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Abstract

We prove that the alpha invariant of a quasi-smooth Fano 3-fold weighted hypersurface of index 1 is greater
than or equal to 1/2. Combining this with the result of Stibitz and Zhuang [SZ19] on a relation between birational
superrigidity and K-stability, we prove the K-stability of a birationally superrigid quasi-smooth Fano 3-fold weighted
hypersurfaces of index 1.
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1. Introduction

Throughout the article, the ground field is assumed to be the complex number field C.

1.1. K-stability, birational superrigidity and a conjecture

The notion of K-stability was introduced by Tian [Tia97] as an attempt to characterize the existence of
Kihler—Einstein metrics (KE metrics, for short) on Fano manifolds. Later, K-stability was extended and
reformulated by Donaldson [Don(2] in algebraic terms. The notion of K-stability emerged in the study
of KE metrics (see [Don02], [Tia97]), and it gives a characterization of the existence of a KE metric for
smooth Fano manifolds (see [CDS15], [Tial5]).

Birational (super)rigidity means the uniqueness of a Mori fiber space in the birational equivalence
class (see Definition 2.2), and this notion has its origin in the rationality problem of Fano varieties.
Specifically, it grew out of the study of birational self-maps of smooth quartic 3-folds by Iskovskikh and
Manin [IM71] (see [Puk13] and [Che05] for surveys).

K-stability and birational superrigidity have completely different origins, and we are unable to find a
similarity in their definitions. However, both of them are closely related to some mildness of singularities
of pluri-anticanonical divisors (or linear systems). For example, it is proved by Odaka and Sano [OS12]
(see also [Tia87]) that a Fano variety X of dimension 7 is K-stable if @(X) > n/(n + 1). Here,

a(X) =sup{c € Qsp | (X, cD) is log canonical for any D € |[-Kx|g }

is called the alpha invariant of X and it measures singularities of pluri-anticanonical divisors. We refer
readers to [Fujl9b], [Lil7], [FO18] and [BJ20] for criteria for K-stability in terms of beta and delta
invariants which are more or less related to singularities of pluri-anticanonical divisors. On the other
hand, it is known that a Fano variety of Picard number one is birationally superrigid if and only if the
pair (X, AM) is canonical for any A € Q. and any movable linear system M such that AM ~g —Kx
(see Theorem 2.4). With these relations in mind, one may expect a positive answer to the following.

Conjecture 1.1. A birationally superrigid Fano variety is K-stable.
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Actually, we expect stronger conjectures to hold (see Section 7.4 for discussions). The main aim of
this article is to verify Conjecture 1.1 for quasi-smooth Fano 3-fold weighted hypersurfaces.

1.2. Evidences for the conjecture

1.2.a. Smooth Fano manifolds

Smooth quartic 3-folds and double covers of P? branched along a smooth hypersurface of degree 6 (or
equivalently smooth weighted hypersurfaces of degree 6 in P(1, 1, 1, 1, 3)) are the only smooth Fano 3-
fold that are birationally superrigid (see [[IM71], [Isk80], [Che05]). K-stability (and hence the existence
of a KE metric) is proved for smooth quartic 3-folds ([Fuj19a, Corollary 1.4]) and for smooth weighted
hypersurfaces of degree 6 in P(1, 1,1, 1, 3) ((CPW 14, Corollary 3.4]).

We have evidences in arbitrary dimension n > 3. After the results established in low-dimensional
cases in [IM71], [Puk87] and [dFEMO3], it is finally proved by de Fernex [dF13] that any smooth
hypersurface of degree n + 1 in P"*! is birationally superrigid for n > 3. On the other hand, it is proved
by Fujita [Fuj19a] that any such hypersurface is K-stable (hence admits a KE metric). It is also proved
in [Zhu20b] that a smooth Fano complete intersection X c P"*" of Fano index 1, codimension r and
dimension n > 10r is birationally superrigid and K-stable.

1.2.b. Fano 3-fold weighted hypersurfaces

By a quasi-smooth Fano 3-fold weighted hypersurface, we mean a Fano 3-fold (with only termi-
nal singularities) embedded as a quasi-smooth hypersurface in a well-formed weighted projective
4-space P(ay, .. .,aq4) (see Section 2.2.b for quasi-smoothness and well-formedness). Let X = X; C
P(ay, ..., as) be a quasi-smooth Fano 3-fold weighted hypersurface of degree d. Then the class group
CI(X) is isomorphic to Z and is generated by Ox (1) (see, for example, [Okal9, Remark 4.2]). By
adjunction, we have Ox (—Kx) = Ox (tx), where

4

Lx = Zai—d€Z>0.
i=0

We call tx the Fano index (or simply index) of X.

By [IFO0] and [CCC11], quasi-smooth Fano 3-fold weighted hypersurfaces of index 1 are classified
and they consist of 95 families. Among them, quartic 3-folds and weighted hypersurfaces of degree 6 in
P(1,1, 1,1, 3) are smooth and the remaining 93 families consist of singular Fano 3-folds (with terminal
quotient singularities). The descriptions of these 93 families are given in Table 7.

Theorem 1.2 [CP17], [CPROO]. Any quasi-smooth Fano 3-fold weighted hypersurface of index 1 is
birationally rigid.

Among the 95 families, any quasi-smooth member of each of specific 50 families is birationally
superrigid. The 50 families consist of 48 families in Table 7 which do not admit singularity with
‘quadratic involution (QI)’ or ‘elliptic involution (EI)’ in the fourth column plus the two families of
smooth Fano weighted hypersurfaces. For each of the remaining 45 families, a general quasi-smooth
member is strictly birationally rigid (meaning that it is not birationally superrigid) but some special
quasi-smooth members are birationally superrigid (see Section 2.3 for details).

Theorem 1.3 [Che09, Corollary 1.45]. A general quasi-smooth member of each of the 95 families is
K-stable and admits a KE metric.

The generality assumption is crucial in Theorem 1.3. In particular, it is highly likely that birationally
superrigid special members of each of the above mentioned 45 families are not treated in Theorem 1.3.
Note that openness of K-stability is known (see [Odal3], [Donl5] and [BL.22]), and this implies the
difficulty in determining which Fano varieties (in a given family) are K-stable. Although Theorems 1.2
and 1.3 give strong evidence for Conjecture 1.1, it is very important to consider special (quasi-smooth)
members for Conjecture 1.1.
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1.2.c. Conceptual evidences
Apart from evidences by concrete examples given in Sections 1.2.a and 1.2.b, we have conceptual results
supporting Conjecture 1.1.

The notion of slope stability for polarized varieties was introduced by Ross and Thomas (cf. [RT07]).
For a Fano variety X, slope stability of (X, —Kx) is a weaker version of K-stability.

Theorem 1.4 [OO13, Theorem 1.1]. Let X be a birationally superrigid Fano manifold of Fano index 1.
If |-Kx | is base point free, then (X, —Kx) is slope stable.

As it is explained in Section 1.1, K-stability of a Fano variety X of dimension n follows from the
inequality a(X) > n/(n + 1). In practice, the computations of alpha invariants are very difficult and
hence it is not easy to prove the inequality a(X) > n/(n+1).

Remark 1.5. In fact, our results show that there exists a birationally superrigid Fano 3-fold X such that
a(X) < 3/4 (see Example 5.17).

Recently, Stibitz and Zhuang relaxed the assumption on the alpha invariants significantly under the
assumption of birational superrigidity and obtained the following.

Theorem 1.6 [SZ19, Theorem 1.2, Corollary 3.1]. Let X be a birationally superrigid Fano variety. If
a(X) = 1/2, then X is K-stable.

Note that the assumption on the alpha invariant is @(X) > 1/2 in [SZ19, Theorem 1.2], but the
equality is allowed by [SZ19, Corollary 3.1]. It is informed by C. Xu and Z. Zhuang that one can even
conclude the uniform K-stability of X in Theorem 1.6 under the same assumption. The notion of uniform
K-stability is originally introduced in [Der16b] and [BHJ17] (see also [Fujl19b] and [BJ20]) and it is
stronger than K-stability'. Moreover, it is very important to mention that uniform K-stability implies the
existence of a KE metric ([LTW 19]). Combining these results, we have the following.

Theorem 1.7 [Xu21, Theorem 9.6], [SZ19], [LTW19]. Let X be a birationally superrigid Fano variety,
and assume that «(X) > 1/2. Then X is uniformly K-stable. In particular, X is K-stable and it admits a
KE metric.

1.3. Main results
‘We state main theorem of this article.

Theorem 1.8 (Main theorem). Let X be a quasi-smooth Fano 3-fold weighted hypersurface of index 1.
Then a(X) > 1/2.

The following is a direct consequence of Theorems 1.8 and 1.7.

Corollary 1.9. Any birationally superrigid quasi-smooth Fano 3-fold weighted hypersurface of index 1
is K-stable and admits a KE metric.

By [ACP20, Corollary 1.3], a birationally superrigid quasi-smooth Fano 3-fold weighted hypersurface
necessarily has Fano index 1. Thus, we obtain the following.

Corollary 1.10. Conjecture 1.1 is true for quasi-smooth Fano 3-fold weighted hypersurfaces.

It is natural to consider a generalization of Conjecture 1.1 by relaxing the assumption of birational
superrigidity to birational rigidity (see Section 7.4) or to expect that the conclusion of Corollary 1.9 holds
without the assumption of birational superrigidity. We are unable to relax the assumption of birational
superrigidity to birational rigidity in Theorem 1.6 or 1.7, and thus we cannot conclude K-stability for
strictly birationally rigid members as a direct consequence of Theorem 1.8. By the arguments delivered
in this article, we are able to prove a(X) > 3/4 for any quasi-smooth member X of suitable families.
As a consequence, we have the following (see Section 7.3 for details).

1Soon after this paper was completed, it wad proved in [[LXZ22] that uniform K-stability is equivalent to K-stability.
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Theorem 1.11 (= Theorem 7.7). Let X be any quasi-smooth member of a family which is given ‘KE’ in
the right-most column of Table 7. Then X is K-stable and admits a KE metric.

We can also prove K-stability for any quasi-smooth member (which is not necessarily birationally
superrigid) of suitable families.

Theorem 1.12 (= Corollary 7.13). Let X be any quasi-smooth member of a family which is given ‘K’ or
‘KE’ in the right-most column of Table 7. Then X is K-stable.

We explain the organization of this article. In Section 2, we recall definitions and basic properties
of relevant notions such as birational (super)rigidity, log canonical thresholds, alpha invariants and
weighted projective varieties. In Section 3, we explain methods of computing log canonical thresholds
and alpha invariants. By applying these methods, we compute local alpha invariants a;, (X) for any point
p on a quasi-smooth Fano 3-fold weighted hypersurface X of index 1. In Sections 4 and 5, we compute
local alpha invariants at smooth and singular points, respectively. At this stage, Theorem 1.8 is proved
except for seven specific families. These exceptional families are families No. 2, 4, 5, 6, 8, 10 and 14,
and we need extra arguments to prove a(X) > 1/2, which will be done in Section 6. In Section 7, we
will consider and prove further results such as Theorems 1.11 and 1.12. We will also discuss related
problems that arise naturally through the experience of huge amount of computations. Finally, in Section
8, various information on the families of quasi-smooth Fano 3-fold weighted hypersurfaces of index 1
are summarized, and we also make it clear in Remark 8.1 what is left about K-stability for quasi-smooth
Fano 3-fold weighted hypersurfaces of index 1.

1.4. Relevant results in K-stability

Recently both theoretical and explicit studies of K-stability of Fano varieties have been developed
drastically. We refer readers to [Xu2 1] for up-to-date surveys. Following the suggestion from the referee,
we add Section 1.4 to explain some of them that are developed during the preparation or after the
completion of this article.

One of the most striking one is the equivalence of the notions of K-stability and uniform K-stability
for kit Fano varieties that is proved in [LXZ22]. It in particular follows that the K-stability implies the
existence of KE metric for klt Fano varieties. As a consequence, we are now able to conclude in Theorem
1.12 not only the K-stability of X but also the existence of a KE metric on X.

It should be mentioned that currently there are various methods in hand to check K-stability: The
most powerful methods at present are the induction method of Abban and Zhuang [AZ22] computing
(local) delta invariants or the moduli method of Liu et al. (see, e.g., [Liu22], [LX19]). These methods are
developed parallel to the preparation of this article, and we do not use them. As it is explained in Section
1.3, the proofs of the main results of this article rely on the computation of (local) alpha invariants.

This article aims the systematic study of singular Fano 3-folds. There are on-going work by Cheltsov
and collaborators on smooth Fano 3-folds. In the book [Ara+23], it is completely determined whether
the general member of each of the 105 irreducible families of smooth Fano 3-folds admits a KE metric
or not. Very recently, there have been a lot of works aiming to drop the generality assumption in the
above result and to classify K-(poly)stable smooth Fano 3-folds in each family completely (see [Liu23],
[CP22], [CFKO22], [CFKP23], [BL22], [Den22], [CDF22], [Mal23]).

