that are solely set by the fold stiffness,
and which occur at a critical Cauchy number of Cy,c ≈ 14 for all units. Alternatively, the
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reconfiguration number R = Fd/Fd,r is often used to discuss the effect of deformability
on drag (Schouveiler & Boudaoud 2006; Gosselin et al. 2010). It compares the drag force
Fd on the deforming cell to that on a rigid unit with the same geometry Fd,r, which is
evaluated by fitting a U2 law to drag measurements at low speeds where deformation
is minimal. The curve of R as a function of Cy in figure 3(a) highlights distinct drag
scaling regimes. At low Cy, where fluid loading is small compared with structural rigidity,
the drag behaves like that of a rigid body, and R ∼ 1. As Cy increases, R rises due
to the larger frontal area of the cell, then drops sharply below 1 at the critical Cauchy
number Cy,c, and continues to decrease continuously with further deformation. In the
large-deformation regime, R declines with a logarithmic slope approaching −1, consistent
with the plateau-like behaviour for drag observed in a previous study on the waterbomb
unit (Marzin et al. 2022). We previously showed that the dimensionless quantities Cy and
Fd capture the effect of origami size and stiffness in fluid–elastic mechanisms. However,
it does not account for the more intricate influence of the rest angle θ0. As shown in
figure 3(b i), the latter affects the peak and jump value of Fd, as well as the critical Cauchy
number for snapping.

Next, we develop a simplified theoretical model to further explore and corroborate the
link between the origami unit’s characteristics and drag. This model will also be used for
the inverse problem. It employs the same energy approach as previous work on the closing
dynamics of the waterbomb unit in a flow (Marzin et al. 2022) and has been extended to
account for the snapping. We provide a brief overview of the main elements of the model
here, and additional details can be found in Appendix A and in Marzin et al. (2022). The
static equilibrium of the unit in a flow is determined through the minimisation of its energy
Eel − W, comprising both the elastic potential energy associated with folding Eel and the
work done by fluid forces W as the unit deforms:

Eel − W = 4
κR
2

[(ψm − ψ0
m)

2 + (ψv − ψ0
v )

2] − 8
∫ θ

θ0

∫
Sf

ρ(U · nθ ′)2 dSf nθ ′ · dX θ ′,

(3.2)

where ρ is the air density and Sf = πR2/8 is the facet area (with other quantities
introduced subsequently). The first term of (3.2) corresponds to the elastic potential energy
of the four mountain and four valley folds, modelled as elastic torsional springs with
stiffness κ . It scales with the square of the deviation of their respective angles ψm and
ψv to their rest values ψ0

m and ψ0
v (Hanna et al. 2014). The second term corresponds

to the work done by fluid forces acting on the unit facets, which is the same for all
eight facets owing to the rotational symmetry of motion. The Reynolds number for our
experiments falls within the range Re = UR/ν ≈ 103–105, where form drag predominates
over friction drag, and the latter is neglected. As discussed in Marzin et al. (2022),
friction forces likely become significant in regimes with substantial deformation, where
facets nearly align with the flow. However, this particular regime is not reached in our
present study. Consistent with earlier studies on the reconfiguration of flexible structures
in a flow (Schouveiler & Boudaoud 2006; Gosselin et al. 2010; Schouveiler & Eloy 2013;
Marzin et al. 2022), pressure is computed using conservation of momentum principles. It is
proportional to the square of the component of flow momentum perpendicular to the facet,
denoted as ρ(U · nθ )2, where nθ represents the normal unit vector. While simplified, this
model has demonstrated effectiveness in capturing fluid–elastic behaviours (Schouveiler
& Boudaoud 2006; Gosselin et al. 2010; Schouveiler & Eloy 2013; Marzin et al. 2022).
It offers a reasonable approximation of more complex potential flow expressions (Alben,
Shelley & Zhang 2004; Marzin et al. 2022), which would be challenging to implement
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Tunable drag drop via flow-induced snap-through in origami

for three-dimensional geometries. The pressure force is integrated over the facet area Sf
and its work is computed along the facet trajectory, with dX θ the local displacement.
By expressing the energy in a dimensionless form as Eel − W = (Eel − W)/κR, the
previously introduced Cauchy number Cy emerges as the pertinent fluid–elastic parameter:

