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Linear independence of series related to
the Thue–Morse sequence along powers
Michael Coons and Yohei Tachiya

Abstract. The Thue–Morse sequence {t(n)}n⩾0 is the indicator function of the parity of the number
of ones in the binary expansion of nonnegative integers n, where t(n) = 1 (resp. = 0) if the binary
expansion of n has an odd (resp. even) number of ones. In this paper, we generalize a recent result of
E. Miyanohara by showing that, for a fixed Pisot or Salem number β > √φ = 1.272019 . . ., the set of
the numbers

1, ∑
n⩾1

t(n)
βn , ∑

n⩾1

t(n2)
βn , . . . , ∑

n⩾1

t(nk)
βn , . . .

is linearly independent over the field Q(β), where φ ∶= (1 +
√

5)/2 is the golden ratio. Our result
yields that for any integer k ⩾ 1 and for any a1 , a2 , . . . , ak ∈ Q(β), not all zero, the sequence {a1 t(n) +
a2 t(n2) + ⋯ + ak t(nk)}n⩾1 cannot be eventually periodic.

1 Introduction

Let s2(n) denote the number of ones in the binary expansion of n. The Thue–Morse
sequence t = {t(n)}n⩾0 is defined, for n ⩾ 0, by t(n) = 1 if s2(n) is odd, and t(n) = 0
if s2(n) is even. The Thue–Morse sequence is paradigmatic in the areas of complexity
and symbolic dynamics, and as such is an object of current interest in a variety of
areas. While the sequence goes back at least to the 1851 paper of Prouhet [6], its
interest in the context of complexity is usually attributed to Thue [8, 9] who showed
that t is overlap-free; that is, viewing t as a one-sided infinite word t(0)t(1)t(2)⋯, it
contains no subwords of the form awawa, where a ∈ {0, 1} and w is a finite binary
word, possibly empty (cf. [1, p. 15]). This shows that t contains no three consecutive
identical subwords (namely, t is cube-free) and consequently t is nonperiodic. Thus,
we find that the number ∑n⩾1 t(n)b−n is irrational for any integer b ⩾ 2, but more
strongly, a result of Mahler [3] provides the transcendence of ∑n⩾1 t(n)α−n for any
algebraic number α with ∣α∣ > 1.

On the other hand, the Thue–Morse sequence along powers has also been stud-
ied by several authors. In 2007, Moshe [5] investigated the subword complexity
of the sequence along squares {t(n2)}n⩾1 (see Section 4 for details) and solved
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Linear independence of series related to the Thue–Morse sequence along powers 823

a problem of Allouche and Shallit [1, p. 350] answering that every finite word
a0a1⋯am−1 (a i ∈ {0, 1}) of length m appears in the infinite word t(0)t(1)t(4)⋯.
Moreover, this result was generalized by Drmota, Mauduit, and Rivat [2] who proved
that the sequence {t(n2)}n⩾1 is normal (to the base 2); that is, for any m ⩾ 1 and any
a0a1⋯am−1 (a i ∈ {0, 1}), we have

lim
N→∞

#{n < N ∣ t(n2) = a0 , t((n + 1)2) = a1 , . . . , t((n + m − 1)2) = am−1}
N

= 1
2m .

As a consequence, the number ∑n⩾1 t(n2)2−n is normal in base 2. Recently,
Spiegelhofer [7] proved that the sequence along cubes {t(n3)}n⩾1 is simply normal;

lim
N→∞

#{n < N ∣ t(n3) = 0}
N

= 1
2

.

In this direction, it is expected that the sequence {t(P(n))}n⩾0 is normal for any
nonnegative integer-valued polynomial P of degree at least 3; however, it is unsolved
(cf. [2, Conjecture 1]).

A Pisot (resp. Salem) number is an algebraic integer β > 1 whose Galois conjugates
other than β have moduli less than 1 (resp. less than or equal to 1 and at least one
conjugate lies on the unit circle). Recently, Miyanohara [4] showed that if β is a Pisot
or Salem number with β > 2, then the number ∑n⩾1 t(n2)β−n does not belong to the
field Q(β). Note that his method depends on elementary arguments without the use
of the normality of {t(n2)}n⩾0. In this paper, we generalize Miyanohara’s results by
proving the following theorem. Throughout the paper, φ ∶= (1 +

√
5)/2 denotes the

golden ratio.

