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Abstract
This paper presents a substrate-integrated waveguide (SIW) differential antenna for full duplex
applications. The proposed antenna consists of two square SIW cavities named as outer and
inner. The inner cavity is nested into the outer cavity. The outer cavity is differentially excited
with a pair of coaxial feed lines, while the inner square patch is orthogonally excited with
another pair of differential coaxial feed lines. This orthogonal feeding arrangement results in
high isolation between the differential ports. The modified hybrid TE130/310 mode of the outer
cavity radiates through a pair of arc-shaped slots at 9.35GHz, while the TM01mode of the inner
square patch is responsible for the radiations at 8.65 GHz. The proposed antenna prototype is
fabricated and measured for validation. Moreover, the designed antenna has a front-to-back
ratio better than 22 dB and measured maximum gain values of 6.1 dBi and 7.6 dBi at 8.65 GHz
(Port 2 ON) and 9.35 GHz (Port 1 ON), respectively.

Introduction

Differential antennas are preferred over single-ended ones due to their several advantages, such
as low cross-polarization, ease of integration with differential circuits, excellent environmental
noise immunity, high spectral efficiency, etc [1]. Several three-dimensional differential anten-
nas have been studied in detail [2–5]. However, these antennas occupy a large footprint and
have a relatively high profile. To integrate these antennas in the system, low-profile antennas
are required. Several low-profile planar differential antennas are also investigated in the liter-
ature [6–9]. Nowadays, substrate-integrated waveguide (SIW) is a promising technology that
allows the realization of low-profile high-gain differential antennas [10–12].

Moreover, modern wireless communication systems require compact, low-profile, and
multiband antennas with high input port isolation. These multiband antennas are connected
to multiple transceivers, which suffer from poor port-to-port isolation. A diplexer can be used
to enhance the isolation between the ports [13]. However, this requires additional circuit ele-
ments, which increases the design complexity and results in a large transverse size. Thus, the
full-duplex antenna systems,which donot require extra components for isolation enhancement,
can provide an excellent solution to the limitations mentioned above [14–16].

In full-duplex communication systems, the simultaneous transmission and reception of sig-
nals takes place. This simultaneous transmission and reception of signals not only double the
spectral efficiency but also increase the data throughput [17–19]. Two separate frequencies, one
for transmission and another for reception of signals, are used in a dual-band full-duplex sys-
tem. High isolation between the transmitter and receiver is one of themain requirements of any
full-duplex systems. For acceptable performance of full-duplex systems, at least 110 dB of inter-
port isolation is essential [20]. This high isolation can be attained in different design stages of
the wireless communication systems. Several methodologies are applied in the antenna-stage,
analog-stage, and digital-stage to obtain high isolation in each stage. High inter-port isolation
in the antenna stage alleviates the requirement for isolation in the subsequent stages.

Two separate operating frequencies are employed in a dual-band full-duplex system, one
for the transmission and another for the reception of the RF (Radio Frequency) signals. For
the faithful performance of full-duplex systems, high isolation between the transmitter and the
receiver is one of the essential requirements. High isolation can be obtained with the usage
of different methods such as polarization diversity [21], differential feeding arrangement [22],
introduction of defected ground structure [23, 24] etc. between the transmitting and receiv-
ing antenna. These aforementioned methods have constraints of inadequate isolation, which is
one of the essential requirements for full-duplex systems. Owing to the requirements of high
port-to-port isolationwith high spectral efficiency, the design of a compact full-duplex antenna,
operating in two different frequency bands is a challenging task.

In this article, a full duplex differential antenna with high isolation between the differential
ports is presented. The designed antenna consists of two square cavities, named as outer and
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inner. The inner cavity is one nested into the outer cavity. The
modified hybrid TE130/310 mode of the outer cavity is differentially
excited by a pair of coaxial feed lines, which radiates through a pair
of arc-shaped slots at 9.35 GHz. To obtain radiations at 8.65 GHz, a
TM01 mode of the square patch is differentially excited by another
pair of coaxial feed lines. With the simultaneous orthogonal differ-
ential excitation of the outer cavity and square patch, high isolation
between the differential ports is obtained.

The salient key features of the proposed full-duplex antenna are
as follows:

1. The low profile of the proposed full-duplex antenna provides
ease of integration with the planar circuits.

2. The combination of differential feeding arrangement along with
the dual-polarized radiation characteristics provides high iso-
lation (better than 52 dB) in both the operating bands of the
proposed full-duplex antenna.

