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HOLOMORPHIC CURVES IN THE ORTHOGONAL TWISTOR SPACE

ANDY TALMADGE AND KicHOON YANG

A complete description of holomorphic curves in the Hermitian symmetric space
S0(6)/U(3) is given in terms of orthogonal differential invariants.

0. INTRODUCTION

The Hermitian symmetric space SO(2n)/U(n) is naturally identified with the
twistor space T(]Rz") , the space of orthogonal complex structures on R?*. Thus a
curve in SO(2n)/U(n) can be thought of as a 1-parameter family of complex struc-
tures on R2", and the study of holomorphic curves in SO(2n)/U(n) pertains to the
deformation problem of complex structures.

The case of SO(6)/U(3) is particularly appealing as this space is symmetric space
isomorphic to CP?, albeit via a complicated isomorphism. (The space SO(4)/U(2)
is symmetric space isomorphic to CP?, and the geometry of curves in SO(4)/U(2) is
trivial.) The study of holomorphic curves in SO(6)/U(3) yields a new perspective on
the study of holomorphic curves, and more generally minimal surfaces, in CP3 (see
(2]).

In the present paper we give a complete description of holomorphic curves in
S0O(6)/U(3) in terms of orthogonal differential invariants. Given a Riemann surface
M we derive a system of partial differential equations with 3 unknown functions, (7;),
on M. These partial differential equations (Section 4 (I1 — 3)) are the integrability
conditions in the following sense: given a solution (7;) one can manufacture a holomor-
phic curve by integrating a Frobenius system. To put it another way, a solution to the
integrability conditions determines a holomorphic curve constructively up to integra-
tion involving ordinary differential equations only. Moreover, every holomorphic curve

in SO(6)/U(3) arises in this manner.

1. THE SPACE OF ORTHOGONAL COMPLEX STRUCTURES ON R2?"

Let 7 (R?") denote the space of orientation preserving orthogonal complex struc-
tures on R2™. More precisely,

T(R*") = {J € Aut® (R*"): J* = —id, (Ju, Juw) = (v, w), v, w € R™"},
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where Autt (]Rz") denotes the set of orientation preserving automorphisms of R?®. The
space 7 (R?") can be identified with the Hermitian symmetric space $O(2n)/U(n) as
we shall see below.

Let i: U(n) — SO(2n) be the Lie group monomorphism induced by the identifi-
cation
RZn = C", (za) PN (zl +‘i22, . zzn—l +izzn).

More explicitly, if one writes

Z =X +1Y € U(n), X, Y real matrices,

X -Y
th i(Z)=38 t
en i(Z) [Y x ] S,
where *S = (€1, €n41, €2, Ent2, ** - En, E2n) and €; denotes the column vector with 1

at the ith entry and zeros elsewhere.
We put H =i(U(n)) C SO(2n); we shall occasionally confuse H with U(n). Let
A= (Aa) = (41, ..., A3,) € SO(2n), and consider the assignment

A Ju € T(R™)
given by the prescription
Ja(Azi—1) = Azi, Ja(A2i) = —Azi1, 1 <1< n,
that is, the matrix of Jo with respect to the basis (A,) is

-0 _1 -
1 0

jn=

s 1 0.

This assignment induces a bijection
S50(2n)/H — T(R?™)

as it is easily seen that J4o = Jp if and only if the cosets AH and BH coincide.
In what follows we recall the root space decomposition of the Lie algebra o(2n).
First define g to be the 2n x 2n with 1 at the (a, B)-entry and zeros elsewhere. We
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then define the following matrices in 0(2n) (0(2n) is thought of as the set of all 2n x 2n
real skew-symmetric matrices):

_ .28 2i—1
Fi=¢e31—¢€3

o o2i-1 2 _2j-1 _ _2j
Eij = €3;71 + €35 — €3i_1 — €35y

2 2j 2j-1 _ _2i-1
Fij = €351 t €3i_y — €3] €25
¢ o2-1 25 _ _2j-1 _ _2i
E;; = €301 + €3 —€2i71 — €35

Bym el el — i, el
where 1 €1 < j < n. Now put
Vi=R-span{F}, V;j=R-span{E;;, F;;}, V;;=R—span{E};, F;}.
The root spaces of o(2n) relative to the standard maximal torus
T = SO(2)" C SO(2n)
(SO(2)" is diagonally included in $O(2n)) are precisely
) Vi=t, Vi, Vi,

where ¢ is the Lie algebra of T, the trivial root space.
The Lie algebra of H C SO(2n) is given by

h={X €0(2n): *Xjn + jnX =0}
so that b=t®z Vij.

