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Abstract. To date, more than 130 extrasolar planets around main sequence stars are revealed
mainly by the Doppler radial velocity measurements. Due to the observational biases, most of
the detected planets are moving in orbits close to the host stars, with some in highly eccentric
orbits. Dynamical processes during the late stage of planet formation are important to account
for the present orbital properties. These processes include: planet migrations and resonance
trappings caused by gravitational interactions between protostellar disk and planets, dynamical
scattering due to interactions between planets, etc. In this paper, we review the major effects
of these dynamical processes on the orbital characteristics of the planet systems.

Keywords. Celestial mechanics, stars: planetary systems

1. Introduction
The study of dynamical evolution of planets under mutual gravitational interactions is

a classic subject for celestial mechanics, which can be backdated to the works of Laplace
and Lagrange in the late eighteen’s century. However, as the solar system was the only
paradigm of planetary system before 1990’s, the classical perturbation theory for planet
dynamics was based on near-circular orbits with large separations. The discovery of the
extrasolar planets around a neutron star PSR 1257+12 by Wolszczan & Frail (1992)
and a solar-type star 51 Peg by Mayor & Queloz (1995) opened a new era of planetary
science. To date, more than 130 extrasolar planets around solar-type stars have been
discovered (†), among them 11 multiple planetary systems are confirmed. As most of
the discovered extrasolar planets are moving in orbits close to the host stars, with some
in high eccentricity orbits, both the classical planet formation theories and the classical
perturbation and stability theories are facing great challenges.

There have been many excellent reviews on the dynamical evolution of extrasolar planet
systems during the past years, e.g., Lin et al. (2000), Ward & Hahn (2000), et al.. In this
paper, we collect some of the current knowledge on the this subject. First we make some
statistics on the orbital distributions of the discovered extrasolar planets, then we review
some important dynamical processes as well as some recent progresses that are helpful
to understand these characteristics.

2. Statistics of Extrasolar Planets
We use the elements of 114 planets, where 111 planets are taken from the web

(exoplants.org), and the rest 3 are from the recently discovered “very hot Jupiters”:
OGLE-TR-56b (Torres et al. 2004), OGLE-TR-113b (Konacki et al. 2004), OGLE-TR-
132b (Bouchy et al. 2004). The orbital distributions of these planets show the following
statistical properties (see also Udry, Mayor & Queloz 2003, Marcy et al. 2003):

† See http://www.obspm.fr/encycl/encycl.html, http://exoplanets.org/
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Figure 1. Statistical graphes for the dynamical parameters of the observed 114 planets (see
text). In (a) and (b): open circles are for planets with Mp sin i < 5MJ (total No.=88), and filled
circles for those with Mp sin i > 5MJ (total No.=26). The dotted horizontal (vertical) line in (a)
corresponds to Mp sin i = 5MJ (period= 50days, resp.). In (c) and (d): the distributions with
empty (shaded) bars are for planets with Mp sin i < 5MJ ( Mp sin i > 5MJ ,resp.).

Period-mass graph. Due to the limitation of the observations, most of the planets
are located in short period orbits with masses comparable to Jupiter(Fig.1a). If we
classify the planets into two groups: large planets (Mp sin i > 5MJ ) and small plan-
ets (Mp sin i � 5MJ ), then almost all large planets are located in orbits with P > 50days
(∼ 0.27AU) (Fig.2b). The only one exception at present time is the planet of HD162020,
with Mp sin i = 14.4MJ , and a period of 8.4 days. This phenomenon may be the conse-
quence of either the inefficient accretion of planets at small radius during the late stage of
formation, or the dependence of migration speed on planet masses after their formation.
We will discuss this later.

Period-eccentricity graph. Both larger planets and small planets can reach high eccen-
tricities, indicating that there are some robust mechanisms to pump planet eccentricities
(Fig.1b). The tidal circularization time scale is ∼ 5.4Gyr for a Jupiter mass planet around
a solar mass star in a 3-day period orbit (Lin et al. 2000), thus the eccentricities of planets
in orbits with periods < 3days were most possibly damped. The detection of the three
“very hot Jupiters” reduces the “cutoff” period to 1day (∼ 0.02 AU).

