THE EDINBURGH MATHEMATICAL NOTES

published by
THE EDINBURGH MATHEMATICAL SOCIETY
Edited by I. M. H. ETHERINGTON, B.A., D.Sc.
No. 35

Some elementary inequalities in function theory

By A. J. Macintyre and W. W. Rogosinski.

1. Let $0<r<1$ and let $f(z)$ be regular ${ }^{1}$ for $|z| \leqq 1$.

Then from Cauchy's integral

$$
\begin{equation*}
f(r)=\frac{1}{2 \pi i} \int_{|\zeta|=1} f(\zeta) \frac{d \zeta}{\zeta-r}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) \frac{e^{i \theta} d \theta}{e^{i \theta}-r} \tag{1}
\end{equation*}
$$

we have the inequality

$$
\begin{equation*}
(1-r)|f(r)| \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right| d \theta . \tag{2}
\end{equation*}
$$

This inequality is clearly not the best possible, for the factor $e^{i \theta}-r$ is varying in modulus and we took its minimum modulus. But Cauchy's integral is not the only integral with the value $f(r)$. We have only to replace $1 /(\zeta-r)$ by a function regular for $|z| \leqq 1$ except for a simple pole at $\zeta=r$ to obtain another representation of $f(r)$. For example

$$
\begin{equation*}
\left(1-r^{2}\right) f(r)=\frac{1}{2 \pi i} \int_{|\zeta|=1} f(\zeta) \frac{1-r \zeta}{\zeta-r} d \zeta=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) \frac{1-r e^{i \theta}}{1-r e^{-i \theta}} d \theta, \tag{3}
\end{equation*}
$$

from which we deduce the inequality

$$
\begin{equation*}
\left(1-r^{2}\right)|f(r)| \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right| d \theta . \tag{4}
\end{equation*}
$$

${ }^{1}$ It is sufficient in what follows if $f(z)$ is regular for $|z|<1$ and if $\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta$ is bounded for $0 \leqq r<1$, but the simpler case adequately illustrates our arguments.

This result is best possible and equality is attained by the function $f(z)=1 /(1-r z)^{2}$, for with this function

$$
\begin{equation*}
\left(1-r^{2}\right) f(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\left(1-r e^{i \theta}\right)\left(1-r e^{-i \theta}\right)} \tag{5}
\end{equation*}
$$

and the integrand is always positive.
If we apply the inequality to $f\left(z e^{i \alpha}\right)$ we have

$$
\begin{equation*}
\left.\left(1-r^{2}\right)\left|f\left(r e^{i a}\right) \leqq \frac{1}{2 \pi} \int_{a}^{2 \pi+a}\right| f\left(e^{i \theta}\right)\left|d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\right| f\left(e^{i \theta}\right) \right\rvert\, d \theta \tag{6}
\end{equation*}
$$

or for $z \mid<1$

$$
\begin{equation*}
\left(1-|z|^{2}\right)|f(z)| \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right| d \theta \tag{7}
\end{equation*}
$$

2. We may expect to find similar inequalities involving $f^{\prime}(z)$ by using a suitable auxiliary function with a double pole. The function

$$
\begin{equation*}
\left(\frac{1-r \zeta}{\zeta-r}\right)^{2}=\frac{\left(1-r^{2}\right)^{2}-2 r\left(1-r^{2}\right)(\zeta-r)+r^{2}(\zeta-r)^{2}}{(\zeta-r)^{2}} \tag{8}
\end{equation*}
$$

is of constant modulus unity when $|z|=1$; and hence by calculating the residue of the integrand we find

$$
\begin{equation*}
\left(1-r^{2}\right)^{2} f^{\prime}(r)-2 r\left(1-r^{2}\right) f(r)=\frac{1}{2 \pi i} \int_{|\zeta|=1} f(\zeta)\left(\frac{1-r \zeta}{\zeta-r}\right)^{2} d \zeta \tag{9}
\end{equation*}
$$

and there follows the inequality

$$
\begin{equation*}
\left|\left(1-r^{2}\right)^{2} f^{\prime}(r)-2 r\left(1-r^{2}\right) f(r)\right| \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right| d \theta \tag{10}
\end{equation*}
$$

