

Linear independence of series related to the Thue–Morse sequence along powers

Michael Coons and Yohei Tachiya

Abstract. The Thue–Morse sequence $\{t(n)\}_{n\geq 0}$ is the indicator function of the parity of the number of ones in the binary expansion of nonnegative integers *n*, where $t(n) = 1$ (resp. = 0) if the binary expansion of *n* has an odd (resp. even) number of ones. In this paper, we generalize a recent result of E. Miyanohara by showing that, for a fixed Pisot or Salem number $\beta > \sqrt{\varphi} = 1.272019...$, the set of the numbers

1,
$$
\sum_{n\geqslant 1} \frac{t(n)}{\beta^n}
$$
, $\sum_{n\geqslant 1} \frac{t(n^2)}{\beta^n}$, ..., $\sum_{n\geqslant 1} \frac{t(n^k)}{\beta^n}$, ...

is linearly independent over the field $\mathbb{Q}(\beta)$, where φ := $(1 + \sqrt{5})/2$ is the golden ratio. Our result yields that for any integer $k \geq 1$ and for any $a_1, a_2, \ldots, a_k \in \mathbb{Q}(\beta)$, not all zero, the sequence $\{a_1t(n) +$ $a_2 t(n^2) + \cdots + a_k t(n^k)$ _{*n* ≥ 1} cannot be eventually periodic.

1 Introduction

Let $s_2(n)$ denote the number of ones in the binary expansion of *n*. The *Thue–Morse sequence* $\mathbf{t} = \{t(n)\}_{n\geq0}$ is defined, for $n \geq 0$, by $t(n) = 1$ if $s_2(n)$ is odd, and $t(n) = 0$ if $s_2(n)$ is even. The Thue–Morse sequence is paradigmatic in the areas of complexity and symbolic dynamics, and as such is an object of current interest in a variety of areas. While the sequence goes back at least to the 1851 paper of Prouhet [\[6\]](#page-10-0), its interest in the context of complexity is usually attributed to Thue [\[8,](#page-10-1) [9\]](#page-10-2) who showed that **t** is overlap-free; that is, viewing **t** as a one-sided infinite word $t(0)t(1)t(2)...$, it contains no subwords of the form *awawa*, where $a \in \{0,1\}$ and *w* is a finite binary word, possibly empty (cf. [\[1,](#page-10-3) p. 15]). This shows that **t** contains no three consecutive identical subwords (namely, **t** is cube-free) and consequently **t** is nonperiodic. Thus, we find that the number $\sum_{n\geq 1} t(n)b^{-n}$ is irrational for any integer $b \geq 2$, but more strongly, a result of Mahler [\[3\]](#page-10-4) provides the transcendence of $\sum_{n\geq 1} t(n) \alpha^{-n}$ for any algebraic number α with $|\alpha| > 1$.

On the other hand, the Thue–Morse sequence along powers has also been studied by several authors. In 2007, Moshe [\[5\]](#page-10-5) investigated the subword complexity of the sequence along squares $\{t(n^2)\}_{n\geq 1}$ (see Section [4](#page-8-0) for details) and solved

Received by the editors December 20, 2023; revised February 27, 2024; accepted February 29, 2024. Published online on Cambridge Core March 6, 2024.

This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. This research was partly supported by JSPS KAKENHI Grant Number JP22K03263.

AMS subject classification: **11J72**, 11A63, 11B85.

Keywords: Thue–Morse sequence, linear independence, Pisot number, Salem number.

a problem of Allouche and Shallit [\[1,](#page-10-3) p. 350] answering that every finite word $a_0 a_1 \cdots a_{m-1}$ ($a_i \in \{0,1\}$) of length *m* appears in the infinite word $t(0)t(1)t(4)\cdots$. Moreover, this result was generalized by Drmota, Mauduit, and Rivat [\[2\]](#page-10-6) who proved that the sequence $\{t(n^2)\}_{n\geq 1}$ is normal (to the base 2); that is, for any $m \geq 1$ and any $a_0 a_1 \cdots a_{m-1}$ ($a_i \in \{0,1\}$), we have

$$
\lim_{N\to\infty}\frac{\#\{n
$$

As a consequence, the number $\sum_{n\geq 1} t(n^2)2^{-n}$ is normal in base 2. Recently, Spiegelhofer [\[7\]](#page-10-7) proved that the sequence along cubes $\{t(n^3)\}_{n\geq 1}$ is simply normal;

$$
\lim_{N\to\infty}\frac{\#\{n
$$

In this direction, it is expected that the sequence $\{t(P(n))\}_{n\geq 0}$ is normal for any nonnegative integer-valued polynomial *P* of degree at least 3; however, it is unsolved (cf. [\[2,](#page-10-6) Conjecture 1]).