Comnsequently
m=0) V;

is the orthogonal complement to § relative to the Killing form. Via w,., where 7 is
the projection SO(2n) — SO(2n)/H, m gets identified with the tangent space at the
identity coset of SO(2n)/H :

m = To(SO(2n)/H), 0= H.

Let Q = (Qg) denote the o(2n)-valued Maurer-Cartan form of SO(2n). We then

have the decomposition

1 = Qp + Om, Qm=znv'!,.,
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where

Ry, = SU(O8T - 03) By + (0, + 937) © Fi] (0 sum).
We also put

®" = —[(ﬂé;‘l a35) + v-1(ag5-, + 93577, 1<i<ji<n

Recall that the space $O(2nr)/U(n) has, up to conjugacy, exactly one integrable
almost complex structure; this complex structure is characterised by letting the pull-

backs of (@"’) (by a local section of SO(2r) — SO(2n)/H ) span the space of type
(1, 0) forms on SO(2n)/H.

Any invariant metric on SO(2n)/H is given by the pullback of the symmetric
product

.. _I'-
c-Z 9"’-0”,c>0.
We shall use the metric coming from ¢ =1.

2. THE LINEAR ISOTROPY REPRESENTATION

In this section we explicitly compute the linear isotropy representation
p: U(n) - GL(m) = GL(To(SO(2n)/ H)).
For Z € U(n) one has the inner automorphism
Inn, : SO(2n) — SO(2n), g — zyz™!,

where z = i(Z) € H. The map Inn, fixes the origin 0 = H € SO(2n)/H and we
obtain the automorphism

Inn;u : m — m, m = T(S0(2n)/H).

The assignment
Z € U(n)— Ad(Z) |m=Inn..«. € GL(m)

is nothing but the adjoint representation of U(n) restricted to the invariant subspace
m C o(2n) (Ad(H)m C m). Then p = Ad|m.
In what follows we take n = 3. Recall that a basis of m is given by

Ei,, Eys, Eys, Fyy, Fiy, Fay € 0(6).
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Adz(EY;) is computed from the matrix multiplication
i(Z)- El;-i(2)".

Written out more fully,

Adz (E;) = (s- [i ';] * S)E;,.(s. [_',f, :;} * s).

Similarly one computes Adz (F};). We want to write Adz (E};) and Adz (F};) as
linear combinations in (Ej};, F;). For this we define 3 x 3 matrices J;; by the formula:
Jij=cei—el€o(3), 1<i<ji<3.

Note that
S By S = [J(; —?I,-,-] » 'S K8 = [J(:,- J(;j] )
Computations reveal that
Ad(2): Efj — {XJ;*'X =Y J;;'Yh + {XJ;;'Y + Y Ji;* X},
Fi; > {-XJUij'Y =Y J;;'Xh +{XJ;;*X - Y J;; 'Y},
where {-}, means identify Ji; with Ej},, and {-}, means identify Ji¢ with Fj,.

It is more convenient to rewrite the above using complex notation. So we write
Z = (2} + V-14}) = (z}) € U(3),
and compute p(Z) with respect to the complex basis
Eiz + iFIIZ: E;s + iFlls’ E;; + inls’

so that p(Z) € GL(3, C). (In other words, we have chosen an identification of m with
C3.) We find that

Zsy Zsy 2y
P(Z)=|22s Z22 Zan| € GL(3,C),
Zys Zy2 Zn

where Z;; denotes the (i, j)-minor of Z. We see that p(Z) is related to the adjoint
matriz of Z in a simple way. (The adjoint matrix of Z is the transpose of the cofactor
matrix of Z so that Z times its adjoint matrix is the determinant of Z.) More precisely,
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Then

(*) p(Z)=det(2)5-Z -6 € GL(3, C).