Eel − W = 2
[
(ψm − ψ0

m)
2 + (ψv − ψ0

v )
2] − 8Cy

∫ θ

θ0

∫
S̄f

ρ(ez · nθ ′)2 dS̄f nθ ′ · dX̄ θ ′,

(3.3)

where ·̄ denotes dimensionless quantities, using the radius as characteristic length, and
ez is the unit vector in the direction of the flow. In (3.3), all kinematic variables of
the one-degree-of-freedom mechanism depend on a single parameter θ . However, these
relationships differ on each side of the flat state. The equilibrium angle θ , which satisfies
d(Eel − W)/dθ = 0, is determined numerically while gradually increasing the Cauchy
number, first addressing the opening phase of the kinematics. As the system approaches
the flat state at θ = 90◦ beyond a specific criterion, the kinematic relations are modified
to describe the closing phase. From the static equilibrium angle θ , we can determine the
drag force acting on the unit as the component of fluid pressure forces in the direction of
the flow (see Appendix A).

Theoretical drag results are presented in figure 3(a) in dimensionless form, considering
a given rest angle θ0 = 41◦ based on experiments (black solid line). The simplified
model successfully captures experimental features, displaying a peak in drag that remains
unaffected by the unit’s size, followed by a sudden drop at a critical Cauchy number.
Although the model tends to overestimate Fd,max and �Fd, the quantitative agreement
is reasonable, considering that no adjustable parameters were used and the simplifications
made. As depicted in figure 3(b ii), the model also effectively captures the effect of varying
the initial rest angle θ0 on drag. A more compact unit exhibits a higher drag peak and jump,
along with a higher critical Cauchy number. This model will be valuable for the inverse
design of origami units to achieve the desired drag, as we discuss in the next section.

4. Inverse design approach

We have characterised how the waterbomb unit features influence its drag behaviour.
We now pose the question: ‘Can we identify the specific geometrical and mechanical
origami parameters that would lead to a targeted drag collapse in a uniform fluid flow?’.
More specifically, we formulate the inverse problem where the objective is to find
the optimal set of parameters (R, κ, θ0) that will result in a collapse of drag, with a
predefined target peak drag force Ft

d,max and jump �Ft
d value at a critical flow speed

Ut
c. To address this, we use the model presented earlier and validated experimentally,

which establishes a relationship between the parameters (R, κ, θ0) and the resulting drag
characteristics (Fd,max,�Fd,Uc). The optimisation is implemented numerically in Matlab
using the trust-region-dogleg algorithm of fsolve solver. It solves the system of equations
Fd − Ft

d,max = 0, �Fd −�Ft
d = 0 and Uc − Ut

c = 0 with respect to the origami unit’s
features (R, κ, θ0). The algorithm finds a single solution, satisfying the constraints by a
maximum residual of O(10−19) within a hundred iterations.

To validate the inverse design approach, we test our prediction experimentally by
fabricating the optimised design and measuring the evolution of its drag with flow
speed. While the specific radius R and rest angle θ0 can be easily implemented through
laser-cutting and an adjustable mount, achieving an arbitrary fold stiffness κ is more
challenging. This limitation arises from the finite number of sheet thicknesses available for
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(a)

(b) (c) (d)

Figure 4. Targeting drag collapse features. (a) The inverse design approach consists of finding the set of
origami structural parameters (R, κ , θ0) that will lead to a collapse of drag with a targeted maximum before
snapping Fd,max, jump�Fd and occurring at a defined critical flow speed Uc. Evolution of drag with flow speed
for physical prototypes of optimised origami designs, which are calculated to produce a selective variation of
(b) Uc, (c) �Fd and (d) Fd,max, while keeping the two remaining features identical. Respective target values of
(Uc, �Fd , Fd,max) are indicated in Appendix A.

manufacturing the folds. To overcome this constraint, we introduce slits in the folds. These
slits modulate the effective length of the folds and, consequently, their stiffness, enabling
a controlled variation of κ by adjusting their number (see Appendix A and Supplementary
figure 2).