Theorem 1.1 Let β be a Pisot or Salem number with β > √φ = 1.272019 . . .. Then, for
any integer k ⩾ 1, the k + 1 numbers

1, ∑
n⩾1

t(n)
βn , ∑

n⩾1

t(n2)
βn , . . . , ∑

n⩾1

t(nk)
βn

are linearly independent over the field Q(β). In particular, for any integer k ⩾ 1, the
number ∑n⩾1 t(nk)β−n does not belong to Q(β).

It should be noted that all Pisot numbers are covered in Theorem 1.1, since the
smallest Pisot number is the plastic ratio ρ = 1.324717 . . .. On the other hand, all Salem
numbers are not; for example, the smallest known Salem number is λ = 1.176280 . . .
(see Sect. 4 for details). Let β be as in Theorem 1.1. Then, as an immediate corollary of
Theorem 1.1, for any nontrivialQ(β)-linear combination of the Thue–Morse sequence
along powers

s(n) ∶= a1 t(n) + a2 t(n2) +⋯ + ak t(nk)(1.1)

the number ∑n⩾1 s(n)β−n does not belong to Q(β), and hence the sequence
{s(n)}n⩾0 cannot be eventually periodic.

The present paper is organized as follows. In Section 2, for each integer
r = 1, 2, . . . , k, we will investigate the appearance of zeros in the sequences defined
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824 M. Coons and Y. Tachiya

by the difference of t(nr) and a certain shift t((n + n0)r). This observation makes it
possible to find a good rational approximation to

ξ ∶= ∑
n⩾1

s(n)β−n ,

where the sequence {s(n)}n⩾1 is defined in (1.1). Section 3 is devoted to the proof of
Theorem 1.1. In the last Section 4, we will give remarks and further questions related
to our results.

2 Some useful equalities and unequalities

The first lemma allows us to optimize our choice of rational approximations.

Lemma 2.1 For any integer k ⩾ 2, there exist positive integers m and n such that the
system of simultaneous congruences

X ≡ 22m−1 − 1 (mod 22m),

3k−1 X ≡ 22n − 1 (mod 22n+1)(2.1)

has an integer solution.

Proof For an even integer k ⩾ 2, clearly x = 1 is a solution of (2.1) with m = n = 1.
Thus, let k = 2� + 1 ⩾ 3 be odd. Then there exist an integer s ⩾ 3 and a ∈ {0, 1}
satisfying

3k−1 = 9� ≡ 1 + 2s + a2s+1 (mod 2s+2).

If s = 2u + 1 ⩾ 3 is odd, we set x ∶= 22u+1 − 1 + (1 − a)22u+2, so that

3k−1x ≡ (1 + 22u+1 + a22u+2)(22u+1 − 1 + (1 − a)22u+2) (mod 22u+3)
≡ 22u+2 − 1 (mod 22u+3),

and hence the integer x is a solution of (2.1) with m = n = u + 1. If s = 2u ⩾ 4 is even,
then setting x ∶= 22u+1 − 1 + 22u+2, we obtain

3k−1x ≡ (1 + 22u)(−1) ≡ 22u − 1 (mod 22u+1),

and the integer x is a solution of (2.1) with m = u + 1 and n = u. Lemma 2.1 is
proved. ∎

Let x ⩾ 1 be an integer solution of the system of congruences (2.1). Then the binary
expansions of the integers x and x3k−1 have the forms

(x)2 = w10
2m−1

11⋯1 and (x3k−1)2 = w20

2n

11⋯1 ,

respectively, for some binary words w1 and w2, and hence we obtain the equalities

t(1 + x) = t(x) and t(1 + x3k−1) = 1 − t(x3k−1).(2.2)
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Let k ⩾ 2 be an integer, and let ν(k) ∶= ν2(k) be the 2-adic valuation of k. Fix
positive integers m, n, x (depending only on k) as in Lemma 2.1. Since k2−ν(k) is an
odd integer, the congruence

k2−ν(k) Y ≡ x (mod 22m+2n+1)(2.3)

has an integer solution. Let y ⩽ 22m+2n+1 be the least positive integer solution of (2.3).
The remaining lemmas give us quantitative information about our approximations,

as well as allowing us to optimize the range of β in Theorem 1.1. Throughout the paper,
let N be a sufficiently large integer. In the following Lemmas 2.2 and 2.3, we investigate
the Thue–Morse values of the integers

(y2kN−ν(k)+δ + j)k =
k
∑
�=0

(k
�
)y� jk−� ⋅ 2(kN−ν(k)+δ)� , δ ∈ {0, 1}(2.4)

for j = 0, 1, . . . , 2N + 4 and j = 2N + 2h (h = 3, 4, . . . , 2N−3). Define

A�, j ∶= (
k
�
)y� jk−� , � = 0, 1, . . . , k, j = 1, 2, . . . , 2N + 2N−2 .

