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Placental transport of vitamin D and other nutrients (e.g. amino acids, fats and glucose) to the fetus is sensitive to maternal and fetal nutritional cues. We
studied the effect of maternal calorific restriction on fetal vitamin D status and the placental expression of genes for nutrient transport [aromatic T-type
amino acid transporter-1 (TAT-1); triglyceride hydrolase/lipoprotein uptake facilitator lipoprotein lipase (LPL)] and vitamin D homeostasis [CYP27B1;
vitaminD receptor (VDR)], and their association withmarkers of fetal cardiovascular function and skeletal muscle growth. Pregnant sheep received 100%
total metabolizable energy (ME) requirements (control), 40% total ME requirements peri-implantation [PI40, 1–31 days of gestation (dGA)] or 50%
totalME requirements in late gestation (L, 104–127 dGA). Fetal, but notmaternal, plasma 25-hydroxy-vitaminD (25OHD) concentration was lower in
PI40 and L maternal undernutrition groups (P<0.01) compared with the control group at 0.86 gestation. PI40 group placental CYP27B1 messenger
RNA (mRNA) levels were increased (P<0.05) compared with the control group. Across all groups, higher fetal plasma 25OHD concentration was
associated with higher skeletal muscle myofibre and capillary density (P<0.05). In the placenta, higher VDR mRNA levels were associated with higher
TAT-1 (P< 0.05) and LPL (P<0.01) mRNA levels. In the PI40 maternal undernutrition group only, reduced fetal plasma 25OHD concentration may
be mediated in part by altered placental CYP27B1. The association between placental mRNA levels of VDR and nutrient transport genes suggests a way
in which the placenta may integrate nutritional cues in the face of maternal dietary challenges and alter fetal physiology.
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Introduction

Poor nutrition in pregnancy and fetal adaptive responses are
linked to increase the risk of chronic diseases in later life,
including diabetes and cardiovascular disease.1 The placenta is
the only route for nutrients, including 25-hydroxy-vitamin D
(25OHD), to reach the fetus from the mother; it is an impor-
tant factor in determining the nutrient ‘signal’ received by
the fetus.

Restriction of maternal metabolizable energy intake in
pregnant sheep, even when during isolated critical windows of
development, is linked to altered cardiovascular control during
fetal2–8 and adult life.4,9 Fetal sheep skeletal muscle myofibre
and capillary density in late gestation were reduced following
maternal undernutrition in either early or late gestation.10

Periconceptional or preimplantation maternal undernutrition
disrupted the expression in fetal sheep skeletal muscle of
genes regulating myoblast proliferation, differentiation and
protein synthesis, insulin signalling and associated microRNA
(miRNA).11,12 While the effect of macronutrient defici-
ency on fetal cardiovascular control and growth has been

characterized,2–8 there is very little information on the role
played by specific micronutrients such as vitamin D. The
micronutrient vitamin D comes from diet (ergocalciferol, D2;
cholecalciferol, D3) or the action of sunlight on skin (chole-
calciferol, D3). Both forms are hydroxylated in the liver to
25OHD2 or 25OHD3 (together in this paper they are referred
to as 25OHDtotal). Maternally derived 25OHD is converted to
1,25-dihydroxy-vitamin D (1,25(OH)2D)2 or D (1,25(OH)
2D)3 by 1-α-hydroxylase (CYP27B1) in the fetal kidney and
placenta.13–15 The enzyme 24-α-hydroxylase (CYP24A1)
breaks down 25OHD and 1,25(OH)2D to 24,25(OH)2D and
1α-24,25(OH)2D, respectively.
Vitamin D is linked to many aspects of physiology in health

and disease, including calcium homeostasis and bone health,
the cardiovascular system and skeletal muscle, although its
potential role in fetal development is debated.16–18 The vitamin
D receptor (VDR) is present in a wide range of tissues, including
heart, vasculature and skeletal muscle.19–21 The physiological
effects of vitamin D may operate across the life course, and
these effects may start in utero.22,23 A total of 5–70% of
pregnant women are vitamin D deficient (<20–50nmol/l,
25OHD), depending on skin pigmentation, latitude, diet
and the seasons that are traversed by the pregnancy.24 There
is evidence to suggest that vitamin D deficiency during
pregnancy is linked to altered cardiovascular function in rat
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offspring postnatally,25–27 and to humanmuscle development in
childhood (4–6 years).28,29 However, there is very limited
information on whether materno–fetal vitamin D
status is associated with cardiovascular control and growth dur-
ing fetal life, and to our knowledge there is no information under
conditions of restricted maternal nutrition.

In order to reach the fetus, vitamin D, mostly in
the 25OHD-form, must be transported across the placenta.
Vitamin D may be one of the cues about maternal and fetal
nutrient status to which the placenta responds by changing its
growth and nutrient transport (e.g. of amino acids, fats and
glucose) in order to support optimal fetal growth.30 In mice,
maternal 25OHD deficiency reduced the diameter of the
lumen of fetal blood vessels in the placental labyrinth and was
associated with increased fetal weight and lower body weight
at day 14 postnatally.31 In humans, higher maternal 25OHD
concentrations in the latter half of gestation were associated
with higher placental CYP27B1 protein levels, suggesting
that maternal 25OHD regulates placental production of
1,25(OH)2D.32 Furthermore, fetal levels of 25OHD and
1,25(OH)2D may regulate placental VDR expression.33

Interestingly, placental VDR expression is decreased in fetal
growth-restricted pregnancies34 and increased in diabetic
pregnancies.35 Therefore placental adaptations to poor nutri-
tion could impact on fetal 25OHD status even if the mother
is not herself deficient in 25OHD, however this idea has
not been investigated directly to date in an animal under-
nutrition model.

