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Abstract

The loss count distributions whose probabilities ultimately satisfy Panjer’s recursion were classified
between 1981 and 2002; they split into six types, which look quite diverse. Yet, the distributions are closely
related — we show that their probabilities emerge out of one formula: the binomial series. We propose a
parameter change that leads to a unified, practical and intuitive, representation of the Panjer distributions
and their parameter space. We determine the subsets of the parameter space where the probabilities are
continuous functions of the parameters. Finally, we give an inventory of parameterisations used for Panjer
distributions.

Keywords: Panjer class; Unified representation; Discrete loss distribution; Binomial series

1. Introduction
1.1 Motivation

The loss count distributions of the Panjer class are popular in insurance and beyond, in particular
the classical models Poisson, binomial and negative binomial (NB). Apart from being realistic and
intuitive, they are easy to handle computationally as their probabilities satisfy a recursive formula.
For more flexibility, it was successfully tried to extend the class of distributions, while preserving
most of their convenient properties. The above three models are the only nontrivial ones fulfilling
Panjer’s recursion thoroughly (Sundt & Jewell, 1981), but two models satisfy it for all probabilities
but the lowest step (po to p1), namely the logarithmic distribution and the so-called Engen or
extended truncated negative binomial distribution (ETNB) (Willmot, 1988). Finally, Hess et al.
(2002) classified the discrete loss distributions fulfilling the recursion for all but a finite number
of initial probabilities, by extending the NB distribution further and adding an extension of the
logarithmic distribution. Overall, the resulting class embraces six types of distributions which,
however, look quite diverse. So, the picture is complete, but a bit heterogeneous.

1.2 Research context

In the actuarial literature, extensions of the Panjer class beyond the three classical models have
been investigated since the 1980s, when Panjer’s famous recursive algorithm to calculate the
aggregate loss distribution in the collective model emerged (Panjer, 1981). It was successfully
tried to generalise the recursive formula for the probabilities in a number of ways, which leads
to a huge variety of distributions, see, for example, Sundt & Jewell (1981), Willmot and Panjer
(1987), Schroter (1990), Gerhold et al. (2010), the survey paper Sundt (2002), and the textbooks
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Panjer & Willmot (1992), Klugman et al. (2008). However, as for example, Albrecher et al. (2017)
note in a compact review of the Panjer class, some of the findings are older and date back at least
to Johnson & Kotz (1969).

We focus on the particular extension of the Panjer class that keeps the original recursive for-
mula for the probabilities but does not require it for some initial probabilities. We call this the
general Panjer class; it combines a large flexibility for the initial probabilities with a distribution
tail geometry somewhat extending that of the three classical distributions. The papers being most
relevant for this class were already mentioned: Willmot (1988) and Hess et al. (2002) extended the
classical three Panjer models to the final total of six distribution types, and Gerhold et al. (2010)
developed a generalised and numerically superior recursive Panjer algorithm.

1.3 Objective

In this paper, we complement the theory by showing how the probabilities of the general Panjer
class emerge out of one formula, namely the binomial series. This enhances and extends unified
views on parts of the Panjer class as given by Panjer & Willmot (1992) and Fackler (2011). Beyond
being instructive, the resulting representation of the general Panjer class of distributions can ease
implementation and use of the models in practice, providing all-in-one formulae for probabilities
and moments, expressed in terms of the parameters of Panjer’s recursion. A slight transform of
the traditional recursion parameters simplifies both the formulae (slightly) and the geometry of
the parameter space (greatly).

1.4 Outline

In section 2, we define the general Panjer class of distributions, reconciling diverse definitions
appearing in the literature, and discuss useful parameterisations. In section 3, we rearrange the
binomial series such that it yields the probabilities of half of the general Panjer class, based on a
common parameter space. In section 4, we study some limiting cases, which yield the other half
of the class, and determine where the probabilities are continuous functions of their parameters,
and where not. Section 5 wraps up the classification; section 6 comments on parameter inference.
The appendix provides some technical details and an inventory of parameterisations being used
for members of the Panjer class.

2. Preliminaries

For the sake of precision, we must go through some technicalities; however, intuition will be pro-
vided on the way. Let us first collect and reconcile definitions of the Panjer class(es) found in the
literature, adding an alternative parameter s.

2.1 Definitions

Definition 2.1. For a positive integer k and real a, b, s = a + b, Panjer’s recursion is as follows:

_ b — 1 1 1 1
Pk—<a+E>Pk—1—{a( —§>+SE}P1«—1 1)

For any n € Ny, the wide Panjer (a, b, n) class is the class of nontrivial counting distributions whose
probabilities py satisfy Panjer’s recursion for some a, b and all integers k > n.

The proper Panjer (a, b, n) class is the subclass thereof where in addition py = 0 for all integers
k<n.

The narrow Panjer (a, b, n) class is the subclass thereof whose distributions cannot be written

as a left-truncation of some other distribution of some (a, b, m) class.
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Table 1. Narrow Panjer class.

Name pk=P (N=k) Parameter space Support
Binomial oo Wea-pret o ope@D o 0L}
. _ k
Negative binomial (‘”L"l) 1—a)* ak ae(0,1) {0,1,..}
1
g “waset ce0y e
(“H et
Extended negative binomial = = = ae(0,1],a € (—mop,1 —mop) {mo,mo + 1, ...}
Bt i Y X By
ko k
. */ (my)
Extended logarithmic ST ae(0,1],mg>1 {mo,mo +1, ...}
Zj:mo al/(mo)

Nontrivial means not (almost surely) constant, such that at least two py are positive. Left-
truncation (of discrete loss distributions) means setting some initial probabilities to 0 and rescaling
the remaining probabilities accordingly, which yields again a distribution. Truncation to the
left of p,, formally means left-truncation at m — 1; following Hess et al. (2002) we call this
m-truncation:

0, k<m

pr(m) == (2)

P k>m
=t T

Instead of the (a, b, n) class one also speaks of the Panjer distributions of order n. The general
Panjer class is the union of the Panjer classes of any order, and likewise has a wide, a proper and a
narrow variant.

For the general concept of truncation see Klugman et al. (2008), who define the wide Panjer
distributions (of order n =0, 1). The wide classes are totally ordered: for n < m the (a, b, n) class
is a subset of the (a, b, m) class.

Panjer & Willmot (1992) (for n =0, 1) and Hess et al. (2002) define the (a, b, n) class in the
proper sense. Proper Panjer classes of different order are disjoint. If we m-truncate a wide (a, b, m)
model, we get the (unique) proper model having the same parameters a, b, m. The original wide
model is a mixture of this corresponding proper model with a loss count model having support
in {0, ..., m — 1}. In other words, in a wide (a, b, m) model the initial probabilities py, ..., pm—1 can
be chosen (thus are parameters) with the only restriction that their sum must be less than 1. The
recursion determines the tail starting from p,,. When Panjer class distributions are analysed, it is
sufficient (and common) to look at the proper models; the wider ones are embraced by choosing
the initial probabilities as described here.

The distributions of the general narrow Panjer class are specified by Hess et al. (2002), who
call them basic claim number distributions and distinguish six types: Poisson, binomial, NB, log-
arithmic, extended NB and extended logarithmic, see Table 1 with integers ng, mo and further
parameters being positive real unless specified otherwise.