To demonstrate our ability to control the drag behaviour, we create sets of specimens
with one parameter gradually changing while keeping the other two fixed. We first vary
the targeted critical flow speed for snapping, as Ut

c = [4, 7, 10] m s−1, while prescribing
constant peak drag value Ft

d,max = 0.8 N and jump �Ft
d = 0.6 N. The corresponding

optimised origami parameters (R, κ, θ0) are provided in Appendix A. Consistent with the
differences observed earlier in figure 3 between experiments and theory, the experimental
realisations exhibit lower values in figure 4(b), namely Uc = [3.7, 6.0, 8.8] m s−1,
Fd,max = 0.29 N and �Fd = 0.10 N. Nevertheless, we successfully achieved a gradual
variation in Uc while keeping the other two parameters unchanged. Note that the optimised
designs have the same rest angle and fold stiffness, but varying radius, which is consistent
with the previous results shown in figure 2(a). We indeed demonstrated that Fd,max
and �Fd are size-independent and, therefore, determined by the specific combination
of (κ, θ0). In figure 4(c,d), we systematically vary the jump �Fd and peak Fd,max,
respectively (target values are reported in Appendix A). Similarly, although the physical
samples have drag quantities below the target values, they still showcased the intended
selective variations. Our results confirm the validity of our inverse design approach,
but there are limitations to how closely we can match desired drag behaviours. These
limitations arise primarily from the theoretical model employed in the optimisation
procedure. While it accurately captures the effect of origami parameters on drag, it only
provides semi-quantitative agreement with the experimental data. Note that deviations
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between the targeted drag features and those of the resulting optimised design in figure 4
align with differences reported in prior experimental–theoretical comparisons of figure 3
(see Supplementary figures 11 and 12). Refining the model, notably using a more realistic
representation for the fluid dynamics, is thus expected to produce better quantitative
results.

5. Conclusion and discussion

In this study, we leverage the waterbomb base’s bistability to sharply reduce drag force
with flow velocity. A uniform airflow unfolds the origami unit, which, upon reaching a flat
state, undergoes a snap-through to a more streamlined shape, causing a sudden collapse
of drag. While the use of elastic deformation to mitigate drag increase with flow speed
is not novel (Vogel 1984; Alben et al. 2002; Schouveiler & Boudaoud 2006; Gosselin
et al. 2010; de Langre et al. 2012; Schouveiler & Eloy 2013); here, a decrease is achieved
through significant and abrupt shape changes over a small increment of fluid input load.
Importantly, the snap-through is tunable based on the cell radius, fold stiffness and rest
angle, providing control over drag characteristics.