When 1 ⩽ � ⩽ k, we have

A�, j ⩽ 2k ⋅ (22m+2n+1)k ⋅ (5 ⋅ 2N−2)k−1 < 2kN−ν(k)+δ(2.5)

since N is sufficiently large. Hence, using (2.4) and (2.5), we obtain

t ((y2kN−ν(k)+δ + j)k) ≡ t (A0, j + A1, j2kN−ν(k)+δ) +
k
∑
�=2

t (A�, j2(kN−ν(k)+δ)�)

≡ t ( jk + z jk−12kN+δ) +
k
∑
�=2

t (A�, j) (mod 2),(2.6)

where z ∶= k2−ν(k)y. Note that the integers A�, j are independent of δ.

Lemma 2.2 For every integer j = 0, 1, . . . , 2N − 1 and j = 2N + 2h (h = 0, 1, . . . , 2N−3),
we have

t ((y2kN−ν(k) + j)k) = t ((y2kN−ν(k)+1 + j)k) .(2.7)

Proof Let δ ∈ {0, 1}. For j = 0, 1, . . . , 2N − 1, we have

jk < 2kN and 2kN ∣ z jk−12kN+δ ,(2.8)

and moreover, for j = 2N + 2h (h = 0, 1, . . . , 2N−3),

jk ⩽ (5 ⋅ 2N−2)k < 2kN+k−1 and 2kN+k−1 ∣ z(2N−1 + h)k−12kN+k−1+δ ,(2.9)

since 2kN+k−1 ∣ z jk−12kN+δ . Hence, by (2.8) and (2.9),

t( jk + z jk−12kN+δ) ≡ t( jk) + t(z jk−1) (mod 2),(2.10)
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826 M. Coons and Y. Tachiya

so that (2.6) and (2.10) yield

t ((y2kN−ν(k)+δ + j)k) ≡ t( jk) + t(z jk−1) +
k
∑
�=2

t(A�, j) (mod 2)(2.11)

for j = 0, 1, . . . , 2N − 1 and j = 2N + 2h (h = 0, 1, . . . , 2N−3). Thus, Lemma 2.2 is proved
since the right-hand side in (2.11) is independent of δ. ∎

Next, we show that the equality (2.7) also holds for j = 2N + 3, but not for j = 2N + 1.

Lemma 2.3 We have

t ((y2kN−ν(k) + 2N + 1)k) ≠ t ((y2kN−ν(k)+1 + 2N + 1)k)

and

t ((y2kN−ν(k) + 2N + 3)k) = t ((y2kN−ν(k)+1 + 2N + 3)k) .

Proof Let δ ∈ {0, 1} and j ∶= 2N + i (i = 1, 3). Then we have

jk + z jk−12kN+δ =
k
∑
�=0

(k
�
)ik−� ⋅ 2N� +

k−1
∑
�=0

(k − 1
�
)zik−1−� ⋅ 2N(�+k)+δ

=
k−1
∑
�=0

(k
�
)ik−� ⋅ 2N� + (1 + zik−12δ) ⋅ 2kN

+
2k−1
∑

�=k+1
(k − 1
� − k

)zi2k−�−1 ⋅ 2N�+δ .(2.12)

Since the integers

B�, i ∶= (
k
�
)ik−� , 1 + zik−12δ , C�, i ∶= (

k − 1
� − k

)zi2k−�−1

are independent of N, it follows from (2.12) that

t ( jk + z jk−12kN+δ) ≡
k−1
∑
�=0

t(B�, i) + t (1 + zik−12δ) +
2k−1
∑

�=k+1
t(C�, i) (mod 2).(2.13)

Moreover, combining Lemma 2.1 with (2.3), we obtain

zik−1 = k2−ν(k)yik−1 ≡ xik−1 (mod 22m+2n+1)

≡
⎧⎪⎪⎨⎪⎪⎩

22m−1 − 1 (mod 22m), if i = 1,
22n − 1 (mod 22n+1), if i = 3,

so that by (2.2)

t(1 + zik−1) =
⎧⎪⎪⎨⎪⎪⎩

t(zik−1), if i = 1,
1 − t(zik−1), if i = 3.