The placenta may integrate nutritional cues in the face of
maternal undernutrition or vitamin D deficiency by vitamin
D-mediated transcriptional regulation [via vitamin D response
elements (VDREs)] of placental genes involved in nutrient
transport and growth. One such gene is the insulin receptor
(IR)36 and VDREs have been identified within its promotor
region.37,38 Placental amino acid transport is vital for fetal
growth39,40 and in pregnancies from the Southampton
Women’s Survey, maternal serum 25OHD and vitamin
D-binding protein concentrations were correlated with the
expression of specific placental amino acid transporters.41

A potential VDRE exists 1040 base pairs upstream from the
start of exon one of the human T-type amino acid transporter-1
(TAT-1) gene, slc16a10 (Simner C. & Cleal J.K., unpublished
results, MatInspector© 1998–2014 Genomatix Software
GmbH42). In the human genome following stimulation with
calcitriol, a VDR-binding site was identified in the slc16a6 gene
which, like TAT-1 (slc16a10), is a member of the solute carrier
family 16.43 Placental lipases, such as lipoprotein lipase (LPL),
release fatty acids from maternally derived triglyceride for
transport to the fetus Placental LPL activity increases towards
term and is responsive to a maternal high-fat diet.44,45 Upre-
gulation of LPL gene expression by vitamin D is suggested by a
positive association between human serum LPL and 25OHD
concentrations,46 increased LPL gene expression in cultured
adipocytes in response to 1,25(OH)2D,47 and the identifica-
tion of a partial VDRE in the rat LPL gene promotor region.48

In our previous work, the fetal cardiovascular control and
growth adaptations to maternal undernutrition were not asso-
ciated with a change in placental weight or blood flow.2,3

However, placental amino acid or fatty acid transport, and
their regulation by maternal–fetal vitamin D and the placental
VDR, could be involved.
There is very little information on the interactions between

vitamin D, the placenta and fetal cardiovascular control and
growth. To address these gaps in knowledge, we used an
established sheep model of fetal physiology to investigate
whether maternal undernutrition during critical windows of
gestation altered the expression of genes regulating or sensing
vitamin D in the placenta, altered fetal vitamin D status and
decreased the expression of genes involved in placental growth
and nutrient transport. Furthermore, we investigated potential
mechanistic links by examining the relationships between
placental growth and nutrient transporter gene expression,
placental VDR gene expression and materno–fetal vitamin D
status, as well as the relationship between fetal plasma
25OHDtotal concentration and markers of fetal cardiovascular
function and skeletal muscle structure.2,10

Methods

All procedures were carried out with local ethical committee
approval (Science Review Group, a sub-committee of the
Animal Welfare and Ethical Review Body) and in accordance
with the UK Animals (Scientific Procedures) Act 1986.

Animals and study design

Welsh Mountain ewes (not-shorn) of uniform body condition
score (BCS 2.0–3.0) and age were housed individually on
wheat straw from 16 days before mating in barns at The Royal
Veterinary College (Hertfordshire, UK), with no direct sunlight.
After 104 days of gestation (dGA, term is 147 days) ewes were
transferred to The University of Southampton Biomedical
Research Facility and housed in temperature-controlled rooms
on a 12 hour light/dark cycle (lamps were not sheathed to block
ultraviolet wavelengths). All animals were fed the same complete
pelleted diet which is supplemented as standard with vitamin D3

(Table 1. CharnwoodMilling Company Ltd., Suffolk, UK) with
free access to water from 16 days before conception. Vitamin D
content of manufactured pelleted feed was not measured. For
each ewe, the 100% metabolizable energy requirement was
calculated according to Agricultural and Food Research Council
guidelines on the basis of ewe weight at the start of the study, and
standard gestational increases were incorporated.49 Using
expected metabolizable energy levels for the feed (Table 1), the
daily ration of pelleted feed for each ewe was calculated.
Ewes were randomly allocated across the breeding season to
one of three groups: Control animals (C) were fed 100% of
metabolizable energy requirements throughout pregnancy;
peri-implantation nutrient-restricted animals (PI40) were fed
40% of metabolizable energy requirements from 1 to 31 dGA,
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and 100% at all other times; and late gestation nutrient-
restricted animals (L) were fed 50% of metabolizable energy
requirements from 104 dGA until the end of the study, and
100% at all other times. Oestrus was synchronized by with-
drawal of a vaginal medoxyprogesterone acetate impregnated
sponge (Veramix; Upjohn, Ltd, Crawley, UK) at −2 dGA,
14 days after insertion. One of two twin rams (randomly
assigned) was introduced for 2 days, and 0 dGA was taken as
the first day that an obvious raddle mark was observed. Twin
pregnancies, identified by ultrasound scan at mid-gestation, were
removed from the trial. Final group sizes of singleton-bearing
ewes were c, n = 8; PI40, n = 9; and L, n = 6.

Surgery and care

At ~117 dGA, anaesthesia was induced with 1 g thiopental
sodium BP I.V. (10ml, 0.1 g/ml; Link Pharmaceuticals, UK)
and maintained with 2% halothane (Concord Pharma-
ceuticals Laboratory Ltd., UK) in oxygen (1 l/min). Ewes and
singleton fetuses underwent surgical instrumentation using
aseptic technique that included the insertion of heparinized
polyvinyl catheters into the fetal femoral and carotid
arteries, femoral vein, and the maternal jugular vein, and
placement of ultrasonic flow probes (Transonic Systems Inc.,
Ithaca, NY, USA) around the uncatheterized carotid and
femoral arteries. At surgery, antibiotics were administered to
ewes (topically to incision sites, oxytetracycline hydrochloride,
Pfizer, Eastleigh, Northants, UK; 150mg/kg I.M. Betamox,
Norbrook Laboratories Ltd, UK.; 600mg I.V. Crystapen,

Britannia Pharmaceuticals, UK; 40mg I.V. Gentamycin,
Faulding Pharmaceuticals PLC, UK), fetuses (300mg I.V.
Crystapen) and amniotic fluid (300mg Crystapen; 40mg
Gentamycin). A minimum of 4 days of post-operative recovery
were allowed before experimentation during which an
antibiotic regime was administered (Daily, half-surgical
doses of crystapen; days 1 and 2, Gentamycin surgical doses
repeated) and analgesia was administered to the ewe as required
(1.4mg/kg S.C., Carprofen, Pfizer Ltd., UK). Catheters were
flushed daily with heparinized saline and their patency was
maintained by a continuous infusion (fetal, 0.01ml/hour; ewe,
1ml/h). Blood gases were monitored daily to assess health
(ABL735; Radiometer Limited, Crawley, UK).