3. Due to the usage of SIW technology, the designed antenna
exhibits high gain in both operating bands.

4. The proposed antenna also exhibits the advantage of indepen-
dent tunability of each operating band.Thus, the proposed full-
duplex antenna has the flexibility to redesign it within X-band
frequency spectrum.

5. The proposed antenna provides very good polarization purity,
i.e., the designed antenna has very low cross-pol levels
(<−30 dB) with respect to co-pol in the broadside direction.

The designed antenna can be used for X-band radar applica-
tions including dual-polarized synthetic aperture radar for weather
monitoring, air traffic control, maritime vessel traffic control
[25–27].

Antenna configuration

Figure 1 shows the proposed differential full duplex antenna.
The differential antenna is designed on RT/duroid 5880 substrate
with dielectric constant 2.2, loss tangent 0.0009, and thickness of
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Figure 1. (a) Geometry of the proposed differential full duplex antenna
(b) Photograph of fabricated prototype.

0.508mm. In the present design, there are two SIW cavities, named
as outer and inner. The inner cavity is nested into the outer cavity.
The side walls of cavities are obtained by introducing a series of
metallic vias of diameter d with separation p. The values of d and p
are chosen in such a way that there is confinement of electromag-
netic energy within the SIW cavities. The outer cavity is excited by
the differential Port 1 through a pair of coaxial feed lines. The diff.
Port 1 comprises of coax Port 1+ and Port 1−. A square ring slot of
dimension b and width wi is introduced on the top surface of the
inner cavity to obtain a square patch radiator of dimensions a × a.
This square patch radiator is differentially excited through another
pair of coaxial feed lines, which is designated as differential Port 2.
The differential Port 2 consists of coax Port 2+ and Port 2−.

The terminals of the differential Port 1 are placed along the x-
axis, while the terminals of the differential Port 2 are placed along
the y-axis to obtain the orthogonal placement of the feeds. This
orthogonal placement of the feeds is responsible for the high isola-
tion between the differential ports. The design parameter s1 is the
center-to-center distance between the terminals (Port 1+, Port 1−)
of the differential Port 1, while s2 is the center-to-center distance
between the terminals of the differential Port 2 (Port 2+, Port 2−).
A pair of arc shaped slots of radius R, and subtended angle 2𝜃 are
etched on the top surface of the outer cavity to facilitate radiations
at 9.35 GHz under differential Port 1 excitation. While the square
patch radiator is responsible for the radiations at 8.65 GHz, under
Port 2 excitation.

Operational mechanism

Square SIW cavity

The resonant frequency for TEmn0 mode of the cavity is

fmn0 = 1
2𝜋√𝜇𝜀

√(m𝜋
aeff

)
2

+ ( n𝜋
beff

)
2

(1)

where 𝜇 and 𝜀 are permeability and permittivity of the dielectric
material, aeff and beff are effective dimensions of the cavity [28].
For the square cavity, aeff = beff, m ≠ n, several pairs of degener-
ate modes are excited simultaneously inside SIW cavity, e.g. TE130
and TE310 modes can form one degenerate modal pair and the
corresponding electric field distributions inside the square cavity
are shown in Fig. 2(a), where positive sign indicates the upward
direction and negative sign indicates the downward direction of
the fields. Since they are degenerate modes, their fields will super-
impose each other and resulting in hybrid TE130/310 mode and
the corresponding field distribution shown in Fig. 2(a). When the
inner square cavity is introduced inside the outer cavity, the reso-
nant frequency of hybrid TE130/310 mode will shift from 6.65 GHz
to 9.55 GHz and fields of the modified hybrid TE130/310 mode
will be confined between the outer and inner cavities as shown in
Fig. 2(b). With the coaxial differential feeding, Port 1+ is fed with
positive signal and Port 1− with negative signal of equal amplitude.
With this feeding arrangement, the E-fields inside SIW cavity will
modify accordingly. The vector electric fields for this differential
feeding arrangement is shown in Fig. 2(b).