A Pisot (resp. Salem) number is an algebraic integer *β* > 1 whose Galois conjugates other than β have moduli less than 1 (resp. less than or equal to 1 and at least one conjugate lies on the unit circle). Recently, Miyanohara [\[4\]](#page-10-8) showed that if *β* is a Pisot or Salem number with $\beta > 2$, then the number $\sum_{n\geq 1} t(n^2)\beta^{-n}$ does not belong to the field $\mathbb{Q}(\beta)$. Note that his method depends on elementary arguments without the use of the normality of $\{t(n^2)\}_{n\geq 0}$. In this paper, we generalize Miyanohara's results by proving the following theorem. Throughout the paper, φ := $(1+\sqrt{5})/2$ denotes the golden ratio.

Theorem 1.1 *Let β be a Pisot or Salem number with* $β$ *>* $\sqrt{φ}$ *= 1.272019 . . . Then, for any integer* $k \geq 1$ *, the* $k + 1$ *numbers*

1,
$$
\sum_{n\geq 1}\frac{t(n)}{\beta^n}, \quad \sum_{n\geq 1}\frac{t(n^2)}{\beta^n}, \quad \ldots, \quad \sum_{n\geq 1}\frac{t(n^k)}{\beta^n}
$$

are linearly independent over the field $\mathbb{Q}(\beta)$ *. In particular, for any integer k* \geq 1*, the number* $\sum_{n\geq 1} t(n^k) \beta^{-n}$ *does not belong to* $\mathbb{Q}(\beta)$ *.*

It should be noted that all Pisot numbers are covered in Theorem [1.1,](#page-1-0) since the smallest Pisot number is the plastic ratio $\rho = 1.324717...$ On the other hand, all Salem numbers are not; for example, the smallest known Salem number is $\lambda = 1.176280...$ (see Sect. [4](#page-8-0) for details). Let *β* be as in Theorem [1.1.](#page-1-0) Then, as an immediate corollary of Theorem [1.1,](#page-1-0) for any nontrivial $\mathbb{Q}(\beta)$ -linear combination of the Thue–Morse sequence along powers

(1.1)
$$
s(n) := a_1 t(n) + a_2 t(n^2) + \dots + a_k t(n^k)
$$

the number $\sum_{n\geq 1} s(n)\beta^{-n}$ does not belong to $\mathbb{Q}(\beta)$, and hence the sequence ${s(n)}_{n\geq0}$ cannot be eventually periodic.

The present paper is organized as follows. In Section [2,](#page-2-0) for each integer $r = 1, 2, \ldots, k$, we will investigate the appearance of zeros in the sequences defined

by the difference of $t(n^r)$ and a certain shift $t((n + n_0)^r)$. This observation makes it possible to find a good rational approximation to

$$
\xi := \sum_{n\geqslant 1} s(n) \beta^{-n},
$$

where the sequence ${s(n)}_{n\geq 1}$ is defined in [\(1.1\)](#page-1-1). Section [3](#page-5-0) is devoted to the proof of Theorem [1.1.](#page-1-0) In the last Section [4,](#page-8-0) we will give remarks and further questions related to our results.

2 Some useful equalities and unequalities

The first lemma allows us to optimize our choice of rational approximations.

Lemma 2.1 For any integer $k \geq 2$, there exist positive integers m and n such that the *system of simultaneous congruences*

(2.1)
$$
X \equiv 2^{2m-1} - 1 \pmod{2^{2m}},
$$

$$
3^{k-1}X \equiv 2^{2n} - 1 \pmod{2^{2n+1}}
$$

has an integer solution.

Proof For an even integer $k \ge 2$, clearly $x = 1$ is a solution of [\(2.1\)](#page-2-1) with $m = n = 1$. Thus, let $k = 2\ell + 1 \ge 3$ be odd. Then there exist an integer $s \ge 3$ and $a \in \{0,1\}$ satisfying

$$
3^{k-1} = 9^{\ell} \equiv 1 + 2^s + a2^{s+1} \pmod{2^{s+2}}.
$$

If *s* = 2*u* + 1 ≥ 3 is odd, we set *x* := $2^{2u+1} - 1 + (1 - a)2^{2u+2}$, so that

$$
3^{k-1}x \equiv (1 + 2^{2u+1} + a2^{2u+2})(2^{2u+1} - 1 + (1 - a)2^{2u+2}) \pmod{2^{2u+3}}
$$

$$
\equiv 2^{2u+2} - 1 \pmod{2^{2u+3}},
$$

and hence the integer *x* is a solution of [\(2.1\)](#page-2-1) with $m = n = u + 1$. If $s = 2u \ge 4$ is even, then setting $x = 2^{2u+1} - 1 + 2^{2u+2}$, we obtain

$$
3^{k-1}x \equiv (1+2^{2u})(-1) \equiv 2^{2u} - 1 \pmod{2^{2u+1}},
$$

and the integer *x* is a solution of [\(2.1\)](#page-2-1) with $m = u + 1$ and $n = u$. Lemma [2.1](#page-2-2) is proved. ∎