Fetal cardiovascular assessment

As reported previously,2,3 under baseline conditions at
125–126 dGA fetal carotid artery, amniotic and tracheal
pressures (Capto AS, N-3193, Horten, Norway/NL 108;
Digitimer Ltd, Welwyn Garden City, UK), ECoG (NL
100/104/125) and carotid and femoral arterial blood flows
(TS420; Transonic Systems Inc.) were captured (sampling rate
40 samples/s, Maclab/8; ADInstruments Pty Ltd, Castle Hill,
Australia) and recorded (Chart; ADInstruments, Chalgrove,
UK). Fetal heart rate (beats/min) was calculated from peaks on
the pulsatile blood pressure recording.
As previously reported,3 blood flow was measured in com-

bined maternal and fetal portions of a representative type B
placentome with fluorescent microspheres under baseline
conditions at 125 dGA. The type A placentomes are concave
and consist of mainly maternal tissue, type D placentomes are
convex and consist of fetal tissue completely surrounding
maternal tissue, and types B and C are intermediate in
shape.50,51 In brief, reference blood samples were withdrawn
(2.06ml/min) continuously from femoral and carotid artery
catheters 10 s before, during (40 s) and after (75 s) the injection
of microspheres into the femoral vein catheter (Molecular
Probes, PoortGebouw, The Netherlands). Microspheres
circulate for <1min.52 Placental tissue and reference blood
were collected into a processing unit (SPU; Gaiser Kunststoff
und Metallprodukte, Kappel-Grafenhausen, Germany) and
digested (4M aqueous KOH with 2% Tween-80, covered with
a 1.5ml layer of isopropanol).53 The microspheres were then
washed with phosphate buffer, dissolved with 4ml cellosolve®

acetate (Sigma-Aldrich Inc., UK), and analysed (LS-55 lumi-
nescence spectrometer; PerkinElmer Inc., UK). LS-55 settings
were adjusted to ensure that excitation and emission wave-
lengths of each fluorophore were separated and the ‘spill’
between dyes kept to <2%. A process control microsphere was
added to each sample and reference filter to confirm no loss in
digestion and dissolution steps. The intra-assay coefficient of
variation for the process control was 6.7%.
Organ blood flows were calculated with the formula:

Blood flow= ð100 =Wtsample

�
´ Wdref ´ Fsample = Fref

� �� �
;

Table 1. Ingredients and expected composition of sheep diet pelleted feed

Level

A. Ingredient
Barley (%) 5.00
Wheat (%) 10.00
Hi-pro soya (%) 13.50
Full fat soya meal (%) 5.00
Grass meal (%) 15.00
Molasses (%) 5.00
PTS straw (%) 35.00
Dicalcium phosphate (%) 0.25
Limestone (%) 0.50
Salt (%) 0.5
Microionized wheat (%) 10.00
Sheet vitamin/mineral supplement (%) 0.25

B. Nutrienta

Dry matter (%) 89.21
Metabolizable energy (mj/kg dry matter) 10.725
Protein (%) 14.75
Calcium (%) 0.689
Phosphorus (%) 0.313
Vitamin D3 (IU/kg) 2000

aLevels are those expected as defined by the raw material matrix,
Charnwood Milling.

372 J. K. Cleal et al.

https://doi.org/10.1017/S2040174417000149 Published online by Cambridge University Press

https://doi.org/10.1017/S2040174417000149


where blood flow is inml/min/100 g tissue,Wtsample is the weight
of the tissue sample, Wdref the withdrawal rate of the reference
sample, Fsample the fluorescence intensity of the tissue sample and
Fref the fluorescence intensity of the reference sample.52

Just before killing the ewe and fetus at 127 ± 0.2 dGA [40ml
I.V. 200mg/ml Pentoject (pentobarbitone sodium), Animal-
care Ltd, UK], maternal and fetal femoral arterial blood was
collected into cold heparinized syringes for immediate analysis
of ionized calcium (Ca2+) (ABL735; Radiometer Limited,
Crawley, UK). A further sample of maternal and fetal blood
was collected onto chilled Lithium Heparin tubes, centrifuged
at 1600 g and 4°C for 10min, and plasma was stored at
−80°C. Plasma angiotensin II concentration was measured in
duplicate by radioimmunoassay (Euria-angiotensin II; Immuno-
Diagnostic Systems Ltd, Tyne and Wear, UK) following its
separation from plasma proteins using chromatography
columns (C18 sep-pak; Waters Corporation, Massachusetts,
USA). The intra- and inter-assay coefficients of variation were
8.0 and 7.5%, respectively. Ang II levels were measured in
plasma (0.5ml).2 Type B placentomes were frozen in liquid
nitrogen and stored at −80°C.