Proposed geometry

The proposed differential full duplex antenna is realized by insert-
ing a pair of arc-shaped slots inside the outer cavity and a square
ring-shaped slot inside the inner cavity. These slots are inserted
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Figure 2. (a) E-fields for TE130 mode, TE310 mode and hybrid TE130/310 mode
(b) E-fields inside the cavity for modified hybrid TE130/310 mode and vector
E-field at 8.98 GHz under Port 1 excitation.
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Figure 3. (a) Electric-field isolines for modified hybrid TE130/310 mode under
differential Port 1 excitation (b) Vector electric field at 8.65 GHz under Port 2
excitation.

at the top-surfaces of the cavities. With the placement of the
arc-shaped slots, the resonant frequency of the modified hybrid
TE130/310 mode shifts to the lower value i.e. from 9.55 GHz to
9.35 GHz.This lowering is due to the strong reactive loading effect
of these slots. This phenomenon can be better explained by plot-
ting the contour of the electric field distribution in the outer cavity
with Port 1 excitation [Fig. 3(a)]. When the arc-shaped slots are
energized by the Port 1, it perturbs the fields of themodified hybrid
TE130/310 mode and results in x-polarized radiations at 9.35 GHz.
Furthermore, the locations and lengths of these arc-shaped slots
are fine adjusted for the better radiation characteristics.

On the other hand, the other radiating frequency of the differ-
ential full duplex antenna is obtained by inserting a square ring
slot of dimensions (b, wi) on the top surface of the inner cavity.

This square ring slot separates the inner cavity from the inner con-
ductor and forms a floating square microstrip patch of dimensions
a × a. When this square microstrip patch is differentially fed with a
pair of coaxial feed lines, designated as Port 2+ and Port 2−, it will
excite the odd order resonant modes such as TM01, TM21, TM03,
etc. and the remaining even order modes such as TM02, TM12, etc.
will be suppressed. According to the cavity model of microstrip
patch antenna [29], the resonant frequency fmn of TMmn mode of
the differentially excited patch is given as

Figure 4. (a) Simulated S-parameters of the proposed differential full duplex
antenna for different values of 𝜃 (b) Simulated S-parameters of the proposed
differential full duplex antenna for different sizes of inner square patch.

https://doi.org/10.1017/S1759078724001120 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078724001120


4 Gunjan Srivastava and Shalini Singh

(a) (b)

7 8 9 10
-30

-20

-10

0

s1= 29mm

s1= 31mm

s1= 33mm

S
1

1
d

d
)

B
d(

Frequency (GHz)

7 8 9 10
-30

-20

-10

0

s2=2.0 mm

s2=3.0 mm

s2=4.0 mm

s2=5.0 mm

S
2

2
d

d
)

B
d(

Frequency (GHz)Figure 5. S-parameters of the proposed full-duplex antenna
(a) |S11dd|-parameters for different values of s1
(b) |S22dd|-parameters for different values of s2.

fmn = c
2√𝜀eff

√( m
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)
2

+ ( n
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)
2

(2)

where c represents the speed of light, 𝜀eff is the effective dielec-
tric constant of the substrate,Wp and Lp indicates the patch width
and patch length, respectively. For the square microstrip patch,
WP = LP. The dimensions of the square microstrip patch a × a are
chosen in such a way that it operates at 8.65 GHz.The electric field
distribution of the square microstrip patch under differential Port
2 excitation in TM01 mode results in y-polarized electromagnetic
wave [Fig. 3(b)]. Figure 3 clearly demonstrates the dual polarized
behavior of the proposed full-duplex antenna.

To minimize the mutual coupling of the fields between the
outer cavity and square microstrip patch, the patch is differentially
excited through differential Port 2, which is orthogonally placed
w.r.t. to differential Port 1 of the outer cavity. Thus, high isolation
is obtained between the differential ports, which facilitates the full
duplex characteristics of the designed antenna.