2. Preliminaries
2.1. Basic definitions and properties

We refer readers’ to [KMO98] for standard notions of birational geometry which are not explained in this
article.

Definition 2.1. By a Fano variety, we mean a normal projective Q-factorial variety with at most terminal
singularities whose anticanonical divisor is ample.
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For a variety X, we denote by Sm(X) the smooth locus of X and Sing(X) = X \ Sm(X) the singular
locus of X. For a subset I' c X, we define Singp(X) := Sing(X) NI'. Let X be a normal variety and D a
Weil divisor (class) on X. We denote by |D|qg the set of effective Q-divisors on X which are Q-linearly
equivalent to D. For a smooth point p € X, we define |Z,(D)| to be the linear subspace of | D| consisting
of members of |D| passing through p.

2.1.a. Birational (super)rigidity of Fano varieties

Let X be a normal Q-factorial variety, D a Q-divisor on X and M a movable linear system on X. For
a prime divisor E over X, we define ordg (D) to be the coeflicient of E in ¢*D, where ¢: ¥ — X is a
birational morphism such that E C Y, and we set mg (M) := ordg (M), where M is a general member
of M. For a positive rational number A, we say that a pair (X, AM) is canonical if

ap(Kx) 2 Amg (M)

for any exceptional prime divisor E over X.
Let X be a Fano variety of Picard number one. Note that we can view X (or more precisely the
structure morphism X — Spec C) as a Mori fiber space.

Definition 2.2. We say that X is birationally rigid if the existence of a Mori fiber space Y — T such that
Y is birational to X implies that Y is isomorphic to X (and T = Spec C). We say that X is birationally
superrigid if X is birationally rigid and Bir(X) = Aut(X).

Definition 2.3. A closed subvariety ' C X is called a maximal center if there exists a movable linear
system M ~g —nKx and an exceptional prime divisor E over X such that mg (M) > nag(Kx).

Theorem 2.4 [CSO8, Theorem 1.26]. A Fano variety X of Picard number 1 is birationally superrigid if
and only if the pair (X, %M) is canonical for any movable linear system M on X, where n € Qs is
such that M ~q —nKx, or equivalently if and only if there is no maximal center on X.

2.1.b. Log canonical thresholds and alpha invariants

Definition 2.5. Let (X, A) be a pair, D an effective Q-divisor on X, and let p € X be a point. Assume
that (X, A) has at most log canonical singularities. We define the log canonical threshold (abbreviated
as LCT) of (X, A; D) at p and the log canonical threshold of (X, A; D) to be the numbers

lety (X, A; D) = sup{c € Qx0 | (X,A +cD) is log canonical atp },
Ict(X,A; D) =sup{c € Qso | (X,A + cD) is log canonical },
respectively. We set Ict, (X; D) = lcty (X, 0; D) and Ity (X; D) = Ict(X, A; D) when A = 0. Assume that
|-Kx|g # 0. Then we define the alpha invariant of X at p and the alpha invariant of X to be the numbers
ap(X) =inf{lcty(X,D) | D € |[-Kx|og },
a(X) =inf{ep(X) |pe X},

respectively.
The following fact is frequently used.
Remark 2.6. Let p be a point on X, and let D, D, be effective Q-divisors on X. If both (X, D) and
(X, D7) are log canonical at p, then the pair
(X,AD1 + (1 -2)D>)

is log canonical at p for any 4 € Q such that 0 < A4 < 1. In particular, if a,(X) < ¢ for some number
¢ > 0, then there exists an irreducible Q-divisor D € |-Kx|g such that (X, ¢D) is not log canonical at
p. Here, a Q-divisor is irreducible if its support Supp(D) is irreducible.
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2.1.c. Cyclic quotient singularities and orbifold multiplicities

Definition 2.7. Let r > 0 and ay, . .., a, be integers. Suppose that the cyclic group u,. of rth roots of
unity in C acts on the affine n-space A" with affine coordinates xi, ..., x, via
(X1, x0) 2 (EM X, LX),

where ¢ € u, is a fixed primitive rth root of unity. We denote by 6 € A"/pu, the image of the origin
o € A" under the quotient morphism A" — A"™/u,.. A singularity p € X is a cyclic quotient singularity
of type %(al, ...,ay) if p € X is analytically isomorphic to an analytic germ 0 € A" /u,.. In this case, r
is called the index of the cyclic quotient singularity p € X.

Remark 2.8. Let p € X be an n-dimensional cyclic quotient singular point. Then we have a suitable
action of g, on A" such that there is an analytic isomorphism 0 € A" /u, = p € X of (analytic) germs.
In the following, the germ o € A" is often denoted by p € X. By identifyingp € X = 6 € A"/u,,
the quotient morphism 0 € A" — 6 € A"/, is denoted by gp: X — X and is called the quotient
morphism of p € X.

Note that, by convention, the case r = 1 is allowed in the definition of cyclic quotient singularity. A
cyclic quotient singularity p € X of index 1 is nothing but a smooth point p € X and in that case the
quotient morphism g : X — X is simply an isomorphism.

Definition 2.9. Let p € X be a cyclic quotient singularity, and let gy : X — X be its quotient morphism
with p € X the preimage of p. For an effective Q-divisor D on X, we define

omulty (D) := mults(g,D)

and call it the orbifold multiplicity of D at p. By convention, we set omult, (D) = mult,(D) whenp € X
is a smooth point.

2.1.d. Kawamata blowup

Let p € V be a three-dimensional terminal quotient singularity. Then it is of type %(1, a,r — a), where
r and a are coprime positive integers with r > a (see [MS84]). Let ¢: W — V be the weighted blowup
of V at p with weight %(1, a,r — a). By [Kaw96], ¢ is the unique divisorial contraction centered at
p and we call ¢ the Kawamata blowup of V at p. If we denote by E the ¢-exceptional divisor, then
E = P(1,a,r — a) and we have

1
KW = (p*KV + —E,
r

and

2

(E%) =

a(r—a)’

2.2. Weighted projective varieties

We recall basic definitions of various notions concerning weighted projective spaces and their subvari-
eties. We refer readers to [IF00] for details.

2.2.a. Weighted projective space
Let N be a positive integer. For positive integers ay, . . .,an, let

R(a(), e ,aN) = C[xo, ce ,XN]
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be the graded ring whose grading is given by deg x; = a;. We define
P(ag,...,an) :=ProjR(ag,...,an)

and call it the weighted projective space with homogeneous coordinates x, . .., xy (of degree deg x;
a;). We sometimes denote

P(a0$ ) aN)X() ..... XN
in order to make it clear the homogeneous coordinates x, ..., xy. Fori =0,..., N, we denote by
Px, = (0:---:1:---:0) € P(ap,...,an) 2.1
the coordinate point at which only the coordinate x; does not vanish. Let f € R := R(aq,...,an) =
Clxop,...,xn] be a polynomial. We say that f is quasi-homogeneous (resp. homogeneous) if it is
homogeneous with respect to the grading degx; = a; (resp. degx; = 1) fori = 0,1,...,N. For a
polynomial f € C[x,...,xy] and a monomial M = x(')"o - -x%”, we denote by

coefff (M) e C

the coefficient of M in f, and, by a slight abuse of notation, we write M € f if coeft s (M) # 0. For

quasi-homogeneous polynomials fi, ..., fir € R, we denote by
(fi=-=fik=0) cP(ao,...,an)
the closed subscheme defined by the quasi-homogeneous ideal ( f1, ..., fr) € R. Moreover, for a closed
subscheme X C P(ay, ..., ay) and quasi-homogeneous polynomials g1, . .., g € R, we define
(g1=-=a=0x=0@1="=g=0NnX,
which is a closed subscheme of X. Fori =0, ..., N, we define

Hy, = (x; =0) C P(ap, ...,an),
Uy, '=P(ag,...,an) \ Hy,. 2.2)

Remark 2.10. The weighted projective space P(a, b, c, d, ¢) with homogeneous coordinates x, y, z, ,
w of degrees a, b, c, d, e, respectively, is sometimes denoted by

P(a7 b7 c, da e)x,y,z,t,w
in order to emphasize the homogeneous coordinates. For a coordinate v € {x,...,w}, the point
py € P(a,b,c,d,e), the quasi-hyperplane H, = (v = 0) C P(a, b, c,d, e) and the open set U, =
P(a, b, c,d, e) \ H, are similarly defined as in equations (2.1) and (2.2).

2.2.b. Well-formedness and quasi-smoothness
Definition 2.11. We say that a weighted projective space P(ao, . . ., an) is well-formed if

gcd{ao,...,di,...,aN}zl

foranyi=0,1,...,N.

Definition 2.12. Let P(ao, . .., an) be a weighted projective space such that gcd{ao, ...,an} = 1. For
Jj=0,1,...,N, we set
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lj = gcd{ao,al, ce ,aA]’, e ,aN},
mj=loly [ ly,
a:
bj = <
m;
We then define
P(ag, ...,an)" :=P(bo,...,bn)
and call it the well-formed model of P(ay, ...,an).

Remark 2.13. Any weighted projective space is isomorphic to a well-formed one (see, e.g.,
[IFOO, Lemma 5.7]). More precisely, for a weighted projective space P = P(ag,...,ayn) with
ged{ag,...,an} =1, there exists an isomorphism

¢: P(a()’""aN)xo ,,,,, XN —)PWf:P(bO"-'be)y() ,,,,, YN

such that ¢*H,, = m;H,, fori =0,1,...,N, where H,, = (x; =0) c Pand H,, = (y; =0) C Y.

In the following, we set P := P(ay, ..., ay) and we denote by
I: AN*I\ {0} > P, (ap,....an) > (ag:---:an),

the canonical projection. Let X C P be a closed subscheme. We set Cy, := II-!(X) and call it the
punctured affine quasi-cone over X. The affine quasi-cone Cx over X is the closure of Cy, in AN*L We
set = H|c;( 1 Cy = X.

Definition 2.14. We say that a closed subscheme X c P is well-formed if P is well-formed and
codimy (X N Sing(P)) > 2.

Definition 2.15. Let X C P be a closed subscheme as above. We define the quasi-smooth locus of X as
QSm(X) :=7(Sm(Cx)) C X.

Let S be a subset of X. We say that X is quasi-smooth along S if S € QSm(X). We simply say that X is
quasi-smooth when X = QSm(X).

2.2.c. Orbifold charts

Let Uy, be the open subset of P = P(ay, ..., an)x,....xy asin equation (2.2), wherei € {0,1,..., N}.
We call U, the standard affine open subset of P containing p,,. We denote by Z;{x,« the affine N-space
AN with affine coordinates Xy, . . . ,)Z—, ..., Xn. Consider the M, -action on Z;{i defined by

X¥j %%, forj=0,...,1,...,N,

where { € p,,, is a primitive a;th root of unity. Then the open set/; can be naturally identified with the
quotient Z:{xl. /1, In fact, this can be seen by the identification

o J . ~
X = —, forj=0,...,i,...,N.

The quotient morphism Uy, — U,/ H,, = Uy, is denoted by

pxi : uxi - uxi

and is called the orbifold chart of P containing py,.
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Let X C PP be a subscheme. Usually, we denote by Uy, C X the open set Uy, N X, and we call U,, the
standard affine open subset of X containing py,. In this case, we set U X = p;il (Uy;) C Z:{x,»- By a slight
abuse of notation, the morphism p,, |y, : Uy, — Uy, is also denote by

-

pXi: Uxi - UX,'

and is called the orbifold chart of X containing py,. When we are using the notation p = py,, the
morphism p,; is sometimes denoted by p,,. Note that Ux,. is not necessary smooth in general.

Suppose that X C P is a closed subvariety containing the point p = py,. The preimage p of p is the
origin of 0x,— c Z:{x,- = AN Tt is straightforward to see that X is quasi-smooth at p if and only if U,, is
smooth at p. Suppose that X is quasi-smooth at p. A system of local coordinates of Uy, at p is called a
system of local orbifold coordinates of X at p. In this case, p € X is a cyclic quotient singularity of index
a; and py,: U,, — U,, can be identified with (or analytically equivalent to) the quotient morphism qp
of p € X after shrinking Uy, and then lv]x,.. Moreover, if X is quasi-smooth, then U; is smooth for any i.

Remark 2.16. When we work with P = P(a, b, c,d, e)x,y 7 :,w and its closed subscheme X C P, then
oo PV Z:lv —>U,, U, = p;l(Uv) cU, and p,, : U, — U, are similarly defined.

..........