Skeletal muscle immunohistochemistry

Mid-belly samples of triceps brachii muscle were frozen in
freezing isopentane and 10 µm transverse sections were cut for
assessment of myofibre and capillary density by immuno-
histochemistry, as described in full in.10 In brief, primary
antibodies were used to were positively identified fast (type II)
myofibres (monoclonal mouse anti-skeletal fast myosin anti-
body, 1:100, clone MY32; Sigma, USA) and capillary endo-
thelial cells (polyclonal rabbit anti-human von Willebrand
factor (1:300; DakoCytomation, Denmark) with biotinylated
anti-mouse (1:400) or anti-rabbit (1:400) secondary anti-
bodies, streptavidin–biotin–peroxidase complex (1+ 1:200)
and amino ethyl carbazole treatment. Sections for myofibre
analysis were counterstained with Mayers haematoxylin.
Negative controls for the primary antibody were processed
simultaneously. Five microscopic images (40× objective) were
captured from each stained section (one per primary antibody
per animal) which was validated as a good representation of
overall myofibre density (error <4.8%) and capillary density
(<5.7% error). In each image the total fascicular area was
calculated and was the area in which myofibre and capillary
density was assessed. Using a non-biased counting frame, all
myofibres (red stained fast-twitch and negatively stained white
slow myofibres) were counted; myofibre density was expressed
as the number of fibres per square millimetre of fascicle.
Capillary density was expressed as capillary number per square
millimetre of fascicle. All measurements were made by one
observer and (intraobserver variability <5% for all variables).

25OHD analysis

The concentration of 25OHD2 and 25OHD3 (when
combined is termed total circulating 25OHD (25OHDtotal)

was determined in maternal and fetal lithium heparin plasma
samples by high performance liquid chromatography tandem
mass spectrometry (LC–MS/MS).54 25OHD2 and 25OHD3

were extracted by isotopic dilution protein precipitation from
100 μl plasma. Following the addition of zinc sulphate, an
acetonitrile solution containing hexa-deuterated 25OHD3-
[26,26,26,27,27,27,-2H6] (2H6-25OHD3) was added to the
samples as internal recovery standard. After centrifugation, the
supernatant was injected into Sunfire C18 3.5 µm 2.1× 50mm
chromatography columns (Waters, UK), and 25OHD3 and
25OHD2 were separated (flow rate of 0.4ml/min). Potential
interfering compounds were removed by gradient elution using
initially 88% methanol:water which was gradually increased to
100% methanol over run time of 4.5min. Mass detection was
performed by Ultima Pt LC-MS/MS system (Micromass,
UK).55 Identification and quantification is based on multiple
reaction monitoring of each analyte specific ion transitions.
Quantifier transitions used were 413> 271 (25OHD2),
401> 383 (25OHD3), and 407> 107 (2H6-25OHD3).
Qualifer ion transitions 413> 395 (25OHD2), 401> 258
(25OHD3) were used to monitor each analyte, with the
requirement that the quantifier/qualifier ion ratio must be
within ±20% for confirming the presence in samples. Assay
sensitivity was determined by the lower limit of quantification:
25OHD3 = 2.5 nmol/l and 25OHD2 = 2.5 nmol/l. Assay
imprecision was assessed for both 25OHD2 and 25OHD3 over
linear working range from 0–300 nmol/l. The coefficient of
variation (CV) was <10% for intra-assay precision (n = 10)
(25OHD3: mean 5.9 nmol/l, S.D. 2.1, CV 10.8%; mean
25.49 nmol/l, S.D. 2.1, CV 8.3%; mean 62.1 nmol/l, S.D. 2.6,
CV 4.1%; mean 185.49 nmol/l, S.D. 7.2, CV 3.9%. 25OHD2:
mean 4.5 nmol/l, S.D. 1.6, CV 8.6%; mean 18.49 nmol/l, S.D.
1.6, CV 8.6%; mean 51.6 nmol/l, S.D. 4.0, CV 7.7%; mean
176.49 nmol/l, S.D. 9.2, CV 5.2%) and inter-assay precision
(n = 10) (25OHD3: mean 6.0 nmol/l, S.D. 0.5, CV 8.3%;
mean 27.69 nmol/l, S.D. 1.8, CV 6.6%; mean 63.2 nmol/l, S.D.
4.1, CV 6.5%; mean 189.59 nmol/l, S.D. 9.8, CV 5.1%.
25OHD2: mean 4.8 nmol/l, S.D. 0.4, CV 9.0%; mean
21.59 nmol/l, S.D. 2.2, CV 10.1%; mean 55.5 nmol/l, S.D. 3.1,
CV 5.7%; mean 184.749 nmol/l, S.D. 9.5, CV 5.1%).
Extraction efficiency (extraction of vitamin D from matrix)

was assessed by determining the amount of 25OHD3/D2

recovered from the amount added (50, 100 and 500 nmol/l) to
plasma before extraction taking into account the endogenous
concentration of the plasma sample. Spiked recovery for
maternal (25OHD2: 90.8, 87.7 and 86.7%, respectively.
25OHD3: 95.6, 91.2 and 93.02%, respectively) and fetal
(25OHD2: 104.4, 89.6 and 88.98%, respectively. 25OHD3:
88.4, 92.8 and 88.32%, respectively).

Real-time quantitative reverse transcription polymerasae
chain reaction (qRT-PCR)

Real-time qRT-PCR was carried out according to Minimum
Information for Publication of Quantitative real-time PCR
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Experiments (MIQE) guidelines in terms of methodology,
validation and analysis.56 Whole type B placentomes consisting
of maternal and fetal tissues were powdered in a frozen tissue
press (C, n = 7; PI40, n = 8; L, n = 6). Total RNA
was extracted from 50mg powdered placental tissue using the
mirVanaTM miRNA Isolation Kit (Ambion®, Life Techno-
logies) according to themanufacturer’s instructions. The integrity
of total RNA was confirmed by agarose gel electrophoresis,
and RNA concentration and purity were determined using a
NanodropTM Spectrophotometer. Following DNAse treatment
(RQ1 RNase-Free DNase, Promega) total RNA (0.2μg) was
reverse transcribed with 0.5μg random hexamer primer,
200 units M-MLV reverse transcriptase, 25 units recombinant
RNasin ribonuclease inhibitor and 0.5mM each of dATP,
dCTP, dGTP and dTTP in a final reaction volume of 25μl in
1× M-MLV reaction buffer (Promega, Wisconsin, USA).
All samples were produced in one batch to reduce variation.