Period distribution. There is a slight shortage of small planets at intermediate period
(∼ 10 − 200 days) orbits (Fig.1c). Large planets locate somewhat evenly in orbits with
period 100 ∼ 3000 days, except a small peak at period ∼ 1000days.

Eccentricity distribution. The eccentricity distribution of the 26 large planets has an
average at 0.39, with a variance 0.2 (Fig.1d). For the 88 small planets, the average value
is 0.23, with a variance 0.19. The large difference of the average eccentricities between
large and small planets shows that they might have passed some different dynamical
histories.
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3. Dynamics of Single Planet Systems
We begin with a planet system which is in the late stage of planet formation, so at

least one protoplanet (or planet core) was formed in a gaseous disk, together with a
planetesimals disk in the equatorial plane of the host star. It is generally believed that
short-period planets were formed several AU away from their host stars and subsequently
migrated to their present locations (Lin, Bodenheimer & Richardson 1996). On the other
hand, orbital migration is a natural consequence of the interactions between gaseous disk
and planets.

When the protoplanets formed through core accretion scenario, dynamical frictions
with the residual populations of smaller bodies reduce the orbital eccentricities and in-
clinations of the protoplanets, which results nearly circular, coplanar orbits for the pro-
toplanets (Kokobu & Ida, 1998). Thus the eccentricities of the observed planets could,
most probably, be excited after the protoplanets were formed.

3.1. planet-Gaseous disk interactions
A protoplanet perturbs its nascent gaseous disk through gravitation. According to the
linear theory, the protoplanet exerts torques on a dynamically cold disk (c � rΩ, where
c, r,Ω are the sound speed of gas, the orbital radius and angular velocity of planet motion,
respectively) mainly at the Lindblad and corotation resonances (Goldreich and Tremaine,
1979, 1980). In a Keplerian disk(and hereafter), these resonances occur at locations with
Ω(r) : Ωp = l : (m + ε), where Ωp is the angular velocity of the protoplanet, l,m are
integers, |l−m| is the order of the resonance, ε = −1, 0, 1 correspond to the inner Lindblad
resonances (ILRs), corotation resonances(CRs), and outer Lindblad resonances (OLRs),
respectively. The torque of a protoplanet exerts on the disk at a Lindblad resonance (LR)
is given as (Goldreich and Tremaine, 1980),

TL
l,m ≈ π2

3ε

[
σΩ−2

(
rdψl,m

dr
− 2m

ε
ψl,m

)2]
r=rL

(3.1)

and that at a corotation resonance (CR) is given as,

TC
l,m = −4

3
mπ2

[(
r

Ω
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d

dr

(
σ

Ω

)]
r=rC

(3.2)

where σ is the surface density of the disk, ψl,m ∼ O(µe|l−m|) is the coefficient of the
protoplanet potential under Fourier expansion, and µ = Mp/M∗ where M∗ is the mass
of the star. Thus the torques at LRs have the same sign of ε, while those at CRs depend
on the gradient of σ/Ω.

3.1.1. Orbital migrations
There are two main types of migrations for a protoplanet under tidal interaction with

the gaseous disk:
Type I migration. Suppose the protoplanet is too small to make large modifications

to the surface density of the disk, and the disk has surface density like the minimum-
mass solar nebula, where σ ∼ r−3/2 ∼ Ω. in such disks the torques at CRs (3.2) vanish
in an almost unperturbed disk (Ward 1988, Artymowicz 1993). The differential torques
generated by LRs between the inner and outer part (relative to the protoplanet orbit) of
the disk drive the protoplanet to migrate inward, which is called type I migration (Ward
1997a). The time scale for the orbital decay, τI = r/ṙ, is given by (Ward 1997b)

τI ∼ 1
2πc1

(
M∗
Mp

)(
M∗
σr2

)(
c

rΩp

)3

Tp (3.3)
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Where c1 is a constant of order unit, Tp = 2π/Ωp is the orbital period of the planet.
Setting M∗ = M�, c/Ωp ∼ h = 0.07r, where h the scale height of the disk, σr2 =
10−3M�, thus for a planet with mass 10M⊕ at r = 5AU, one has τI ≈ 2 × 104 years.

