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HOLOMORPHIC CURVES IN THE ORTHOGONAL TWISTOR SPACE

ANDY TALMADGE AND KICHOON YANG

A complete description of holomorphic curves in the Hermitian symmetric space
SO(6)/U(3) is given in terms of orthogonal differential invariants.

0. INTRODUCTION

The Hermitian symmetric space S0(2n)/U(n) is naturally identified with the
twistor space 7"(R2n), the space of orthogonal complex structures on R2n. Thus a
curve in S0(2n)/U(n) can be thought of as a 1-parameter family of complex struc-
tures on R2™, and the study of holomorphic curves in S0(2n)/U(n) pertains to the
deformation problem of complex structures.

The case of SO(6)/U(3) is particularly appealing as this space is symmetric space
isomorphic to CPS , albeit via a complicated isomorphism. (The space SO{4)/U{2)
is symmetric space isomorphic to CP1, and the geometry of curves in 50(4)/Z7(2) is
trivial.) The study of holomorphic curves in SO(6)/U{3) yields a new perspective on
the study of holomorphic curves, and more generally minimal surfaces, in CP3 (see
[2])-

In the present paper we give a complete description of holomorphic curves in
SO(6)/{/(3) in terms of orthogonal differential invariants. Given a Riemann surface
M we derive a system of partial differential equations with 3 unknown functions, (T;),
on M. These partial differential equations (Section 4 (II - 3)) are the integrability
conditions in the following sense: given a solution (T,-) one can manufacture a holomor-
phic curve by integrating a Frobenius system. To put it another way, a solution to the
integrability conditions determines a holomorphic curve constructively up to integra-
tion involving ordinary differential equations only. Moreover, every holomorphic curve
in SO(6)/U(3) arises in this manner.

1. THE SPACE OF ORTHOGONAL COMPLEX STRUCTURES ON R2n

Let T(R2n) denote the space of orientation preserving orthogonal complex struc-
tures on R2n. More precisely,

T ( R 2 n ) = {JE A u t + ( R 2 n ) : J2 = -id, (Jv, Jw) = (v, w), v,wE R 2 n } ,
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484 A. Talmadge and K. Yang [2]

where Aut+ (R2n) denotes the set of orientation preserving automorphisms of R2n. The
space T(R2 n) can be identified with the Hermitian symmetric space S0(2n)/U(n) as
we shall see below.

Let i: U(n) —• SO(2n) be the Lie group monomorphism induced by the identifi-
cation

R2n = C \ (xa) «-» (x1 + ix2,

More explicitly, if one writes

+ ix2n).

Z =X +iY G U(n), X, Y real matrices,

then

where *5 = (ei, en+i, e2, En+2» • • • , £n, £2n) and e< denotes the column vector with 1
at the ith entry and zeros elsewhere.

We put H = i(U(n)) C 5O(2n); we shall occasionally confuse H with U(n). Let
A = (Aa) = (A\, ..., A2n) G S0(2n), and consider the assignment

A ~ JA e T(R2")

given by the prescription

t ^ n,

that is, the matrix of JA with respect to the basis (Aa) is

TO - 1
1 0

0 - 1
1 OJ

This assignment induces a bijection

S0(2n)/H -» T(R2n)

as it is easily seen that J A = JB if a n ( i only if the cosets AH and BH coincide.

In what follows we recall the root space decomposition of the Lie algebra o(2n).
First define ejj to be the 2n x 2n with 1 at the (a, /?)-entry and zeros elsewhere. We
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then define the following matrices in o(2n) ( o(2n) is thought of as the set of all 2 n x 2n
real skew-symmetric matrices):

171 _ _2» c - 2 ' " 1

^ij - C2j-1 + £2j - e2i-l ~ £2»»

r»J — e 2 i - l + e 2 i - l ~ e2« e2j »

»; 2 j - l + e 2 » e 2 i - l e2j>

»i "" C2j + e 2 j - l e 2 t - l e2t »

where 1 ̂  i < j ^ n. Now put

Fi = R - span{F,}, Vo- = R - span {JBy, F i ; } , ^ = R - span { ^ , F^}.