(2.14)
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Thus, by (2.6), (2.13), and (2.14), we obtain

t ((y2kN−ν(k)+1 + j)k)−t ((y2kN−ν(k) + j)k)
≡ t ( jk + z jk−12kN+1) − t ( jk + z jk−12kN)

≡ t(1 + 2zik−1) − t(1 + zik−1)

≡ 1 + t(zik−1) −
⎧⎪⎪⎨⎪⎪⎩

t(zik−1), if i = 1,
1 − t(zik−1), if i = 3,

≡
⎧⎪⎪⎨⎪⎪⎩

1, if j = 2N + 1,
0, if j = 2N + 3,

(mod 2),

which finishes the proof of the Lemma 2.3. ∎

Define

λ ∶= 1 + 1
2(k − 1) > 1,

and let ⌊α⌋ denote the integral part of the real number α.

Lemma 2.4 For every integer r = 1, . . . , k − 1 and j = 0, 1, . . . , 2⌊λN⌋, we have

t ((y2kN−ν(k) + j)r) = t ((y2kN−ν(k)+1 + j)r) .(2.15)

Proof Let δ ∈ {0, 1} and r, j be fixed integers as in the lemma. Then we have

(y2kN−ν(k)+δ + j)r =
r
∑
�=0

(r
�
)y� jr−� ⋅ 2(kN−ν(k)+δ)� .

Since

D�, j ∶= (
r
�
)y� jr−� ⩽ 2k−1 ⋅ (22m+2n+1)k−1 ⋅ (2λN)k−1 < 2kN−ν(k)+δ ,

we obtain

t ((y2kN−ν(k)+δ + j)r) ≡
r
∑
�=0

t(D�, j) (mod 2),

which is independent of δ. Lemma 2.4 is proved. ∎

3 Proof of Theorem 1.1

Let β be a Pisot or Salem number with β > √φ = 1.272019 . . .. Suppose to the contrary
that there exist an integer k ⩾ 1 and algebraic numbers a0 , a1 , . . . , ak ∈ Q(β), not all
zero, such that

a0 + a1 ∑
n⩾1

t(n)
βn + a2 ∑

n⩾1

t(n2)
βn +⋯+ ak ∑

n⩾1

t(nk)
βn = 0.(3.1)
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828 M. Coons and Y. Tachiya

We may assume that a0 , a1 , . . . , ak ∈ Z[β] and ak ≠ 0. As mentioned in Section 1, the
number ∑n⩾1 t(n)α−n is transcendental for any algebraic number α with ∣α∣ > 1, and
thus we have k ⩾ 2. Define the sequence {s(n)}n⩾1 by

s(n) ∶= a1 t(n) + a2 t(n2) +⋯ + ak t(nk), n ⩾ 1,

and

ξ ∶= ∑
n⩾1

s(n)
βn .

Note that {s(n)}n⩾1 is bounded and the number ξ = −a0 ∈ Z[β] by (3.1). Let ν(k), y
be as in Section 2, and let N be a sufficiently large integer such that Lemmas 2.2–2.4
all hold. For convenience, let

κ(N) ∶= kN − ν(k).

Define the algebraic integers pN , qN ∈ Z[β] by

pN ∶= (βy2κ(N)
− 1)

y2κ(N)−1

∑
n=1

s(n)βy2κ(N)−n +
y2κ(N)+1−1

∑
n=y2κ(N)

s(n)βy2κ(N)+1−n

and qN ∶= (βy2κ(N) − 1)βy2κ(N)
, respectively. Then, we obtain

pN

qN
=

y2κ(N)−1

∑
n=1

s(n)
βn + βy2κ(N)

βy2κ(N) − 1
⋅

y2κ(N)+1−1

∑
n=y2κ(N)

s(n)
βn

=
y2κ(N)−1

∑
n=1

s(n)
βn +

⎛
⎝

1 + 1
βy2κ(N) + (

1
βy2κ(N) )

2

+⋯
⎞
⎠

y2κ(N)+1−1

∑
n=y2κ(N)

s(n)
βn

=
y2κ(N)+1−1

∑
n=1

s(n)
βn + 1

βy2κ(N)

y2κ(N)+1−1

∑
n=y2κ(N)

s(n)
βn + O

⎛
⎝
( 1

βy2κ(N) )
2⎞
⎠
⋅ O ( 1

βy2κ(N) )