2.2.d. Weighted hypersurfaces and quasi-tangent divisors

As in the previous subsections, we work with P = P(aq, ..., an)x,....xn -
Definition 2.17. A quasi-linear polynomial (or a quasi-linear form) in variables xo, . . ., X,+1 is a quasi-
homogeneous polynomial f = f(xo,...,Xx,+1) such that x; € f forsomei =0,...,n+ 1.

Definition 2.18. We say that a subvariety S C P is a quasi-linear subspace of P if it is a complete
intersection in P defined by quasi-linear equations of the form

+fi=b+fr==b+fi =0,
where {1, ¢, ..., are linearly independent linear forms in variables xo, ..., x,4+; and fi,..., fx €
Clxo, . . ., Xn+1] are quasi-homogeneous polynomials which are not quasi-linear. A quasi-linear subspace

of P of codimension 1 (resp. dimension 1) is called a quasi-hyperplane (resp. quasi-line) of P.

It is clear that a quasi-linear subspace of P is isomorphic to a weighted projective space. In particular,
a quasi-line is isomorphic to P'.

Let X be a hypersurface in P = P(ay, . . ., an ) defined by a quasi-homogeneous polynomial of degree
d. We often denote it as X = Xy C P(ao, ...,an). Suppose that X is quasi-smooth at a point p = py,.
Then the defining polynomial F = F(xo, . ..,xy) of X can be written as

F:x{"f+xf"_1gm_1 + -+ X:81 + Lo 2.3)

wherem > 0, f = f(xo,...,Xxn) is a quasi-homogeneous polynomial of degree d — ma; which is quasi-
linear and gy = gx(xo,...,%i,...,Xn) is a quasi-homogeneous polynomial of degree d — ka; which
is not quasi-linear for 0 < k < m — 1. Note that the expression (2.3) is uniquely determined once the
homogeneous coordinates of P are fixed.

Definition 2.19. Under the notation and assumptions as above, we call f the quasi-tangent polynomial
of X at p and the divisor (f = 0)x on X is called the quasi-tangent divisor of X at p. When f = x; for
some j, then we also call x; as the quasi-tangent coordinate of X at p.

Remark 2.20. Let X = X7 C P(1,1,1,2,3)x, 7 +,w be a weighted hypersurface of degree 7. Suppose
that its defining polynomial is of the form

F =t3x+t2w+tg5+g7,
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where gs, g7 € Clx, y, z,w] are quasi-homogeneous polynomials of degree 5,7, respectively. In this
case X is quasi-smooth at p = p;. The quasi-tangent polynomial of X at p is 7x + w. Note that x is not a
quasi-tangent coordinate of X at p because of the presence of t*w € F.

Lemma 2.21. Let X C P be a weighted hypersurface of degree d. Assume that X is quasi-smooth at a
point p = py, for some i =0,1,...,N, and let xj be a homogeneous coordinate such that x; € f, where
fis the quasi-tangent polynomial of X at p. Then, after a suitable choice of homogeneous coordinates
X0, - - - » XN, the defining polynomial F of X can be written as

-1
F=x"x; +x;"" gm-1+ - +xi81 + go,

where g = gr(x0,...,%i,...,xXN) is a quasi-homogeneous polynomial of degree d — ka; which is not
quasi-linear.

Proof. Wecanwrite F = x[" f+g,wherem > 0, f = f(xo,...,xn) 3 x; is the quasi-tangent polynomial
and g is a quasi-homogeneous polynomial of degree d which does not involve a monomial divisible by
x!" and which is contained in the ideal (xo, ..., %;, ... ,xn)?. We write g = xjhe +---+x;hi+ho, where
e > 0 and hy is a quasi-homogeneous polynomial of degree d — ka; which does not involve the variables
xj. By rescaling x;, we may assume f = x; — f, where x; ¢ f, and we write f = x]' f;, +--- +x; fi + fo,
where f is a quasi-homogeneous polynomial of degree d — (m+k)a; which does not involve the variable
x;. We consider the coordinate change x; — x; + f. Then the new defining polynomial can be written as

F=x"x;+ (xj+x"fy+ ) e+ + (xj+xI fu 4+ )y + ho

=T X)X

It follows that the new quasi-tangent polynomial is x'¢~" fe+-+x j. We claim that ne —m < n. We
have d = ma; +aj,d = ea; +degh, > eaj and a; = na; +degfn > na;, which implies ne —m < n.
Thus, repeating the above coordinate change, we can drop the degree of the quasi-tangent coordinate
with respect to x;, and we may assume F = x" f + x{""gm_l + - +x;g + 8o, where f > x; and gi
are quasi-homogeneous polynomials of degree a; and d — ka;, respectively, which do not involve the
variable x;. Moreover, g is not quasi-linear for 0 < k < m — 1. Finally, replacing x;, we may assume
f = x; and this completes the proof. O

Remark 2.22. Suppose that a weighted hypersurface X < P is quasi-smooth at p = p,,. Then
omult,((f = 0)x) > 1 for the quasi-tangent polynomial f of X at p. Moreover, x; is a quasi-tangent
coordinate of X at p if and only if omulty(H;) > 1.

2.3. The 95 families

2.3.a. Definition of the families

As it is explained in Section 1.2.b, quasi-smooth Fano 3-fold weighted hypersurfaces of index 1 are
classified and they form 95 families. According to the classification, the minimum of the weights of an
ambient space is 1. Hence a family is determined by a quadruple (a;, az, a3, as), which means that the
family corresponding to a quadruple (ai, az, as, aq) is the family of weighted hypersurfaces of degree
d=a)+a+az+aqginP(1,ay,as,as,as). The 95 families are numbered in the lexicographical order
on (d,ai,as,as,as), and each family is referred to as family No. i for i € {1,2,...,95}. Families
No. 1 and 3 are the families consisting of quartic 3-folds and degree 6 hypersurfaces in P(1,1, 1, 1, 3),
respectively, and for any smooth member of these two families, K-stability (and hence the existence of
KE metrics) is known.

Definition 2.23. We set
I:={1,2,...,95}\ {1, 3},

and, for i € I, we denote by F; the family consisting of the quasi-smooth members of family No. i.

https://doi.org/10.1017/fms.2023.87 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.87

Forum of Mathematics, Sigma 13

The main objects of this article is thus the members of F; fori € I.

We set
lh :=1{2,4,5,6,8,10, 14}.

The set |y is characterized as follows: Let X = X; C P(1,a;,a,a3,a4), a; < ap < a3 < ay, be a
member of a family F; withi € I. Theni € |; if and only if a; = 1. The computations of alpha invariants
will be done in a relatively systematic way for families F; with i € |\ I} (see Sections 4 and 5), while
the computations will be done separately for families F; with i € |; (see Section 6).

We explain notation and conventions concerning the main objects of this article. Let X = X; C
P(1,ay,az,as,aq) =: P be a member of a family F; withi € I.

o Unless otherwise specified, we assume a; < a; < a3 < a4.

o In many situations (especially when we treat a specific family), we denote by x, y, z, f, w the homo-
geneous coordinates of P of degree, respectively, 1, ay, as, as, as.

o We denote by F' the polynomial defining X in P, which is quasi-homogeneous of degree d = a; +as +
as +ay.

o We set A = —Kx, which is the positive generator of of C1(X) = Z. Note that we have

d ay+ar+asz+ay
(-Kx)* = (A%) = == :

ajazazdy ajazaszayg

2.3.b. Definitions of QI and EI centers and birational (super)rigidity
In this subsection, let

X =Xq CP(l,a1,a2,a3,a4)x,y,2,t,w

be a member of a family F; with i € |, where a; < a; < a3 < a4. We give definitions of QI and
EI centers, which are particular singular points on X and are important for understanding birational
(super)rigidity of X. For EI centers, we only give an ad hoc definition (see [CPRO0, Section 4.10] and
[CP17, Section 4.2] for more detailed treatments).

Definition 2.24. Let p € X be a singular point. We say that p € X is an EI center if the upper script EI
is given in the fourth column of Table 7, or equivalently if i and p belong to one of the following.

o i=7and p is of type %(1, 1,1).
o i€ {23,40,44,61,76} and p = p;.
o i€{20,36} and p = p;.

We say that p € X is a QI center if there are distinct j and & such that d = 2a; + a; and the index of
the cyclic quotient singularity p € X coincides with ay.
We say that p € X is a birational involution (BI) center if it is either an EI center or a QI center.

Remark 2.25. Let X be a member of F; with i € |. Then the following are proved in [CP17].

1. No smooth point on X is a maximal center.
2. A singular point p € X is a maximal center only if either p is a BI center or X is a member of F3
and p = p; is of type %(1, 1,2).

Note that a BI center p € X is not always a maximal center (see Section 5.3, especially Remark 5.10,
for the complete analysis for QI centers). Note also that the %(1, 1,2) point p, on a member X of Fp3 is
not a maximal center if X is general. However, p, € X can be a maximal center and in that case there is
a birational involution of X (called an invisible involution) with center p, (see [CP17, Section 4.3]).

Definition 2.26. We define the subset Igsr C | as follows: i € Iggsr if and only if a member X of F; does
not admit a BI center. We then define Igg =1\ Igsr.

Note that |Igsr| = 48 and |Igr| = 45. The following is a more precise version of Theorem 1.2.
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Theorem 2.27 [CP17]. Let X be a member of JF; withi € |.

1. Ifi € Igsr, then any member of F; is birationally superrigid.
2. If i € IgR, then any member of Fi is birationally rigid while its general member is not birationally
superrigid.

We emphasize that a family J;, where i € Iggr, can contain (in fact does contain for most of i € Igr)
birationally superrigid Fano 3-folds as special members.

2.3.c. Numerics on weights and degrees
Let

X =Xq cP(l,a1,a2,a3,a4)x,y,2,t,w

be a member of F;. Throughout the subsection, we assume thati € |\ I; and that a; < a; < a3 < aq.
We collect some elementary numerical results on weights ay, ..., a4, the degree d = a; +a> + a3 + as
of the defining polynomial F = F(x,y, z,t,w) of X, and the anticanonical degree (A3) of X which will
be repeatedly used in the rest of this article.

Lemma 2.28. One of the following happens.

1. d =2ay.
2. d =3ay.
3. d =2a4+aj for some j € {1,2,3}.

Proof. We see that either w" € F for some n > 2 or x"*v € F forsome n > 1 and v € {x, y, z, ¢} by the
quasi-smoothness of X.
Suppose w" € F for some n > 2. Then we have

d=na4 =a;+az+az+ays < 4day.

Hence, n = 2,3 and we are in case (1) or (2). Suppose w”v € F for some n > 1 and v € {y, z,¢}. Then
we have d = na4 + a; and moreover we have

as+aj <d=ay+axy+az+as <3a4+aj.

This shows n = 2, thatis, d = 2a4 + a;.

If a; = 1, then the proof is completed. It remains to show that the case d = 2a4 + 1 does not take
place assuming a; > 2. Suppose d = 2a4 + 1 and a; > 2. Then w?x € F and the singularity of p,, € X
is of type a%l(al, as, az). There exist distinct i, j € {1,2,3} such that a; + a; is divisible by a4 since
pw € X is terminal. We have a; + a; = a4 since 0 < a; + a; < 2a4. Let k € {1,2,3} be such that
{i,j, k} ={1,2,3}. Then

d=a1+ag+a3+a4=ak+2a4.

Combining this with d = 2a4 + 1, we have a; = 1. This is a contradiction since a; > a; > 2. O
Lemma 2.29.

We have i € {9, 17} if and only if d = 3a4 and a = 1.

We have ayasaz(A®) < 3 and the equality holding if and only if d = 3ay.
Ifa; < ay, then we have aj(A3) < 1.

If1 < a; < as, then ajaz(A%) < 1.

Ifa) < ay and d > 2ay, then ayas(A%) < 2.

If d is divisible by ay and i ¢ {9, 17}, then araz(A3) < 2.

If d is not divisible by as and a; > 2, then aras(A3) < 2.

NN AE RN~
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Proof. We prove (1). The ‘only if’ part is obvious. Suppose d = 3as4 and a; = 1. Then we have
2a4 = 1+ ay + a3. This implies a, = a4 — 1 and a3z = a4 since a, < a3 < a4. Then, by setting
a =ay > 2, X is a weighted hypersurface in P(1, 1,a,a + 1,a + 1) of degree 3(a + 1). Suppose p; ¢ X.
Then some power of z is contained in F and this implies that 3(a + 1) is divisible by a. In particular, we
have a = 3 and this case corresponds to i = 17. Suppose p, ¢ X, then either 3(a + 1) = 1(mod a) or
3(a+1) = a+ 1(mod a) by the quasi-smoothness of X. In both cases, we have a = 2, ad hence i = 9.
Thus, (1) is proved.
The assertion (2) follows immediately since we have

d
a1a2a3(A3) = a <3

and d < 3a4 by Lemma 2.28.