If for n < m one starts with a narrow (a, b, n) model and m-truncates it, one gets a proper
(a, b, m) distribution. All proper distributions can be generated this way, so it is ultimately suf-
ficient to classify narrow Panjer models and generate proper and wide models having the same
parameters a, b by changing the first probabilities and rescaling the tail.

Finally, note that the three variants of the Panjer (a, b, O) class coincide.
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2.2 Practical use

Wide Panjer models are useful in situations where one considers the tails of Panjer distributions
as realistic but needs much more flexibility for the initial probabilities. In particular, flexibility
about py often helps fitting real insurance data, for a discussion see section 6.7 of Klugman et al.
(2008), who speak of zero-modification and zero-truncation (which latter is notably 1-truncation
in our terminology). We will take a closer look at this combination of “free” initial probabilities
and subsequent Panjer tail in section 6.

Proper and narrow models can be adequate for situations where the lowest loss counts are
impossible, for example, when modelling the number of risks contributing to an accumulation
loss. Reinsurance treaties protecting such losses usually have a n risks warranty, that is, losses are
only covered when at least n risks are affected. n =2 is most common, but in life or personal
accident accumulation covers one finds, for example, n = 6.

Panjer’s classical recursive algorithm to calculate the aggregate loss distribution in the collective
model can be extended to all proper Panjer loss count distributions (Hess et al., 2002), so they all
share this important ease of calculation that made the classical Panjer distributions so popular
in insurance. Gerhold et al. (2010) found that Panjer’s algorithm can be numerically unstable
with the two “Extended” distribution types and developed (see their section 5) a slower but stable
and far more general algorithm, which embraces further loss count distributions, including in
particular the wide Panjer class (see their Corollary 4.7).

However, for the latter class one can often alternatively work with the classical algorithm. To
see this, let us call the loss count N, the loss severity X and the aggregate loss S. In a wide model of
order m, the initial probabilities py, ..., pm—1 sum up to q < 1 and we can write the cdf of S as

[e9) m—1
Fs () =Y pFY ()= peFX" (0 + (1 —q) Fs (%)
k=0 k=0

where S is the aggregate loss of the collective model with the same severity X but a thinned loss
count N, namely the m-truncation of N with probabilities according to Formula 2. So, Fs can
be calculated from the convolutions of Fx up to order m — 1, plus Fg resulting from the Panjer
algorithm for proper models.

2.3 Consolidation

We will see below that in a narrow (a, b, n) model the integer 7 is uniquely determined by a and
b and is thus not a parameter. It will further turn out that many (but not all) formulae become
simpler if we use the parameter s = a + b instead of b. Both parameterisations are equivalent and
easy to convert into each other, so one can switch between them according to convenience.

Lemma 2.2. For any real a,b (or equivalently a, s) the sequence

| k 1 k—1
m=ﬁqw+m=ﬁns+w,k@% @)
i= =

(where ry = 1) satisfies Panjer’s recursion.

Proof. For k > 0, we have

k—1 k
b b+ak 1 . 1 )
(a4 ) =" (b a) = [T +a) =n

i=1 i
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Note that we did not require the ¢ to be probabilities, not even up to a factor. They may partly
equal 0 or have varying sign. Yet, Panjer’s recursion holds for all k > 0. So, if the r; have ultimately
the same sign, one can possibly use the (rescaled) tail of the sequence as loss count probabilities,
which would yield a proper Panjer distribution. This is indeed the key idea of this paper and will
lead to a common representation of the key figures of the proper Panjer distributions.

Definition 2.3. We call (r¢) as in Formula 3 the Panjer sequence. Where we want to emphasise
that r is a function of a and b, we write 7. (a, b); with alternative parameters we write analogously
i (a, s), etc.

Before using the Panjer sequence in a general setting, we relate it to the classical Panjer dis-
tributions, whose probabilities and recursion parameters can be written in all-in-one formulae
(Fackler, 2011):

PN LRl py ak
=14+ — — , a= , S§= 4
Pk <+a> k!il:!oe—l-)» o+ A o+ A )

Here A > 0 is the expectation. o > 0 yields the NB distribution, while o € —N satisfying —« >
A yields the binomial distribution. The limits for « — %00 are well defined and both yield the
Poisson distribution. To avoid infinite parameters, one can equivalently work with A and c= é;
however, here the parameter space is not so easy to write down (see Appendix B for this and
alternative parameterisations). It gets even more intricate if we rewrite the probabilities in terms
of a and s, but this is the variant that we need for the general treatment of the Panjer class. We
have & = ~ and A = = Some algebra yields

k—1
s 1 . 3

pe=0=ai o [G+a)=0-a)ir(as) (5)

i=0
Thus, for appropriate a, s (which we will specify below), the Panjer sequence generates the prob-
ability function of the Panjer (a, b, O) class. Poisson corresponds to the (well-defined) limit for

a — 0, where s = A.

Let us introduce a third parameterisation, which only embraces binomial and NB but will be

useful below. Using parameters a # 0 and o = =, it is a hybrid of the two preceding variants:
k k=1
a . foe+k—1
pk=(1—a)°‘rk(a,ot), rk(a,a)zﬁg(oH—z):a( k ) (6)

3. Rearranging the Binomial Series

It is well known that for certain real x, y the Taylor series

00 y ok k—1
<1+x)V=Z<k>xk=Zﬁl_[<y—i) (7)
k=0 k=0 " i=0
converges (absolutely), in particular in the following situations:
e Y€ N,
o |x| <1,

e [x]=landy > 0.

Formula 7 is called the binomial series or generalised binomial formula.
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a
2)
1
2)
3)
1) -1 6)
1) -2, 6)
1) -3 6)
3)
Figure 1. Admissible parameters a, s and a, «.
Now choose real a # 0 and s; set x = —a, y = — . If the latter two figures are in the appropriate
range, we can rewrite the binomial series in terms of a and s as
00 (—a)k k—1 s o) 1 k—1 o)
(1—a) a:Z o H(—;—1)=Zﬁn(s+az)=2rk(a,s) (8)
k=0 i=0 k=0 i=0 k=0

and have found the (well-defined and finite) sum of the Panjer sequence. In particular, this applies
to the following cases, which are special cases of the above three situations, but disjoint and
grouped in a different way:

Definition 3.1. We call real a, s strongly admissible if
(a,s) € S:= {(a,—ang) |a € (—00,0),ny € N} U (0,1)x(0,00) U (0, 1]x ((—00,0)\—N) C R?
that is, if they lie in one of the following three disjoint areas (see also Figure 1, left side):

Areal) a<0, s>0,—>=nyel;
2) O0O<a<l,s>0;
3) O<a§1,s<0,—§¢N
The delay of (a,s) € S is the integer
@) 0, s>0
mg (a, ) =
1+[—§], s<0

where [x] is the largest integer not exceeding x, such that fors < O wehave 0 <my — 1 < —= < my.
Finally, for n € Ny we define the subsets

Sni={(@as)eS|my(a,s)<n}, S_1:=10, Sty = {(a,s) €S |mg (a,s) =n}=5,\5n—1

As we will see, these subsets structure a large parameter space. For orientation, in Figure 1, left
side, the S, n > 1, are the triangles below the a-axis; they include their respective right border
and exclude the other borders. The latter borders are where the step function myg (a, s) changes
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value. Sg = Sy is the union of Areas 1 and 2 above the g-axis, while S,,, n > 1, unites these areas
with the first # triangles below the a-axis.