=
y2κ(N)+1−1

∑
n=1

s(n)
βn +

y2κ(N)−1

∑
j=0

s(y2κ(N) + j)
βy2κ(N)+1+ j

+ O ( 1
β3y2κ(N) ) .(3.2)

By the equalities (2.7) and (2.15) with j = 0, 1, . . . , 2N , we have

s(y2κ(N) + j) = s(y2κ(N)+1 + j), j = 0, 1, . . . , 2N .(3.3)

Hence, by (3.2) and (3.3),

pN

qN
=

y2κ(N)+1+2N

∑
n=1

s(n)
βn +

2⌊λN⌋

∑
j=2N+1

s(y2κ(N) + j)
βy2κ(N)+1+ j

+ O ( 1
βy2κ(N)+1+2⌊λN⌋ ) ,(3.4)
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where we used 1 < λ < 2 ≤ k in the big O notation. Therefore, by using (3.4) and the
equalities (2.15) with j = 2N + 1, . . . , 2⌊λN⌋, we obtain

ξ − pN

qN
= ak

2⌊λN⌋

∑
j=2N+1

u( j)
βy2κ(N)+1+ j

+ O ( 1
βy2κ(N)+1+2⌊λN⌋ ) ,(3.5)

where

u( j) ∶= t ((y2κ(N)+1 + j)k) − t ((y2κ(N) + j)k) , j ⩾ 2N + 1.

Note that ∣u( j)∣ ⩽ 1 since u( j) ∈ {−1, 0, 1} for every integer j. Moreover, by the
definition of qN , we have qN ⩽ βy2κ(N)+1

, and so by (3.5),

qN ξ − pN = O ( 1
β2N ) .(3.6)

On the other hand, applying Lemmas 2.2 and 2.3, we obtain
""""""""""""

2⌊λN⌋

∑
j=2N+1

u( j)
β j

""""""""""""
⩾ 1

β2N+1 −
2⌊λN⌋

∑
j=2N+5

∣u( j)∣
β j

= 1
β2N+1 − ∑

j⩾2N+5
j∶odd

1
β j − ∑

j⩾2N+2N−2+1
j∶even

1
β j

⩾ 1
β2N+1 −

β2

β2 − 1
( 1

β2N+5 +
1

β5⋅2N−2+2 )

= β4 − β2 − 1
β3(β2 − 1) ⋅

1
β2N + O ( 1

β5⋅2N−2 ) ,(3.7)

and hence, by (3.5) and (3.7),

βy2κ(N)+1
∣ξ − pN

qN
∣ ⩾ ∣ak ∣ ⋅

""""""""""""

2⌊λN⌋

∑
j=2N+1

u( j)
β j

""""""""""""
+ O ( 1

β2⌊λN⌋ )

= ∣ak ∣ ⋅
β4 − β2 − 1
β3(β2 − 1) ⋅

1
β2N + O ( 1

β5⋅2N−2 ) + O ( 1
β2⌊λN⌋ ) .

Thus, noting that β > √φ, ak ≠ 0, and that both 5 ⋅ 2N−2 − 2N and 2⌊λN⌋ − 2N tend to
infinity as n →∞, we obtain

∣ξ − pN

qN
∣ > 0.(3.8)

Combining (3.6) and (3.8), there is a positive constant c1 such that

0 < ∣qN ξ − pN ∣ <
c1

β2N(3.9)

for every sufficiently large N.

Downloaded from https://www.cambridge.org/core. 15 Jan 2025 at 17:31:16, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


830 M. Coons and Y. Tachiya

Now, we complete the proof. When β is a rational integer, (3.9) is clearly impossible
for large N, since qN ξ − pN is a nonzero rational integer. So, suppose not, and let
β =∶ β1 , β2 , . . . , βd (d ⩾ 2) be the Galois conjugates overQ of β. Since ξ = −a0 ∈ Z[β],
there exist rational integers A0 , A1 , . . . , Ad−1 such that ξ = ∑d−1

i=0 A i β i . Define the
polynomial over Z[β]

FN(X) ∶= qN(X)ξ(X) − pN(X),

where

pN(X) ∶= (X y2κ(N)
− 1)

y2κ(N)−1

∑
n=1

s(n)X y2κ(N)−n +
y2κ(N)+1−1

∑
n=y2κ(N)

s(n)X y2κ(N)+1−n ,

qN(X) ∶= (X y2κ(N)
− 1)X y2κ(N)

,

ξ(X) ∶=
d−1
∑
i=0

A i X i .