Let $x \geq 1$ be an integer solution of the system of congruences [\(2.1\)](#page-2-1). Then the binary expansions of the integers *x* and $x3^{k-1}$ have the forms

$$
(x)_2 = w_1 0 \overbrace{11 \cdots 1}^{2m-1}
$$
 and $(x3^{k-1})_2 = w_2 0 \overbrace{11 \cdots 1}^{2n}$

respectively, for some binary words w_1 and w_2 , and hence we obtain the equalities

(2.2)
$$
t(1+x) = t(x)
$$
 and $t(1+x3^{k-1}) = 1-t(x3^{k-1}).$

Let $k \geq 2$ be an integer, and let $v(k) := v_2(k)$ be the 2-adic valuation of k. Fix positive integers *m*, *n*, *x* (depending only on *k*) as in Lemma [2.1.](#page-2-2) Since *k*2−*ν*(*k*) is an odd integer, the congruence

(2.3)
$$
k2^{-\nu(k)} Y \equiv x \pmod{2^{2m+2n+1}}
$$

has an integer solution. Let $y \le 2^{2m+2n+1}$ be the least positive integer solution of [\(2.3\)](#page-3-0).

The remaining lemmas give us quantitative information about our approximations, as well as allowing us to optimize the range of β in Theorem [1.1.](#page-1-0) Throughout the paper, let *N* be a sufficiently large integer. In the following Lemmas [2.2](#page-3-1) and [2.3,](#page-4-0) we investigate the Thue–Morse values of the integers

(2.4)
$$
(y2^{kN-\nu(k)+\delta}+j)^k = \sum_{\ell=0}^k {k \choose \ell} y^{\ell} j^{k-\ell} \cdot 2^{(kN-\nu(k)+\delta)\ell}, \qquad \delta \in \{0,1\}
$$

for $j = 0, 1, ..., 2^N + 4$ and $j = 2^N + 2h$ ($h = 3, 4, ..., 2^{N-3}$). Define

$$
A_{\ell,j} := \binom{k}{\ell} y^{\ell} j^{k-\ell}, \qquad \ell = 0, 1, \ldots, k, \quad j = 1, 2, \ldots, 2^N + 2^{N-2}.
$$

When $1 \leq \ell \leq k$, we have

$$
(2.5) \tA_{\ell,j} \leq 2^k \cdot (2^{2m+2n+1})^k \cdot (5 \cdot 2^{N-2})^{k-1} < 2^{kN-\nu(k)+\delta}
$$

since N is sufficiently large. Hence, using (2.4) and (2.5) , we obtain

$$
t((\gamma 2^{kN-\nu(k)+\delta}+j)^k) \equiv t(A_{0,j}+A_{1,j}2^{kN-\nu(k)+\delta}) + \sum_{\ell=2}^k t(A_{\ell,j}2^{(kN-\nu(k)+\delta)\ell})
$$

(2.6)

$$
\equiv t(j^k+zj^{k-1}2^{kN+\delta}) + \sum_{\ell=2}^k t(A_{\ell,j}) \pmod{2},
$$

 $where z := k2^{-ν(k)} y. Note that the integers A_{ℓ, j} are independent of δ.$

Lemma 2.2 *For every integer* $j = 0, 1, ..., 2^N - 1$ *and* $j = 2^N + 2h$ ($h = 0, 1, ..., 2^{N-3}$)*, we have*

(2.7)
$$
t((\gamma 2^{kN-\nu(k)}+j)^k)=t((\gamma 2^{kN-\nu(k)+1}+j)^k).
$$

Proof Let $\delta \in \{0, 1\}$. For $j = 0, 1, ..., 2^N - 1$, we have

(2.8)
$$
j^k < 2^{kN}
$$
 and $2^{kN} |zj^{k-1}2^{kN+\delta}$,

and moreover, for $j = 2^N + 2h$ ($h = 0, 1, ..., 2^{N-3}$),

$$
(2.9) \qquad j^k \leq (5 \cdot 2^{N-2})^k < 2^{kN+k-1} \quad \text{and} \quad 2^{kN+k-1} \mid z(2^{N-1}+h)^{k-1} 2^{kN+k-1+\delta},
$$

since 2*kN*+*k*−¹ ∣ *z j^k*−¹ 2*kN*+*^δ* . Hence, by [\(2.8\)](#page-3-4) and [\(2.9\)](#page-3-5),

(2.10)
$$
t(j^k + zj^{k-1}2^{k}N + \delta) \equiv t(j^k) + t(zj^{k-1}) \pmod{2},
$$

so that [\(2.6\)](#page-3-6) and [\(2.10\)](#page-3-7) yield

(2.11)
$$
t((\gamma 2^{kN-\nu(k)+\delta}+j)^k) \equiv t(j^k) + t(zi^{k-1}) + \sum_{\ell=2}^k t(A_{\ell,j}) \pmod{2}
$$

for $j = 0, 1, ..., 2^N - 1$ and $j = 2^N + 2h$ ($h = 0, 1, ..., 2^{N-3}$). Thus, Lemma [2.2](#page-3-1) is proved since the right-hand side in [\(2.11\)](#page-4-1) is independent of δ .