Lemma 3.2. For strongly admissible a, s, the RHS of the formula with corresponding delay my =

mo (a, 5),
mo—1 o]
(1—a)"a— Z rj(a,s) = Z 1 (a,s) 9)
j=0 k=my

converges and has either positive or negative summands, except that in Area 1 we ultimately, namely
for all k > ny, have ry (a, s) = 0.

Proof. Formula 9 is the rearranged (and convergent) binomial series as given in Formula 8.
The summands rg, k>0, are, up to a positive factor, products of the factors (s + ai), where
i=0,.,k—1

In Area 1, these factors are initially positive, but (s + ang) = 0. Thus, ro, ..., 1, are positive,
while the further r; equal 0.

In Area 2, both a and s are positive, such that all (s + ai) and all ry, are positive.

In Area 3, we have s+ a (mp — 1) < 0 < s+ amyq. So, the (s + ai) are negative for i < mg and
positive for i > my. Thus, all ry, with k > m have the same sign, either positive or negative. O

Definition 3.3. For any k € Ny and strongly admissible a, s with delay my = myq (g, s), we set

0, k < my
Pr (@) = ”““’2 = , k>my (10)
(A=) =3 70 rj(as)
For any m € Ny, where m < ng in Area 1, we set M (a, s; m) := max (m, my (a, s)) and
0, k<M
Pk (a,s;m) := r1(a,9) (11)

>
(-~ =3 r(as)” k=M

Proposition 3.4. The (Pk (a, s)) and the (Pk (a,s; m)) of Definition 3.3 constitute nontrivial
loss count distribution models having (for fixed m) parameter space S. The latter model is the
m-truncation of the former. The delay mq (a, s) indicates the first non-zero probability of (pi (a, s)),
while M (a,s; m) is the corresponding index for (pi (a,s;m)). Both distributions satisfy Panjer’s
recursion with parameters a, s for all but the initial zero probabilities, that is, for k > mg and k > M,
respectively.

Proof. According to the preceding lemma, all py (a, s), k > my, have the same sign (apart from
possibly ultimately equaling 0) and sum up to 1, so they constitute a discrete loss distribution,
which is nontrivial as at least two py, (4, s) are positive. Obviously, (pk (a, s; m)) is the m-truncation
of (Pk (a, s)) and in particular a distribution. The constraint m < ng for Area 1 ensures that it is not
the trivial distribution being concentrated at ng € N. Both distributions inherit Panjer’s recursion
from the r; (a, s).

Corollary 3.5. For m < my (a, s), that is, M = mg, m-truncations coincide with the original model.
For m=M > my, (pk (a,s;m)) is different from (pi (a,s)) and thus a proper Panjer distribution
that is not narrow. Thus, (pk (a, s)) is a narrow Panjer distribution of order my, while (pk (a, s; m)),
for m > my, is a proper (but not narrow) distribution of order m.
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The parameters of narrow distributions (pk (a, s)) with delay my € Ny lie in S¢ny), while the
parameters a, s of proper distributions (Pk (a,s; m)) with m > mq (a, s) lie in Sy,.

Proof. The assertions follow immediately from the construction of the py (a, s) and py (a, s; m),
and from the definition of the parameter sets S, and S(;).

Example 3.6. For s > 0 (and my =0), Formula 10 defines the combined binomial (Area 1)/NB
(Area 2) distribution as parameterised in Formula 5. If m > 0, Formula 11 yields respective m-
truncations of the binomial and NB distributions that are proper, but not narrow, (a, b, m) models.

Let us now rewrite Formula 11, which for m = my embraces Formula 10, in terms of the param-
eters a and o = 7 used in Formula 6. As a # 0 for all strongly admissible a, s, this is possible and
an equivalent parameterisation.

i € ) e (a, o)
k@, & m) = - M—1 = _ M—1 i atj—1\’

I-a =Y n@e) (1-a =30 a(*H7)
Area 3 in this parameterisation means 0 < a <1, @ <0, o ¢ —N, which is a union of squares, see
Figure 1, right side. In particular, we have 0 <mg — 1 < —ar < mp.

k(a+k—1
() k>M (12)

Example 3.7. If m = my, Formula 12 with parameters (4, @) in Area 3 parameterises the extended
negative binomial (ENB) distribution as defined by Hess et al. (2002), a further of their six types
of narrow (a, b, n) models. M = m > my yields m-truncations of ENB that are proper, but not

narrow, (a, b, m) models.

The special case m=mg =1, —1 < a < 0 (first square below the a-axis) has been known for
long and was termed ETNB distribution (Willmot 1988). However, like Hess et al. (2002), we
prefer the name ENB and confirm their reasoning from our perspective: ETNB has po =0, but it
is no 1-truncation of any Panjer distribution - it is a narrow (a, b, 1) model. While one can indeed
interpret ETNB as an extension of 1-truncated NB (which we will generalise below), an alternative
perspective fits better to the unified view we are developing here: via Formula 10, ETNB and the
rest of ENB (o < —1, that is, the further squares below the a-axis, or equivalently triangles in terms
of a, s) are an extension of the (a, b, 0) class; focusing on a > 0 (Areas 2, 3), one can see ENB as an
extension of the non-truncated NB model.

4, Embracing Limiting Cases

Definition 3.3 yielded three of the six narrow (a, b, n) distributions, plus the corresponding proper
distributions emerging via m-truncation. Now we show that it yields the other three types too,
as limiting cases at (part of) the border of the parameter space. To this end, let us complement
Definition 3.1.

Definition 4.1. We call real g, s admissible if
(a,s) € A:= {(a, —ang) | a € (—00,0) ,ng € N}U {0} x (0, 00) U (0, 1) xR U {1} x (—00, 0) C R?

that is, if they lie in one of the following six disjoint areas (see also Figure 1, left side):

(1) a<o, s>0, —2=nypel;

a

2) 0<a<l, s>0
(3) 0<ax<l, s<0, —2¢N;
(4) a=0, s> 0;
(5) 0<a<l, s=0;
6) 0<a<l, s<0, _EEN
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The delay of (a, s) € A is the integer

0, s>0
myp (a,s) = (13)
{1+[—2], s<0

such that fors <Owehave 0 <mg—1< —é < my.
Finally, for n € Ny we define the subsets

An = {(a> s) € A | mo (a,s) < i’l} > A—l =0, A(n) = {(a’ s) € A | mo (a,s) = I’l} = AH\AH—I

One sees at a glance that strongly admissible parameters are admissible and that the two
definitions of the delay are consistent — as are the definitions of the respective subsets of A
and S:

Lemma 4.2. We have Ay = Ay ={(a,s) € A|s> 0} and, forneN,
A, ={(a,5)e Als>0Vs>—na}, Amy=1{(a,s) e Al —na<s<(1—n)a}
For the subsets of S the analogous formulae hold and, for n € Ny, S, =S N Ay, Siry =S N Awy.

Proof. Straightforward algebra. u

Formulae 10 and 11, which generate narrow/proper Panjer distributions, hold for Areas 1, 2, 3.
They extend in a straightforward way to Area 4, which is adjacent (in topological sense) to Areas
1,2.

Proposition 4.3. The p (a, s) and py (a, s; m) from Definition 3.3 are continuous on S and can be
continuously extended to Area 4.