Note that pN(β) = pN , qN(β) = qN , and ξ(β) = ξ. By (3.9),

0 < ∣FN(β)∣ = ∣qN ξ − pN ∣ <
c1

β2N .(3.10)

Moreover, since β is a Pisot or Salem number, we have ∣β i ∣ ⩽ 1 (i = 2, 3, . . . , d), and
so by the definitions of pN(X), qN(X), ξ(X), there exists a positive constant c2
independent of N such that

0 < ∣FN(β i)∣ ⩽ c2 ⋅ y2κ(N) , i = 2, 3, . . . , d ,(3.11)

where the first inequality follows since FN(β i) are the Galois conjugates of FN(β) ≠ 0.
Therefore, considering the norm over Q(β)/Q of the algebraic integer FN(β), we
obtain, by (3.10) and (3.11),

1 ⩽ ∣NQ(β)/QFN(β)∣ =
d−1
∏
i=1
∣FN(β i)∣ <

c1cd−1
2 ⋅ (y2κ(N))d

β2N ,

which is impossible for sufficiently large N, since κ(N) = O(N) = o(2N). The proof
of Theorem 1.1 is now complete.

4 Concluding remarks and further questions

As there is no known nontrivial lower bound on Salem numbers, for our Theorem 1.1
to apply to all Salem numbers, we would need our result to be valid for β > 1. It seems
very unlikely that the type of optimization that we have done here could be carried
out to reach that range. A similar approach could increase the range a bit, but a new
idea is probably necessary to get the full range of possible β. Here, our proof works
for Pisot and Salem numbers, but it seems reasonable to conjecture that Theorem 1.1
holds for any algebraic number β with ∣β∣ > 1, though without more information on
the structure of the sequences {t(nk)}n⩾0 this seems out of reach at the moment.
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When we first started our investigation, we wanted to show that the three numbers

1, ∑
n⩾1

t(n)
bn , ∑

n⩾1

t(n2)
bn

are linearly independent over Q for any positive integer b ⩾ 2. Considering this
question, two properties of the Thue–Morse sequence stood out to us. First, the
sequence {t(n)}n⩾0 is produced by a finite automaton (see [1, Section 5.1]), so it
is not a very complicated sequence. Second, the sequence {t(n2)}n⩾0 is extremely
complicated – as we mentioned in Section 1, the sequence {t(n2)}n⩾0 is normal; that
is, all 2m patterns of finite subwords of length m occur with frequency 2−m . A result
of Wall [10, Corollary 1, p. 15] states that if ξ is normal and q1 ≠ 0 and q2 are rational
numbers, then q1 ξ + q2 is also normal, which implies the Q-linear independence of
the above three numbers when b = 2. It seems reasonable to think that for any rational
numbers q1 ≠ 0 and q2, the number

q2 + q1 ∑
n⩾1

t(n)
bn

must have a “not very complicated” base-b expansion. In fact, this is the case since
{t(n)}n⩾0 is produced by a finite automaton (see [1, Section 13.1]). There is a gap in
the literature regarding sequences and numbers that fall in between automatic and
normal. We make explicit a question that would be a first step in this direction.

Recall, for any sequence f taking values in {0, 1}, we let p f (m) denote the
(subword) complexity of f as a one-sided infinite word. In particular, p f (m) counts
the number of distinct blocks of length m in f. So, for example, f is eventually periodic
if and only if p f (m) is uniformly bounded, and if f is 2-normal, then p f (m) = 2m for
all m, since every binary word of any length appears in a 2-normal binary word. The
entropy of f is the limit, h( f ) ∶= limm→∞(log p f (m))/m ∈ [0, log 2]. Considering the
Thue–Morse sequence (or word) t, since t is generated by a finite automaton, we have
that pt(m) = O(m), so h(t) = 0. In the present paper, we considered the sequences
tk ∶= {t(nk)}n⩾0 . Moshe [5] established that ptk(m) ⩾ 2m/2k−2

for any k ⩾ 2; that is,
that h(tk) ⩾ (log 2)/2k−2 > 0. The question about numbers with lower complexity
seems immediate.

Question 4.1 For a real number ξ, let pξ(m, b) be the number of b-ary words of
length m appearing in the base-b expansion of ξ. Is it true that for any two rational
numbers q1 ≠ 0 and q2, we have pq1 ξ+q2(m, b) = O(pξ(m, b)) ?
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