Gap formation. As the torques at ILRs (OLRs) are negative (positive,respectively), the
inner disk loses angular momentum while the outer disk gains it. Hence, a protoplanet
tends to form a gap near it, while disk viscosity tends to close it. The critical mass of the
protoplanet that can open a gap is (Lin and Papaloizou 1979, Lin and Papaloizou 1993),

µc =
40ν

r2
pΩp

= 40α

(
c

rpΩp

)2

(3.4)

where we have used the α as prescribed by the kinematic viscosity (Shakura-Sunyaev
1973), ν ∼ αc2/Ω. With the above parameters, and set α ∼ 10−4, we have mgap =
µcM� ≈ 7M⊕. Hydrodynamical simulations show that the above criterion is accurate
within a factor of 2 (Bryden et al. 1999). It was believed that gap formation will reduce
greatly the mass accretion of the protoplanet (Lin and Papaloizou 1993). Hydrodynamical
simulation found the mass accretion rate through the gap onto the planet is reduced
markedly when the disk viscosity is small(α � 5 × 10−4), but when the disk has large
viscosity (α ∼ 10−3), the protoplanet is still able to accrete lots of mass even after the
formation of a nearby gap (Kley 1999).

Type II migration. When a gap is maintained near a protoplanet, the tidal torques at
resonances balance the viscosity torque. Thus the protoplanet is locked to the disk, and
will drift inward with a time scale determined by the viscosity of the disk:

τν =
r2

ν
∼ 1

2πα

(
rΩp

c

)2

Tp (3.5)

Adopting α = 10−4 and c/(rΩ) = 0.07, we find a planet at 5AU will drift inward with a
time scale of τν ≈ 3 × 106 years.

3.1.2. Problems on planet migration
Time scale of migration. Both type I and type II migrations predict fast inward migra-

tions for a protoplanet after it is formed, especially the type I migration has a time scale
of ∼ 104 years, which is much shorter than the age of the gaseous disk (∼ 107 years).
To reduce the risk of migrating planets swallowed by the host star, a possible solution is
trying to reduce the minimum mass for gap formation, thus reduce the time of a planet
in type I drift. Considering the nonlinear evolution of the density waves in a thick disk
could slightly reduce mgap to 2− 15M⊕ (Rafikov 2002). Koller, Li & Lin (2003) propose
that secondary shearing instabilities will occur near the streamline separatrix at 3.5 − 5
Hill’s radius away form the planet, which can lead to the formation of large vortices
and thus results in fluctuating (positive and negative) torques instead of the negative
ones. Laughlin, Steinacker and Adams (2004), Nelson and Papaloizou (2004) argue that,
in the locations where the magnetorotational instability is active, type I migration can
be readily overwhelmed by turbulent perturbations, and gravitational torques arising
from magnetohydrodynamics turbulence will contribute a random walk component to
the migratory evolution of the planets, thus increasing the drift time scale.

The inward migration of a planet could be stopped near the star as a result of tidal in-
teraction with the host star, or through the evacuation of the inner disk by some processes
such as interactions with stellar magnetosphere (Lin, Bodenheimer & Richardson 1996),
magnetorotational instability (Kuchner & Lecar 2002), photoevaporation by irradiation
from the central star (Matsuyama, Johnstone and Murray 2003), etc. The negligible
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eccentricity of all extra-solar planets with periods less than 6 days can be accounted for
by tidal dissipation induced by their host stars. While the coexistence of planets with
periods 7-21 days on both circular and eccentricity can be accounted for by the variations
in spin-down rates of the young stars (Dobbs-Dixon, Lin, Mardling, 2004)