Proof. As all py (a, s; m) are algebraic functions of the py (a, s), k € Ny, it is sufficient to show
continuity on S for the latter, which is clear from Formulae 10 and 3.
For s > 0, we can rearrange Formula 9 as

M-1 00
(1—a)"a— Z rj(a,s) = Z 1 (a,s) (14)
j=0 k=M

where all summands but the first are continuous on R?. Now recall from the binomial series
that for —1 <a<1and y € R, (1 —a)? is well defined, finite and continuous in both variables.
Thus, (1 — a)_g is well defined and continuous for (g, s) € ((—1, 1)\{0}) x (0, o0). The continu-
ous extension to {0} x (0, 00), that is, Area 4, is straightforward vialim,_,¢ (1 — a)*% =¢°. So, both
sides of Equation (14) are continuous functions on S plus Area 4, and further non-zero, such that
1 (a, s) divided by the LHS yields py (a, s; m) being a continuous function on that domain. O

k
Example 4.4. With 1y (a, s) = % on Area 4, Definition 3.3 here yields the Poisson distribution and
its m-truncations, which are limiting cases of (m-truncated) binomial and NB distributions having
the same parameter s.

The continuity of the py (g, s) and py (a, s; m) on the “upper” Ay (Areas 1, 2, 4) is remarkable as
Ajp has a weird geometry, see Figure 1, left side. Instead, continuity on Area 3 does not mean too
much as this area is separated (in topological sense) from A and splits into small separated pieces:
the triangular S(,), n > 0. However, things become interesting once we involve the remaining
areas: Area 6 connects the pieces of Area 3, while Area 5 connects Area 3 and Area 2, see again
Figure 1, left side.
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Our aim is to define the py (a, s) and pi (a, s; m) on Areas 5 and 6 in a reasonable way, which
would mean having them on the whole parameter set A. With them being defined on § in a
discrete manner via the step function my (g, s), we cannot expect them to be continuous on A.
Yet, it will turn out that we get surprisingly close.

We can in the following treat Areas 5 and 6 largely in parallel, but the setting is a bit intricate.
It is more convenient to work with the parameters a, o, which for a # 0 (A without Area 4) are
equivalent to a, s and can be converted via smooth functions (¢ = 7, s = «a), such that properties
like continuity are not affected by this parameter change. For orientation see the right side of
Figure 1 emphasising that the geometry of 4 is much simpler (utterly rectangular) in terms of
a,a — as is the delay formula:

Definition 4.5. We call real a, o (strongly) admissible if a # 0, s = aa are (strongly) admissible. We
call the set of such parameters A* (§*) and write, equivalently to earlier formulae,

0, oa>0
my (a, ) :=
1+ [_Ol] , A=< 0
0, k < M =max (m, mg (a,a))
Pr (@, a5 m) := Tk (a,;-;)_l k=M
1-—a) =3 " ri@a)

which for m = mg (and M = my) embraces py (4, ). We write finally, for n € Ny,
A= {(a,oz) e A* |mp (a, ) < n} , A =0, Tn) = {(a,a) e A* |mg (a, ) = n}
= *AZ\AZ—I
and analogously for the subsets of S*.
Lemma 4.6. For n € N we have

A=A ={@a)e A" |s>0}, A {(@a)e A" [s>0Vva>—n},
A?n) {(a,a) ceA | -n<a<l —n}
For the subsets of S* the analogous formulae hold and, for n € No, S;; = S* NV AL, ¢y = S*NAG,.

Proof. Straightforward translation from the (g, s) world. U

Definition 4.7. For all (a, —n) in Areas 5 and 6 of A* (where a > 0, n € Ny, and my=n+ 1),

we set
a,a=—n) = a, o = lim a,a 15
P ( ) = pr( )|a:_n oz/’—npk( ) (15)
and set, for m e Ny, the m-truncations pg (a,a = —n;m) thereof as usual, according to
Formula 2.

Proposition 4.8. The py (a, @ = —n) and the py (a,« = —n; m) of the preceding definition consti-
tute well-defined discrete loss distributions on Areas 5 and 6. Together with the earlier analogous
definitions on S*, they define (py (a,)) and its m-truncations on A*.

Pk (a, @) is continuous on S*, while on A* it is continuous in a (for fixed a) and left-continuous
in o with discontinuities at Areas 5 and 6 (for k > n = —a«). Instead, the m-truncation py (a, o; m)
is continuous on A,.
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For (a,a) € (0,1)x{0} (Area 5) or (a, @) € (0,1]x —N (Area 6), we have with mg (a,2) =1 — «
that py. (a, @) = 0 for k < my, while for k > my

( ) @/ (1)
ad=—N)=———"""F_
@/ (1)
(=™ mo {an (1= ) (1 = @™ = 2 (e (") e ) )

(16)

with mg notably equaling 1 + n.
For m € Ny and M = max (m, my), we have analogously py. (a, ) = 0 for k < M, while for k > M

)
px (@, =—n;m) = m
_ @/ ()
D fan - @) -t = 2 (e (") S )+ X ()
(17)
Proof. The proof and more details are set out in Appendix A. 0

Note that Formulae 16 and 17 contain the parameter « only indirectly, via myg, which will
below make conversion to the parameters a, s very easy. Both formulae represent the respective
probabilities in two ways, a compact and a complex one. The former contains an infinite sum,
which may complicate its use in practice, so it is good to have both variants.

One sees quickly that the parameter spaces can be allocated just as in Corollary 3.5.

Corollary 4.9. The parameters of narrow distributions (py (a, @)) with delay mg € N lie in Alng)

where —mg <o <1 — mq. The parameters a,a of proper distributions (py (a,o; m)) with m >
my (a, ) lie in A%, where o > —m.

Example 4.10. The compact part of Formula 16 (with the infinite sum in the denominator) is
given, for « =1 —mp € —N, 0 < a <1, by Hess ef al. (2002), who term the resulting narrow dis-
tribution type extended logarithmic distribution. It corresponds to Area 6 of the parameter space
and Formula 17 yields the corresponding m-truncations and proper models.

The given name becomes clear if we at last look at Area 5, where ¢« =1 —mp=0,0<a < 1.
Here Formula 16 simplifies to

ak /k
pk(a,a—())—_ln(l_a), k>1

which is the logarithmic distribution, one of the two well-known narrow Panjer models of order
1 and the sixth narrow model type as specified by Hess et al. (2002). Again, Formula 17 yields the
corresponding m-truncations and proper distributions.

For ease of orientation, we restate the parameter space of the narrow Panjer class in formulae
and in Figure 2, in terms of both (g, s) and (a, o). We add the geometric distribution, which is the
special NB model having > =a = 1.
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b
a
NB
1 Geo
NB
1
a B Log a
E(T)NB
B -1 ELog
ENB
B -2)  Elog
A
ENB
B -3,  Elog
A~
ENB ENB

Figure 2. Narrow Panjer class.