We prove (3). Note that 2 < a; < az < a4. Note also that a4 > a, because otherwise X has
nonisolated singularity along L, which is impossible. In particular, we have a; + - -- + a4 < 4a4 and
aras > 4 and we have

ai(ay +az +as +ayq) - 4

a1 (A%) = <1,
ajazazdy azas

which proves (3).
We prove (4). We have a, > 3 since a, > a; > 1 and thus
d 3
S R
anay an

ajaz(A%) = <l

We prove (5). We have d > 2ay4 by assumption. Then, by Lemma 2.28, we have d = 2a4 + a; for
some j € {1,2,3,4}, and combining this with d = a| + a; + a3 + a4, we have

ag=ay+ay+az—aj<a+as.

If a; > 1, then we have a;, a3 > 3 and thus

ay+az+az+ay 3a2+2a3 3 2 5
ajas(A%) = < =+ <z
azas azas as an 3

Suppose a; = 1. In this case 2 < a; < a3. If a3 > 3, then

(A3) 1+a2+a3+a4< 1+2ap +2as 1 + 2 + 2 < 11
a = = = —+ — =< —.
4 azas azas azas as an 6

Suppose a3 = 2, that is, ay = a3 = 2. Then we have a4 = 3 and d = 8 since d = 5 + a4 > 2a4 and a4 is
odd. In this case, we have a4(A%) = 2. This proves (5).

We prove (6). By Lemma 2.28 and (1), either d = 2a4 or d = 3a4 and a; > 2. If d = 2ay4 (resp.
d = 3a4 and a; > 2), then

2 3
ara3(A%) = = <2 (resp. araz(A%) = — <2).
aj aj
This proves (6).
We prove (7). By Lemma 2.28, we have d = 2a4 + a; for some j € {1,2,3}. Then we have
as=ay+ay+az—aj <ay+asz. Ifa; > 3, then

aj+ar+asz+a a)+4a 1 4
a2a4(A3)= 1 2+as 4S 1 3=—+—§
apas apas as  aj

W | W
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We continue the proof assuming a; = 2. If in addition a; < a3, then

2+a2+a3+a4 < 2+2a2+2a3 < 4(13

aras(A®) = =2.

2613 2a3 - 2613

We continue the proof assuming a; = 2 and a, = a3. In this case, by setting a = a, = a3 and b = aq,
X is a weighted hypersurface of degree d in P(1,2,a,a,b) and either d = 2b+2 or d = 2b + a. If
d =2b+2,then b = 2a but this is impossible since X has only terminal singularities. Hence, d = 2b +a.
In this case b = a + 2 and d = 3a + 4. By the quasi-smoothness of X, we see that d = 3a + 4 is divisible
by a. This implies that a € {2, 4}. This is impossible since X has only terminal singularities. Therefore,
(7) is proved. O

2.3.d. How to compute alpha invariants?

Let X be a member of a family F; with i € I. For the proof of Theorem 1.8, it is necessary to show
ap(X) > 1/2 for any point p € X. Let p € X be a point. We briefly explain the most typical method of
bounding a;, (X) from below, which goes as follows.

1. Choose and fix a divisor S on X which vanishes at p to a relatively large (orbifold) multiplicity
m = omulty(S) > 0. In some cases, S = H, (when p € H,), and in other cases, S is the quasi-tangent
divisor of X at p. Let a be the positive integer such that § ~ aA.

2. Let D € |Alg be an irreducible Q-divisor other than %S. Then D - § is an effective 1-cycle on X.

3. Find a Q-divisor T’ € |eA|qg for some e € Z¢ such that mult,(7) > 1 and Supp(7T’) does not contain
any component of D - S. We will find such a Q-divisor T by considering p-isolating set or class which
will be explained in Section 3.1.c.

4. Let g = gp be the quotient morphism of p € X and P be the preimage of p via g. By the above
choices, Supp(g* D) NSupp(g*S) NSupp(g*T) is a finite set of points including p, and hence the local
intersection number (¢*D - g*S - ¢*T); is defined (see Section 3.1.a). Then we have the inequalities

momulty(D) < (gD - qpS - qpT)p <7(D-S-T) = rae(A*),

where 7 is the index of the cyclic quotient singularity p € X. Note that ¢ is the identity morphism
and r = 1 when p € X is a smooth point. By Lemma 3.2 which will be explained below, we have

3
lety(X: D) > "4¢AD)
m

for any D as in (2).
5. As a conclusion, we have

6. It remains to bound lct, (X; S) from below. This is easy when S is quasi-smooth at p because in that
case we have Ict(X; S) = 1. The computation gets involved when S is the quasi-tangent divisor but
will be done by considering suitable weighted blowups which will be explained in Section 3.2.b.

We need to consider variants of the above explained method or other methods especially for points
in special positions. These will be explained in Section 3.
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3. Methods of computing log canonical thresholds
3.1. Auxiliary results

3.1.a. Some results on multiplicities and log canonicity
Let V be an n-dimensional variety. For effective Cartier divisors D1,...,D, on V and a pointp € V
which is an isolated component of Supp(D;) N --- N Supp(D,,), the intersection multiplicity

i(p, D1+ DpnV)

is defined (see [Ful98, Example 7.1.10]). Suppose that V is Q-factorial. Then this definition is naturally
generalized to effective Q-divisors D1, ..., D, as follows:

1
i(p,D1,-++ ,Dy; V) = ﬁi(p,le,--- ,dD,; V),
where d is a positive integer such that dD; is a Cartier divisor for any i. In this paper, we set
(Dy--Dp)p:=i(p, D1+ Dp3V)

and call it the local intersection number of Dy, ..., D, atp.

Remark 3.1. If p € V is a smooth point, D1, .. ., D, are effective divisors defined by fi, ..., f, € Oy p
around p, and p is an isolated component of Supp(D;) N --- N Supp(D,,), then

(D1-+-Dy)p =dimc Oy p/(f1,-.-, fu)-

If X ¢ P(ap,...,an) is an n-dimensional subvariety which is quasi-smooth at p = py, € V,
D, =(Gy =0)y,...,D, = (G, =0)yx are effective Weil divisors such that p is an isolated component
of DyN---N Dy, where G; = G;(xo,...,xy) is a quasi-homogeneous polynomial of degree d;, then

| N I .
(Dy---Dp)p = ;(p Dy - p"Dp)s = ;d1mc(9[7pp/(g1,...,gn),
1 1

where p = pp: Uy — Up = X NUp is the orbifold chart with p € U, the preimage of p and
8i=G(o,...,1,...,%n) with %} = x;/x“ for j #1.

We will frequently use the following property of local intersection numbers. Let Dy, ..., D, be
effective Q-divisors on X and p € X be a smooth point. If p is an isolated component of Supp(D;) N
-+-N Supp(D,,), then

n
(Dy - ... Dyl = | | multy(Dy).
i=1

We refer readers to [Ful98, Corollary 12.4] for a proof. Although the following results are well-known
to experts, we include their proofs for readers’ convenience.

Lemma 3.2. Let p € X be either a germ of a smooth variety or a germ of a cyclic quotient singular
point, and let D be an effective Q-divisor on X. Then the inequality

1
— < lct, (X, D
omult, (D) ~ ol )

holds.
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Proof. Let q = qp: X — X be the quotient morphism of p € X, which is étale in codimension 1, and
let p € X be the preimage of p. By [Kol+92, 20.4 Corollary], we have lety(X; D) = lctf,()vf; q*D). Note
that p € X is smooth. Hence, by [Kol97, 8.10 Lemma], we have

1
omult, (D) B multy(g* D)

< lthJ(X; q*D),

and the proof is completed. O

Lemma 3.3 (2n-inequality, cf. [Cor00, Corollary 3.5]). Let p € X be a germ of a smooth 3-fold, D an
effective Q-divisor on X, n > 0 a rational number, and let ¢: Y — X be the blowup of X at p with
exceptional divisor E. If (X, %D) is not canonical at p, then there exists a line L C E = P? with the
following property.

o For any prime divisor T on X such that T is smooth at p and that its proper transform T contains L,
we have multy(D|r) > 2n.

Proof. We set m = multy (D). By [Cor00, Corollary 3.5], one of the following holds.

1. m > 2n.
2. There is a line L C E such that the pair

1.
(Y, (% -1)E+ —D)
n n
is not log canonical at the generic point of L.

Note that in [Cor00, Corollary 3.5] the boundary is a movable linear system #, but the same argument
applies if we replace H by an effective Q-divisor D. We may assume m < 2n because otherwise
mult,(D|r) > 2n for any prime divisor T which is smooth at p and the assertion follows by choosing
any line on E. Thus, the option (2) takes place. Let T be a prime divisor on X such that 7 is smooth at p
and T > L. We have

1. . 1
KY+(T— 1)E+—D+T:¢*(KX+—D+T).
n n n

Note that E|; = L, and we can write ]jlf = aL + G, where @ > 0 is a rational number and G is an
effective Q-divisor on 7. Thus, by restricting the above equation to 7', we have

m . 1
Ky +(— —1+a)L+G = (KT +—D|T),
n n
and the pair
(7.(% - 1+a)L+G)
n
is not log canonical at the generic point of L. This implies %' — 1 + @ > 1, and we have
1 m
= multy(Dly) = (— —1 +a) +1>2.
n n

Thus, mult,(D|r) > 2n and the proof is completed. O
Lemma 3.4. Let D € |Op2(3)| be a divisor on P> which is not a triple line. Then 1ct(P?; D) > 1/2.
Proof. We have the following possibilities for D.

1. D is irreducible and reduced.
2. D = Q + L, where Q is an irreducible conic and L is a line.
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3. D =Ly+2Ly, where Ly, L, are distinct lines.
4. D =Ly + Ly + L3, where L, Ly, L3 are mutually distinct lines.

If we are in one of the cases (1), (2) and (3), then mult, (D) < 2 for any point p € D and thus (P2, 1D)
is log canonical. If we are in case (3), then it is obvious that the pair (P2, 1 D) = (P2, %Ll + L) is log
canonical. O

Lemma 3.5. Let X be a Fano 3-fold of Picard number one, and let p € X be a cyclic quotient terminal
singular point (which is not a smooth point). If p € X is not a maximal center, then there is at most one
irreducible Q-divisor D € |-Kx|q such that (X, D) is not canonical at p.

Proof. Suppose that there are two distinct irreducible Q-divisors D; ~g —Kx such that (X, D;) is not
canonical at p for i = 1,2. Let » > 1 be the index of the singularity p € X, and let ¢: ¥ — X be
the Kawamata blowup at p with exceptional divisor E. By [Kaw96], we have ordg (D;) > 1/r. Take a
positive integer n such that nD, nD; are both integral and nD| ~ nD;. Then the pencil M ~ —nKx
generated by nD; and nD; is a movable linear system and we have ordg (M) > n/r. It follows that the
pair (X, %M) is not canonical at p. This is a contradiction since p € X is not a maximal center. O

Lemma 3.6. Let
X = Xd C P(l, bl, bz, b3, b4)x,y1,y2,y3,y4

be a member of a family Fi withi € |. Let i € {1,2,3,4} be such that b; > 1 andp :==py, € X. If Hy is
the quasi-tangent divisor of X at p, then the pair (X, Hy) is not canonical at p.

Proof. Note that the point p € X is of type bii(bj, by, by), where {i, j, k,l} = {1,2,3,4}, and it is a
terminal singularity. Let ¢: ¥ — X be the Kawamata blowup with exceptional divisor E. Since H, is
the quasi-tangent divisor of X at p, we have

1
ordg (Hy) > —.
b;

Combining this with

1
Ky = (p*KX + —E,
b;

we see that the discrepancy of the pair (X, H,) along E is negative. This completes the proof. O

3.1.b. Some results on singularities of weighted hypersurfaces

Lemma 3.7. Let X be a quasi-smooth weighted hypersurface in P(bg,...,bs). Assume that
P(bo, ..., bs) is well-formed and X has at most isolated singularities. Then any quasi-hyperplane
section on X is a normal surface.

Proof. Let xo,...,xs be the homogeneous coordinates of P = P(by,...,bs) of degree by,..., ba,
respectively. Let F = F(xo,...,x4) be the defining polynomial of X, and let S be a quasi-hyperplane
section on X. After replacing homogeneous coordinates, we may assume S = (x4 = 0)x = (x4 = F =
0) c P. It is enough to show that the singular locus Sing(S) of S is a finite set of points.