The messenger RNA (mRNA) levels of genes involved in
vitamin D homeostasis (CYP27B1, VDR) and nutrient trans-
port (IR, TAT-1, LPL) were measured. Intron–exon boundary
spanning oligonucleotide probes and primers (Table 2)
were designed using the Roche ProbeFinder version
2.45 [CYP27B1, VDR, TAT-1; Universal Probe Library
probes (UPL)] and Primer 3 (LPL, IR; Taqman probes) after
alignment of bovine and humanmRNA sequences; followed by
validation. Primer specificity was confirmed using the NCBI
Nucleotide BLAST application. UPL probes were supplied by
Roche and all primers plus Taqman probes were synthesized by
Eurogentec (Seraing, Belgium). Using the geNorm house-
keeping gene selection kit (Primer Design Ltd., Southampton
UK), β-actin (M value 0.69) and GAPDH (M value 0.62) were
selected from a panel of 10 genes with M values between 0.62
and 2.10. The efficiency and coefficient of determination for
each primer and probe set are presented in Table 2.

Real-time qRT-PCR was carried out using a Roche
Light-Cycler-480 with LightCycler® 480 Probes 2× Master
Mix (Roche, West Sussex, UK) for hydrolysis probe detection
(containing FastStart Taq DNA Polymerase). For UPL and
Taqman probes the cycle parameters were 95°C for 10min,
followed by 40 cycles of 95°C for 15 s and 60°C for 1min. For

Primer Design Perfect Probes the cycle parameters were 95°C for
10min, followed by 40 cycles of 95°C for 10 s and 60°C and
72°C for 15 s. The intra-assay CVs for genes were 4.4–9.5%. Each
placental sample was run on the same plate in triplicate. Controls
without reverse transcriptase enzyme and controls without
template (complementaryDNA) were included in each PCR assay,
and these indicated no genomic DNA or other contamination.
All mRNA levels were calculated using the standard curve method
and were normalized to the geometric mean of the housekeeping
genes β-actin and GAPDH. PCR products were checked by
agarose gel electrophoresis to confirm correct amplicon size.

Data analysis and statistics

We assessed the normality (histograms, values of skewedness,
the Kolmogorov–Smirnov test and normal Q-Q plots) and
homogeneity of variance (Levene’s test) of data. Data were
transformed (natural logarithm) as required before parametric
analysis. Plasma concentration of 25OHD3, 25OHD2,

25OHD3+ 25OHD2 (= 25OHDtotal) and Ca2+ concentra-
tions were compared between mother and fetus by paired t-test.
There was a mixture of fetal sex within the diet groups C (four
male; four female), PI40 (five male; four female) and L (four
male; two female). All variables were analysed by analysis of
variance (with main factors of dietary group and fetal sex) fol-
lowed by Tukey’s honest significant difference post-hoc tests
where appropriate (SPSS version 21, IBM). Linear regression
analysis (GraphPad Prism version 6, GraphPad Software Inc.)
was used to examine relationships between two factors across all
dietary groups and within each group. Sample size was deter-
mined by power calculations based on mean arterial pressure, a
key outcome variable from the original study.2,3 Significance
was accepted when P< 0.05, and trends defined as
0.05 < P< 0.1. Data are expressed as mean ± S.E.M.

Results

Materno–fetal 25OHD and calcium

There was no difference between dietary groups in maternal
plasma 25OHD3, 25OHD2 or 25OHDtotal concentration

Table 2 . Primers and probes used in real-time quantitative reverse transcription polymerase chain reaction measurements

Gene Forward primer Reverse primer Probe R2 Efficiency

β-actin gaggcatcctgaccctcaag tctccatgtcgtcccagttg ccccattgagcacggcattgtca 0.99 1.9
GAPDH taggctacactgaggaccaggtt cccagcatcgaaggtagaaga tctcctgcgacttcaacagcgacact 0.98 2.1
IR accgccaagggcaagac agcaccgctccacaaactg aactgccctgccactgtcatcaacg 0.93 2.1
LPL accagactccaacgtcatcgt gcttggtgtaccctgcagaca tcacgggcccagcagcattatcc 0.95 2.0
VDR gaagctgaatttgcacgaaga gtcctggatggcctcgacc UPL Probe 15 0.99 2.0
TAT-1 aagatggtcttcaagacagc gtctgtgaagacactgacaa UPL Probe 74 0.98 2.0
CYP27B1 cgcagctgcgtggggaga tacctcaaagtggatcaagatctg UPL Probe 53 0.98 2.0

IR, insulin receptor; LPL, lipoprotein lipase; VDR, vitamin D receptor; UPL, Universal Probe Library from Roche; TAT-1, T-type amino acid
transporter-1.
Nucleotide sequence, coefficient of determination (R2), efficiency of primers and probes (according to MIQE guidelines).
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(Fig. 1b). Fetal plasma concentrations of 25OHD2 and
25OHDtotal were lower in PI40 and L groups compared with
the control group. Fetal plasma concentration of 25OHD3 was
lower in the PI40 group compared with the control group.

Across all diet groups, 25OHDtotal, 25OHD3 and 25OHD2

concentrations were greater in maternal than in fetal plasma
(P< 0.0001, Fig. 1a). In the L group only, higher maternal
plasma 25OHDtotal concentration tended to be associated with
higher fetal 25OHDtotal plasma concentration (r2 = 0.5839,
P = 0.0769). In the C group only, higher maternal 25OHD3

plasma concentration tended to be associated with higher fetal
25OHD3 (r

2 = 0.4912, P = 0.0794).
Ca2+ concentration was not different between diet groups in

either maternal (mmol/l. C: 1.19 ± 0.02; PI40: 1.19 ± 0.01; L:
1.17 ± 0.04) or fetal (mmol/l. C: 1.23 ± 0.05; PI40:
1.27 ± 0.04; L: 1.29 ± 0.03) blood. Across all diet groups,
Ca2+ concentration was greater in fetal than in maternal
blood (P = 0.027). There was no association between
maternal and fetal blood Ca2+ concentration by linear
regression. There was no association between maternal or
fetal 25OHDtotal plasma concentration and blood Ca2+

concentration.