REMARK. More generally, consider the linear isotropy representation
p: U(n) - GL(N, C),

where m is identified with CV, N = n(n —1)/2, via the lexicographical ordering of the
root basis as in the SO(6)/U(3) case. Identify CN with A?(C"), the space of 2-vectors
in C*. Calculations then show that

p(Z)(E" A E,') =2Z; A Z,‘,

where Z = (Z;) € U(n), and (&;) are the canonical basis vectors of C*. Extending
linearly over the basis {e; A€;: 1 < i <j<n}of CN one obtains the matrix repre-
sentation p. However, the orbit structure of this action is very complicated for large
n.

3. THE FRENET FRAME ALONG A HOLOMORPHIC CURVE

Let M be a Riemann surface and consider a holomorphic map
f: M - SO(6)/H.
Welet e: U C M — SO(6) denote a smooth local section of the U(3)-principal bundle
F7150(6) — M.
The holomorphy of f is reflected by the fact that the forms
'@, 1<i<j<3,
are all of type (1,0) on M.

INDEX CONVENTION. (12)=1, (13)=2,(23)=3;1<4,7<3,1<a,8<6.
Fix a Riemannian metric on M from its conformal class, say ds?,. This means
that we can locally write
dsy =%
for some type (1, 0) nonvanishing form ¢. The 1-form ¢ is called a unitary coframe.
We define complex valued local functions (Z‘) on M by

0 = Zip,
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where ¢ is a fixed unitary coframe.
Put ; = ), |Z‘|2. It is routinely verified that =; is a globally defined smooth
function on M. Let ), denote the zero set of 7;; we shall mostly work away from the

set 3.

Since f is nonconstant, the function 71 is not identically zero: since the pullback
of the standard metric on SO(6)/U(3) is given by

daf =T1p P
we see that 7y(z) = 0 if and only if z € M is a non-immersion point. In fact, we can

say a lot more. But first we need to recall the notion of an analytic type function.

DEFINITION: Let U be a domain in the Riemann surface M. A C*-valued smooth
function h = (h*) on U is said to be of analytic type if for each point z € U, if z isa
local holomorphic coordinate centred at z, then

h = z%h,

where b is a positive integer and k is a smooth C"-valued function with 71(::) #0.
So if k is a function of analytic type on U, then k is either identically zero or its
zeros are isolated and of finite multiplicity (the integer b in the above definition).
It is known [1] that the functions of analytic type are exactly solutions of exterior
equation

dh = ®h (mod @),

where ® is an n X n matrix of complex valued 1-forms on U and ¢ is a nowhere zero
type (1, 0) formon U.

PROPOSITION. The function 71: M — R is an analytic type function on M.
PROOF: We will show that the local function

(z)y:vcM->C

is of analytic type. Since 7 = Y, |Z‘|2, the rest follows. Exterior differentiation of
both sides of the equations

e"0" = Z'p
leads to dz' = \Il;:Zj (mod ¢):

one uses the Maurer-Cartan structure equations of SO(6) and the equation

dp=—0c Aoy,
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where 8¢ is the complex connection form. For example,
dZ' = (6c + iw; + iwi)Z! + (iwg — wg)2* + (wi — im,})Z3 (mod ¢),

where w = e*{1. 0

Note that r, = /71 is a continuous function on M smooth away from its zeros.
Suppose &: U — SO(6) is another lifting of f. This means that

€=e-k,
for some smooth function k: U N U — U(3). Define (Z‘) by setting
0" = Zi.
We then obtain the following

TRANSFORMATION RULE. (Z') = p(k™)(Z7).
The above rule follows from the fact that

(e- k)" Qm = Ad (k™) e Q.

Consulting (*) in the preceding section it is clear that near a point in M\ )}, we
can make

Zl=1‘1, Zz=Zs=0,

where r; = \/77. Any lifting e achieving this will be called a first order frame.
Let e be any first order frame along f, and write w = e*2. We then have

1 .
(E1) L0} — ) + 2 + )] = e,
(E2) “’; = “’ga “’g = —w:,
(E3) wi = wi, wi = wj.

Define a subgroup of U(3) by
Gy = {k € U(3): p(k)(1, 0, 0) = ¥(1,0, 0)}.
We find that

G = { [g exPO(w)] L Z€ sv(z)} = SU(2) x U(1).
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Let e be a first order frame along f. Then any other first order frame along f is
given by e- k, where k is a G,-valued local function on M.