Parametric analysis

To investigate the effect of different varying parameters on the
radiating frequencies of the differential full duplex antenna, a para-
metric study is performed using Ansys HFSS 2020. The variations
of the radiating frequencies for different slot and patch dimensions
are presented in this section. During the parametric analysis, only
one design parameter is varied, while the others are kept constant.
By varying the angle 𝜃 of arc-shaped slots, only the first radiating
frequencies of the differential full duplex antenna can be changed,
while the other radiating frequency remains unchanged. The first
radiating frequency can be independently tuned in the frequency
range from 9.1–9.45 GHz by varying the value of 𝜃 from 70∘ to
50∘mm, as shown in Fig. 4(a). The second radiating frequency of
the differential full duplex antenna can be changed by varying the
dimension a of the square microstrip patch. It can be tuned from
8.3 to 8.8 GHz, by changing the value of a from 11.25 to 10.75 mm,
as depicted in Fig. 4(b). It is clear from Fig. 4 that during these
variations, one of the radiating frequency bands changes while the
other remains unaltered. Thus, it can be concluded that both the
frequency bands of the proposed differential full duplex antenna
can be controlled independently. Due to the orthogonal arrange-
ment of the differential ports, excellent isolation, better than 50 dB,
is also maintained.

To have better understanding about feed locations, parametric
analysis for the design parameters s1 and s2 are also performed and
their results are plotted. Figure 5 shows the simulated S-parameters
for different values of s1 and s2 for differential Port 1 and Port 2,
respectively. As the value of s1 increases, impedance bandwidth
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Figure 6. (a) Simulated and measured S-parameters of the designed full duplex
differential antenna (b) Experimental set-up for antenna radiation pattern
measurements.

enhancement is observed. However, the value of s1 cannot be
increased beyond s1 = 33 mm due to the presence of arc-shaped
slots. Thus, s1 = 33 mm, provides optimum feed location which is
nearest to the radiating arc-shaped slots. Figure 5(b) shows simu-
lated S-parameters for different values of s2. It can be observed from
the figure that designed antenna has good impedancematch for the
center-to-center distance s2 = 3.0 mm of the differential Port 2.

The design parameters of the full duplex antenna are:
L = 56 mm, W = 56 mm, Wc = 49 mm, Wc_inner = 23 mm,
R = 19 mm, a = 11 mm, b = 12 mm, s1 = 33 mm, s2 = 3 mm,
d = 1 mm, p = 2 mm, wi = 0.5 mm, wo = 0.8 mm, 𝜃 = 60.

Design guidelines

Based on the aforementioned simulation studies, the design
guidelines can be summarized as:

1) Calculate the initial dimensions (Lc × Wc) of the outer cavity
using (1) for the degenerate modes TE130 and TE310 modal pair.

2) Place the nested inner cavity inside the outer cavity such that
frequency of modified hybrid TE130/310 mode lies in the X-band
(8–12 GHz).
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Figure 7. Simulated and measured far field radiation patterns at
(a) 8.65 GHz (diff. Port 2 ON) (b) 9.35 GHz (diff. Port 1 ON).

3) Apply the differential coaxial feed lines (Port 1+ and Port 1−)
to the outer cavity.

4) Place a pair of arc-shaped slots in the outer cavity such it radi-
ates in X-band. Tune the slot dimensions and location for better
radiation characteristics.

5) Insert a square ring slot of dimension b and width wi in the
nested inner cavity to obtain the floating microstrip patch of
dimension a × a. Tune the dimensions such that TM01 mode of
the square patch lies in the X-band.

6) Apply the differential coax feed lines (Port 2+ and Port 2−) to
themicrostrip patch along the orthogonal axes w.r.t. differential
Port 1 to minimize the mutual coupling of the electric fields of
the modified outer cavity and microstrip patch.

7) Finally, the cavity and/or slot dimensions can be fine-tuned to
adjust the frequency bands.

Results and discussion

To validate the proposed concept, the designed differential full
duplex antenna is fabricated on RT/Duriod 5880 substrate and
tested. The photograph of the fabricated prototype is shown in
Fig. 1(b).The S-parameters of the fabricated antenna are measured
using Agilent 5071C VNA, whereas radiation patterns and gains
are measured inside the anechoic chamber. The differential
S-parameters are evaluated as follows [1]:

S11dd = 1
2 (S1+1+ − S1+1− − S1−1+ + S1−1−)
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Figure 8. Peak realized gain of the proposed full-duplex differential antenna.