The root spaces of er(2n) relative to the standard maximal torus

T = S0(2)n C 5O(2n)

(5O(2)n is diagonally included in S0(2n) ) are precisely

® V^ V- — t V- • V'

where t is the Lie algebra of T , the trivial root space.

The Lie algebra of H C 5O(2n) is given by

so that h =

Consequently

is the orthogonal complement to f) relative to the Killing form. Via 7r»e, where ir is
the projection 5O(2n) —> S0(2n)/H, m gets identified with the tangent space at the
identity coset of SO(2n)/H:

m = T0(SO(2n)/H), 0 = H.

Let ft = ( f i | J denote the o(2n)-valued Maurer-Cartan form of 5O(2n) . We then

have the decomposition
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where

«v/. = \[(nViZ\ - nl)) ® E'{J + (n*., + nly1) ® *?,•] (™ sum).

We also put

Recall that the space 5O(2n)/lA(n) has, up to conjugacy, exactly one integrable
almost complex structure; this complex structure is characterised by letting the pull-
backs of (©'<j) (by a local section of S0(2n) -> S0(2n)/H) span the space of type
(1, 0) forms on S0(2n)/H.

Any invariant metric on SO(2n)/H is given by the pullback of the symmetric
product

S '"-G0, 0 0.

We shall use the metric coming from c = 1.

2. THE LINEAR ISOTROPY REPRESENTATION

In this section we explicitly compute the linear isotropy representation

p: U{n) -> GL{m) = GL{T0(SO(2n)/H)).

For Z 6 U(n) one has the inner automorphism

Inn, : SO(2n) -» SO(2n), g t-» zyz'1,

where « = i(Z) E H. The map Innz fixes the origin 0 = H G SO(2n)/H and we
obtain the automorphism

Innz»0 : m -> m, m = T0(SO{2n)/H).

The assignment
Z G I7(n) K-» Ad(Z) | m = Innz»0 G GL(m)

is nothing but the adjoint representation of U(n) restricted to the invariant subspace
m C o(2n) (Ad(JT)m C m). Then p = Ad|m-

In what follows we take n = 3. Recall that a basis of m is given by

E[2, E'1Z, E'23, F[2, F{3, F^ £ o(6).
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Adz (E'ij) is computed from the matrix multiplication

i(Z)-E\ri{Z)-\

Written out more fully,

X
Similarly one computes Adz (F!j) • We want to write Adz (E'ij) and Adz (•*%) as
linear combinations in (E^, F-j). For this we define 3 x 3 matrices Jij by the formula:

Jij = e) - e[ G o(3), 1 ̂  i < j 3.

Note that

0
0

-Ji

Computations reveal that

Ad (Z): E'ij •-» {XJij *X - YJij <y}x +

*S-F!rS-y

Ft. -XJij *Y - +

*Y + YJij *X}2,

ij lX - YJij *Yh,

where {}i means identify Jki with E'u, and {}2 means identify Jti with F'kt.
It is more convenient to rewrite the above using complex notation. So we write

Z = (x) + v/=lyj) = (*}) G U(3),

and compute p(Z) with respect to the complex basis

E'12 + iF[2, E[a + iF[3, E'23 + iF2S,

so that p(Z) G GL(3, C). (In other words, we have chosen an identification of m with
C* .) We find that

33 Z32 Z

p(Z) = Z23 Z22 Z21 G GL(3, C),

where Z,-;- denotes the (i, j)-minor of Z. We see that p(Z) is related to the adjoint
matrix of Z in a simple way. (The adjoint matrix of Z is the transpose of the cofactor
matrix of Z so that Z times its adjoint matrix is the determinant of Z.) More precisely,
we let

1"
6= - 1
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Then

(*) p(Z) = det (Z)6 • 2 - «

REMARK. More generally, consider the linear isotropy representation

p:U(n)->GL(N,C),

where m is identified with CN , N = n{n — l ) / 2 , via the lexicographical ordering of the
root basis as in the SO(6)/{/(3) case. Identify CN with A2(C"), the space of 2-vectors
in C™. Calculations then show that

where Z = (Zi) 6 U{n), and (ei) are the canonical basis vectors of C™. Extending
linearly over the basis {ej A e;-: 1 ^ i < j ^ n} of C^ one obtains the matrix repre-
sentation p. However, the orbit structure of this action is very complicated for large
n.