(1) B a<0, s>0, o e —N;
2) NB 0O<a<l, s> 0, o > 0;
Geo O<a<l, s=a, a=1;

(3) ENB 0<ac<l, s<0, o € (—00,0)\—N;
ETNB 0<a<l1l, —-1<s5s<0, ae(—1,0);

(4) P a=0, s> 0;

(5 Log O<a<l, s=0, o =0;

(6) ELog 0O<a<l, s<0, ae—N

The left side of Figure 2 is a redesign of Figure 7.2.1 of Panjer & Willmot (1992), which repre-
sents the narrow (a, b, 0) and (a, b, 1) classes in terms of (a, b). We have added ELog and the ENB
parts beyond ETNB (below the s = —a line), which constitute the narrow models of higher order.
To the right we show the same parameter space apart from Poisson (a = 0), translated to (a, «).

As noted earlier, the overall ENB parameter space splits into separate pieces, with ELog models
in between. The delay my is constant on each ENB piece and the (E)Log model bordering above.
The logarithmic model separates ENB from NB, which has a topologically connected parameter
space, but the intermediate geometric distribution can be seen as separating the very skewed NB
models between Log and Geo from the “higher” NB models being closer to the limiting Poisson
model.

As for the subsets of the parameter space, in both charts of Figure 2, .A(()*) = AE;; corresponds
to the part of the parameter space above (and excluding) the g-axis, plus the area left of the «-axis.

AET; is the log line segment plus the first ENB piece (ETNB) immediately below, which on the left
side is triangular and on the right side square. Ag; is the second ENB triangle/square including
its upper border, which is the first part of ELog; and so on.

The continuity of py (a, a; m) on A7, gives another insight if we for the moment leave the (topo-
logically separated) binomial area to the left of the «-axis aside. The lowest part of A” (to the right
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of the ar-axis) is A(, ), the parameter space of the narrow Panjer model of order m having prob-
abilities py (a, @) = pi (a, o; m). Instead, the highest part of A, is Area 2, where the py (a, o; m)
represent the m-truncated NB distribution. By this perspective, py (4, a; m) can be seen as repre-
senting a continuous extension of m-truncated NB from Area 2 to A}, , or say: from o > 0 down to
o > —n. In particular for m = 1, this means extending 1-truncated NB to the first ENB piece. This
justifies the traditional name ETNB; however, it shall be noted that this extension also embraces
the logarithmic model in between, which allows for a continuous passage from 1-truncated NB to
ETNB.

Remark 4.11. While the NB model is often interpreted as being opposed to binomial (« =
+1, £2, 43, ..., starting with geometric vs Bernoulli), Figure 2 reveals another opposition, on the
right side: binomial vs extended logarithmic. For each o« = —1, —2, —3, ... there is a pair of models,
which are indeed based on the same binomial series with exponent —« € N:

to the left of the «-axis (1 — a) ™%, a < 0, generating a binomial model of “size” nyp = —a, where
the r; (and py) are initially positive, but for k > np + 1 =1 — « equal 0, which leads to a model
being concentrated on {0, 1, ..., —a},

to the right of the «-axis (1 — a) ™%, 0 < a < 1, generating an ELog model with positive proba-
bilities starting at mg, where likewise the ¢, for k > my =1 — «, equal 0, but can be “rescaled” to
Pk > 0 via L'Hépital’s rule.

If one, for the sake of symmetry with ELog, restricts binomial to —1 < a < 0, one gets the bino-
mial models having probability 0 < p < % The conversion of parameters for this and other Panjer
distributions can be deduced most easily from Table 3 in Appendix B.

5. Wrap Up

Let us collect and complement the main results, formulating them in terms of the parameters a, s,
which work for the whole Panjer class including Area 4.

Theorem 5.1. The general narrow Panjer class Pan (a,s) and the general proper Panjer class
Pan (a, s; m) of distribution models can be described by the parameters

(a,s) e A={(a, —ang) |a € (—00,0),ng € N} U {0} x(0,00) U (0, 1) x RU {1} x (—00, 0) C R?
and (for the latter)

0, s>0
No>m=>mg (a,s) =
L+[=3], s=0

with the additional constraint m < ng for (a,s) € {(a, —ang) | a € (—00,0) , ng € N}. Technically,
one can drop the constraint m > mg but needs it if one wants uniqueness of parameters.
For n € Ny, the narrow Panjer class of order n corresponds to the parameter subspace

Amy={@s)e Al —na<s<(1-—n)a}; Aoy =1{(a,s)e Als>0}
while the proper (a, b, n) class corresponds to parameters in
Aux{n}, An={(a,s)€./4‘s>—na+}
A splits into six areas corresponding to six types of distributions:
(1) B a<0, s> 0, —gznoeN;
) NB O<a<l, s>0;
) ENB 0<a<l, s<0, —§¢N;
(4) p a=0, s> 0;
) Log O<a<l, s=0
) ELog 0<a<l1, s<0, —i:neN;
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The probabilities of the general narrow/proper Panjer distribution are given, with py (a,s) =
Pk (a, 53 mp), by the following formula:
0, k<M
P (a,s;m) = (@, )
(1 _ a)fs/ﬂ _ Zj\ial 1’] (a’ S)

ks M (18)

which emerges from the binomial series and where

k-1
1
@)= [[6+ad, keNo M (a,sm)=max (m,mo (a5))
=0
Formula 18 holds in a strict sense on the parameter subspace (types B, NB, ENB)
(a) S) € S = {(a’ —‘mo) | aec (_OO) 0) > o € N} U (O) I)X(O) OO) U (0) 1] X((_OO, 0)\_N) C A
and extends to A\S as follows:
type P: for (a,s) € {0}x(0,00) by simply replacing (1 —a)~*/* by ¢, which formally means
setting

pr(a=0,5m) := pi(a,ssm)| _, = lim py (a, 5, m)
types Log, ELog: for 0 < a < 1, —> = n € Ny, but without (a, s) = (1,0), by setting
pk (a,s = —na;m) = pi (a,s; m){s:_m = S}i%pk (a, s;m)

Here my = n + 1 and for k > M we have

ak/ k
Pk (a, s = —na;m) = %mo)]
k
= ak/(mo)
(=" mo {dn @ =) = o™t = S (o () X ) + S o)
(19)
With these limiting cases, py (a, s) is continuous on A apart from Areas 5 and 6 (s= —na, n €

No), where we have discontinuity for k > n. Instead, for fixed m > my, px (a, s; m) is a continuous
function on Ap,.

The general formula for the probability generating function of the proper general Panjer class
(which embraces the narrow class for m = my) is

(1-— az)—s/“ — Zj]‘ial rj (az, s)

(1—a) =35 1 (as)

P(a,s; m) (z) = (20)

which likewise holds in a strict sense for B, NB, ENB, and extends

to P via a — 0, which simply means replacing (1 — a)™*/* by ¢’ and (1 — az) /%

by %
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to (E)Log via s /' —na. Here, we have
_ S @2y /()
e X5l
(=1 my [0 (1 = a2) (1= a2 = 2 ((a2) () £ )|+ DL @2y /()

1 my {n (1= a) 1=y = 2 () () S ) f+ S ()
(21)

P(a,s:—nu; m) (Z) = P(a,s; m) (Z)

With the notation X, = (ﬁ)n' =x(x—1)..(x—n+1),xeR, ne Ny (withxg) =1), we have,
for a < 1, the following recursion for the factorial moments of N ~ Pan (a, s; m):

1
E (New) = T {(n=1) a+s)E(Nu-1)) + Mwpm} neN (22)

The respective first and second moments, written compactly in terms of a, s, M, and the first non-zero
probability py, are

+ M,

E(N)=E (No) = % (23)
l—ayM+2 — 1} M,
E(N(z)):S(a_I—S)_I—{( :ll)_a‘;'z a+s } pMm (24)

_ _ _Af242
Var (N) = s+{(1 —a) M+a — s} Mpyy — M*py, (25)

(1—a)?