We show that the cell behaviour results from the quasi-static mechanical equilibrium
between actuating fluid loading and restoring elastic forces, captured by a Cauchy number.
The snap-through occurs at a fixed critical Cauchy number for a given cell rest angle. The
later serves as an additional control, influencing both snap-through onset and drag changes.
These experimental features are captured by a theoretical fluid–elastic model, portraying
the cell as rigid facets with folds acting as elastic hinges, and utilising an empirical
formulation for fluid pressure forces, consistent with prior studies. The model effectively
accounts for the influence of cell structural parameters on drag, demonstrating reasonable
predictiveness despite a tendency to overestimate drag. However, such discrepancies are
expected due to the absence of adjustable parameters and the simplified representation of
the origami’s elastic response and fluid dynamics. Force-deflection tests on the waterbomb
unit show reasonable agreement with the idealised mechanical model, though some
softening near the flat state is observed, possibly due to vertex effects or fabrication
imperfections (see Supplementary figure 8). A modified model, using elastic potential
energy derived from these tests, suggests that this softening might cause snap-through at a
lower critical speed and a reduced peak drag. Nevertheless, it only marginally accounts
for the discrepancies between the theoretical predictions and the experimental results
shown in figure 3(a). These differences likely arise from the simplified description of fluid
dynamics, which notably does not account for the object’s feedback on the flow. Local
fluid forces, which are not influenced by the object’s overall shape or wake, result in a
drag coefficient of Cd = 2 when the unit reaches the flat state, where drag is typically
overestimated, compared with the expected value of 1.17 for a disc. To address this, we
can introduce a corrective pressure coefficient C, such that P = Cρ(U · nθ )

2, to align the
drag coefficient to that of a disc in the flat configuration. This adjustment changes the
critical Cauchy number for snapping, but it does not resolve the peak drag overestimation.
Further improvements could involve using a variable pressure coefficient or a more refined
spatial pressure force distribution that adapts to the cell reconfiguration. Flow visualisation
or computational fluid dynamics simulations would then be instrumental in determining
the shape dependence of this pressure field and improving the predictive accuracy of the
model.

The modelling framework provides the system equations to guide inverse design,
intending to identify the combination of structural parameters leading to a targeted
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drag collapse. Our implementation showcases an advanced level of control, allowing
selective adjustment of key drag features: namely, the peak drag before snapping, the drag
drop and the critical flow speed at which it occurs. Although the number of folds is not
included in our current inverse design framework, it has a distinctive effect on drag (see
supplementary material). It could be a valuable parameter for expanding the design space
and controlling additional drag characteristics, such as the rate at which drag increases
again after dropping. Currently, quantitative predictability is contingent on the model’s
accuracy and the precise control of the origami’s mechanical properties during fabrication.
Improved closeness to the target is anticipated with more refined fluid–elastic models and
advancements in manufacturing techniques, positioning this work as promising proof of
concept. It illustrates the potential of origami as a platform for programming drag-vs-speed
behaviour.

This programmability holds value for self-protection strategies, mitigating excessive
aerodynamic loads beyond a predetermined threshold. Force transitions above a tunable
critical flow velocity could also serve as a velocity threshold detector. The switch-like
response of the waterbomb base also holds the potential for fluidic control in a channel,
for example, acting as a relief valve. It would obstruct a conduct as it deploys and
discharges the fluid beyond a predetermined pressure level, limiting pressure built up. For
the waterbomb base, snap-through involves passing through an unstable flat state, leading
to an initial drag increase greater than that of a rigid object. This enhanced drag could
be advantageous for stabilisation or speed-reduction in applications such as sea anchors,
drogues or stabilisers for aerial refuelling pipes (Holler 1985; Wei et al. 2016). Such
shape-adaptive drag may offer better control and stabilisation compared with fixed-shape
designs in varying fluid environments. However, drag enhancement is not a universal
feature of bistable origami mechanisms, as some do not require transitioning through a flat
state (Waitukaitis et al. 2015). Rapid morphing can also result from torsional instabilities
caused by axial asymmetry in the folds, though this was not observed in this study. In
addition, ‘hidden’ degrees of freedom not explicit in the crease pattern, such as facet
bending (Liu & Felton 2018), could enable substantial shape changes while maintaining
minimal deformation and a relatively constant drag coefficient before snap-through.