3. THE FRENET FRAME ALONG A HOLOMORPHIC CURVE

Let M be a Riemann surface and consider a holomorphic map

/ : M ->SO(6)/H.

We let e: U C M —» SO(6) denote a smooth local section of the J7(3)-principal bundle

The holomorphy of / is reflected by the fact that the forms

are all of type (1, 0) on M.

INDEX CONVENTION. (12) = 1, (13) = 2, (23) = 3; 1 ^ t, j < 3, 1 < a, 0 < 6.

Fix a Riemannian metric on M from its conformal class, say da2
M. This means

that we can locally write

da2
M = < p p

for some type (1, 0) nonvanishing form <p. The 1-form <p is called a unitary coframe.

We define complex valued local functions (Z*) on M by
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where <p is a fixed unitary coframe.

Put Ti = 2 |^*| • I* is routinely verified that rx is a globally defined smooth
function on M. Let 53i denote the zero set of Tj; we shall mostly work away from the
set Y.i-

Since / is nonconstant, the function T\ is not identically zero: since the pullback
of the standard metric on SO(6)/U(3) is given by

ds\ =T1<p-Tp,

we see that T\(X) = 0 if and only if x £ M is a non-immersion point. In fact, we can
say a lot more. But first we need to recall the notion of an analytic type function.

DEFINITION: Let U be a domain in the Riemann surface M. A C"-valued smooth
function h = (ft*) on U is said to be of analytic type if for each point x £ U, if z is a
local holomorphic coordinate centred at x, then

h = z%

where 6 is a positive integer and h is a smooth C™-valued function with h(x) ^ 0.
So if h is a function of analytic type on U, then h is either identically zero or its

zeros are isolated and of finite multiplicity (the integer 6 in the above definition).
It is known [1] that the functions of analytic type are exactly solutions of exterior

equation
dh = $/i (mod tp),

where $ is an n X n matrix of complex valued 1-forms on U and <p is a nowhere zero
type (1, 0) form on U.

PROPOSITION . The function T\ : M —» R is an analytic type function on M.

PROOF: We will show that the local function

(Z*): U C M -> C3

is of analytic type. Since n = X) |^* | > *^e r e s t follows. Exterior differentiation of
both sides of the equations

leads to dZi = V)Z' ( mod <p) :

one uses the Maurer-Cartan structure equations of 50(6) and the equation

dtp = — 9c A (p,
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where Be is the complex connection form. For example,

dZ1 = (8C + iu\ + i^DZ1 + (iw*e - w\)Z* + (w\ - iu>l)Za (mod <p),

where u> = e*f2. 0

Note that ri = y/ri is a continuous function on M smooth away from its zeros.

Suppose e: U —* 50(6) is another lifting of / . This means that

e"= e • k,

for some smooth function k: U l~l U —» U(3). Define \Z%\ by setting

re'* =
We then obtain the following

TRANSFORMATION RULE. (Z{\ = p(k-l)(Zi).

The above rule follows from the fact that

Consulting (*) in the preceding section it is clear that near a point in M \ J^j we
can make

where rx = y/r^. Any lifting e achieving this will be called a first order frame.

Let e be any first order frame along / , and write w = e*ft. We then have

(El) ^[(«J-«J)+i(«2+wi)]=rip,

(E2) «J=wj,«| = -wJ,
(E3) w * = u*t, u $ = u>3

6.

Define a subgroup of 17(3) by

Gi = {k € 17(3): p(fc)'(l, 0, 0) = «(1, 0, 0)}.

We find that
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Let e be a first order frame along / . Then any other first order frame along / is
given by e • k, where k is a G\-valued local function on M.

The first order frames are constructed near a point x £ M \ 53i. Near a point in
531 we can find a generalised first order frame e such that

e*0<2 = e*e's - 0, e'0*1 = Ziyj, Zx complex valued,

where \Z\ \ = T\ . To see this observe that (Z*) can be written as

where z is a local holomorphic coordinate centred at x and ( Zx(x)J ^ 0. Thus we

can use the -ff-action to bring about

Z1 = n > 0, Z2 = Z* = 0.