Geometrically, all narrow and proper Panjer distributions have unimodal probability functions
with an overall maximum probability and no further local maxima. For s <0 (Log, ENB, ELog) the
mode is the first non-zero probability.

Proof. Recall that Hess et al. (2002) defined the six types of narrow and proper Panjer distribu-
tions (using diverse parameterisations), proving in particular that no more types exist. Our system
describes the same distributions, rewritten uniformly in terms of the parameters a, s, m, and thus
also covers the whole Panjer class. The optional constraint m > mq (which implies M = m) for the
proper models ensures unique parameters: for all m < mg one has py (a, s; m) = py (a, s; mg) =
Pk (@, 9).

The correspondence between the classes of order n and the subsets A,,, A, of A results quickly
from Corollaries 3.5 and 4.9.

The formulae for the probabilities and the assertions on continuity are earlier results of this
paper (in particular from Proposition 4.8), translated from the (g, &) parameterisation where nec-
essary. The latter does not cover Area 4, but this is topologically separated from Areas 5 and 6 and
does not affect their continuity properties.

The general pgf formula is given in Table 1 of Hess et al. (2002) for the (E)NB distributions,
in terms of a, & (which they call ¢, 8). Converting to a, s, embracing B and P and generalising
to the respective m-truncations is straightforward. The compact variant of the ELog formula is
given there too; generalising to m-truncations is straightforward. The second (complex) pgf rep-
resentation results from Formula 27 in Appendix A; both variants embrace Log (1 =0,0 <a < 1,
mo=1).

The recursion for the factorial moments results from the corresponding differential equation
for the pgf, as given in Theorem 2.1(b) of Hess et al. (2002), after translation to our notation. The
expectation follows immediately, the second moment after some algebra.
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As for modes, if a probability function, on some interval, is positive and first rises then

decreases, constituting a (possibly local) maximum, this implies that some % are greater than 1,

being followed by values smaller than 1. For the non-zero probabilities of proper Panjer distribu-
Pr
Pr—1
from being > 1 to < 1 at most once. So, proper Panjer distributions cannot have a local maximum

probability other than the global one, thus are unimodal.

As is well known, for s > 0 the mode of the narrow distributions (B, NB, P) may be positive and
may consist of two subsequent probabilities, which is, however, still interpreted as unimodal. This
property is inherited by their left-truncations, the corresponding proper Panjer distributions.

For a proper Panjer distribution with s <0 we have a >0, b=s—a <0, such that overall

tions we have a-+ %, which is a monotonic function in k for all admissible a, b and can shift

for the non-zero probabilities we have 1% =a-+ % with a factor 0 < a + % < a<1. Thus, the
probabilities strictly decrease from the first non-zero probability onwards. U

Note that the recursion for the moments does not embrace the case a = 1, where at least the
higher moments are infinite (Hess et al., 2002). We have included this border case in our theory
for the sake of completeness; it is, however, not of much practical interest.

Example 5.2. For the Panjer (a, b,0) class, the formulae for expectation and variance are simple
and well known:
s
EN)=—, Var(N) = ———
(N) 1~ a (N) 1—a)?

The corresponding formulae for the proper (a, b, 1) class are
s+ p1

_ _ (stp) 0 =p1)
E(N)—l_a, Var(N)—W

They are very compact; however, some complexity is hidden in p;. Note that they hold for both
the narrow distributions of order 1 (Log and ETNB) and the 1-truncations of Poisson, binomial
and NB. Instead, the better-known alternative formulae (see Appendix B.3.1 of Klugman et al.
(2008))

_ s Var (N) = s(1— 1 +9)p)
(1—a) (1-pp)’ (1—a?(1-pp)’*

are more complex and hold only for the 1-truncations of the models of order 0, from which they
take the no-loss probability py.

E(N)

6. Parameter Inference

With the multitude of situations where Panjer distributions could be applied, from abundant
empirical data (wide models) to cases where low loss counts are impossible (proper models), a full
exploration of parameter inference is beyond the scope of this paper; this would probably yield
enough content for a separate paper (available data for examples permitting). Yet, some ideas for
potentially successful procedures can be derived from generalising a graphical approach explained
in section 6.5 of Klugman et al. (2008) for the classical distributions of order 0.

If the probabilities of a loss count distribution ultimately fulfil Panjer’s recursion, for large
enough k, the empirical loss counts ny, fulfil approximately, apart from random fluctuation, the
equivalent formulae

% mat kT akatb
Mi—1 k Mk—1
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Table 2. Loss count example.

k ny k%

0 7,840

1 1,317 H 0.17

.2 ........... 239 .......... 036 .....
4 14 1.33
5 4 143

6 4 6.00

8+ 0

For high k randomness and low likelihood will let most 4 equal zero, for the lowest k the recursion
may not hold however, if we observe an intermediate interval of values k with non-zero My, we can

(k—=1)a —|— s. If so, the distribution is a candidate for a general-Panjer fit and we can get initial
(rough) estimates for a, b, s and my, the latter being an approximate lower bound for m.

The assessment of m is crucial: if we can narrow down m to one or a few integers, we can do
the final estimation of the further parameters for fixed m, which greatly reduces complexity of the
Maximum Likelihood (or other) estimation algorithm.

e If we want to fit a proper model, m is often determined by the setting of the problem. For
example, in the case of the six risks warranty (Cat reinsurance) mentioned earlier, it is clear
that m most probably equals 6.

e Wide models have many parameters and need a lot of data. In such situations the plot should
make clear where the Panjer recursion starts to hold. The initial probabilities before the Panjer
tail are parameters and simply estimated by the respective sample frequencies.

Having fixed m, a look at the initial estimates for a and s will in many cases narrow down
the parameter space to consider: to a rather small subset of .A,,. The most benign cases are clear
indications for either (possibly truncated) binomial or NB. ENB is slightly more complicated with
the ELog stripes in between; however, as the py (a, s; m) are continuous on A,,, complexity is lower
than the above ELog formulae indicate. Bordering cases require some more work, just as in the
classical case: when one is not sure whether binomial or NB fits better, one has to calculate both,
plus the intermediate Poisson.

In such cases inference may technically work better when done separately per distribution type,
possibly using parameters other than the unified ones. For example, for NB the parameterisation
NB2 as given in Appendix B, which uses shape parameter o and expectation A, is preferable as the
respective MLE estimators are asymptotically independent, see section 9.8 of Panjer & Willmot

(1992).
Example 6.1. For illustration we revisit Example 6.2 of Klugman et al. (2008) treating an MTPL
loss count data set, see Table 2. The k— show a slow but clear upward trend, albeit one must

acknowledge that the last points are based on very scarce data. However, the data seem to indicate
that if modelled with a Panjer distribution, the resulting parameter a should be positive.