Next, we show that the equality [\(2.7\)](#page-3-8) also holds for $j = 2^N + 3$, but not for $j = 2^N + 1$.

Lemma 2.3 *We have*

$$
t((\gamma 2^{kN-\nu(k)}+2^{N}+1)^{k})\neq t((\gamma 2^{kN-\nu(k)+1}+2^{N}+1)^{k})
$$

and

$$
t((\gamma 2^{kN-\nu(k)}+2^{N}+3)^{k})=t((\gamma 2^{kN-\nu(k)+1}+2^{N}+3)^{k}).
$$

Proof Let $\delta \in \{0, 1\}$ and $j := 2^N + i$ ($i = 1, 3$). Then we have

$$
j^{k} + zj^{k-1}2^{kN+\delta} = \sum_{\ell=0}^{k} {k \choose \ell} i^{k-\ell} \cdot 2^{N\ell} + \sum_{\ell=0}^{k-1} {k-1 \choose \ell} zi^{k-1-\ell} \cdot 2^{N(\ell+k)+\delta}
$$

$$
= \sum_{\ell=0}^{k-1} {k \choose \ell} i^{k-\ell} \cdot 2^{N\ell} + (1 + zi^{k-1}2^{\delta}) \cdot 2^{kN}
$$

(2.12)

$$
+ \sum_{\ell=k+1}^{2k-1} {k-1 \choose \ell-k} zi^{2k-\ell-1} \cdot 2^{N\ell+\delta}.
$$

Since the integers

$$
B_{\ell,i} := \binom{k}{\ell} i^{k-\ell}, \quad 1 + z i^{k-1} 2^{\delta}, \quad C_{\ell,i} := \binom{k-1}{\ell-k} z i^{2k-\ell-1}
$$

are independent of *N*, it follows from [\(2.12\)](#page-4-2) that

$$
(2.13) \ \ t\left(j^k + zj^{k-1}2^{kN+\delta}\right) \equiv \sum_{\ell=0}^{k-1} t(B_{\ell,i}) + t\left(1 + zi^{k-1}2^{\delta}\right) + \sum_{\ell=k+1}^{2k-1} t(C_{\ell,i}) \pmod{2}.
$$

Moreover, combining Lemma [2.1](#page-2-2) with [\(2.3\)](#page-3-0), we obtain

$$
zi^{k-1} = k2^{-\nu(k)} y i^{k-1} \equiv x i^{k-1} \pmod{2^{2m+2n+1}}
$$

$$
\equiv \begin{cases} 2^{2m-1} - 1 \pmod{2^{2m}}, & \text{if } i = 1, \\ 2^{2n} - 1 \pmod{2^{2n+1}}, & \text{if } i = 3, \end{cases}
$$

so that by (2.2)

(2.14)
$$
t(1+zi^{k-1}) = \begin{cases} t(zi^{k-1}), & \text{if } i = 1, \\ 1-t(zi^{k-1}), & \text{if } i = 3. \end{cases}
$$

Thus, by [\(2.6\)](#page-3-6), [\(2.13\)](#page-4-3), and [\(2.14\)](#page-4-4), we obtain

$$
t((y2^{kN-v(k)+1}+j)^{k})-t((y2^{kN-v(k)}+j)^{k})
$$

\n
$$
\equiv t(j^{k}+zj^{k-1}2^{kN+1})-t(j^{k}+zj^{k-1}2^{kN})
$$

\n
$$
\equiv t(1+2zi^{k-1})-t(1+zi^{k-1})
$$

\n
$$
\equiv 1+t(zi^{k-1})-\begin{cases}t(zi^{k-1}), & \text{if } i=1,\\1-t(zi^{k-1}), & \text{if } i=3, \end{cases}
$$

\n
$$
\equiv \begin{cases} 1, & \text{if } j=2^{N}+1,\\ 0, & \text{if } j=2^{N}+3, \end{cases} \pmod{2},
$$

which finishes the proof of the Lemma [2.3.](#page-4-0)

Define

$$
\lambda \coloneqq 1 + \frac{1}{2(k-1)} > 1,
$$

and let $| \alpha |$ denote the integral part of the real number α .