Then ZY = z^f1 does the trick.

By way of notation we put

Note that rf> is of type (1, 0), and that

and near a point in M \ £)i

We now exterior differentiate the relations (El - 3) and construct the second order

frames. We will use the Maurer-Cartan structure equations of 50 (6 ) . We will also
need the structure equations for (M, <p • lp):

dip — —Oc A (p.

The purely imaginary 1-form Oc is the complex connection form with respect to <p, and
is nothing but — i times the Levi-Civita connection form of (M, (<p1)) • Differentiating
this equation one more time we obtain

dBc — —<p A^ , K = the Gaussian curvature.
2
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We now exterior differentiate the left hand side of (El):

On the other hand,

d(ri<p) = dr\ f\<p — rj0c A tp = (dri — r\6c) A <p.

It follows that

Since dlogri is real and i(wl + w|) + &c is purely imaginary, we then must have

(Fl) *dlogr! = i\8c + i(w\ + u\)],

where * is the Hodge operator of (M, ds2) .

Exterior differentiation of the first equation in (E2) leads to

( t ) u>lAip

the second equation yields

( t ) <*>| Aip1 -u>l Av2 = 0 .

It follows from (f, t) that

and we may set

u\ - tw2 = Z V, «J - iwj = Z2<p

for some local complex valued functions (Z*) on M.

Put T2 = 53 |Z*| . It is easily verified that Ti is a well-defined smooth function

on M. A consideration similar to that given for T\ shows that r2 is an analytic type

tion on M. Let 52 2 denote the zero

Define tilded quantities Z1, Z2 by

function on M. Let 52 2 denote the zero set of T2 .

W5 — iu>l = Z1^, a;* — tWj

where e"= e • A:, fc G Gi-valued, is another first order frame. Write

k = (Z,eie),
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where Z is 5tf (2)-valued. We can write Z as

From the formula w = i(fc-1) • w • t(fc) we compute that

We see from this that we can make Z1 = r2 > 0, and Z2 = 0.

Summarising the preceding computation, we have

PROPOSITION . Let f:M-* SO(6)/J7(3) be a nonconstant holomorphic map.
iVear any point x £ M\ {X)i U S 2 } * n e r e exists a local lilting e into 50(6) such that
in addition to (El - 3) we have

(E4) W5 - iu\ = r2<p, w| = W5 = 0,

where, as usual, w — e* Cl.

The totality of such frames, called the second order frames, is determined up to

the structure group

G2 = {(Z, eie) e 5^(2) X U(l): e~ie • lZ • ' ( 1 , 0) = ' ( 1 , 0)}

THEOREM . Suppose T 2 ( / ) = 0. Then f(M) is congruent to an open submanifold

of SO(4)/U(2) £ C P 1 .

PROOF: T2(/) = 0 means that the bundle of first order frames along / , denoted

by L\, is an integral manifold of the exterior system

f2£ = 0, 1 < A < 4, 5 ^ B ^ 6,

on 50(6 ) . (So a first order frame along / is a local section of L\ —> M.) It follows
that Li is a translate of 50(4) x 50(2) C 50(6 ) . Then f{M) is congruent to a
submanifold of

50(4) x SO(2)/(U{3) D 50(4) x 50(2)) S 5O(4)/tf (2) s C P 1 .

D
Hereafter we assume that T2 is not identically zero.

We now exterior differentiate both sides of the equations in (E4), and construct
the third order frames.
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We obtain from the first equation of (E4)

d(wl - iw2) = t(u>| - w\) A T2<p,

d(r2<p) = dri A <p — rjOc A tp.

Consequently,

{dlogr2 — Be -*(<*>! - w | ) } A <p = 0.

Therefore

(F2) *dlogr2 = i(Bc + i{u\ - wj1)).

The remaining two equations in (E4), upon exterior differentiation, yield

u\ A <pl — u\ A <p2 = 0, u\ A tpl — w\ A tp2 = 0.