Lack of large planets on small period orbits. The observed lack of large planets on
small period orbits, if it is a true phenomenon, needs an explanation (Fig.1a). Tidal
interactions between host stars and the protoplanets cannot account for this, since the
orbital decay timescale would be ∼ 1012 years for a Jupiter mass planet in an orbit with
period of 10 days (Terquem et al. 1998, Lin et al. 2000). Type II migration alone can
not account for this either, since the migration speed is independent of the protoplanet
mass. Ivanov, Papaloizou & Polnarev (1999) found that, when the mass of the planet
is larger than the characteristic mass with which it tidally interacts, the inertia of the
planet becomes important in slowing down the orbital evolution. This model predicts
that a protoplanet with mass substantially larger than Md0, the mass of disk inside the
planet orbit, should not increase its mass significantly before migrating to the center of
the disc. Thus the planet mass should be limited at about Md0 ∼ σr2, which implies
that planets with comparatively large period orbits could have larger masses. Numerical
results of Nelson et al. (2000) show that the maximum mass of a protoplanet that can
accretion while migrating to the neighborhood of the central star would be ∼ 5MJ .

Direction of planet migrations. While most of the theories and numerical results predict
inward migrations, an outward scenario is required by the existence of planets with large
semi-major axis (like Uranus and Neptune). This because, according to the core formation
scenario, the time scale for the planets to form at larger semi-major axis (several tens of
AU) would be prohibitively long. Outward migrations can be caused also by interactions
with gas disk in some circumstances. Veras & Armitage (2004) proposed that, a strong
mass loss from the disk can cause a planet to migrate outward. The strong mass loss
from the disk can be caused by photoevaporation from the host star if it is more massive
than the Sun, or result from removal by other perturbations from nearby stars within
a cluster. Other mechanisms such as interactions between planet and planetesimal disc
(see Sec.3.2) and protoplanets scattering can also cause outward migrations.

3.1.3. Eccentricity evolution
The linear theory predicts that LRs can excite the eccentricity of a protoplanet in

the disk, while CRs damp the eccentricity. Thus the final evolution of the eccentricity
depends on the competitions between these two effects. However, as the magnitudes of the
CRs depend on the gradient of the local surface density of the disk, the final evolution of
planet eccentricity may be quite elusive (Goldreich & Tremaine 1980, Lin and Papaloizou
1993). Briefly speaking, it depends on the circumstances of the disk and planet:

Small planet case. If a protoplanet is too small to open a gap near it(µ ∼ 10−6), the
CRs are not important. The role of the LRs on the protoplanet depends on their locations.
According to Ward (1988), LRs outside (both interior and exterior) it’s orbit excite
planet eccentricity, while those co-orbiting with the protoplanet damp the eccentricity
more effectively. Thus the eccentricity of the protoplanet ultimately suffers decay.

Moderate planet case. If the protoplanet is large enough to open a gap near it (µ =
10−5 ∼ 10−4), the gradient of σ/Ω is large near the gap, so the CRs dominate by a slight
margin, and the eccentricity is damped (Goldreich & Tremaine 1980).

Massive planet case. When the protoplanet is massive (µ ∼ 10−3), the gap near it is
wide enough so that all the important resonances (with large m) fall into the gap, thus
both LRs and CRs can be severely weakened, in this case the increase of eccentricity
is possible. Lin and Papaloizou (1993) show both analytically and numerically that, for
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a massive planet with its gap truncated near the 2 : 1 resonance, it’s eccentricity may
increase with a rate,

τ ∼
(

1
µ

M∗
πσr2

p

)
Tp (3.6)

So for a Jupiter mass planet at 5AU, suppose πσr2
p ∼ 10−3M∗, its eccentricity could

increase in 107 years, the same time scale as the age of the gaseous disk. Goldreich &
Sari (2003) shows the evolution of the disk and a massive planet could lead to a increase
of planet eccentricity. Moreover, the depletion of the disk can also cause changes of planet
eccentricities (Nagasawa, Lin & Ida 2003).