It would of course be of more interest to calculate the best possible inequality of this type for $f^{\prime}(z)$ itself, and this is quite an easy deduction.. If we apply the last inequality to $f(z) . h(z)$ and choose $h(z)$ so that $\left|h\left(e^{i \theta}\right)\right|=1$, there results

$$
\begin{align*}
\mid\left(1-r^{2}\right)^{2} f^{\prime}(r) h(r)+\left(1-r^{2}\right) f(r)\left\{\left(1-r^{2}\right) h^{\prime}(r)\right. & -2 r h(r)\} \mid \tag{11}\\
& \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right| d \theta
\end{align*}
$$

This will give us the required inequality if

$$
\begin{equation*}
\left(1-r^{2}\right) h^{\prime}(r)-2 r h(r)=0 \tag{12}
\end{equation*}
$$

The condition $\left|h\left(e^{i \theta}\right)\right|=1$ will be satisfied if

$$
\begin{equation*}
h(z)=\frac{z-y}{1-z y} \quad(-1<y<1) \tag{13}
\end{equation*}
$$

For this function

$$
\begin{equation*}
\frac{\dot{h}^{\prime}(r)}{h(r)}=\frac{1}{r-y}+\frac{y}{1-r y}=\frac{1-y^{2}}{(r-y)(1-r y)}, \tag{14}
\end{equation*}
$$

so we must choose y to satisfy the quadratic equation

$$
\begin{equation*}
\left(1-r^{2}\right)\left(1-y^{2}\right)=2 r(r-y)(1-r y) \tag{15}
\end{equation*}
$$

The roots of this equation are $y=r \pm\left(1-r^{2}\right) / \sqrt{ }\left(1+r^{2}\right)$. The root $y=r-\left(1-r^{2}\right) / \sqrt{ }\left(1+r^{2}\right)$ will always lie in the range $-1<y<1$ if r lies in $0<r<1$. With this value of y we find $h(r)=1 /\left[r+\sqrt{ }\left(1+r^{2}\right)\right]$, and so obtain the inequality

$$
\begin{equation*}
\frac{\left(1-r^{2}\right)^{2}}{r+\sqrt{ }\left(1+r^{2}\right)}\left|f^{\prime}(r)\right| \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right| d \theta \tag{16}
\end{equation*}
$$

This inequality is best possible and equality can be attained. The equation from which it was deduced can be written in the form

$$
\begin{align*}
\frac{\left(1-r^{2}\right)^{2}}{r+\sqrt{ }\left(1+r^{2}\right)} f^{\prime}(r) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right)\left(\frac{1-r e^{i \theta}}{e^{i \theta}-r}\right)^{2}\left(\frac{e^{i \theta}-y}{1-y e^{i \theta}}\right) e^{i \theta} d \theta \tag{17}\\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta}\right)\left(\frac{1-r e^{i \theta}}{1-r e^{-i \theta}}\right)^{2}\left(\frac{1-y e^{-i \theta}}{1-y e^{i \theta}}\right) d \theta
\end{align*}
$$

and the integrand will be positive if, for example,

$$
\begin{equation*}
f(z)=\frac{(1-y z)^{2}}{(1-r z)^{4}}, \quad y=r-\left(1-r^{2}\right) / \sqrt{ }\left(1+r^{2}\right) \tag{18}
\end{equation*}
$$

Hence for this function our inequality is an equality.
The restriction to real z is clearly unnecessary as before, so we can state that for $|z|<1$

$$
\frac{\left(1-|z|^{2}\right)^{2}}{|z|+\sqrt{\left(1+|z|^{2}\right)}}\left|f^{\prime}(z)\right| \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right| d \theta .
$$

($z=0$ obviously need not be excluded.) Similar results could be obtained for higher derivatives but would involve greater algebraic difficulties.

Added in proof.-The inequality (7) was proved less simply by Egervary, Math. Annalen, 99 (1928), 542-561, and then by Landau, Math. Zeits., 29 (1929), 461. The present authors have in preparation a general theory of these and similar problems.

King's College,
Aberdern.