Here, morphing is driven aeroelastically, enabling the component to autonomously
respond to the local environment, and eliminating the need for additional sensing and
control systems. Such passive mechanisms allow for a more streamlined structural design
of the aerodynamic control surface. However, a bistable mechanism requires external
intervention or a counter-flow to return to its original state. This ability to retain the
inverted state could be advantageous for functioning as a memory unit, storing information
about past fluid conditions, similar to (Jules et al. 2022). Alternatively, using a monostable
system that snaps through when loaded but returns to its original state when the load is
removed could address this limitation (Arena et al. 2017; Gomez et al. 2017; Arena et al.
2018). This could be achieved with restoring springs that pull the unit back to its original
position when the airspeed decreases. Further study is needed to assess the multistability
of such systems and to identify configurations where they are bistable, monostable with
snap-through or stable without snap-through.

Another advantage of origami is the ability to easily combine multiple bistable elements
to produce multistable structures (Silverberg et al. 2014; Li & Wang 2015; Sengupta &
Li 2018; Jules et al. 2022). An example is shown in figure 5, featuring a chain made of
two waterbomb cells with the same size and different rest angle and fold stiffness (see
also Supplementary figure 9). It produces two successive sharp transitions in the drag
force. With sufficient spatial separation, each unit is expected to have its independent flow
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5 100

0.25

0.50

F d
 (

N
)
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κ1 κ2

θ0,2θ0,1
U

Figure 5. Leveraging multistability for a double drag collapse. A multistable origami structure is formed
through the assembly of two waterbomb units, with different fold stiffness κ1 = 19 × 10−3 N and κ2 =
53 × 10−3 N and rest angle θ0,1 = 56◦ and θ0,2 = 71◦, and the same radius R = 5 cm (inset). The successive
snap-throughs lead to sequential drag collapses when exposed to a uniform flow with increasing speed.

velocity threshold initiating snap-through. Other configurations might, however, lead to
interactions between cells through external flow, resulting in a more complex collective
response, as observed in fluidic cellular origami (albeit for internal pressurisation) (Li &
Wang 2015). Alternatively, if cells share facets, they can also communicate the mechanical
state of one unit to its neighbour, forming logic elements (Treml et al. 2018). This has the
potential to generate more complex snapping sequences and subsequent drag evolution
with flow speed for advanced adaptive functionalities.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.985.
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Appendix A

A.1. Origami fabrication
Specimens are fabricated using a layer superposition method. The rigid facets are laser
cut from a 350-μm-thick sheet of Mylar, which is then attached to a thinner sheet using
double-sided tape with a 2.5 mm spacing that forms the creases. The folded unit is then
maintained in a desired configuration on a mount, placed in a heating chamber for an hour
at 75 ◦C, and then left to cool down at room temperature. It thus effectively prescribes the
first stable state θ0. This annealing process relaxes any residual stresses that might have
been created during folding (Lechenault et al. 2014) so that the first stable state is close to
a zero-energy state.
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Sheet thickness (μm) 48 50 75 100

Fold stiffness κ(N) ×10−3 8 19 53 92

Table 1. Stiffness measured for folds made from sheets with different thickness.

A.2. Fold stiffness
To measure fold stiffness, a prototype of a single crease was designed using the
manufacturing process outlined in § A.1 and in Marzin et al. (2022). While keeping one
of the facets fixed vertically, we apply a variable increasing point load to the geometrical
centre of the free facet and extract the opening angle of the fold Ψ (see Supplementary
figure 1a). The opening angle in the absence of load is set to Ψ0 ≈ 113◦ ± 8◦ for all the
tests, but note that the stiffness was found independent of Ψ0 in the previous study of
Marzin et al. (2022). The fold acts as a torsional spring, exhibiting a linear relationship
between the torque applied T (accounting for the weight of the hanging facet as well) and
the angular deviation Ψ − Ψ0 (see Supplementary figure 1b). The stiffness is extracted
from the slope as T = κL(Ψ − Ψ0), with L = 4 cm the crease length. Table 1 lists κ values
for the four thin sheets. Repeatability and robustness were assessed by measuring κ for
eight folds from a 50 μm sheet, resulting in an 8 % variability based on standard deviation
relative to the mean value.