So, among the models of order 0, the first choice would be NB. Here one would expect to get a
rather small a € (0, 1) and an even smaller s > 0, which would lead to a likewise small &« = > > 0
and thus to a rather skewed NB distribution.
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Alternatively, one can try wide (a, b, 1) models, which are called zero-modified by Klugman
et al. (2008) and have a free parameter py followed by a Panjer tail. Willmot (1988) derived (in
his section 6) common MLE formulae for zero-modified NB/ETNB, embracing the intermediate
Log as limiting case. This means inference based on the parameter space A;, or more exactly
A7 as the parameters a, o were used. The MLE estimators were applied to a number of MTPL
data sets, including (as Data Set 5) the one discussed here. The resulting MLE estimates are the
sample frequency py = ;Z‘é(l) =0.829 and @ = —0.103, @ = 0.380, which means s="4aa = —0.391.
The resulting fit turns out to be statistically reasonable; the negative, but quite small, @ means that
the estimated tail model is ETNB and quite similar to Log (o = 0).

However, noting that the slope of the function ki rises after the first steps, one could alterna-

tively try wide models of a bit higher order. After the second step the function k-"5- k looks rather

steep; an affine linear approximation in this area would lead to a larger a than with the above mod-
els, possibly greater than 0.5, and to a negative s maybe close to —1. The resulting & would be in
or around the interval [-2, —1]. So, plausible values for my are 1, 2 and possibly 3. Having already
tried m =0, 1, the next (and due to data scarcity probably last reasonable) option is m =2.In a
wide model of order 2, pg and p; are estimated by the empirical frequencies. The further probabil-
ities constitute the Panjer tail; the respective parameter space for a, s is Aj; tail inference is based
on the observed n; with k > 2. Here we have 304 such observations, which is not abundant but
could suffice for reliable inference of the two tail parameters.

7. Conclusion

We have seen that the representation of the general Panjer class of distributions in terms of a, s
yields (mostly) simpler formulae and more intuitive insight than the traditional representation
in terms of a, b. Other parameterisations, for example, 4, «, can yield still simpler formulae and
additional insight, but they usually do not work for the whole class, see the overview in Appendix B
and there in particular Table 3. It seems that some of the most common parameterisations, while
being very practical for a specific model type, obscure the links to other parts of the Panjer class.

Beyond being instructive, the unified view of the general Panjer class of distributions via the
parameters a, s, m can ease implementation and use of the models in practice, providing (mostly
compact) all-in one formulae for their probabilities and moments.
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A Technical Details for the (E)Log Models
Lemma A.1. For 0 < a < 1 and real o we have

d
—(1-a)“=(-hl-a)1-a
do
This extends to the case a =1, o < 0 if we interpret the RHS as the limit fora /' 1.

Proof. The formula follows immediately from (1 —a)™® =exp (—aln (1 —a)). For a=
1, —a > 0 both sides of the formula yield 0, which for the RHS can be seen quickly via L’Hopital’s
rule. =

Lemma A.2. For 0 < a <1, integers 0 < j < n, and real « ¢ {1 —Jyen—1, 0} we have

j—1 j—1 j—1
1
s (o) 245
i=0 i=0 i=0
such that
d =1\ 2
il oo == (") 5
i=n—j

In particular for j = 0, the derivatives equal 0.

Proof. The case j = 0 is clear: the indexed product and sums are empty; the former equals 1 and
has derivative 0, the latter equal 0. For j > 0 the first formula is clear. As for the second,

. i—1 j—1 ; n—1 n—1
d a [’ 1 (—ay 1
— ri(a, o) = — 1—n+i = i s
da a:l_n’( ) j! H( ) | —n+i ! H Zz
i=0 i=0 i=n—j i=n—j
O
Lemma A.3. For 0 < a <1 and integersk>n> 1, ;’ia% is well defined at o« =1 — n and
i (a, @) (=Dt gk
a+n—1{,_,_, n (fi)

Proof. We have
- k—1
e (a, o) ak (ﬁ . ) .
—_— = (o +1) l_[(oz+z)
a+n—1 ! 0 Pl
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which for « = 1 — n equals

ak n—2 4 k—1 ‘ ﬂk o (_l)n-H al (k — n)!
'E(LEU—n+0>£Iu—n+0=Eﬁ—n L= D! (k=)= ak(k!)

O

Proposition A.4. For any integers m > 1, k> 0, the probability py (a, o; m) can be continuously
extended from S*:

to (a, ) € (0, 1]x{1 — m} (in Area 6) for m > 1,

to (a, ) € (0,1)x{0} (being Area 5) for m = 1.

The resulting limy_, 1 _, py (a, a; m) is at the same time the (well-defined) limit of py (a, @) for
a /'1 —m; it equals 0 if k < m, else

lim pg(a,sm)y= lim pg(a,a)=
o,/ 1-m

a—1—m
_ /(1)
D" m {0 (1= @) 1 =@t = (ay () i)
k/(k
N R (26)
Zj:m “]/(;Zq)

These limits are positive for k > m, while their sum (over k) equals 1, such that overall one has a loss
count distribution.

Proof. For (a, ) € S(*m), where —m < a < 1 — m < 0, we have mg (a, ) = m, such that py (a, o)
and py (a, o; m) coincide. Thus, iflimy_, 1 pi (a, a; m) exists, so does limy 71—, pi (@, @) and is
equal.

Now consider (g, ) € §* with « being in the proximity of 1 — m < 0 (which implies in partic-
ular ¢ < 1). Then we have —mg <a <1 —my <1.Thus,my=mifa <1 —mand mo=m — 1 if
o > 1 — m, such that in both cases M = m. Consider further the binomial series

00 aj]—l
I-a =) r@a), rj(a,a>=j—,]"[(a+i)
j=0 T =0

and recall that in Area 3, where « < 0, this embraces the border case a = 1, where (1 —a)~* =0.
For all j > m, rj (a, &) contains the factor (& + m — 1), such that limy 1, 7j (@, @) = 0. Thus, we
must also have

m—1
li 1—a)™®— (@)t =0
i, 10 Y @)

]:

Now we calculate limgy—, 1—nm p (a, o; m), which is trivial for k < m as py (a, &; m) = 0 by definition
(for strongly admissible parameters). For k > m consider a sequence (a;, o) € S* converging to a
point (a, 1 — m) on the given interval. With L’Hopital’s rule and the three preceding lemmas we
get
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. . 1 (ap, o)
lim pg (a5, op; m) = lim — k2 ml_l
I—o00 I->oc0 (1 — ap) % — ZjZO T (ai, ap)
re(apog)
o+m—1
= m - m—1
o0 (1—ap™1=3 10" ri(apay)
o+mo—1

_1\ym+1 k
)
(—In(—a) 1—a" = Y5 (= oy () X 1)
This limit of positive figures must be nonnegative, obviously it does not equal 0 and is thus
positive. The sum of the limits over k equals 1 because it is the limit of analogous series equal-

ing 1. The final representation of Formula 26 is thus clear as the infinite sum in the denominator
converges. (]

Corollary A.5. For 0 < a <1 and integer m > 1 the following identity holds:

m—1 m—1 00 .
" el (m—1 1 . )
(=)™ m 3 (In (1 — a)) (1 — a) —]; (—a)f( j )i:;_j; —;5 (27)

For m=1and 0 < a < 1 the formula holds as well and is the well-known logarithmic series.

Remark A.6. Gerhold et al. (2010) prove (in their Lemma 2.1) a formula of similar complexity
that is apparently (but not obviously) equivalent. One can generalise their resulting Formula 2.7
to obtain an alternative to our Formula 21 representing the pgf of the (possibly m-truncated)
extended logarithmic distribution.