S22dd = 1
2 (S2+2+ − S2+2− − S2−2+ + S2−2−)

S21dd = 1
2 (S2+1+ − S2+1− − S2−1+ + S2−1−)

Figure 6(a) shows the simulated and measured S-parameters
of the designed differential full duplex antenna. The measured
results are found to be good agreement with the simulated
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Table 1. Comparison with other full duplex antennas

Ref Feeding arrangement Size (λg
3) Freq.(GHz) Pol. Min. iso. (dB) Gain (dBi)

[4] Single 1.08 × 1.89 × 0.03 4.1, 4.9 Dual 32 4.36, 4.83

[5] Diff. 0.86 × 0.86 × 0.28 3.5, 4.95 Dual 20 7.6, 7.92

[6] Diff. 0.80 × 0.33 × 0.012 2.4, 5.8 Single 18 5.45, 8.5

[32] Diff. 1.50 × 1.50 × 0.07 2, 2.44 Single 36 5.86, 6.67

[33] Diff. 1.79 × 1.79 × 0.017 3.22, 4.1 Dual 51 2.5, 2.5

Prop. Diff. 1.8 × 1.8 × 0.019 8.65, 9.35 Dual 52 6.1, 7.6

λg is the wavelength at the lowest operating frequency,.

results. The fabricated full duplex differential antenna radiates
at 9.35 GHz (9.25–9.45 GHz) under Port 1 excitation and at
8.65 GHz (8.55–8.85 GHz) under differential Port 2 excitation.
An isolation better than 52 dB is observed between the differ-
ential ports. In terms of bandwidth, our designed full duplex
antenna has the narrow bandwidth, an inherent characteristic of
SIW-cavity-based antennas. However, the bandwidth provided by
our antenna is more than sufficient for radar applications includ-
ing dual-polarized synthetic aperture radar. Though, there are
various methods that can be adopted to improve the impedance
bandwidth. From cavity-backed antenna theory, it is well known
that impedance bandwidth is directly proportional to cavity depth
[30, 31]. The impedance bandwidth of the proposed antenna can
be improved by increasing substrate thickness.

Figure 6(b) shows the setup for the measurement. To measure
the far field radiation pattern and gain of the fabricated differen-
tial full duplex antenna, a wideband 180∘ coupler is utilized to
generate differential signals. The hybrid coupler has the differ-
ence (Δ) and the summation (Σ) ports. The first one is connected
to the signal source whereas the latter one is connected to 50Ω
matched load. During the measurement of radiation pattern with
Port 1 excitation, the outputs of the hybrid coupler are con-
nected to Port 1− and Port 1+ of the differential antenna, while
the other ports (Port 2− and Port 2+) are terminated with 50
matched Ω loads. In the similar fashion, with Port 2 excitation,
the outputs of the hybrid coupler are connected to Port 2− and
Port 2+.

The simulated and measured radiation pattern of the designed
differential full duplex antenna at 9.3 GHz (under diff. Port 1 exci-
tation) and 8.65 GHz (under diff. Port 2 excitation) in both the
principal planes are plotted in Fig. 7. The designed antenna has
broadside radiation characteristics with high front-to-back ratio of
22 dB in the operating bands.The peak realized gains of full duplex
differential antenna are plotted in Fig. 8 and are 7.6 dBi (under diff.
Port 1 excitation at 9.35 GHz) and 6.1 dBi (under diff. Port 2 exci-
tation at 8.65 GHz), respectively. The radiation efficiencies better
than 80% are also observed.

The designed full-duplex antenna system is compared with
other state-of-the-art works reported in the literature. The com-
parison is performed in terms of size, polarization, gain, and port-
to-port isolation and is depicted in Table 1. It is clear from the table
that the performance of the designed antenna is comparable with
the other antennasw.r.t. size, operating frequency, port-to-port iso-
lation, and gain.Moreover, the designed antenna has high gain and
excellent isolation along with good polarization purity that makes
it a potential candidate for the full duplex systems operating in
X-band.

Conclusion

A low-profile differential, full-duplex antenna is designed in this
paper. The proposed antenna is fed by two pairs of differential
coaxial feed lines. It radiates at 9.35 and 8.65 GHz, along with
an isolation better than 52 dB between the differential ports.
The operating bands of the designed differential antenna can be
independently adjusted as per the requirements. The designed
differential antenna eliminates the requirements of additional cir-
cuitry that provides high isolation between the differential ports.
The proposed antenna provides excellent polarization purity, i.e.,
the designed antenna has very low cross-pol levels (<−30 dB)
with respect to co-pol in the broadside direction. The designed
antenna can be used for X-band radar applications, including dual-
polarized synthetic aperture radar for weather monitoring, air
traffic control, and maritime vessel traffic control.
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