Placental CYP27B1 and VDR mRNA

In the placenta, CYP27B1 mRNA levels were greater in the
PI40 group compared with the control group (P = 0.048,
Fig. 2a). In the PI40 group only, lower placental CYP27B1
mRNA levels were associated with a higher maternal blood
Ca2+ concentration (r2 = −0.737, P = 0.0064) and a higher
placentome type B blood flow (r2 = −0.7129, P = 0.0084)
(Fig. 2b).

There was no difference in placental VDR mRNA levels
between dietary groups (Fig. 2a). Across all dietary groups,
lower maternal plasma 25OHDtotal concentration was
associated with higher placental VDR mRNA levels
(r2 = −0.2683, P = 0.0193, Fig. 2b). A higher fetal:maternal

25OHDtotal ratio was associated with higher placental VDR
mRNA in the PI40 group only (r2 = 0.5096, P = 0.0467).

Placental transport and growth genes mRNA

There was no significant difference between dietary groups in
the placental mRNA levels of IR, TAT-1 or LPL (Fig. 3).
Across all groups, higher placental VDR mRNA levels were
associated with higher placental LPL mRNA levels
(r2 = 0.471, P = 0.0012, Fig. 4a), and with higher placental
TAT-1 mRNA levels (r2 = 0.2978, P = 0.0128, Fig. 4b).
Across all groups, higher placental TAT-1 mRNA levels tended
to be associated with higher placental CYP27B1 mRNA levels
(r2 = 0.1491, P = 0.0927), and this was significant in the C
group alone (r2 = 0.8895, P = 0.0014). Across all groups,
lower fetal plasma 25OHDtotal concentration tended to be
associated with higher placental TAT-1 mRNA levels
(r2 = 0.19, P = 0.0558), and this was significant in the PI40
group alone (r2 = 0.5188, P = 0.0439).

Associations of materno–placental–fetal vitamin D with
fetal physiology

Fetal and placental weight

Fetal and placental weights were not different between diet
groups. Across all groups, higher placental CYP27B1 mRNA
was associated with higher fetal weight (r2 = 0.2398,
P = 0.0242). Across all groups and in the control group alone,
higher maternal plasma 25OHD concentration was associated
with higher placental weight (all groups: r2 = 0.1900,
P = 0.0426; control: r2 = 0.6392, P = 0.0309), but there
was no association between fetal plasma 25OHD concentra-
tion and fetal-placental weight. Across all groups, a higher
maternal blood Ca2+ concentration was associated with lower
fetal weight (r2 = 0.1893, P = 0.043). Across all groups, there
was a trend for lower average placentome type B weight

Fig. 1. Materno–fetal plasma vitamin D status in late gestation and the effect of maternal undernutrition. Values are mean ± S.E.M.
(a) Maternal (solid bars) v. fetal (hatched bars) concentrations of 25OHD3 and 25OHD2 forms and their combined total (25OHDtotal)
‡P< 0.0001; (b) concentrations of 25OHD3, 25OHD2 and 25OHDtotal in fetus and mother in C, control (open bars). *P< 0.05, **P< 0.01
compared with control group. PI40, peri-implantation undernutrition (grey bars); L, late gestation undernutrition (solid bar) groups.
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to be associated with higher placental VDR mRNA levels
(r2 = 0.1488, P = 0.0841).

Cardiovascular control and skeletal muscle development

Type B placentome blood flow was not different between diet
groups (ml/min/100 g tissue. C: 159.976 ± 12.904; PI40:
181.700 ± 16.413; L: 169.813 ± 27.720, n = 5). There was no
association of type B placentome blood flow with maternal
or fetal plasma 25OHDtotal. Across all groups, higher fetal
25OHDtotal concentration was associated with higher total
myofibre density (r2 = 0.1876, P = 0.0498) and higher
capillary density (r2 = 0.2119, P = 0.0357) in the fetal triceps
brachii muscle (Fig. 5). Baseline cardiovascular measurements

and plasma angiotensin II concentration for this cohort
have been published previously,2 but are reported here for
ease of reading and for experimental group sizes reported on
in this paper. As previously reported,2 there was no difference
between diet groups in fetal baseline plasma angiotensin II
concentration (pmol/l. C: 15.90 ± 3.61; PI40: 14.75 ± 2.23;
L: 16.26 ± 2.92), mean arterial blood pressure (mmHg. C:
40.65 ± 2.24; PI40: 42.40 ± 1.42; L: 39.86 ± 1.38), femoral
blood flow (ml/min. C: 35.50 ± 3.13; PI40: 36.31 ± 4.15;
L: 37.85 ± 8.04), carotid blood flow (ml/min. C: 80.64 ±
6.56; PI40: 81.56 ± 5.80; L: 79.39 ± 11.90) and heart
rate (beats/min. C: 167.14 ± 7.71; PI40: 172.48 ± 2.38;
L: 172.07 ± 3.74). There was no association between either
fetal in vivo cardiovascular measurements or fetal plasma

Fig. 2. Effect of maternal undernutrition on CYP27B1 mRNA and vitamin D receptor levels in the placenta. Data are mean ± S.E.M.
(a) CYP27B1 and VDR mRNA levels in the placenta *P< 0.05, compared with the control group; (b) association of CYP27B1 and VDR
mRNA levels with maternal and placental factors by linear regression. C, control (open bars/symbols); PI40, peri-implantation undernutrition
(grey bars/symbols); L, late gestation undernutrition (solid bar/symbols) groups.