Numerical simulations give similar qualitative results, i.e., the eccentricity of planets
with large masses will increase under planet-disk interactions, but those with small masses
may have their eccentricity damped. With two-dimensional hydrodynamical simulations,
Papaloizou, Nelson and Masset (2001) shows that, there exist a transition mass (∼ 20MJ )
such that, for a planet with lower mass the eccentricity would be damped, otherwise the
eccentricity is excited to values of 0.1 ∼ 0.25. They suggested that the transition mass
might be reduced into the range of the observed extrasolar planets at a very low disc
viscosity.

3.2. Interactions between planets and planetesimal disk
Migration due to interactions between planets and planetesimal disk is well studied in
the evolution of outer solar system (e.g., Malhotra 1993, Hahn & Malhotra, 1999). The
direction of the planet migrations is mainly determined by the averaged angular momen-
tum H =

√
a(1 − e2) of the planetesimals. For planetesimals with H greater than that

of the planet’s Hp, they have a larger average tangential velocity relative to the orbital
motion of the planet, thus the result of close encounters between the planetesimals and
the planet is to increase the angular momentum of the planet, which leads to an out-
ward migration of the planet (Ida et al. 2000, Gomes, Morbidelli, Levison 2004). Since
the encounters between planetesimals and planets are more or less erratic, the migration
caused by interactions between planets and planetsimal disk is not smooth(Ida et al.
2000, Zhou et al. 2002).

Murray et al. (1998) proposed that resonant interactions between the planet and the
planetesimals can remove angular momentum from the planetesimals, increasing their
eccentricities. Subsequently, the planetesimals either collide with or are ejected by the
planet, reducing the semi-major axis of the planets. If the surface density for the plan-
etesimals is above some critical values, an instability would occur so that the planet can
migrate inward with by a large amount. However, the critical surface density for the
planetesimals should be ∼ 200gcm−3r−3/2, which is an order of magnitude larger than
that of the minimum solar nebula.

4. Dynamics of Multiple Planet Systems
The evolution of a multiple planet system under their mutual attractions is a paradigm

of the classical N body problem, which is not integrable for N � 3. The study of the
stability of planet systems can give constrains on the parameters of the planets, especially
the mass of planets, which are determined up to a sin i factor from the Doppler survey. For
the convenience of stability study, multiple planet systems can be classified in three types
(e.g., Barnes & Quinn 2004): resonant, interacting and hierarchical systems. Resonant
systems contain planets in lower order mean motion resonances (MMR). Interacting
system contain planets that are not in lower order mean motion resonances but are
separated with period ratio less than 10 : 1. Hierarchical systems contain planets with
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Table 1. Parameters of the planets in Resonances

star M∗ Mp sin i a Period eccentricity comment
(M�) (MJup) (AU) (days)

55 Cnc b 1.03 0.84 0.115 14.65 0.02 3:1 MMR+AC
55 Cnc c 1.03 0.21 0.24 44.28 0.34 3:1 MMR+AC
GJ876 c 0.32 0.56 0.13 30.1 0.27 2:1 MMR+AC
GJ876 b 0.32 1.89 0.21 61.0 0.10 2:1 MMR+AC
HD82943 c 1.05 1.85 0.75 219.4 0.54 2:1 MMR+AC
HD82943 b 1.05 1.84 1.18 435.1 0.41 2:1 MMR+AC
47 UMa b 1.03 2.54 2.09 1089 0.06 ASR
47 UMa c 1.03 0.76 3.73 2594 0.1 ASR
Ups And c 1.30 1.89 0.829 241.5 0.28 ASR
Ups And d 1.30 3.75 2.53 1284 0.27 ASR
HD12661 b 1.07 2.3 0.82 263.6 0.33 ASR
HD12661 c 1.07 1.5 2.46 1530 0.2 ASR

Note : MMR-mean motion resonance; AC-apsidal corotation; ASR-apsidal secular resonance.
Data of HD82943 from Mayor et al. 2004, others from http://exoplanets.org/

a period ratio grater than 10 : 1, and can be approximated as dynamically decoupled
systems, provided that their eccentricities are not very large.