The first order frames are constructed near a point z € M \ },. Near a point in
3", we can find a generalised first order frame e such that

0% =¢0" = 0, 0! = Zyp, Z, complex valued,

where |Z;|* = 1. To see this observe that (2%) can be written as

#(2),

where z is a local holomorphic coordinate centred at z and (2‘(:)) # 0. Thus we

can use the H-action to bring about
21=?1>0,22=23=0.

Then Z; = 27 does the trick.

By way of notation we put
1_ 1,4 2 g2 _ 1o 1 1, .42
Y = 5(“’3 _w4)’ Y= 5(“’3 +“’4)’ Y =9 +ips.
Note that ¥ is of type (1, 0), and that

Y= Zl‘Pa

and near a point in M \ ),
P =ri.

We now exterior differentiate the relations (E1 - 3) and construct the second order
frames. We will use the Maurer-Cartan structure equations of SO(6). We will also
need the structure equations for (M, ¢ - p):

dp = —0c Aep.
The purely imaginary 1-form 8¢ is the complex connection form with respect to ¢, and

is nothing but —i times the Levi-Civita connection form of (M, (¢*)). Differentiating
this equation one more time we obtain

dfc = %zp AP, K = the Gaussian curvature.
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We now exterior differentiate the left hand side of (E1):
d(¥' +i9?) = i(w; +wi) A (¥ +i9?) =i(w; + wi) Arrp.
On the other hand,
d(ri@) =dri Ap —rilc A =(dr1 —r10c) Aep.

It follows that
[dlogm —i(w; +wi) —6c] A =0.

Since dlogr; is real and i(w% + w:) + 8¢ is purely imaginary, we then must have
(F1) xdlogr, =iflc + i(w; +w3)l,

where * is the Hodge operator of (M, ds?).
Exterior differentiation of the first equation in (E2) leads to

(1) wi Ap! twi Ap? =0;
the second equation yields
(1) ws Ap' —wi Ap® =0.

It follows from (1, §) that

4 _ 3 2 _ 1
Wy = — *Wg, Wy = —¥wyg,

and we may set
wl —iw? = 2%, wl-iwt=2%
for some local complex valued functions (Z*) on M.

Put 7, = Y |Z"|2. It is easily verified that r, is a well-defined smooth function
on M. A consideration similar to that given for 1 shows that 7, is an analytic type
function on M. Let 3, denote the zero set of 7.

Define tilded quantities Z!, Z2 by
Gl —idl =27, &) -ivt=Z%p, @=¢eqQ,

where € = e - k, k € G;-valued, is another first order frame. Write

k= (Z, e‘a),
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where Z is SU(2)-valued. We can write Z as
11
2z 2} Y
= [—7§ 3}] » HEE
From the formula & = i(k~") - w - i(k) we compute that

:(Z.') —ei0.t7. ‘(Z‘).

We see from this that we can make Z' =r; >0, and Z2? = 0.

Summarising the preceding computation, we have

PROPOSITION. Let f: M — SO(6)/U(3) be a nonconstant holomorphic map.
Near any point ¢ € M\ {3, U ,} there exists a local lifting e into SO(6) such that
in addition to (E1 - 3) we have

(E4) wé - iwg =120, w; = wg =0,

where, as usual, w = e*(.

The totality of such frames, called the second order frames, is determined up to

the structure group

Gz ={(Z, ) e SU(2) x U(1): 67 'Z - }(1, 0) = ¥(1, 0)}
={(e", e, ) € U(3)} = U(1).
THEOREM. Suppose 12(f) =0. Then f(M) is congruent to an open submanifold
of SO(4)/U(2) = CP*.

PROOF: 73(f) = 0 means that the bundle of first order frames along f, denoted
by L;, is an integral manifold of the exterior system

on SO(6). (So a first order frame along f is a local section of L; — M.) It follows
that L, is a translate of SO(4) x SO(2) C SO(6). Then f(M) is congruent to a
submanifold of

50(4) x SO(2)/(U(3) N SO(4) x SO(2)) = SO(4)/U(2) = CP*.

Hereafter we assume that 7; is not identically zero.

We now exterior differentiate both sides of the equations in (E4), and construct
the third order frames.
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We obtain from the first equation of (E4)

d(w; - iwé) = i(wg —w;) AT,

d(rap) =dra Ap —ra8c A .

Consequently,

{dlogrs —8c —i(w§ —w3)} Ap =0.
Therefore
(F2) xdlogry = i(fc +i(wg — w3)).