To expand the range of achievable stiffness values, we employ a strategy inspired by
prior work (Zuliani et al. 2018) and introduce slits in the folds. Slits with 5 mm length
are evenly distributed along the crease length, and span its width (see Supplementary
figure 2a). Adjusting their number modulates the effective length of the fold, thereby
changing its stiffness and facilitating the attainment of diverse κ values. As shown in
Supplementary figure 2(b), the stiffness of a slitted fold scales linearly with its effective
length, with a 7 % deviation from the expected linear relationship. To ensure that the
presence of slits has minimal effect on the interaction of the origami unit with the flow,
we conducted experiments with two specimens, one with slitted folds and another with
unslitted folds, both having the same stiffness. These two specimens exhibited identical
drag curves, indicating that the slits did not significantly affect the performance in the
flow (see Supplementary figure 2).

A.3. Fluid–elastic model
The equilibrium angle θ of the unit in the flow is given by the zeros of d(Eel − W)/dθ , with
Eel − W expressed in (3.3). As further detailed in the supplementary material, it yields the
equation

(ψm − ψ0
m)

dψm

dθ
+ (ψv − ψ0

v )
dψv
dθ

+ 2
3

Cy sin2 θ sin2 φ

[
A

dφ
dθ

sin θ + B sinφ
]

= 0, (A1)

where Cy = ρU2R2/κ is the same Cauchy number as defined for experiments, φ is the
angle between valley folds and the central axis, and A and B are constants. Assuming rigid
folding and symmetry of motion, the expression for all angles in (A1) can be derived as a
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Target values Cell parameters

Ft
d,max (N) Ut

c (m s−1) �Ft
d (N) κ (N) ×10−3 R (cm) θ0 (deg.)

0.8 4 0.6 21 4.6 47
0.8 7 0.6 21 6.5 47
0.8 10 0.6 21 11.4 47
0.8 7 0.5 27 6.5 56
0.8 7 0.7 16 6.5 33
0.65 7 0.6 11 5.9 25
0.95 7 0.6 32 7.1 56

Table 2. Fabrication parameters produced by the optimisation algorithm, for given target drag parameters.

function on θ (see Brunck et al. 2016; Marzin et al. 2022 and the supplementary material):

φ(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arccos
(

cosα cos θ
1 + sinα sin θ

)
, for 0 ≤ θ ≤ π/2,

arccos
(

cosα cos θ
1 − sinα sin θ

)
, for π/2 < θ ≤ π − α,

(A2)

with α = 2π/8 the sector angle of a facet. Angles of the mountain and valley folds are
given by cosψv = cos 2θ and cosψm = cos 2φ. Note that the expressions as a function
of θ differ on each side of the flat configuration θ = π/2, describing, respectively, the
opening and closing kinematics.

Equation (A1) is numerically solved using the nonlinear system solver fsolve of Matlab.
The Cauchy number is varied linearly from 0 to 50 in 500 steps, and the solver utilises
the value of θ obtained at the previous iteration as a starting point (initialising at θ0 for
Cy = 0). As θ approaches the flat state beyond π/2 − ε, with ε = 0.01 rad, (A1) is then
solved using the new set of angle expressions describing the closing kinematics, with the
first starting point at π/2 + ε.

From the equilibrium angle θ , we obtain the dimensionless projected surface S/πR2 =
sin θ sinφ, the dimensionless drag force Fd = πCy sin3 θ sin3 φ (by projecting fluid
pressure forces in the direction of the flow), for comparison with experimental results
(see the supplementary material for more details).

A.4. Inverse design
The target values (Ft

d,max,�Ft
d,Ut

c) used, along with the corresponding cell parameters,
are presented in table 2. When varying Uc (while keeping the other two drag features
constant), cells with the same radius but different κ and θ0 are obtained. Interestingly,
selectively varying �Fd is achieved by adjusting θ0 and κ while maintaining a constant R.
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