Lemma 2.4 • For every integer $r = 1, \ldots, k - 1$ and $j = 0, 1, \ldots, 2^{\lfloor \lambda N \rfloor}$, we have

(2.15)
$$
t((\gamma 2^{kN-\nu(k)}+j)^r)=t((\gamma 2^{kN-\nu(k)+1}+j)^r).
$$

Proof Let $\delta \in \{0,1\}$ and r , *j* be fixed integers as in the lemma. Then we have

$$
(\gamma 2^{kN-\nu(k)+\delta}+j)^r=\sum_{\ell=0}^r\binom{r}{\ell}y^\ell j^{r-\ell}\cdot 2^{(kN-\nu(k)+\delta)\ell}.
$$

Since

$$
D_{\ell,j} := \binom{r}{\ell} y^{\ell} j^{r-\ell} \leq 2^{k-1} \cdot \left(2^{2m+2n+1} \right)^{k-1} \cdot \left(2^{\lambda N} \right)^{k-1} < 2^{kN - \nu(k) + \delta},
$$

we obtain

$$
t((\gamma 2^{kN-\nu(k)+\delta}+j)^r)\equiv \sum_{\ell=0}^r t(D_{\ell,j})\pmod 2,
$$

which is independent of δ . Lemma [2.4](#page-5-1) is proved. ■

3 Proof of Theorem [1.1](#page-1-0)

Let β be a Pisot or Salem number with $\beta > \sqrt{\varphi} = 1.272019...$ Suppose to the contrary that there exist an integer $k \geq 1$ and algebraic numbers $a_0, a_1, \ldots, a_k \in \mathbb{Q}(\beta)$, not all zero, such that

(3.1)
$$
a_0 + a_1 \sum_{n \geq 1} \frac{t(n)}{\beta^n} + a_2 \sum_{n \geq 1} \frac{t(n^2)}{\beta^n} + \dots + a_k \sum_{n \geq 1} \frac{t(n^k)}{\beta^n} = 0.
$$

We may assume that $a_0, a_1, \ldots, a_k \in \mathbb{Z}[\beta]$ $a_0, a_1, \ldots, a_k \in \mathbb{Z}[\beta]$ $a_0, a_1, \ldots, a_k \in \mathbb{Z}[\beta]$ and $a_k \neq 0$. As mentioned in Section 1, the number $\sum_{n\geq 1} t(n) \alpha^{-n}$ is transcendental for any algebraic number *α* with $|α| > 1$, and thus we have $k \ge 2$. Define the sequence $\{s(n)\}_{n \ge 1}$ by

$$
s(n) := a_1 t(n) + a_2 t(n^2) + \cdots + a_k t(n^k), \quad n \geq 1,
$$

and

$$
\xi := \sum_{n\geqslant 1} \frac{s(n)}{\beta^n}.
$$

Note that $\{s(n)\}_{n\geq 1}$ is bounded and the number $\xi = -a_0 \in \mathbb{Z}[\beta]$ by [\(3.1\)](#page-5-2). Let $v(k)$, *y* be as in Section [2,](#page-2-0) and let *N* be a sufficiently large integer such that Lemmas [2.2](#page-3-1)[–2.4](#page-5-1) all hold. For convenience, let

$$
\kappa(N) \coloneqq kN - \nu(k).
$$

Define the algebraic integers $p_N, q_N \in \mathbb{Z}[\beta]$ by

$$
p_N := (\beta^{\gamma 2^{\kappa(N)}} - 1) \sum_{n=1}^{\gamma 2^{\kappa(N)} - 1} s(n) \beta^{\gamma 2^{\kappa(N)} - n} + \sum_{n=\gamma 2^{\kappa(N)}}^{\gamma 2^{\kappa(N)+1} - 1} s(n) \beta^{\gamma 2^{\kappa(N)+1} - n}
$$

and $q_N \coloneqq (\beta^{y2^{\kappa(N)}}-1)\beta^{y2^{\kappa(N)}}$, respectively. Then, we obtain

$$
\frac{p_N}{q_N} = \sum_{n=1}^{y2^{k(N)-1}} \frac{s(n)}{\beta^n} + \frac{\beta^{y2^{k(N)}}}{\beta^{y2^{k(N)}} - 1} \cdot \sum_{n=y2^{k(N)}}^{y2^{k(N)+1}-1} \frac{s(n)}{\beta^n}
$$
\n
$$
= \sum_{n=1}^{y2^{k(N)-1}} \frac{s(n)}{\beta^n} + \left(1 + \frac{1}{\beta^{y2^{k(N)}}} + \left(\frac{1}{\beta^{y2^{k(N)}}}\right)^2 + \cdots \right) \sum_{n=y2^{k(N)}}^{y2^{k(N)+1}-1} \frac{s(n)}{\beta^n}
$$
\n
$$
= \sum_{n=1}^{y2^{k(N)+1}-1} \frac{s(n)}{\beta^n} + \frac{1}{\beta^{y2^{k(N)}}} \sum_{n=y2^{k(N)}}^{y2^{k(N)+1}-1} \frac{s(n)}{\beta^n} + O\left(\left(\frac{1}{\beta^{y2^{k(N)}}}\right)^2\right) \cdot O\left(\frac{1}{\beta^{y2^{k(N)}}}\right)
$$
\n(3.2)
$$
= \sum_{n=1}^{y2^{k(N)+1}-1} \frac{s(n)}{\beta^n} + \sum_{j=0}^{y2^{k(N)-1}} \frac{s(y2^{k(N)}+j)}{\beta^{y2^{k(N)+1}+j}} + O\left(\frac{1}{\beta^{3y2^{k(N)}}}\right).
$$