The remaining two equations in (E4), upon exterior differentiation, yield
wiAp! —wiAp?=0, wiAp'—wing®=0.

Consequently, we can write

(1) wi =ap’ +bp?, wi=bp' +cp?,

(2) Wi = wwy, Wi =g,

where a, b, ¢ are some local functions on M with a + ¢ = 2r;.

Define tilded quantities @, Z, ¢ using another second order frame € = e - k, where

k= (e’-o, e, ew), 0 a local function on M.

We want to know how (Ti, b, 7:') are related to (a, b, c).
Again using the formula

w

=i(k7!) w-i(k),w=¢'Q,& =€"Q,
we compute that
@=a-cos’f+c-sin?@ —2b-cosfsind,
B=1b-cos20 + (a—c)- cosfsinb,
c=a-sinf+c-cos®0+b-sin26.

If b does not vanish, then we can smoothly choose § so that
cotan 20 = (c — a)/2b
making b= 0. All this leads to the third, and final, normal form

(E5) wi +iw? = ap, w)+iw? = —icp,
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where a + ¢ = 2r,. Put ry = (a — ¢)/2.

The function 75 = 72 is an analytic type function on M; we let } , denote the

zero set of 3.

The isotropy group G is given by
Gy ={(", e7%, ) € Gy: 0 =nn/2,n € Z} = Z,.
It follows that near a point z € M\ {3, UY ,UY 4} there is a more or less unique
lifting
es: UCM— SO(6)

achieving the normal forms (E1) through (E5). Such a lifting will be called a Frenet
frame along f.
Exterior differentiation of both sides of the equations in (E5) leads to

(F1) sdlogry = i(fc +i(w; +w})),
(F3) sdlogry = i(fc +i(w) — w})).

REMARK. Suppose 75(f) is identically zero. Then one can show that f(M) lies in the
image of a CP? C CP? under the symmetric space isomorphism

CP® = 50(6)/U(3).

THEOREM. Let f: M — SO(6)/U(3) be a nonconstant holomorphic map. Fix a
conformal metric ds? = ¢ -, ¢ € type (1,0), and define the differential invariants
(i) as in the above. We then have

(11) Alogry = K — 41, + 27,
(12) Alogry = K 4+ 2(1y + 73) — 472,
(13) Alogrs = K + 21 — 47,

away from the singular locus ), UY ,U)  C M.
PROOF: Exterior differentiate both sides of the equations in (F1 - 3) using

dxdlogr; = %Alogr.- p AP,

i
dw} = §(a2 +c-2r2)p AP,
dw} = iacp AP,

dwi =irl o A.

We give an application.
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COROLLARY. Suppose f: M — SO(6)/U(3) is a holomorphic isometric immer-
sion from a compact M. Further suppose that K > 4/3, where K is the Gaussian
curvature of (M, ds?). Then we must have K = 4/3.

ProoF: K > 4/3 implies that
Alog (r%ra) > 0.

Thus log (1‘%1‘3) is a subharmonic function with singularties at the zeros of v, and =3
where it goes to —oco. In particular, this function attains a maximum on M. Now the
maximum principle for subharmonic functions says that it must be a constant. 0

4. THE INTEGRABILITY CONDITIONS AND THE ASSOCIATED PDE SYSTEM

In this section we summarise the frame construction by setting up a bijective cor-
respondence between the holomorphic curves in SO(6)/U(3) and the solutions to the
PDE system coming from (I1 - 3).

DEFINITION: We shall say that f: M — SO(6)/U(3) is a nondegenerate curve
if none of the 7;’s are identically zero. The map f will be called a regular curve if
T1 - T2 - T3 is never zero.