According to the above definition, our solar system is an interacting system. For the 11
confirmed multiple extra-solar planetary systems to date, 3 pairs of planets are confirmed
in mean motion resonances (Fischer et al. 2003): HD82943, GJ876, 55 Cancri b and c,
see Table 1. The HD160691 system, with uncertain parameters, could be most probably
in a 2:1 resonance (Bois et al. 2003). Interacting systems include 3 systems: Ups And
(c-d), HD12661, 47 Uma. 5 systems are hierarchical: HD38529, HD74156, HD168443,
HD37124, HD169830. The last two systems are marginal hierarchical, with period ratios
9.8 and 9.3, respectively. As the eccentricities of planet orbits in these two systems are
large, their stability need inspection. The outmost planet of 55 Cancri and the innermost
planet of Ups And are hierarchical with other planets in the same system.

4.1. Resonant Systems

Mean motion resonance is an important mechanism that leads to stable configurations
for nearby planets. Among the three confirmed pairs of planets in resonances, 5 plan-
ets are in orbits with large eccentricities, which is in contradiction with our knowledge
about stability. Thus a natural question is, can stable periodic solutions exist with high
eccentricities, corresponding to equilibriums of mean motion resonances? Hadjidemetriou
(2002) gives a positive answer. Let us take the 2 : 1 resonance as an example. Define the
corresponding two resonance angles as

θ1 = 2λ2 − λ1 − 
1,
θ2 = 2λ2 − λ1 − 
2,
σ = θ2 − θ1 = 
1 − 
2 = ∆
 .

(4.1)

Resonant solutions with θ1 = 0, σ = 0 are symmetrical periodic solutions with apsidal
corotation (AC) in a coordinate system comoving with one planet. Using the continua-
tion method of the periodic orbits, Hadjidemetriou (2002), Hadjidemetriou & Psychoyos
(2003) studied the families of periodic orbits near the 2:1 and 3:1 resonances in a 2-planet
systems with applications to the GJ876 and HD82943 systems. Stable resonance orbits
are found at large eccentricities with e1 > e2, in accordance with the two systems.
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The existence of asymmetric libration solutions (θ1 �= 0, π, σ �= 0, π) has been shown
by Beaugé, Ferraz-Mello, and Michtchenko (2003), with a new perturbation method de-
veloped by Beaugé and Michtchenko (2003). The method allows us to study analytically
the evolution of extrasolar planets on high eccentricity orbits. They find that the ex-
istence of stable periodic orbits depends on the mass ratio of the two planets m1/m2,
thus it gives a constraint for the mass of the observed planets. They also find that the
evolutionary track of GJ876 and HD82943’s eccentricity coincide with the lines of stable
2:1 resonance solutions for the observed mass ratio. This gives a strong evidence of a
migration history for these systems. This method is applied to the 55 Cancri system: the
two inner planets are in 3:1 resonance and also in apsidal corotation (Zhou et al. 2004).
From hydrodynamical simulations, tidal migrations of planets pairs in 55 Cancri can lead
to a trapping of both 3:1 resonance and apsidal corotation (Kley 2002).

One of the remaining problems concerning the migration evolution of the resonant
systems is the damping of their eccentricities. Suppose the planets are initially in cir-
cular orbits, when they migrate under the tidal interaction of either gaseous disk or
planetesimal disk, their eccentricities will increase inevitably (e.g., Lee and Peal 2002).
So a damping mechanism for the eccentricity are required to fit the observed values. Lee
and Peal (2002) find that a damping rate with

ėi

ei
= −K

∣∣∣∣ ȧi

a

∣∣∣∣, (i = 1, 2) (4.2)

and K ≈ 100 is required to account for the observed eccentricities of the two planets in
GJ876 systems. Though this type of damping rate is coincident in form with that from
disk-planet interactions, the required value of K is much larger than that obtained from
the density wave theory.