Corollary A.7. For any integers m > 1, k>0, the probability py (a,o; m) can be continuously
extended to (a, ) € ((0, 1]x{0, ..., 1 — m})\(1, 0), which means that py (a, a; m) is (made) contin-
uous on A%,. The limits equal 0 if k < m, else we have, fork>m >0,n=0,..,m—1,

ak/( k
lim Pk (a,a;m) = OOLVH_I)]
o= Y @/(,5)
k
— ak/(thl)

0 D fan (1 -a) =" = S (af () iy 1)} - S 9/(,0)
(28)
The resulting py (a, @ = —n; m), k > m, are positive and sum up to 1, such that one has a loss count

distribution.

Proof. For integers m > n >0, (px (a,;m)) is an m-truncation of (py (a,a; n+ 1)), which
can be continuously extended at &« = —#n as shown in Proposition A.4, leading to the loss count
distribution (px (a4, = —n; n+ 1)). For k > m we have

k k
a
pr (@ a=—mn+1)= /(”+1) , 1
O ) [an 1 —a) 1 - = S () () Ther 4]
and calculating py (a, @ = —n;m) out of the p; (4, = —n;n+ 1), one easily gets the asserted

formula, including the alternative representation with the infinite sum.
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Collecting the continuous extensions for n =0, 1, ..., m — 1, one finds the gaps in the original
domain &* of py (a, a; m) closed for « =0, —1, ..., 1 — m, such that py (a, «; m) is made continu-
ous for the part of A* having a > 0, « > —m, which together with (the topologically separated)
Area 1 constitutes A”,. O

Having shown the continuity of the py (a, o; m) on large parts of A* (in particular for large m),
we finally show that py (4, @), which in Areas 5 and 6 is defined as limy ~_, py (4, @), has right-
discontinuities in «.

Proposition A.8. py (a, ) is continuous on S* and (for fixed «) continuous in a on the whole
parameter space A*. However, at points (a, —n) in Areas 5 and 6 (with a > 0, n € Ny), for k> my =
n+ 1, we have

l. ) = ) = - = 1. )
a}n—lnpk (@, 0) =py (a0 =—n) >0 O[{‘H_lnl?k (@, )

Proof. We know from Proposition 4.3 that py (a, «) is continuous on &* (Areas 1, 2, 3) and
from Formula 26 it is clear that, for fixed &, px (a, @) is a continuous function in a on Areas 5 and
6 too. As a function in o we have left-continuity by definition:

Pk (@, a0 =—n)= l}m px(a,a) >0

To assess limg~ —p pi (a, @), let @ be slightly above —n, which implies mg (a, @) = n and
r (@, )
(1—a)y™@— Z}L_ol 7 (a, )

As k> n + 1, the numerator contains the factor (o« + n) and tends to 0 for @ \ —n. Instead, the
denominator cannot tend to 0 because, as shown for Proposition A.4, (1 —a)™* — Z;l:o rj (a, o)

tends to 0 and its last summand r,, (a, ), which makes the difference, tends to

Pk (a’ a) =

n h—1

STl G=m=a"#0
T =0

Thus, limg~ —y px (a, o) =0. O

B Overview of the (a, b, 0) Class

We unite the Panjer (a, b, 0) class of distributions in one table, assembling parameterisations that
are common, useful and/or instructive, not least the ones that can describe some distributions
of higher order. Note that generally most negative binomial parameterisations can be formally
extended to binomial, and some to Poisson, but not all of them yield formulae being easy to
interpret or at least compact.

The large Table 3 below extends and enhances similar tables given in Fackler (2011) and (the
better-known non-refereed version) Fackler (2009), where the parameterisations are discussed
and the first all-in-one model is introduced.

For each parameterisation, we show the following quantities:

probability function

probability generating function

probability of no loss

expectation

variance

squared coefficient of variation: Var (N) /E? (N)
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Panjer (a, b, 0) class.
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e dispersion: D (N) = Var (N) /E (N)
e overdispersion: OD (N) =D (N) — 1
e contagion: Ct (N) =OD (N) /E (N)
For a general treatment of this most useful quantity, see Chapter 5 of Fackler (2017).
e Panjer’s recursion parameters s, a, b

The presented models and parameters are the following:
e Poisson (1 variant)
— P: expectation A
e Binomial (2 variants): number of trials n

— BI: with probability of success p
— B2: with expectation A

e Negative binomial (4 variants): shape parameter «

NBI: with probability p. Note that this probability is not comparable to the one used in
B1.

NB2: with expectation A

NB3: Poisson-Gamma model inheriting both parameters « and ¢ from the Gamma
distribution with density x* e 9%/ T ()

— NB4: without o; combines expectation A and overdispersion j

e Negative binomial/binomial (2 variants): shape parameter (or negative number of trials) o

— BNBI: with overdispersion 8. For binomial, the parameters are the negatives of the Bl
parameters, while for negative binomial they have a Poisson-Gamma interpretation with
B being the inverse of ¥ from NB3 (which latter in the literature is often also denoted by
B, such that the parameterisations are easily mixed up).

* Used for negative binomial and the (g, b, 1) class in Panjer & Willmot (1992), Klugman
et al. (2008); extension to binomial is straightforward.

— BNB2: with a from Panjer’s recursion. For negative binomial a can be interpreted as the
probability 1 — p. Works for the general Panjer class but the Poisson type, which is the
limit for a — 0 with constant «a =s.

* Used in this paper to derive (E)Log from (E)NB.
* Used by Willmot (1988) for (ET)NB, by Hess et al. (2002) for (E)NB.
+ Used by Schroter (1990) for a generalisation of Panjer’s recursion.

e Panjer (a, b, 0) class united (5 variants)
— Panla/b: expectation A with shape parameter o or contagion c =1/«

* Discussed by Fackler (2011).

— Pan2a/b: Panjer’s recursion parameters a with b or s. Work for the general Panjer class.

+ Pan2b was used to formulate most theory developed in this paper (apart from a
substantial detour to BNB2).

— Pan3: combines the above A and a. Used for negative binomial in some old literature
(Johnson et al. 2005), but extension is straightforward.
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The respective parameter spaces are as follows; some can be enlarged to embrace Panjer
distributions of higher order.

e pe(0,1)

e neN;inB2n> A

e A, 1, B,5s€(0,00);0r B €(—1,0) in BNB1

e o€ (0,00);0or —a € Nin BNB2; or A < —a € N or « = £00 in Panla

e ce[0,00)0ri< —% eN

e a€ (—o0, 1);in BNB2 a # 0; in Pan2b —% eNfora <0;inPan3)\%1 eNfora<0
e (a,5) € Ag; (a, b) as shown in Figure 6.6.1 of Panjer & Willmot (1992):

(a,s) € {(a, —ang) |a € (—00,0),n9g € N} U [0, 1) x (0, 00)

(a,b)e{(a,—a(no+1))|ae(—oo,0),noeN}U{(a,b)e[O,l)xR’a+b>O}

Cite this article: Fackler M (2023). Panjer class revisited: one formula for the distributions of the Panjer (a,b,n) class, Annals
of Actuarial Science, 17, 145-169. https://doi.org/10.1017/S1748499522000148
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