By the equalities [\(2.7\)](#page-3-8) and [\(2.15\)](#page-5-3) with $j = 0, 1, ..., 2^N$, we have

(3.3)
$$
s(y2^{\kappa(N)}+j)=s(y2^{\kappa(N)+1}+j), \qquad j=0,1,\ldots,2^N.
$$

Hence, by [\(3.2\)](#page-6-0) and [\(3.3\)](#page-6-1),

$$
(3.4) \qquad \frac{p_N}{q_N} = \sum_{n=1}^{y2^{\kappa(N)+1}+2^N} \frac{s(n)}{\beta^n} + \sum_{j=2^N+1}^{2^{\lfloor \lambda N \rfloor}} \frac{s(y2^{\kappa(N)}+j)}{\beta^{y2^{\kappa(N)+1}+j}} + O\left(\frac{1}{\beta^{y2^{\kappa(N)+1}+2^{\lfloor \lambda N \rfloor}}}\right),
$$

where we used $1 < \lambda < 2 \le k$ in the big *O* notation. Therefore, by using [\(3.4\)](#page-6-2) and the equalities [\(2.15\)](#page-5-3) with $j = 2^N + 1, \ldots, 2^{\lfloor \lambda N \rfloor}$, we obtain

(3.5)
$$
\xi - \frac{p_N}{q_N} = a_k \sum_{j=2^N+1}^{2^{\lfloor NN \rfloor}} \frac{u(j)}{\beta y^{2^{\kappa(N)+1}+j}} + O\left(\frac{1}{\beta y^{2^{\kappa(N)+1}+2^{\lfloor NN \rfloor}}}\right),
$$

where

$$
u(j) := t((\gamma 2^{\kappa(N)+1} + j)^k) - t((\gamma 2^{\kappa(N)} + j)^k), \quad j \geq 2^N + 1.
$$

Note that ∣*u*(*j*)∣ ⩽ 1 since *u*(*j*) ∈ {−1, 0, 1} for every integer *j*. Moreover, by the definition of q_N , we have $q_N \leq \beta^{y2^{\kappa(N)+1}}$, and so by [\(3.5\)](#page-7-0),

$$
(3.6) \t q_N \xi - p_N = O\left(\frac{1}{\beta^{2^N}}\right).
$$

On the other hand, applying Lemmas [2.2](#page-3-1) and [2.3,](#page-4-0) we obtain

$$
\begin{split}\n\left| \sum_{j=2^{N}+1}^{2^{\lfloor \lambda N \rfloor}} \frac{u(j)}{\beta^j} \right| &\geq \frac{1}{\beta^{2^{N}+1}} - \sum_{j=2^{N}+5}^{2^{\lfloor \lambda N \rfloor}} \frac{|u(j)|}{\beta^j} \\
&= \frac{1}{\beta^{2^{N}+1}} - \sum_{\substack{j\geq 2^{N}+5 \\ j:\text{odd}}} \frac{1}{\beta^j} - \sum_{\substack{j\geq 2^{N}+2^{N-2}+1 \\ j:\text{even}}} \frac{1}{\beta^j} \\
&\geq \frac{1}{\beta^{2^{N}+1}} - \frac{\beta^2}{\beta^2-1} \left(\frac{1}{\beta^{2^{N}+5}} + \frac{1}{\beta^{5\cdot 2^{N-2}+2}} \right) \\
&= \frac{\beta^4 - \beta^2 - 1}{\beta^3 (\beta^2 - 1)} \cdot \frac{1}{\beta^{2^N}} + O\left(\frac{1}{\beta^{5\cdot 2^{N-2}}} \right),\n\end{split}
$$
\n(3.7)

and hence, by [\(3.5\)](#page-7-0) and [\(3.7\)](#page-7-1),

$$
\beta^{\gamma 2^{\kappa(N)+1}} \left| \xi - \frac{p_N}{q_N} \right| \ge |a_k| \cdot \left| \sum_{j=2^N+1}^{2^{\lfloor \lambda N \rfloor}} \frac{u(j)}{\beta^j} \right| + O\left(\frac{1}{\beta^{2^{\lfloor \lambda N \rfloor}}} \right)
$$

= $|a_k| \cdot \frac{\beta^4 - \beta^2 - 1}{\beta^3 (\beta^2 - 1)} \cdot \frac{1}{\beta^{2^N}} + O\left(\frac{1}{\beta^{5 \cdot 2^{N-2}}} \right) + O\left(\frac{1}{\beta^{2^{\lfloor \lambda N \rfloor}}} \right).$

Thus, noting that $\beta > \sqrt{\varphi}$, $a_k \neq 0$, and that both $5 \cdot 2^{N-2} - 2^N$ and $2^{\lfloor \lambda N \rfloor} - 2^N$ tend to infinity as $n \to \infty$, we obtain

$$
\left|\xi - \frac{p_N}{q_N}\right| > 0.
$$

Combining [\(3.6\)](#page-7-2) and [\(3.8\)](#page-7-3), there is a positive constant c_1 such that

(3.9)
$$
0 < |q_N \xi - p_N| < \frac{c_1}{\beta^{2^N}}
$$

for every sufficiently large *N*.