We write F = x4G + F, where G = G(x, ...,x4) and F = F(xo,...,x3) are quasi-homogeneous
polynomials. We set P = P(by, . .., b3). We claim that P is well-formed. Suppose it is not. Then Sing(P)
contains a two-dimensional stratum. We have Sing(X) = Sing(P) N X since a quasi-smooth weighted
hypersurface is well-formed ([IFOO, Theorem 6.17]). It follows that Sing(X) cannot be a finite set of
points. This is a contradiction, and the claim is proved. The surface S is identified with the hypersurface
(F =0) c P, and we have

Sing(S) = (S \ QSm(S)) U (Sing(P) N S).
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We claim that Sing(P) N S is a finite set of points. Suppose not. Then Sing(P) N S contains a curve
and so does Sing(P) N S. In particular, Sing(X) = Sing(P) N X contains a curve. This is impossible
since Sing(X) is a finite set of points, and the claim is proved.

It remains to show that the closed subset ¥ := §\ QSm(S) C P is a finite set of points. Let
I1: A\ {0} — P be the natural quotient morphism. Then £ = I1(Sing(C)), where C; C A%\ {o} is
the punctured affine quasi-cone of S. We have Sing(Cx) N Cs = Sing(Cs) N (G = 0). By the quasi-
smoothness of X, we have Sing(Cx) = {0} ¢ A°. This implies X N (G = 0) = 0. Since (G = 0) is an
ample divisor on P, we see that X is a finite set of points. This completes the proof. O

Lemma 3.8. Let S be a weighted hypersurface in P(by, by, by, b3), and let T C P(by, by, by, b3) be
a quasi-hyperplane. If the scheme-theoretic intersection S N T is quasi-smooth at a point p, then S is
quasi-smooth at p.

Proof. Let xg,x1,Xx2,x3 be the homogeneous coordinates of P = P(bg, by, by, b3) of degree
by, by, by, b3, respectively, and let F = F(xg,x1,x2,x3) be the defining polynomial of S. We may
assume T = H,, C P, and we write F = x3G + F, where G = G(xg,x1,%2,x3) and F = F(x¢,x1,x2)
are quasi-homogeneous polynomials. Then S N T is the closed subscheme in P(by, b1, b2, b3) defined
by x3 = F=0. By the quasi-smoothness of S N T at p, there exists i € {0, 1,2} such that

oF
Bxi

(p) # 0.

It follows that
OF OF
el - 0
amm) mfmi

since p € Hy,. Thus, § is quasi-smooth at p. i

Lemma 3.9. Let S be a normal weighted hypersurface in a well-formed weighted projective 3-space
P(bg,...,b3) and T C P(by,...,b3) a quasi-hyperplane such that T # S. Let T" be an irreducible
component of S N T, and we assume that

Tls =T +A,

where A is an effective divisor on S such that T' ¢ Supp(A). If T is a smooth weighted complete
intersection curve and S is quasi-smooth at each point of I' N\ Supp(A), then S is quasi-smooth along T’
and the pair (S,T) is purely log terminal (plt) along T.

Proof. WesetE = I'nSupp(A). By [IFO0, Theorem 12.1], T is quasi-smooth. We have (SNT)\E = I'\ E.
It follows that SNT is quasi-smooth along I'\ E. By Lemma 3.8, S is quasi-smooth along I"\ E. Therefore,
S is quasi-smooth along I'.

Fori =0,1,2,3,let S; = (x; # 0) N S be the standard open set of S and let p; : S; — S; be the
orbifold chart. Note that p; is a finite surjective morphism of degree b; which is étale in codimension
1. By the quasi-smoothness of S, the affine varieties S; and p;(I' N S;) are smooth. Hence, the pair
(S, p; (' S;)) is plt along p; (I"' N S;). By [Kol+92, Corollary 20.4], the pair (S;,I" N S;) is plt along
I' N S;. This completes the proof. O

Remark 3.10. Let S, 7 and I" be as in Lemma 3.9. We assume in addition that I' is rational, that is,
I = P!, Let Sing-(S) = {p1,...,pn} be the set of singular points of S along I", and let ; be the index
of the quotient singular point p; € S. Then, since the pair (S,T") is plt along I", we can apply [Kol+92,
Proposition 16.6] and we have
S my— 1
(Ks+D)lr=Kr+ Z —pi.
—1 m;

1
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Thus, we have
N my— 1
([)s = ~(Ks -T)s =24 ) ——.
P

3.1.c. Isolating set and class
We recall the definitions of isolating set and class which are introduced by Corti, Pukhlikov and Reid
[CPROO] as well as their basic properties.

Let V be a normal projective variety embedded in a weighted projective space P = P(ay, ...,an)
with homogeneous coordinates xo, . . .,xy with degx; = a;, and let A be a Weil divisor on V such that
Oy (A) = Oy (1). We do not assume that ag < --- < ay.

Definition 3.11. Letp € V be a point. We say thataset {gy, . . . , gm } of quasi-homogeneous polynomials
gls---,8m € Clxo,...,xn] isolates p or is a p-isolating set if p is an isolated component of the set

(g1=-=gn=0)NV.

Definition 3.12. Letp € V be a smooth point, and let L be a Weil divisor class on V. For positive integers
k and [, we define |I§ (IL)] to be the linear subsystem of |/L| consisting of divisors vanishing at p with
multiplicity at least k. We say that L isolates p or is a p-isolating class if p is an isolated component of
the base locus of [Z} (kL)|.

Lemma 3.13 [CPR0OO, Lemma 5.6.4]. Let p € V be a smooth point. If {g1,...,8m} is a p-isolating
class, then lA is a p-isolating class, where

l =max{degg; |i=1,2,...,m}.

Lemma 3.14. Let p € V be a point, Z1,. .., Zy irreducible closed subsets of V such that dimZ; > 0
for any i, and let g1, ...,gn € Clxo,...,xn] be quasi-homogeneous polynomials. Suppose that V is
quasi-smooth at p and that {g1, . .., gn} isolates p. We set G; = (g; = 0)y, and we set

) {omultp(Gi) ) }
pi=mingf —— [i=1,...,n .
degg;

Then there exists an effective Q-divisor T ~g A such that omult,(T) > p and Supp(T') does not contain
any Z;.

Proof. Let d be the least common multiple of deg gy, . ..,deg g,, and we set ¢; = d/deg g;. Consider

€n

the linear system A C |dA| on V generated by gf‘, ..., 8" We see that p is an isolating component
of Bs A since {gi,...,gn} isolates p. Hence, a general D € A does not contain any Z; in its support.
Moreover, for any D € A, we have

omulty, (D) > min{ e; omulty(D;) |i=1,...,n} =du.

Thus, the assertion follows by setting 7' = %D ~q A for a general D € A. O

Remark 3.15. Lemma 3.14 will be frequently applied in the following way: under the same notation
and assumptions as in Lemma 3.14, there exists an effective Q-divisor T ~g e¢A, where

e=max{degg; |i=1,...,n}

such that omult,(7) > 1 and Supp(7’) does not contain any Z;.

Lemma 3.16. Let X = Xg C P(1,a1,...,a4)x,y z.1,w be a member of a family F; with i € |, where we
assume that ay < a» < az < as, and let p € Hy \ Lyy. Then ayasA isolates p. Ifwk appears in the
defining polynomial of X with nonzero coefficient, then ajaszA isolates p.
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Proof. We can write p = (0:1:ay:a3:a4) for some as, @3, @s € C. Then it is easy to see that the set

{x, 2% — gy, 1 — a‘”y“3 wé — @ty i}
isolates p, and thus a;a4A isolates p.

Suppose that wX appears in the defining polynomial of X. Then the natural projection
P(1,ay,...,as) --> P(1,ay, as, a3) restricts to a finite morphism n: X — P(1,ay, as, a3). The com-
mon zero locus (in X) of the sections contained in the set

{x,z% - a,glyaz’ P a,glzyaz}

coincides with the set 771(q), where q = (0: 1:@2:@3) € P(1, a1, a», az). It follows that the above set
isolates p since 771 (q) is a finite set containing p. Thus, aja3A isolates p. O

3.2. Methods

3.2.a. Computations by intersecting two divisors
We recall methods of computing log canonial thresholds (LCTs) and consider their generalizations for
some of them.

Lemma 3.17 (cf. [KOW 18, Lemma 2.5]). Let X be a normal projective Q-factorial 3-fold with nef and
big anticanonical divisor, and let p € X be either a smooth point or a terminal quotient singular point
of index r (below we set r = 1 when p € X is a smooth point). Suppose that there are prime divisors
S ~q —aKx and T ~q —bKx with a,b € Q such that S N T is irreducible and q*S - ¢°T = mI’, where
q=qp: U — U is the quotient morphzsm of an analytic neighborhood p € U ofp € X, p is the preimage
of p via g, m is a positive integer and I" is an irreducible and reduced curve on U. Then we have

b 1
X) > min{ let, (X; 1), —, )
ap( ) mln{Cp( a ) mmultf,(F) rab(—Kx)3}

Proof. We set

b 1
¢ = min lctp(X;lS), —, 3 (-
¢ mmulty(I')  rab(-Kx)

We will derive a contradiction assuming a;, (X) < c. By the assumption, there is an irreducible Q-divisor
D e |-Kx|q such that (X, ¢D) is not log canonical at p. Then the pair (U, cp*D) is not log canonical
at p and we have

1
multg(¢*D) > - (3.1)

Since ¢*S - ¢'T = ml and S N T is irreducible, we have S - T = mI, where I is an irreducible and
reduced curve such that I" = ¢*T". We have

1 b(-Kx)*
(_Kx.r):_(_KX.S.T)zw. (3.2)
m m
This in particular implies
b2 -K 3
(T-T) =b(Kx -T) = % (3.3)

We have Supp(D) # S since Ictp(X; S) > ¢, and thus ¢*D - ¢™S is an effective 1- cycle on U. We
write ¢*D - ¢*S = yI" + A, where y > 0 and A is an effective 1-cycle on U such that I" ¢ Supp(A).
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Then D - S = yI'+ A + E, where A = %q*ﬁ and E is an effective 1-cycle such that I" ¢ Supp(E). By
equation (3.2), we have

— 3
a(-Kx)*=(-Kx -D-S) > y(-Kx - T) = %%

where the inequality holds since —Kx is nef. Note that (—Kx)3 > 0 since —Kx is nef and big. Hence,
m
< —. 34
Ysy (34

By equations (3.1) and (3.3), we have

ap(xy - CEI) v 05y

r(T-(A+8)) 2r(T-A)
r(T-A)=(q'T-A)
mults(A)

\%

\%

\%

1 .

— —ymultz(I),

c

where ( - ), and ( - )z denote the local intersection numbers at p and P, respectively. It follows that

rczl92(—KX)3
|7

mult (1) — L rab(-Kx)*. (3.5)
C

We have mults (I") — rab?(~Kx)*/m > O since 1/c —rab(-Kx)* > 0 by the definition of c. Combining
equations (3.4) and (3.5), we have

b
> — .
m multy (I")
This contradicts the definition of ¢ and the proof is completed. )

Lemma 3.17 is very useful in computing alpha invariants but works only when S N T is irreducible.
We consider its generalization that can be applied when S N T is reducible.

Definition 3.18. Let M = (a;;) be an n X n matrix with entries in R, where n > 2. For a nonempty
subset I C {1,2,...,n}, we denote by M; the submatrix of M consisting of ith rows and columns for
i € 1. We say that M satisfies the condition (%) if the following are satisfied.

o (=1)Idet M; > 0 for any nonempty proper subset I C {1,2,...,n}.
o (=D !detM > 0.
o a;j > 0foranyi,jwithi # j.

Forv="(vi,...,vp),w ="(wy,...,w,) € R", the expression v < w means v; < w; for any i.

Lemma 3.19. Let M = (a;;) be an n X n matrix with entries in R satisfying the condition (%), and let
v,w € R". Then Mv < Mw implies v < w.

Proof. 1t is enough to show that v < 0 assuming Mv < 0 for v € R". We prove this assertion by
induction on n > 2. The case n = 2 is easily done, and we omit it.

Assume n > 3. Suppose that there is a diagonal entry agx such that axr = 0. Then we have
det My 1y < Osince agy, ajx > 0. By the condition (x), this is impossible since n > 3.

In the following, we may assume that a;; # O for any i. By the condition (x), we have a;; = det M(;y <
0 and hence a;; < O for any i. Let M’ be the matrix obtained by adding the first row multiplied by the

https://doi.org/10.1017/fms.2023.87 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.87

24 I-K. Kim, T. Okada and J. Won
positive integer —a;; /ay; to the ith row, fori = 2, ..., n. Then we obtain the inequality M’y < 0 and we
can write

aip aiz -+ dinp
, 0
el N
0

where N’ is an (n — 1) X (n — 1) matrix. It is straightforward to check that N satisfies the condition
(%). Since N""(vy ... v,) < 0, we have vy, ...,v, < 0 by induction hypothesis. Next, let M”’ be the
matrix obtained by adding the nth row multiplied by the positive integer —a;; /a,, to the ith row, for

i=1,2,...,n—1.Then we have M"v < 0 and, by repeating the similar argument as above, we conclude
V1,...,Vn—1 < 0 by induction. This completes the proof. O
Definition 3.20. Let S be a normal projective surface, and let I', ...,y be irreducible and reduced

curves on S. Then the k£ X k matrix
M@y, ..., ) = (T - Tps)i<i,j<k

is called the intersection matrix of curves I'y, ..., I’y on S.