4.2. Interacting systems
For the interacting systems, apsidal secular resonance (ASR) could be one of the dy-
namical effects that enforce the stability of planetary systems. An ASR occurs when the
secular motion of two planets’ longitudes of the perihelion (
1 and 
2) have almost the
same frequency, thus d(∆
)/dt ≈ 0. Planets in aligned ASR can reduce the possibility
of close encounters, thus ASR can stabilize the interacting planets. An impulsive pertur-
bation (e.g. by ejection of other planets) which increases the eccentricity of one planet
can possibly lead two planets into ASR (Malhotra 2002). All the 3 pairs of planets in the
present observed interacting systems are in ASR (see Table 1): Ups And c-d, 47UMa,
HD12661. According to the linear secular perturbation theory, whether two planets in
ASR depends only on m1/m2, a1/a2, e1/e2 and ∆
(Zhou and Sun 2003).

The HD12661 system is the first extra-solar planetary system found to have two plan-
ets in anti-aligned ASR (∆
 = π). Lee and Peale (2003) use octopole-level secular
perturbation theory to study the secular evolution of a planetary system. They find
that, when the angular momentum ratio L1/L2 ≈ (m1/m2) (a1/a2)1/2 is equal to some
critical values, the phase space of the secular system is occupied by apsidal librations.
They find HD12661 system is close to this critical configurations, thus the secular sys-
tem of HD12661 is stable. However, as a general three-body system, the present observed
HD12661 system is on the border between chaos and regular motion (Kiseleva-Eggleton
et al. 2002, Zhou & Sun 2003).

4.3. Stable region
Most works are devoted to the stability study of the observed multiple planet systems
from the fitted initial conditions. The general N-body model is used during the numerical
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integrations, with the auxiliary computation of Lyapunov characteristic numbers (LCN),
Fast Lyapunov Indicator (FLI) developed by Froeschlé, Lega & Gonczi (1997) and the
MEGNO technique by Cincotta & Simó (2000). Barnes & Quinn find that the stable
regions of the two resonant systems, HD82943 (with old data from ‘Extrasolar Planets
Encyclopaedia’) and GJ876, are very narrow (Barnes & Quinn 2004). This indicates that
the HD82943 and GJ876 systems are protected only by the mean motion resonances, and
most likely the present large eccentricities are the consequence of planet migrations. For
the unconfirmed HD160691 system, the planets can be stable only in a 2:1 MNR (Bois
et al. 2003), which shows HD160691 system should be a member of the resonant systems
as well.

For the interacting systems, two systems (Ups And , 47 Uma) have border stable
regions (Barnes & Quinn 2004), thus they could be stable even without the apsidal secular
resonances, and the observed eccentricity could be the results of planet scattering. The
HD12661 system is on the border of chaotic and regular motions as mentioned before
(Zhou & Sun 2003,Barnes & Quinn 2004).

The stability of the marginal hierarchical system HD169830 is studied by Goździewski
& Konacki (2004), which shows the present system is in a wide stable zone, thought
the planets have large eccentricities. For another marginal hierarchical system HD37124,
Kiseleva-Eggleton et al. (2002) found the present configuration is near the border of
a wide stable region. Dvorak et al. (2003) find there is difficult to host planets in the
habitable zone of the hierarchical system HD74156. A systematical study of dynamics of
binary stars planetary system have been done by their group (e.g., Pilat-Lohinger, Funk,
Dvorak, 2003).

4.4. Onset of instability

Since generally a Hamiltonian system with more than two degrees of freedom is not
integrable, instability will arise for a planet system with two planets or more. Fortunately,
for a planet system with sufficient small planet mass and sufficient large separations, the
speed of orbital diffusion in the action space (corresponds to angular momentum and
energy, etc.) could be very small. Knowing the time scale over which instability may
occur would be helpful to understand the time scale of the excitation of the orbital
eccentricities by scattering among planets.