Now, we complete the proof. When β is a rational integer, [\(3.9\)](#page-7-4) is clearly impossible for large *N*, since *q^N ξ* − *p^N* is a nonzero rational integer. So, suppose not, and let $\beta =:\beta_1, \beta_2, \ldots, \beta_d$ (*d* \geq 2) be the Galois conjugates over $\mathbb Q$ of β . Since $\xi = -a_0 \in \mathbb Z[\beta],$ there exist rational integers $A_0, A_1, \ldots, A_{d-1}$ such that $\xi = \sum_{i=0}^{d-1} A_i \beta^i$. Define the polynomial over Z[*β*]

$$
F_N(X) \coloneqq q_N(X)\xi(X) - p_N(X),
$$

where

$$
p_N(X) := (X^{\gamma 2^{\kappa(N)}} - 1) \sum_{n=1}^{\gamma 2^{\kappa(N)}-1} s(n) X^{\gamma 2^{\kappa(N)}-n} + \sum_{n=\gamma 2^{\kappa(N)}}^{\gamma 2^{\kappa(N)+1}-1} s(n) X^{\gamma 2^{\kappa(N)+1}-n},
$$

$$
q_N(X) := (X^{\gamma 2^{\kappa(N)}} - 1) X^{\gamma 2^{\kappa(N)}},
$$

$$
\xi(X) := \sum_{i=0}^{d-1} A_i X^i.
$$

Note that $p_N(\beta) = p_N$, $q_N(\beta) = q_N$, and $\xi(\beta) = \xi$. By [\(3.9\)](#page-7-4),

(3.10)
$$
0 < |F_N(\beta)| = |q_N \xi - p_N| < \frac{c_1}{\beta^{2^N}}.
$$

Moreover, since *β* is a Pisot or Salem number, we have $|\beta_i| \leq 1$ (*i* = 2, 3, ..., *d*), and so by the definitions of $p_N(X)$, $q_N(X)$, $\zeta(X)$, there exists a positive constant c_2 independent of *N* such that

(3.11)
$$
0 < |F_N(\beta_i)| \leq c_2 \cdot y2^{\kappa(N)}, \qquad i = 2, 3, ..., d,
$$

where the first inequality follows since $F_N(\beta_i)$ are the Galois conjugates of $F_N(\beta) \neq 0$. Therefore, considering the norm over $\mathbb{Q}(\beta)/\mathbb{Q}$ of the algebraic integer $F_N(\beta)$, we obtain, by [\(3.10\)](#page-8-1) and [\(3.11\)](#page-8-2),

$$
1 \leq |N_{\mathbb{Q}(\beta)/\mathbb{Q}} F_N(\beta)| = \prod_{i=1}^{d-1} |F_N(\beta_i)| < \frac{c_1 c_2^{d-1} \cdot (\gamma 2^{\kappa(N)})^d}{\beta^{2^N}},
$$

which is impossible for sufficiently large *N*, since $\kappa(N) = O(N) = o(2^N)$. The proof of Theorem [1.1](#page-1-0) is now complete.

4 Concluding remarks and further questions

As there is no known nontrivial lower bound on Salem numbers, for our Theorem [1.1](#page-1-0) to apply to all Salem numbers, we would need our result to be valid for $\beta > 1$. It seems very unlikely that the type of optimization that we have done here could be carried out to reach that range. A similar approach could increase the range a bit, but a new idea is probably necessary to get the full range of possible *β*. Here, our proof works for Pisot and Salem numbers, but it seems reasonable to conjecture that Theorem [1.1](#page-1-0) holds for any algebraic number β with $|\beta| > 1$, though without more information on the structure of the sequences $\{t(n^k)\}_{n\geq 0}$ this seems out of reach at the moment.

When we first started our investigation, we wanted to show that the three numbers