Lemma 3.21. Let X be a member of a family F; withi € . Let S € |—aKx| be a normal surface on X,
T € |-bKx| an effective divisor and p € S a point, where a,b > 0. We set r = 1 when p € X is a smooth
point, and otherwise we denote by r the index of the cyclic quotient singularity p € X. Suppose that

Tls = m1F1 +H12F2 + .- +mka,
where 'y, ...,y are distinct irreducible and reduced curves on S and my, . . ., my. are positive integers,

and the following properties are satisfied.

o rbdegl'y < my.
o pel\ (UislIy), and S,y are both quasi-smooth at p.
o The intersection matrix M(I'y, . .., Ty) satisfies the condition (x).

Then we have

mj

2
rab(-Kx)3 + % —rmydegl

a@p(X) > minja,

Proof. Let D € |-Kx|g be an irreducible Q-divisor. If Supp(D) = S, then D = éS and we have
lety(X, D) > a since S is quasi-smooth at p. We assume Supp(D) # S. It is enough to prove the

inequality

mi

lety(X; D) > (3.6)

3, m '
rab(—Kx)> + - —rmydegl
We can write

Dls =yt +- -+ Tk + A,

where y1,...,yx = 0and A is an effective Q-divisor on S such that I'; ¢ Supp(A) fori =1,...,k. We
setoy = (T)sand y; ;= (I -T;)s. Fori =1,..., k, we have

bdegl; = (T|s - I'i)s

=SMiX1, b M X1, T MO M Xt Xk 3.7
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and

degT; = (Dls - I'y)s
2 VIXLiF o YViclXiol F Yo Vs Xt Vi kil - (3.8)
We set M = M(T'y, ..., Tx). Combining inequalities (3.7) and (3.8), we have
by mi
M| . [£M
byk my
By Lemma 3.19, this implies y; < m; /b for any i.

When p is a singular point, then we set p = pp: Uy — Up, which is the orbifold chart of X containing

p. When p is a smooth point of X, then we set / = U = X and p: U — U is assumed to be the identity
morphism. Moreover, we set § := g"(S N U) and ps = p|s: § — SN U. We see that § is smooth at the
preimage P of p since S is quasi-smooth at p, and

P*Dlg =y1pgT1 + - yipsTi + pgA.
This implies
multg (pgA) > omulty (D) —

since pgI'; does not pass through p fori > 2 and pgI'y is smooth at p by the quasi-smoothness of T’y at
p. We have

r(ab(=Kx)* = byidegT't) 2 r(Tls - (Dls =yiT1 = -+ = yiTw))s
=r(T|s-A)s
>mr(I'y - A)s
> mi(pgl - pgA)p
> my multz(pgA)
> my(omulty, (D) = y1).

Since m| —rbdegI'] > 0 and y; < m /b, we have

1
omult, (D) < m—(rab(—Kx)3 +(my —rbdegI')y1)
1

1 . m
m—l(rab(—KX) +7 —rmydegl).

IA

. This implies equation (3.6), and the proof is completed. O
The following is a version of Lemma 3.2 1, which may be effective when S is singular at p.

Lemma 3.22. Let X be a normal projective Q-factorial 3-fold. Let S ~q —aKx be a normal surface on
X, T ~q —bKx an effective divisor and p € S a point, where a, b are positive rational numbers. Suppose
that

T|S =mI +mpls + - +m Iy,

where Iy, ..., Ty are distinct irreducible and reduced curves on S and my, . . ., my. are positive integers,
and the following properties are satisfied.
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o bdegI'i < multy(I'y).
o p eI\ (UisI}), and X is smooth at p.
o The intersection matrix M(T'y, . ..,Ty) satisfies the condition (x).

Then we have

ap(X) > min{ multy (5) }

a
multy(S)” ab(—Kx)3 + % multp(I'y) — m; deg T

Proof. Let D € |-Kx|g be an irreducible Q-divisor. If Supp(D) = S, then D = éS and we have
lety (X, D) > a/multy(S). We assume Supp(D) # S. It is enough to show that

mult, (S)

Icty(X; D) > .
Cp(X: D) ab(~Kx)3 + 2% multy(I'y) — m; deg Ty

(3.9)

We write
Dls=yiI'i+--+ vk +A,

where y1,...,yr = 0and A is an effective divisor on S such that I'; ¢ Supp(A) fori = 1,..., k. By the
same argument as in the proof of Lemma 3.21, we have y; < m;/b for any i. We consider the 1-cycle
D-S=yT1+--+vy[} on X, and we have

ab(-Kx)? = by degl'y > (T - (D - S =y =+ = %Ti))x
=(T-A)x
> multy(A)
> (multy (S)) (multy (D)) — v multy (7).

Since multy(I'y) — bdegI'y > 0 and y; < my/b, we have

mult, (D) <

1
- m(“b(_’(")3 + (multy(T'y) — bdeg ') y1)

1 3 nj
< —— (ab(-Kx)® + ™ multy (1)) - dr).
mult, (S) (a (=Kx)"+ b multy () —my deg Ty

. This implies equation (3.9), and the proof is completed. O

Lemma 3.23. Let X be a normal projective Q-factorial 3-fold. Let S ~q —aKx be a normal surface on
X, T ~qg —bKx an effective divisor and p € X a point, where a, b be positive rational numbers. Suppose
that

T|ls =T+,

where I'1, Iy are distinct irreducible and reduced curves on S, and the following properties are satisfied.

o degl; <2/b fori=1,2.
o pel'1 NI, andall the X, S, Ty and Ty are smooth at p.
o The intersection matrix M (I'1, ;) satisfies the condition (%).

Then we have

ap(X) > min{a, g}
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Proof. Wehavelct, (X, %S ) > asince S is smooth at p by assumption. Let D € |-Kx |g be an irreducible
Q-divisor on X such that Supp(D) # S. It is enough to prove the inequality lct,(X; D) > b/2. We write

Dl|s =yl +yI2 +A,

where y,7v2> > 0 and A is an effective divisor on § with I';, I ¢ Supp(A). By the proof of Lemma
3.21, we have y1,y, < 1/b. We have

ab(—Kx)> = (—Kx|s - Tls)s = degT| +degT. (3.10)
Since multy(T'|s) = 2 and mult,(A) > multy (D) — ¥ — 2, we have

ab(—Kx)* = byi degl'y — byrdegTs = (Ts - (D|s — y1T1 = y2I2))s
=(Tls-A)s
> 2(multy (D) = y1 = y2).

By equation (3.10), the assumption deg I'1,degI'; < 2/b and yy,y2 < 1/b, we have

1
multy(D) < 5(ab(—KX)3 +(2-bdegl)y; + (2 — bdegl)y))
2
< -
b
This shows lct,(X; D) > b/2 and thus ap(X) > min{a, b/2}. O

3.2.b. Computations by weighted blowups
We explain methods of computing LCTs via suitable weighted blowups.

Let p € X be a germ of a smooth variety of dimension n with a system of local coordinates
{x1,...,x,} at p, and let D be an effective Q-divisor on X. Let ¢: ¥ — X be the weighted blowup at p
with weight wt(xy,...,x,) = (c1,...,¢n), Where ¢ = (cy1,...,cp) is a tuple of positive integers such
that gcd{cy,...,cn} =1.Let E = P(c) = P(cy, ..., cyn) be the exceptional divisor of ¢. Note that ¥ can
be singular along a divisor on E (see Remark 3.24 below) so that we cannot expect the usual adjunction
(Ky + E)|g = Kg. In general, we need a correction term and we have

(Ky +E)|E = KE + Diff

where the correction term Diff is a Q-divisor on E which is called the different (see [Kol+92, Chapter
16]).

Remark 3.24. We give a concrete description of Diff. Let P(c)™ be the well-formed model of P(c),
and we identify E with P(c)“. Fori =0,1,...,n, let

1R

HY =(%=0)CcE

4

P(c)™

be the quasi-hyperplane of P(Q)Xf,...,x,,’ and we set m; = ged{co,...,éi,...,cn}. We see that Y is
singular at the generic point of Hl‘.’Vf if and only if m; > 1, and if this is the case, then the singularity of

Y along Hle is a cyclic quotient singularity of index m;. It follows from [Kol+92, Proposition 16.6] that

S om;— 1
Diff = ' ——H}"
= M

under the identification E = P(c)“'.
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Lemma 3.25. Let the notation and assumption as above. Then we have

ci1+-+cp

. > 1
lety(X; D) > mm{ ordz (D)

, 1ct(E,Diff;13|E)}, 3.11)

where D is the proper transform of D. If in addition the inequality

c1+--+cp

< let(E, Diffg; D 3.12
ordz (D) ct(E, Diffg; D|g) (3.12)
holds, then we have
cp+---+cy
ety (X; D) = —————. 3.13
ctp( ) ordg (D) (3-13)
Proof. Wesetc =cy+---+cp and let A be any rational number such that
c -
0 < A £ min{ ———, Ict(E, Diff; D .
< _mm{ordE(D) ct( i |E)}
We will show that the pair (X, AD) is log canonical at p, which will prove the inequality (3.11).
We assume that the pair (X, AD) is not log canonical at p. We have
Ky +AD + (Aordg(D) — ¢ + 1)E = ¢*(Kx + AD), (3.14)

and the pair (Y, 1D + (A ordg (D) —c+1)E) is not log canonical along E. Since A < ¢/ordg (D), we have
Adordg(D) —c+1 <1,

which implies that the pair (Y, 1D + E) is not log canonical along E. Thus, the pair (E, Diff +1D|g)

is not log canonical. This is impossible since A < lIct(E, Diff; D|). Therefore, the pair (X, AD) is log

canonical at p, and the inequality (3.11) is proved.
By considering the coefficient of E in equation (3.14), it is easy to see that

c
lety(X;D) € ————.
ctp( ) ordg (D)

Under the assumption (3.12), this shows the equality (3.13). O

We consider Lemma 3.25 in more details in a concrete setting.

Definition 3.26. Let ¢ = (cy, . .., ¢,) be an n-tuple of positive integers such that ged{ci,...,cn} =1,
and we set
m; =ged{cy, ..., 6y Cn}

fori =1,...,n. Let f = f(x1,...,x,) be a polynomial which is quasi-homogeneous with respect to
wt(X1,...,X,) =cC. ‘

If f is irreducible and f # x; fori = 1,...,n, then there exists an irreducible polynomial f wi =
fY(%y,...,%,) (in new variables %1, . . ., %,) such that

fo(x'I"I, ce XY = f(X, X))

We call f*! the well-formed model of f (with respect to the weight wt(xy, . ..,x,) = c).
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In general, we have a decomposition

_ A e MK
f=x Xn 1 ko’
where k, A1, ...,4,, i1, ..., g are nonnegative integers and fi, .. ., fx are irreducible polynomials in
variables x, .. .,x, which are quasi-homogeneous with respect to wt(xy,...,x,) = ¢ and which are
not x; for any i. We define
wf | _ ~1/m <l/myy _ <A /m ~An/m wf wiy (ke
f '_f(x1 sk n)_xl/ RRERP n(f] )#1"'(fk )#k

and call it the well-formed model of f. Note that f™ is in general not a polynomial since A; /m; need not
be an integer. In this case, the effective Q-divisor

n A k
f f _
= Zlm— W"‘Zlﬂj(fjw =0)
- =

on the well-formed model 1P’(c)Wf % of P(c) is called the effective Q-divisor on P(c)* associated to

.....

f, where Hl?”f is the quasi-hyperplane on P(c)* defined by %; = 0.