For a planet system with two planets initially on circular orbits, the system will be
Hill stable (stable against close approaches for all time) if the relative orbital separa-
tion of the two planets (δ = (a2 − a1)/a1) fulfils, δ > 2.4(µ1 + µ2)1/3, where µi =
mi/m∗(i=1,2) (Gladman, 1993). However, when the planet number is larger than 2,
things become quite different. Suppose N planets with equal mass m initially on cir-
cular orbits, and the separations are equal when scaled with their mutual Hill’s radius,
RH = (2µ/3)1/3 (ai + ai+1)/2,(i = 1, ...n − 1). Chambers, Wetherill and Boss (1996)
found the crossing time Tc, defined as the minimum time that orbital crossing is ex-
pected, could be approximated by log(Tc) = b(∆a0/RH) + c, where b(> 0), c are con-
stants, ∆a0 = ai+1 − ai, and Tc is in unit of years. Thus whenever the planet number
is larger than 2, there is no Hill-stable region in the phase space so that Tc → ∞. An
important result is that b, c seem to have little dependence on N when N � 5. Yoshinaga,
Kokubo & Makino (1999) extended the study to the case when planets are initially in
elliptic and inclined orbits. An extension to a much wider initial separations shows that,
the orbital crossing time of planets in initially circular orbits can be expressed as (Zhou,
Lin, Sun, in preparation):

log(Tc) ≈ −2 − 2
7

log µ + (19 + 1.2 log µ) log
(

∆a0

2.3RH

)
, (∆a0 > 2.3RH) (4.3)
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where Tc is in the unit of years. The crossing time for planet initially in circular and non
circular orbits are shown in Fig.2 (the initial eccentricity e0 is scaled by h = (ai+1 −
ai)/(ai+1 + ai)). According to (4.3) and Fig.2, there exist systems that are dynamically
unstable but the time scale over which such instability occurs is much longer than the
physical age of the system, thus it is “effectively stable”.

On the other hand, for planets with small separations, the orbital crossing time can be
very short. According to (4.3), the instability time scale will ∼ 106.7 years for N(N > 3)
protoplanets with mass µ = 10−7 and ∆a0/RH = 10. Thus the excitation of planet
eccentricities can occur within a short time scale. But as the protoplanets have larger
masses, the excitation of the eccentricities require a longer time.
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Figure 2. The orbital crossing time of multiple planet systems with equal planet masses
and scaled separations (see text). (a) planets are initially in circular orbits. (b) Planets with
µ = 10−7.

5. Summary
The dynamical evolution of the extra-solar planetary systems is a complicate process

involving planet-disk interactions and interplanetary scattering. According to the present
knowledge, we have the following conclusions:

(1) For the observed extra-solar planets with short period orbits, migration is believed
to occur after the planets are formed. The type I migration rate given by the linear
density wave theory would be too fast. The lack of large planets with short period orbits
may be due to either the inefficient mass accretion for planets at small period orbits, or
due to the inefficient (or too efficient) migration of large planets. If the latter scenario is
right, we need a mechanism to generate a mass-dependent migration.

(2) For single planet systems with massive planet mass (of the order of Jupiter mass),
the interactions with gaseous disk can excite the eccentricities of the planet orbits, How-
ever, the required minimum mass of planet is too large as found by some numerical
simulations. Other dynamical processes, e.g., scattering with smaller, unseen planets,
can also generate the eccentricity.

(3) For multiple planet systems, the excitation of eccentricity can either by inter-
planetary scattering, which may lead to an erratic change of the eccentricity, or by
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adiabatic migration due to interactions with remnant gaseous disk, which leads to a
gradual increase of eccentricity. The eccentricities of planets in interacting systems and
hierarchical systems can be excited by the former mechanism. On the other hand, the
eccentricities of planets in resonant systems are most probably excited by the latter
mechanism during the migration, being trapped into resonance. However, in the resonance
trapping case, we still need a mechanism to keep the eccentricities as the observed values
after they are excited.

Our current knowledge is limited due to the insufficient observations, and it’s still too
early to say that our solar system is very special among the known planet systems. With
the development of the observation technics we can get more knowledge of the possible
configurations of planetary systems, and celestial mechanics will become more and more
important in the study of dynamics of the extrasolar planetary systems.
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Beaugé, C., Ferraz-Mello, S., & Michtchenko, T.A., 2003, Astrophys. J., 593, 1124
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