Fig. 3. Effect of maternal undernutrition on transport and growth gene mRNA in the placenta. Data are mean ± S.E.M. Levels of (a) insulin
receptor (IR); (b) T-type amino acid transporter-1 (TAT-1); and (c) lipoprotein lipase (LPL) mRNA in the placenta. C, control (open bars);
PI40, peri-implantation undernutrition (grey bars); L, late gestation undernutrition (solid bar) groups.
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angiotensin II concentration and fetal plasma 25OHD
concentration.

Discussion

We have shown that both early gestation (peri-implantation)
and late gestation maternal undernutrition result in lower fetal
25OHD plasma concentrations in late gestation. A number
of associations have been made between maternal vitamin D
status and offspring body composition and cardiovascular
function.25,28,29 Thus our observation of an association
between fetal vitamin D status and fetal skeletal muscle
structure, and between the placental mRNA for VDR and
nutrient transporter genes, suggests additional mechanisms
through which fetal physiology may be influenced in this
undernutrition model.

The observed maternal–fetal plasma gradient in concentra-
tion of 25OHD is similar to that reported in humans,14 agrees
with previous studies in sheep57 and is consistent with the idea
that 25OHD diffuses across the placenta. The association of
higher maternal plasma 25OHD with higher fetal plasma
25OHD concentration was a trend, and this probably reflects
the modest cohort size by comparison with many human
studies, and a nutritional challenge in critical discrete windows

of pregnancy. Our reported maternal plasma 25OHD2 and
25OHD3 concentrations were of a similar magnitude to those
previously reported for 36–48-month old non-pregnant, non-
lactating female sheep (~34 and ~32 nmol/L, respectively)
housed outdoors in the United States with a reported unrest-
ricted exposure to sunlight.58 Sheep can produce vitamin D3

(cholecalciferol) in response to ultraviolet B (UVB) irradiation
of 7-dehydrocholesterol in skin,58,59 however our sheep were
housed indoors and fed a complete pelleted diet which was
supplemented with vitamin D3 according to standard practice
and guidelines.60 The plasma concentration of 25OHD2 is
substantially higher than that detected in humans and is likely
to originate from ergosterol in the naturally occurring fungi
content of plant matter (e.g. grass meal) which when exposed to
UVB irradiation produces vitamin D2 (ergocalciferol).61 We
report a fetal–maternal gradient in blood concentrations of
ionized calcium which is in agreement with human data from
second trimester pregnancies and consistent with the involve-
ment of active processes in transplacental calcium transfer.13,62

In humans, a prenatal high dose oral vitamin D3 supple-
mentation (35,000 IU/week) from 26 to 29 weeks of gestation
elevated cord blood total calcium.63 However, our data do not
show a relationship between 25OHD status and whole blood
ionized calcium concentration in the mother or fetus.
Maternal plasma 25OHD2 or 25OHD3 concentrations

were not different between dietary groups, which suggested
that dietary provision of vitamin D2 or D3 to the mother was

Fig. 4. Association of mRNA levels for transport genes and vitamin
D receptor (VDR) in the placenta. Association of placental levels of
VDR mRNA with (a) lipoprotein lipase (LPL) and (b) T-type amino
acid transporter-1 (TAT-1) mRNA levels were assessed by linear
regression. C, control (open symbols); PI40, peri-implantation
undernutrition (grey symbols); L, late gestation undernutrition (solid
symbols) groups.

Fig. 5. Association of fetal skeletal muscle structure with plasma
25OHD status. The association of fetal plasma 25OHDtotal with
tricep muscle (a) myofibre density and (b) capillary density was
assessed by linear regression. C, control (open symbols); PI40,
peri-implantation undernutrition (grey symbols); L, late gestation
undernutrition (solid symbols) groups.
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still adequate. However, fetal plasma concentration of
25OHD2 and 25OHD3 were lower in early and late gestation
maternal undernutrition groups compared with the control
group, which suggests that placental transport or handling of
vitamin D may have been altered. Our observation that
placental CYP27B1 mRNA levels were higher in the group
exposed to maternal undernutrition in early pregnancy (PI40
group) suggests a possible molecular mechanism through
which more placental conversion of 25OHD to 1,25(OH)2D
might reduce the amount of 25OHD that is transported to
these fetuses. CYP27B1 is expressed in maternal and fetal
portions of the placenta13 although we were unable to measure
the differential expression between maternal and fetal placenta
in the current study. CYP27B1 mRNA may not reflect protein
levels, but it was not possible to measure these in our tissues.
However, this mechanism does not explain the lower fetal
plasma 25OHD concentration in the L group. It remains
possible that lower fetal 25OHD concentration could be due to
increased conversion to 24,25-(OH)2D in the placenta or fetus.

The mechanism underlying altered placental CYP27B1
mRNA levels in PI40 animals appears to be more complicated
than altered maternal vitamin D concentration as this did not
differ between the groups. Unlike previous observations in
humans,32 higher maternal 25OHD across all groups was not
associated with higher placental CY27B1 mRNA levels.
Instead, alteration in another maternal dietary component, or a
placental adaptation to it, may be responsible for driving this
change in CYP27B1 expression. In PI40 animals, increased
maternal blood Ca2+ concentration was associated with
decreased placental CYP27B1 mRNA levels which may be due
to a direct effect of calcium on the expression of CYP27B1
mRNA, or to changes in parathyroid hormone and/or calcito-
nin which are known regulators of CYP27B1 transcription.64

We observed a strong association between higher placental
CYP27B1 mRNA levels and lower type B placentome blood
flow in the PI40 group. This might seem counterintuitive as
vitamin D is linked to improved angiogenesis and vasorelaxa-
tion,65 and we can only speculate that higher CYP27B1 mRNA
levels could mean increased availability of 1,25(OH)2D to the
placenta. In addition, a ‘snap-shot’ measurement of blood flow
and gene expression status at a single point in gestation does not
allow us to distinguish between acute and adaptive/compen-
satory changes. Overall, we cannot infer causality from such
associations and further studies are needed to establish under-
lying mechanisms.