Lemma 3.27. Let P(b) := P(bo, . ..,bn+1)x,,....x,,, be a well-formed weighted projective space, and
let X ¢ P(b) be a normal weighted hypersurface with defining polynomial F = F (xo, ..., Xn+1). Let
c=(c1,...,cn) be atuple of positive integers such that gcd{c1, ..., cn} = 1. Assume that

e
e e—i
F= XoXn+1 + Zx() Jfis
i=1

where e € Zsgand f; = fi(x1,...,Xn, Xn+1) IS a quasi-homogeneous polynomial of degree iby+b,,+|. Let
G = G(x1,...x,) bethe lowestweight part of F := F(1,xy,...,x,,0) withrespecttowt(xy,...,X,) = C
Then, for the point p = py, = (1:0:---:0) € X, we have

. Jct
Ieto(X; H > mind ————
p( xn+|) { t (F)

% let(P(c)™, Diff; DWf)}

where wt. (F), Diff and D‘CV;f are as follows.

o Wt (F) is the weight of F with respect to wt(x1, ..., x,) = c.
o Diff = 31, m}il—:lHl?’"f, where Hl?’“f = (X; = 0) is the ith coordinate quasi-hyperplane ofP(c)“’fw,in
and m; = ged{cy,..., ¢y .., cntfori=1,.

o Dgf is the effective Q-divisor on P(c)* associated to G.
If in addition the inequality

c1++cp

_ < Ict(P(c)™, Diff; DM
i) (P(c) G)

holds, then we have

ci1+-+cp

Ieto (X H = =
p( -xn+l) Wt(F)

Proof. Let py: U, — U, C X, where U, = Uy,, be the orbifold chart containing p, and we set
p = pp,U Up and U = U,. We set H = H,, and H = p*H. We have leto(X; H) = lctp(U H).

n+l
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The variety U is the hypersurface in Uy, = A"“ +,,, defined by the equation

.....

e
F(l,xl,...,i,,+1)=)zn+1+2ﬁ=0, (3.15)

i=1
where f; = f;(X1, ..., ¥%u41), and p corresponds to the origin. We see that {X,, .. ., X, } is a system of local
coordinates of U at p. Let ¢: ¥ — U be the weighted blowup at p with wt(¥1,...,%,) = (¢1,...,Cn).

We can identify the ¢-exceptional divisor E with P(¢)y,
equation (3.15), we have

%, - Filtering off terms divisible by X, in

.....

(=14 )Xpe1 = F(1,%(,...,%,,0)

on U, where the omitted term in the left-hand side is a polynomial vanishing at . Since H is the divisor
on U defined by %41 = 0, we see that ordg (H) = wt. (F) and the divisor H|g corresponds to the divisor

Dgf on E = P(c)™, where H is the proper transform of H on Y. Therefore, the proof is completed by
Lemma 3.25 and Remark 3.24. m]

Lemma 3.28. Let X C P(a, by, b2, b3,1)x y,.ys,y,,2 be a member of a family F; with i € | with defining
polynomial F = F(x,y1,y2,y3,2). Assume that F can be written as

F = ka + Zkilfr+a + Zk72f2r+a + -+ fir+as
where f; € C[x,y1, Y2, y3] is a quasi-homogeneous polynomial of degree i, and we set
F:=F(0,y1,y2,y2,1) € C[y1,y2, y3].

If either F € (y1,v2,v3)>\ (31,2, y3)> or F € (y1, 2, v3)? and the cubic part of F is not a cube of a
linear form in y1, y2, y3, then for the point p := p, € X, we have

1
lCtp(X;Hx) > E

If in additiona = 1, r > 1 and p € X is not a maximal center, then

| =

@p(X) = min{1,lcty(X; Hy)} >

Proof. Let pp U, — U, be the orbifold chart of X containing p. We see that Let U, be the hypersurface

in Up AL y] .53 defined by the equation

F(X,¥1,¥2,¥3,1) =

We see that Up is smooth and the morphism p, can be identified with the quotient morphism of the
singularity p € X over a suitable analytic neighborhood of p. We denote by p € U the origin of Up = A*
which is the preimage of p via pp. Filtering off terms divisible by x in F(x, y1, y2, y3, 1), we have

(=1+--)% = F(0,¥1, 32,33, 1) = F(J1,¥2, ¥3) = F

on ij. Note that we can choose {1, V2, 3} as a system of local coordinates of l7p at p. If F ¢

(1, ¥2:¥3)* \ (b1, ¥2, ¥3)°, then omult, (H,) = mults (opHx) = 2 and hence lety (X; Hy) > 1/2.
Suppose that F € (y;, y2,y3)> and the cubic part of F is not a cube of a linear form in y1, ys, y3.

Let ¢: V — U be the blowup of U at p with exceptional divisor E = P?. We set D = ppHx. Since
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multg (D) = 3, we have
Ky +2D =o' (ky+ 1)+ LE
\'%4 2 - ‘10 U 2 2 s

where D is the proper transform of D on V. The divisor D|g on E is isomorphic to the hypersurface in

Pil $2.5s defined by the cubic part of F (31, y2, 3), and the pair (E, 13| £) is log canonical by Lemma

3.4. Tt then follows that the pair (V, §D) is log canonical along E. This shows that the pair (U, %D) is
log canonical at P, and hence lct, (X; Hy) > 1/2 as desired.

Suppose in addition that » > 1 and p € X is not a maximal center. By Lemma 3.6, the pair (X, H,)
is not canonical at p = p, and thus we have @ (X) = min{1, Icty; (X; H,)} by Lemma 3.5. This proves
the latter assertion. )

3.2.c. Computations by 2n-inequality

Lemma 3.29. Let X C P(b1, b, b3, ¢, 7)x, xy,x3,y,2 be a member of a family F; with i € | with defining
polynomial F = F(xy,x2,x3,Y, z), and suppose p := p, € X. We assume that by < b, < bz and that we
can choose y as a quasi-tangent coordinate of X at p. Then

2

w2 @)

In particular, if rbybs(A%) < 4, then ap(X) > 1/2.

Proof. Let py: l7p — Up be the orbifold chart of X containing p = p,. We set p = pp, U= Up and
U = U,. We see that U is the hypersurface in Uy = A% 5 defined by the equation

X1,X2,X3,Y
F(X1,%,%3,5,1) =0

We see that U is smooth, and the morphism p can be identified with the quotient morphism of p € X
over a suitable analytic neighborhood of p. We denote by p € U the origin which is the preimage of p
via p. By the assumption, we can choose ¥, ¥, ¥3 as a system of local coordinates of U at .

We set

. 2
" rbab3(A3)

and assume that @p(X) < A. Then there exists an irreducible Q-divisor D ~g A such that the pair
(X,AD) is not log canonical at p. In particular, the pair (U, 4p*D) is not log canonical at p. Let
@: V — U be the blowup of U at § with exceptional divisor E = P2, By Lemma 3.3, there exists a
line L c E with the property that for any prime divisor 7 on U such that T is smooth at p and that its
proper transform 7' contains L, we have multz(D|r) > 2/A. By a slight abuse of notation, we have an
isomorphism E = ]Pv s . The line L C E is isomorphic to (aX] + ax¥s + a3X3 =0) C P2, for some
ay, ap, a3 € C with (0/1 (1’2,0’3) * (0 0, 0) We set

T = (aq)h +012)?2 +a/3)?3 = 0) C 0
Then 7' is smooth at p and its proper transform on V contains L. It follows that multy(p*Dly) > 2/A. Set
k := max{i | @; # 0}. We have 7T = p*G for some effective Weil divisor G ~ rb;A. Let j € {1,2,3}

be such that

bj=max{b; |1 <i<3,i#k}.
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Then, since {x1, x2, x3} isolates p, we can take an effective Q-divisor S ~g A such that omult,(S) > 1/b;
and p*S does not contain any component of p*D|;. Hence, we have

2 _rbaby(AY)

bi(AD=(D-G-S) > (oD -T-p*S)s =
rbi(A”%) = ( ) = (p P )p>bj/l b,

This is a contradiction since b ;b < by b3, and the proof is completed. O

3.2.d. Computations by NE

Let X be a quasi-smooth Fano 3-fold weighted hypersurface of index 1. Let p € X be a singular point,
and we denote by ¢: ¥ — X the Kawamata blowup at p. In [CP17], the assertion (—Ky)? ¢ Int NE(Y)
is verified in many cases, where ﬁ(Y) is the cone of effective curves on Y. Thus, the following result
is very useful.

Lemma 3.30 [KOW 18, Lemma 2.8]. Let p € X be a terminal quotient singular point and ¢: Y — X
the Kawamata blowup at p. Suppose that (— Ky)2 ¢ IntNE(Y) and there exists a prime divisor S on X
such that § ~q —mKy for some m > 0, where S is the proper transform of S on Y. Then ap(X) > 1.

4. Smooth points
The aim of this section is to prove the following.

Theorem 4.1. Let X be a member of a family JF; withi € |\ |;. Then

ap(X) =

N =

for any smooth point p € X.

We explain the organization of this section. Throughout the present section, let
X =X,4 cP(1,a1,a,,as, a4)x,y’z,t,w

be a member of F; with i € |\ |j, where we assume a; < --- < a4. Note that ay > 2 since i ¢ |;.
Recall that we denote by F = F(x,y, z,t, w) the defining polynomial of X with deg F = d, and we set
A = —Kx. We set

Uy = U v+0)NnX,
ve{x,y,z,t,w},degv=1
Lyy=HyNH,=(x=y=0)nX.

Note that U is an open subset of X contained in Sm(X), and Ly, is a one-dimensional closed subset
of X. The proof of the inequality ap(X) > 1/2 for p € U; will be done in Section 4.1. The proof for the
other smooth points will be done as follows.

o If 1 < ay < ay, then Sm(X) c Uy U (Hy \ Lyy) U Lyy. In this case, the proof of ap(X) > 1/2 for
smooth point p of X contained in H, \ Ly, (resp. Ly,) will be done in Section 4.2 (resp. Sections 4.3
and 4.4), respectively.

o If 1 = a; < ay, then Sm(X) C U; U Ly,. In this case, the proof of a;p(X) > 1/2 for smooth point p
of X contained in L, will be done in Sections 4.3 and 4.4.

o If 1 < ay = as, then Sm(X) c Uy U H,. In this case, the proof of a;,(X) > 1/2 for smooth point p of
X contained in H, will be done in Section 4.5.

Therefore, Theorem 4.7 will follow from Propositions 4.7, 4.8, 4.10, 4.11 and 4.19, which are the main
results of Sections 4.1, 4.2, 4.3, 4.4 and 4.5, respectively.
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4.1. Smooth points on U, for families indexed by | \ |,

Lemma 4.2. We have

% (X) 2 aras(A3)

for any point p € Uj.

Proof. Let p € Uj be a point. We may assume p = py by a change of coordinates. Let D € |A|g be
an irreducible Q-divisor. The linear system |Z,(a>A)| is movable, and let S € |Z,(a>A)| be a general
member so that Supp(S) # Supp(D). The set {y, z, ¢, w} isolates p, and hence we can take a Q-divisor
T € |asAlg such that multy(7T) > 1 and Supp(7T) does not contain any component of the effective
l-cycle D - S (see Remark 3.15). Then we have

multy(D) < (D -S-T)y < (D -S-T) = azas(A*).
This shows Ict,(X; D) > 1/ aza4(A3), and the proof is completed. O

Lemma 4.3. Suppose that d is divisible by as. Then

w2 G

for any point p € U.

Proof. Let p € U; be a point. We may assume p = p,. We can choose coordinates so that w%/% ¢ F.
Indeed, if a4 > as, then w4/ ¢ F by the quasi-smoothness of X. If a4 = a3, then there is a monomial
of degree d consisting of 7, w by the quasi-smoothness of X and we can choose coordinates ¢, w so that
wd/as ¢ F_Under the above choice of coordinates, we see that {y, z,t} isolates p.

Let D € |A|g be an irreducible Q-divisor. Let S be a general member of the movable linear system
|Z,(azA)| so that Supp(S) does not contain Supp(D). We can take a Q-divisor T € |a3zA|g such that
mult,(7) > 1 and Supp(T) does not contain any component of the effective 1-cycle D - S since {y, z, 1}
isolates p. Then we have

multy(D) < (D -S-T)y < (D -S-T) = azaz(A%).
This shows ap(D) > 1/ asaz(A?) and the proof is completed. o

Remark 4.4. The objects of Section 4 are members of families F; for i € |\ Iy, and the inequality
ap > 2 is assumed throughout the present section. It is, however, noted that in Lemmas 4.2 and 4.3, the
assumption a, > 2 is not required, and the statement holds for members of F; for any i € I.

Lemma 4.5. Suppose that d is not divisible by a4, and assume a1 = 1. Then

1

ap(X) > min{lctp(X;Sp), m} > 3

for any p € Uy, where Sy, is the unique member of |1,(A)|.

Proof. Let p € U; be a point. We may assume p = p,. Note that we have a, > 1 and thus the linear
system |Z,(A)| indeed consists of a unique member Sy,. In this case, S, = H,.