Consequently, we can write

(1) u\ = aip1 + b<p2, u>l = bip1 + cip2,

(2) U)\ = *Wj, UI4 = *w\,

where a, b, c are some local functions on M with a + c = 2r\.

Define tilded quantities 5 , 6 , ? using another second order frame e" = e • k, where

k = (e*9, e~ie, eiB), 0 a local function on M.

We want to know how (3, b, cj are related to (a, 6, c).

Again using the formula

5 = *(Jb-1) • w • i(Jfe), w = e*n, u = e*n,

we compute that

a = o • cos2 6) + c • sin2 0 — 26 • cos 0 sin 8,

6 = 6 • cos 26 + (a - c) • cos 0 sin 0,

c= a • sin2 0 + c • cos2 0 + 6 • sin 20.

If 6 does not vanish, then we can smoothly choose 0 so that

cotan 20 = (c - a)/26

making 6 = 0. All this leads to the third, and final, normal form

(E5) Wg + iw\ = a<p, u\ + iu\ =
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where a + c = 2 r i . Put r s = (o - c)/2.

The function TJ — r% is an analytic type function on M; we let 53S denote the

zero set of Tj.

The isotropy group Gj is given by

Gj = {(ei9, e~ie, eie) £ G 2 : « = nw/2, n £ Z } S Z4.

It follows that near a point z G M \ {X)i U ^ 2 U^),} there is a more or less unique
lifting

e/: tf C M->S0(6)

achieving the normal forms (El) through (E5). Such a lifting will be called a Frenet
frame along / .

Exterior differentiation of both sides of the equations in (E5) leads to

(Fl) *dlogr1 = i(0c + i(u>$ +w| ) ) ,

(F3) *<flogr3 = i(0c + i(wl - wj)).

REMARK. Suppose Ts(/) is identically zero. Then one can show that f(M) lies in the
image of a C.P2 C CP3 under the symmetric space isomorphism

CPS S SO(6)/U(3).

THEOREM . Let f:M-* SO(6)/U(3) be a nonconstant holomorphic map. Fix a
conforms! metric ds2 — <p • Jp, ip G type (1, 0), and define the differential invariants

(r{) as in the above. We then have

(11) Alogn = t f -4T 1 +2- r 2 )

(12) Alogr2=K + 2(T1+T3)-4T2,

(13) A logr3 =K + 2T2-4T3,

away from the singular locus Yli U S2 u 5Zs ^ ^ •

PROOF: Exterior differentiate both sides of the equations in (Fl - 3) using

d * dlog r< = - A log rt- (p Alp,
2

(a + c2rl)<pAJp,

du\ = iacip Alp,

du\ = ir\ (p Alp.

a
We give an application.
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COROLLARY . Suppose f: M —> S0(6)/17(3) is a holomorphic isometric immer-
sion from a compact M. Further suppose that K ^ 4/3, where K is the Gaussian
curvature of (Af, da2) . Then we must Aave K = 4/3.

PROOF: K ^ 4/3 implies that

A log (r*rs) 5*0.

Thus log (r |rs) is a subharmonic function with singularties at the zeros of r? and r$

where it goes to — oo. In particular, this function attains a maximum on M. Now the
maximum principle for subharmonic functions says that it must be a constant. U

4. T H E INTEGRABILITY CONDITIONS AND THE ASSOCIATED PDE SYSTEM

In this section we summarise the frame construction by setting up a bijective cor-
respondence between the holomorphic curves in 5O(6)/{7(3) and the solutions to the
PDE system coming from (II - 3).

DEFINITION: We shall say that f:M-* SO(6)/U(3) is a nondegenerate curve
if none of the T{ 'S are identically zero. The map / will be called a regular curve if
T\ • Ti • TS is never zero.

Observe that the regularity assumption is a global assumption.