Maternal undernutrition had no effect on placental mRNA
levels of VDR and the small set of placental growth and
nutrient transport genes that were assessed. Extension of this
work would need to consider measurement of the multiple
components of the insulin-like growth factor axis (peptides,
receptor and binding proteins). Our recent work suggests that
LPL and TAT-1 mRNA levels are approximately two-fold
greater in the fetal compared with the maternal portion of
the sheep placentome.66 In addition, TAT-1 is present in
the human basal (fetal-facing) membrane where it may play an

important part in efflux of amino acids to the fetus.67 Therefore
in the present study, it is possible that any effects of maternal
undernutrition on mRNA levels in maternal or fetal–placental
tissue were masked by our having analysed whole placentomes.
Recent studies in adolescent human pregnancies suggest that

fetal 1,25(OH)2D is a positive regulator, whereas maternal and
fetal 25OHD are negative regulators of placental VDR
expression.33 Our finding, regardless of diet group, of a small
association between higher maternal 25OHD and lower pla-
cental VDR mRNA supports this idea in part. On the other
hand, we did not find a clear link between fetal vitamin D and
placental VDR mRNA. We observed that a higher ratio of
fetal-to-maternal 25OHD concentration was associated with
higher placental VDR mRNA in the PI40 group alone. It is
highly speculative, but if the relatively higher fetal 25OHD
concentration meant higher fetal 1,25(OH)2D concentration
then it would support the idea that higher fetal 1,25(OH)2D
predicts higher placental VDR expression.33

Across all diet groups, higher maternal plasma 25OHDtotal

was associated very modestly with higher placental weight
which supports broadly the idea of a placental adaptation to
maternal vitamin D status. Placental VDR levels may be linked
to regulation of placental nutrient transport.33,41 Our obser-
vation of a modest association of higher VDR mRNA with
higher TAT-1 and LPL mRNA in the placenta appears to be
consistent with the potential presence of VDREs in TAT-1 and
LPL genes.43,48 The VDR-RXR complex binds to VDREs to
regulate gene expression.68 The very modest observed associa-
tions of higher placental CYP27B1 mRNA with higher TAT-1
mRNAs (trend) and with higher fetal weight are intriguing. We
can only speculate that if higher CY27B1 leads to higher 1,25
(OH)2D in the placenta, then it may, via the VDRE in the
TAT-1 gene lead to higher TAT-1 expression.
In this study we have shown a very modest association of

lower fetal plasma 25OHD concentration with lower fetal
skeletal muscle fibre density in the triceps brachii muscle. This
observation extends our previous report in these animals that
myofibre and capillary density are reduced following maternal
undernutrition in early and late gestation.10 The VDR is pre-
sent in isolated skeletal muscle cells69 and whole muscle,21 and
vitamin D affects skeletal muscle proliferation, differentiation
and myotube size.70 VDR null mice had 20% smaller skeletal
muscle fibre size, increased skeletal muscle expression of myo-
genic transcription factors myf5, E2A and myogenin, and
inappropriate expression of embryonic and neonatal type
myosin heavy chain (MHC).71 In addition, in fish larvae,
higher dietary vitamin D3 caused white muscle fibre hyper-
trophy and regulated Myf5, MyoD1, myogenin and MHC
gene expression.72 In humans, poor adult vitamin D status is
related to myopathy and associated with structural and electro-
physiological muscle changes73,74 and maternal 25OHD status
is positively associated with offspring grip strength at 4 years
of age.28 These findings together with our current observations
point towards a potential role for vitamin D status in pregnancy
on life-long muscle function.
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We have shown a very modest association of lower fetal
plasma 25OHD concentrations with lower fetal capillary den-
sity in the triceps brachii muscle. The VDR has been identified
in vascular endothelial and smooth muscle and linked to
angiogenesis and proliferation.75,76 Vitamin D3 promoted
angiogenesis in endothelial colony-forming cells from cord
blood.77 In the present study, there were no other links
observed between fetal 25OHD and our measures of fetal
cardiovascular function in vivo.

In conclusion, this study has provided novel insight into
the effect of maternal total calorific restriction during critical
windows of gestation on late gestation fetal vitamin D status,
which may be mediated in part by changes to placental vitamin
D handling via CYP27B1. Our findings do not support a role
for maternal–fetal vitamin D in mediating the fetal cardiovas-
cular adaptations in this model of maternal nutrient restriction.
Our data suggest that a reasonably small part of reduced fetal
skeletal myofibre and capillary density may be accounted for by
lower fetal vitamin D levels; future systematic investigations of
the effect of specific vitamin D deficiency during pregnancy on
cardiovascular control and growth during fetal life will be
required. These should include measurement of 1,25(OH)2D,
which is synthesized by the fetus,14,15 and key components of
vitamin D regulation and signalling (e.g. VDR and CYP27B1
genes) in muscle and cardiovascular tissues. Our regression
analysis suggests that a small part of the variation in genes
involved in nutrient transport in the placenta may be due to
variation in VDR levels, but the findings do offer insight into
the potential role of the placenta in transducing information on
vitamin D status to the fetus. Fetal adaptive physiological
responses to changes in the maternal environment are now
thought to underpin the risk of many adult diseases, including
metabolic and cardiovascular disease.1 Numerous associations
have been made between vitamin D status and disease
(including metabolic and cardiovascular); our findings now add
important information to the impact of maternal nutrition on
determining fetal vitamin D status, the role of the placenta, and
the potential impact on the fetus. This knowledge is of
potential importance to both agriculture and clinical obstetrics,
which have similar concerns about living conditions (i.e. lati-
tude and sunshine exposure) and diet before and during
pregnancy.
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