1,
$$
\sum_{n\geqslant 1}\frac{t(n)}{b^n}, \quad \sum_{n\geqslant 1}\frac{t(n^2)}{b^n}
$$

are linearly independent over $\mathbb Q$ for any positive integer $b \geq 2$. Considering this question, two properties of the Thue–Morse sequence stood out to us. First, the sequence $\{t(n)\}_{n\geq 0}$ is produced by a finite automaton (see [\[1,](#page-10-3) Section 5.1]), so it is not a very complicated sequence. Second, the sequence $\{t(n^2)\}_{n\geq 0}$ is extremely complicated – as we mentioned in Section [1,](#page-0-1) the sequence $\{t(n^2)\}_{n\geq0}$ is normal; that is, all 2*^m* patterns of finite subwords of length *m* occur with frequency 2[−]*m*. A result of Wall [\[10,](#page-10-9) Corollary 1, p. 15] states that if ξ is normal and $q_1 \neq 0$ and q_2 are rational numbers, then $q_1 \xi + q_2$ is also normal, which implies the Q-linear independence of the above three numbers when $b = 2$. It seems reasonable to think that for any rational numbers $q_1 \neq 0$ and q_2 , the number

$$
q_2+q_1\sum_{n\geqslant 1}\frac{t(n)}{b^n}
$$

must have a "not very complicated" base-*b* expansion. In fact, this is the case since ${t(n)}_{n\geq 0}$ is produced by a finite automaton (see [\[1,](#page-10-3) Section 13.1]). There is a gap in the literature regarding sequences and numbers that fall in between automatic and normal. We make explicit a question that would be a first step in this direction.

Recall, for any sequence f taking values in $\{0,1\}$, we let $p_f(m)$ denote the *(subword) complexity* of *f* as a one-sided infinite word. In particular, $p_f(m)$ counts the number of distinct blocks of length *m* in *f*. So, for example, *f* is eventually periodic if and only if $p_f(m)$ is uniformly bounded, and if *f* is 2-normal, then $p_f(m) = 2^m$ for all *m*, since every binary word of any length appears in a 2-normal binary word. The *entropy* of *f* is the limit, $h(f) := \lim_{m \to \infty} (\log p_f(m))/m \in [0, \log 2]$. Considering the Thue–Morse sequence (or word) **t**, since **t** is generated by a finite automaton, we have that $p_t(m) = O(m)$, so $h(t) = 0$. In the present paper, we considered the sequences **t**^{*k*} := {*t*(*n*^{*k*})}_{*n*≥0}. Moshe [\[5\]](#page-10-5) established that $p_{t^k}(m) ≥ 2^{m/2^{k-2}}$ for any $k ≥ 2$; that is, that $h(\mathbf{t}^k) \geqslant (\log 2)/2^{k-2} > 0$. The question about numbers with lower complexity seems immediate.

Question 4.1 For a real number *ξ*, let $p_ξ(m, b)$ be the number of *b*-ary words of length *m* appearing in the base-*b* expansion of *ξ*. Is it true that for any two rational numbers $q_1 \neq 0$ and q_2 , we have $p_{q_1 \xi + q_2}(m, b) = O(p_{\xi}(m, b))$?

Acknowledgements The authors would like to thank Eiji Miyanohara for his helpful comments on an earlier version of this paper, and in particular, for pointing us toward the results of $[1, Section 13.1]$ $[1, Section 13.1]$. This work began during the first author's visit to Hirosaki University. Michael Coons thanks Hirosaki University for their support, and their staff and students for their outstanding hospitality.

References

- [1] J.-P. Allouche and J. Shallit, *Automatic sequences: theory, applications, generalizations*, Cambridge University Press, Cambridge, 2003.
- [2] M. Drmota, C. Mauduit, and J. Rivat, *Normality along squares*. J. Eur. Math. Soc. **21**(2019), no. 2, 507–548.
- [3] K. Mahler, *Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen*. Math. Ann. **101**(1929), 342–366. Corrigendum **103**(1930), 532.
- [4] E. Miyanohara, *An arithmetical property of the real numbers generated by Thue–Morse sequence along squares*. Acta Math. Hungar. **170**(2023), 430–435.
- [5] Y. Moshe, *On the subword complexity of Thue–Morse polynomial extractions*. Theor. Comput. Sci. **389**(2007), 318–329.
- [6] E. Prouhet, *Mémoire Sur quelques relations entre les puissances des nombres*. C. R. Acad. Sci. Paris Sér. I **33**(1851), 225.
- [7] L. Spiegelhofer, *Thue–Morse along the sequence of cubes*. Preprint, 2023, [arXiv:2308.09498](https://arxiv.org/abs/2308.09498) [math.NT].
- [8] A. Thue, *Über unendliche Zeichenreihen*. Norske vid. Selsk. Skr. Mat. Nat. Kl. **7**(1906), 1–22. Reprinted in: T. Nagell (Ed.), Selected mathematical papers of Axel Thue, Universitetsforlaget, Oslo, 1977, pp. 139–158.
- [9] A. Thue, *Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen*. Norske vid. Selsk. Skr. Mat. Nat. Kl. **1**(1912), 1–67. Reprinted in: T. Nagell (Ed.), Selected mathematical papers of Axel Thue, Universitetsforlaget, Oslo, 1977, pp. 413–478.

[10] D. D. Wall, *Normal numbers*. Ph.D. Thesis, University of California, Berkeley, 1950.

Department of Mathematics and Statistics, California State University, Chico, CA 95929, United States e-mail: mjcoons@csuchico.edu

Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan e-mail: tachiya@hirosaki-u.ac.jp