Consider the following exterior differential system, denoted by <S, defined on M x

50(6) with independence condition <p A'ip ^ 0:

n\ + in* = (n + rs)<p, -n\ + m\ = (n - r3)^,
n\ - in\ = n2

6- »nj = r2<p,
n| = nj = nj = n* = o.
nj +U\ = iOc - *dlogri,

ill -Q\ = iOc - *dlogr2,

where 6c is the complex connection form of (M, <p -Tp), and the r^'s are any positive

functions on M solving the PDE system

(11) Alogn =K-4rl+2r2
2,

(12) A log r2 = K + 2 (r? + r2
3) - 4r|,

(13) l

THEOREM. The set of regular holomorphic curves M —* SO(6)/U(3) is in bijec-

tive correspondence with the set of all solutions (i*i, r2, r3) to the integrability condi-

tions (II -3).
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PROOF: Any regular curve certainly gives rise to such a solution: this is the content
of the frame construction given in the preceding section. Conversely suppose we are
given such a solution (r ;) . Counting the number of independent equations in S we
see that 5 defines a two-dimensional distribution on M x SO(6). Moreover, this
distribution is completely integrable and, hence, defines a foliation on M x 5 0 ( 6 ) . The
independence condition <p A 1p ^ 0 implies that a leaf of this foh'ation can be written
locally as

U -+Ux S0{6), z H> (z, e{z)).

It is straightforward to verify that e(z) is a Frenet frame along / = ir o e, where 7r
denotes the projection SO(6) -* SO(6)/Ef(3). D

5. COMPACT CURVES

In this section we give the integrated version of the integrability conditions (II -
3) assuming that M is compact.

DEFINITION: Let M be a Riemann surface. A singular Hermitian metric on M is
given locally as

ds2=^^,

where ip is a type (1,0) smooth form of analytic type, that is, ij> can be written as
the product of an analytic type function and a nowhere vanishing type (1, 0) form. We
can rewrite da2 as

da2 = h(z)dz • dz,

where h(z) ^ 0 and z is a holomorphic coordinate. Moreover, we have

where h(z) is never zero and n is a nonnegative integer. The integer n is the order of
ip at z = 0 and we write ordoV> = n. The singular divisor of ds2, denoted by D^, is
defined to be the zero divisor of rji. So

It is easy to see that D^ depends only on the singular metric, not on the particular
choice of ip. The degree of Dj, is locally finite, and is the total number of zeros of r/>
counted with multiplicity.

Given a singular metric ds2 on M we have the usual Hermitian structure equations
away from the support of the singular divisor:

V

dij) = -Bc A tl>, d6c = —il> f\ii> = (~iK) • the Kahler form.

There is the
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GENERALISED GAUSS-BONNET-CHERN THEOREM. Let M be a. compact Rie-

mann surface of genus g equipped with a singular metric il>ij). Then

^- I d6c = 2-2g+ deg D+.

PROOF: This follows from the usual Gauss-Bonnet-Chern theorem combined with
the argument principle: one notes that d9c is a multiple of A log h(dz A d~z). u

Given a nondegenerate holomorphic curve f:M—* SO(6)/U(3) we define the tth
osculating metric to be

da\ = nip • Ip.

These metrics are singular metrics. (Note that da\ is just the induced metric.) We put

<Pi = ri<p,

Aj = — <pi A ^ = the Kahler form of (M, da?),

6i,C = the complex connection form of (M, ds*),

Ki = the Gaussian curvature of (M, ds\)

so that difi = —6itc A ipi, d9{tc — —iKiAi.

Let ef be a Frenet frame along / , and put w = e*fl. Consulting the normal forms
(El - 5) in Section 3 we compute that

0i, c =t(w

(For example, the first and third relations follow upon exterior differentiating the first

two equations in (E5).) Exterior differentiation of these equations leads to

d62,c = 2i(Ai - 2A2 + As),

^ 3 , c = 2i(A2-2A3).

THEOREM. Let M — Mg denote a compact Riemann surface of genus g, and

consider a nondegenerate curve / : M —* SO(6)/U(3). Then

(P) 25 - 2 - # . - = * _ ! - 2di + di+1,

where # i = deg Dvi = the total number of zeros

dt = -- (the area of (M, ds})),
IT

<f_! = d4 = 0.
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PROOF: We have

/
JM

from the generalised Gauss-Bonnet-Chern theorem. Prom the Wirtinger theorem

/ A< = the area of (M, ds\),
JM

and the result follows. D

REMARK. The relations in (P) correspond to the Plucker relations for algebraic curves

in CPS [2] p.86-95).
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