Observe that the regularity assumption is a global assumption.
Consider the following exterior differential system, denoted by S, defined on M x

SO(6) with independence condition ¢ AP # 0:
Q) +i032 = (r1 +73)p, —Q2 +1iQ] = (r1 —r3)p,
Q5 — 105 = OF - i = g,
QW =05=0 =03 =0.
Q3 + OF =i0c — *dlogr,
Q5 — Q) = i0c — *dlog r2,
Q3 — O} =1i0c — *dlog rs,

where 8¢ is the complex connection form of (M, ¢ - @), and the »;’s are any positive
functions on M solving the PDE system

(Il) A].Og‘rl =K- 41-? + 21'3,
(12) Alogr, = K +2(r +7}) — 43,
(I3) Alogrs = K + 2r2 — 2¢2,

THEOREM. The set of regular holomorphic curves M — SO(6)/U(3) is in bijec-
tive correspondence with the set of all solutions (ry, r2, rs) to the integrability condi-
tions (I1 -3).
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PROOF: Any regular curve certainly gives rise to such a solution: this is the content
of the frame construction given in the preceding section. Conversely suppose we are
given such a solution (r;). Counting the number of independent equations in & we
see that S defines a two-dimensional distribution on M x SO(6). Moreover, this
distribution is completely integrable and, hence, defines a foliation on M x SO(6). The
independence condition ¢ AP # 0 implies that a leaf of this foliation can be written
locally as

U-UxSO(6), z— (z, e(z)).

It is straightforward to verify that e(z) is a Frenet frame along f = w o e, where w
denotes the projection SO(6) — SO(6)/U(3). 0

5. COMPACT CURVES

In this section we give the integrated version of the integrability conditions (I1 —
3) assuming that M is compact.

DEFINITION: Let M be a Riemann surface. A singular Hermitian metric on M is
given locally as
ds® = Y- J’
where ¥ is a type (1, 0) smooth form of analytic type, that is, 1 can be written as
the product of an analytic type function and a nowhere vanishing type (1, 0) form. We

can rewrite ds? as

ds® = h(z)dz - dz,
where h(z) > 0 and z is a holomorphic coordinate. Moreover, we have
h(z) = 2" h(2),

where 71(2) is never zero and n is a nonnegative integer. The integer n is the order of
¥ at z = 0 and we write ordgy = n. The singular divisor of ds?, denoted by Dy, is
defined to be the zero divisor of 4. So

Dy = Z ord,(p)p, p € M.

It is easy to see that Dy depends only on the singular metric, not on the particular
choice of 4. The degree of Dy is locally finite, and is the total number of zeros of ¥
counted with multiplicity.

Given a singular metric ds> on M we have the usual Hermitian structure equations
away from the support of the singular divisor:

dyp = —6c Ay, dbc = %—xb AP = (—iK)- the Kahler form.

There is the
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GENERALISED GAUSS-BONNET-CHERN THEOREM. Let M be a compact Rie-
mann surface of genus g equipped with a singular metric ¥ . Then

i
Q/Mdﬂc—2—2g+ deg Dy.

ProoF: This follows from the usual Gauss-Bonnet—Chern theorem combined with
the argument principle: one notes that dfc is a multiple of Alogh(dz A dz). 0

Given a nondegenerate holomorphic curve f: M — SO(6)/U(3) we define the ith
osculating metric to be
ds? =70 3.

These metrics are singular metrics. (Note that ds? is just the induced metric.) We put

Pi = Tip,
wi Ap; = the Kahler form of (M, ds?),

1

2

0;, ¢ = the complex connection form of (M s ds?),
K; = the Gaussian curvature of (M s ds?)

so that dp; = —0;,c Ayi, db;, c = —iK;A;.

A=

Let es be a Frenet frame along f, and put w = e*Q. Consulting the normal forms
(E1 - 5) in Section 3 we compute that

01»0 = i(wf +w;)’
92,0 =i(“’g —'“’3)’
bs,c = i(w? — w}).

(For example, the first and third relations follow upon exterior differentiating the first
two equations in (E5).) Exterior differentiation of these equations leads to

dby,c = 2i(—2A; + As),
dfy ¢ = 2i(A; — 2A; + As),
dby, ¢ = 2i(A; — 2As).

THEOREM. Let M = M, denote a compact Riemann surface of genus g, and
consider a nondegenerate curve f: M — SO(6)/U(3). Then

(P) 29-2-#i=diy — 2d;i + diy,
where #i: = deg D,; = the total number of zeros of r;,
d; = % - (the area of (M, ds?)),
d_l = d4 = 0.
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PROOF: We have .
— / dbic =229+ #:
27r M

from the generalised Gauss—Bonnet—Chern theorem. From the Wirtinger theorem

/ A; = the area of (M, ds),
M

and the result follows. 0

REMARK. The relations in (P) correspond to the Plucker relations for algebraic curves
in CP® [2] p.86-95).
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