We first prove lcto (X; Sp) > 1/2, that is, (X, %Hy) is log canonical at p. Assume to the contrary that
(X, %Hy) is not log canonical at p. Then mult,(H,) > 3. Suppose mult,(H,) = 3. Then, by Lemma
3.4, the degree 3 part of F (1,0, z, ¢, w) with respect to deg(z, ¢, w) = (1, 1, 1) is a cube of a linear form,
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that is, it can be written as (az + Bt + yw)> for some @, 8,y € C. By Lemma 2.28, we have d < 3ay
since d is not divisible by a4. From this, we deduce y = 0. Then we can write

F=x®ly 42970 (ax®™ %2+ B1)* + g + yh,
where g = g(x,z,t,w) € (z,t, w)* ¢ C[x,z,t,w] and h = h(x,y,z,t,w). By the inequality d < 3ay,
no monomial in g can be divisible by w? so that g € (z,7). But then X is not quasi-smooth along the
nonempty subset
— ,d-1 — =t =
(y=x"+h=z=t=0) CX.
This is impossible, and we have mult,(H,) > 4. By the same argument as above, we can write
F=x'y+g+yh,

where g € (z,¢)%, which implies that X is not quasi-smooth. This is a contradiction and thus letp (X Sp) >
1/2.

Let D € |Alg be an irreducible Q-divisor other than S, = H,. Note that D - H, is an effective 1-cycle.

The set {y, z,t, w} isolates p, and hence we can take a Q-divisor T € |a4A|g such that mult,(7) > 1
and Supp(7’) does not contain any component of D - H,. We have

multy(D) < (D - Hy - T) < as(A®) <2,

where the last inequality follows from (5) of Lemma 2.29 since a; = 1. Thus, Ict,(X; D) > 1/ as(A3) >
1/2, and the proof is completed. m]

Lemma 4.6. Let X be a member of a family F; with i € {9, 17}. Then

ap(X) >

N =

for any point p € Uj.
Proof. In this case,

X =X3a3 CP(1,1L,a,a+1,a+ sy 1w,
where a = 2,3 ifi =9, 17, respectively. Let p € U; be a point. We may assume p = py.

We show that (X, %Hy) islog canonical at p. Assume to the contrary that it is not. Then mult, (Hy) > 3

and, by Lemma 3.4, we can write

F=x3%2y 4 X3 (azx + Bt +yw)® + g + yh,
where g = g(x,z,t,w) € (z,t,w)* c Clx,y,t,w] and h = h(x,y,z,t,w). By degree reason, any
monomial in g € (z,1,w)* is divisible by z>. It follows that X is not quasi-smooth along the nonempty
subset

(y=x’*? 4 h=z=Bt+yw=0) C X.

This is a contradiction, and the pair (X, %H y) is log canonical at p.

Let D € |Alg be an irreducible Q-divisor other than H,. The set {y, z,#, w} clearly isolates p, and
hence we can take a Q-divisor T’ € |(a + 1)A|qg such that multy(7) > 1 and Supp(7’) does not contain
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any component of the effective 1-cycle D - H,. Then we have

<

Q| W
N W

2multy(D) < (D-Hy,-T)y <(D-H,-T) =
since mult, (Hy) > 2. This shows Ict, (X, D) > 4/3 and the proof is completed. o
Proposition 4.7. Let X be a member of a family F; withi € |\ |;. Then
ap(X) > 1

for any point p € Uj.

Proof. Let X = Xy c P(1,ay,as,a3,a4) be a member of F with i € |\ I}, where we assume
ay < -+ < ay.

o If d is not divisible by a4 and a; > 2, then asa4(A>) < 2 and the assertion follows from Lemma 4.2.

o If d is not divisible by a4 and a; = 1, then the assertion follows from Lemma 4.5.

o If d is divisible by a4 and i ¢ {9, 17}, then asa3(A3) < 2 by Lemma 2.29 and the assertion follows
from Lemma 4.3.

o Ifi € {9, 17}, then the assertion follows from Lemma 4.6.

This completes the proof. O

4.2. Smooth points on H, \ Ly, for families with 1 < a; < a,

Let
X=X,cP,ay,..., a4)x,y,z,,,w

be a member of a family F; with i € |\ I} satisfying 1 < a; < ay < a3 < a4. In this section, we set
F = F(0,y,z,t,w). Then H, is isomorphic to the weighted hypersurface in P(ay, ..., a4) defined by
F = 0. We note that if a smooth point p € X contained in H, satisfies mult,(Hy) > 2, then p belongs
to the subset

d’F
=0|nX.
ﬂ ((91)18\/2 0)

vi,v2€{y,z,t,w}
The following is the main result of this section.

Proposition 4.8. Let X = X; c P(1,ay,...,a4), a; < -+ < a4, be a member of a family F; with
iel\Il satisfying 1 < a; < ay. Then

ap(X) =1

Jfor any smooth point p of X contained in Hy \ Ly.,.

The rest of this section is entirely devoted to the proof of Proposition 4.8 which will be done by
division into several cases.

4.2.a. Case: 1 <aj <ap and d =2ay4
We will prove Proposition 4.8 under the assumption of 1 < a; < a; and d = 2a4.

Let p € X be a smooth point contained in H \ L,. We have mult,(H,) < 2 since w? € F, and
thus lct, (X; Hy) > 1/2. Let D € |A|g be an irreducible Q-divisor on X other than H,. By Lemma 3.16,
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aiazA isolates p, and hence we can take a Q-divisor T' € |ajazA|g such that mult,(7) > 1 and Supp(7)
does not contain any component of the effective 1-cycle D - H,. Then we have

multy(D) < (D -H,-T)y < (D -Hy -T) = aja3(A®) < 1,

where the last inequality follows from Lemma 2.29. This shows Ict,(X; D) > 1 and the proof is
completed.

4.2.b. Case: 1 <ay <azandd =2a4 +a;
We will prove Proposition 4.8 under the assumption of 1 < a; < a; and d = 2a4 + a;.
Let p € X be a smooth point contained in Hy \ L,,. We can write

F=w’y+wf+g,

where f, g € C[x,y, z, t] are quasi-homogeneous polynomials of degree d —a4 and d, respectively. Since
8*F |0w? = y andy doesnot vanishatp € H\Lyy, we have multy(Hy) < 2and thuslct, (X; Hy) > 1/2.

Let D € |A|g be an irreducible Q-divisor on X other than H,. By Lemma 3.16, ajasA isolates p,
and hence we can take a Q-divisor ' € |ajasA|g such that mult,(7) > 1 and Supp(7’) does not contain
any component of the effective 1-cycle D - H,. Then we have

multy(D) < (D -Hy -T)y < (D - Hy - T) = ajas(A%) <2,
where the last inequality from Lemma 2.29. This shows Ict,(X; D) > 1/2 and the proof is completed.

4.2.c. Case: 1 <ay <azand d =2a4 +a,
We will prove Proposition 4.8 under the assumption of 1 < a; < a; and d = 2a4 + as.
Let p € X be a smooth point contained in Hy \ Ly,. We can write

F=w’z+w(zf+g)+h,

where f,h € C[x,y,z,t] and g € C[x, y, t] are quasi-homogeneous polynomials of degrees a4, as + ay4
and d, respectively.

Claim 1. Ict,(X; Hy) > 1/2.
Proof of Claim 1. We prove mult,(H,) < 2. Assume to the contrary that mult,(H,) > 2. Since

*F &°F
ow? _° dwoz

=2w+ f,

the point p is contained in H, N H, N (2w + f = 0). Suppose in addition that p € H,. Note that we have
as =ay+azsinced =ay +ay+az+aqg and d = 2a4 + a>. We see that a; does not divide a4 = a; + a3
because otherwise gcd{ai, a3, a4} > 1 and X has a nonisolated singularity which is clearly worse than
terminal, a contradiction. It follows that f does not contain a power of y, that is, f(0,y,0) = 0, and

peH,NH,NH,NQ2w+f=0)=H,NnH,NH NH, = {p,}.

This is impossible since py, is a singular point of X. Thus, p ¢ H;. Since a4 = a; +a3, we may assume that
p € H,, after replacing w by w — £yt for some ¢ € C. We can write p = (0:1:0:2:0) for some nonzero
A € C. The set {x, z, w, t% — A4 y*} isolates p, and hence we can take a Q-divisor T' € |aja3Al|g such
that mult, (7°) > 1 and Supp(7’) does not contain any component of H, - H,. Then we have

multy(H,) < (Hy - H; -T)y < (Hy - H, - T) = ajazaz(A®) < 3,
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where the last inequality follows from Lemma 2.29. This shows mult,(H,) < 2, and thus lct,(X; Hy) >
1/2. O

Let D € |Al|g be an irreducible Q-divisor on X other than H,. By Lemma 3.16, a;a4A isolates p, and
hence we can take a Q-divisor T’ € |aja4Al|upo such that multy(7) > 1 and Supp(7’) does not contain
any component of D - H,. We have

multy(D) < (D - Hy - T)p < (D - Hy - T) = ajas(A%) < 2,

where the last inequality follows from Lemma 2.29. Thus, Ict,(X; D) > 1/2 and we conclude ap(X) >
1/2.

4.2.d. Case: 1 <a| <az,d =2a4+asand as # ay

The proof of Proposition 4.8 under the assumption of 1 < a; < a; and d = 2a4 + a3 is completely
parallel to the one given in Section 4.2.c. Indeed, the same proof applies after interchanging the role of
z and t (and hence a, and a3). Thus, we omit the proof.

4.2.e. Case: 1 <a; <azand d =3ay
We will prove Proposition 4.8 under the assumption of 1 < a; < a; and d = 3a4.

Let p € X be a smooth point contained in H, \ L,,. We first prove a,(X) > 1/2 assuming that the
inequality mult,(H,) < 2 holds. Let D € |A|g be an irreducible Q-divisor on X other than H,. By
Lemma 3.16, aja4A isolates p, and hence we can take a Q-divisor T’ € |ajasA|g such that mult, (7)) > 1
and Supp(T') does not contain any component of the effective 1-cycle D - H,. Then we have

multy(D) < (D - Hy -T)y < (D - Hy - T) = ajas(A%) < 2,

where the last inequality follows from Lemma 2.29. This shows mult, (D) < 2, and we have Ict, (X; D) >
1/2.

Therefore, the proof of Proposition 4.8 under the assumption of 1 < a; < a; and d = 3ay is reduced
to the following.

Claim 2. We have mult,(H,) < 2 for any smooth point p € X contained in Hy \ Ly,.

The rest of this subsection is devoted to the proof of Claim 2, which will be done by considering
each family individually. The families satisfying 1 < a; < a; and d = 3a4 are families F;, where

i € {19,27,39, 49, 59, 66, 84}
In the following, for a polynomial f(x,y,z,...) in variables x,y,z,..., we set f = f(y,z,...) =

f(0,y,z,...). We first consider the family F,7, which is the unique family satisfying d = 3a3 = 3a4
We then consider the rest of the families which satisfy d = 3a4 > 3as.

4.2.e.1. The family F»;
‘We can choose w and ¢ so that

F = Wzl‘ + Wl‘2 +wtbs + wcio + tdjo + eqs,

where bs, c19,d10, €15 € C[x, y, z] are quasi-homogeneous polynomials of indicated degrees. Let p €
H, \ L, be a smooth point of X, and we assume mult, (H,) > 2. Since

0%*F 0%*F
T8 o TR oy
w2 oz "
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we have p € H; N H,,. Then we can write p = (0:1:2:0:0) for some nonzero A € C since p ¢ H, and
p # py. We can write €15 = 2(22 = 22y%) (2% — uy?) for some u € C. We have

82F
2P = 24(72% = 3p) =0,

d*F

= 312322 =
(9zt9y(p) 3732 + ) =0,

which implies A = 0. This is a contradiction, and Claim 2 is proved for the family F»7.
We consider the rest of the families, which satisfies d = 3a4 > 3a3. Replacing w if necessary, we
can write

3
F=w’+wgoa, + h3qa,,

where g24,, 134, € C[x,y,z,t] are quasi-homogeneous polynomials of degree 2a4, 3a4, respectively.
Letp € Hy \ Ly, be a smooth point of X, and we assume mult,(H,) > 2. Since A’F |0w? = 6w, we
have p € H,, sothatp € H, N H,, and p ¢ H,. In the following, we will derive a contradiction by
considering each family separately.

4.2.e.2. The family F9

Replacing 7 +— t—&z forasuitable £ € C, we may assume p € H,.Sincep € HyNH,NH,,,p &€ Hy and
p # py, we have p = (0:1:2:0:0) for a nonzero A € C. We can write his = (22 = 2293) (22 = uy?) + teg
for some u € C and eg = ey(y, z, t). It is then straightforward to check that

O*F d*F
—(p) =
0z 0z0y

(p)=0
is impossible, and this is a contradiction.

4.2.e.3. The family Fzg
We have g2, = g12, h3a, = hig, and we can write

£12(0,y,z,1) = atzy + 1z +,uy3,
where «, 4, u € C. By the quasi-smoothness of X, we have 1 # 0 and u # 0. We have

2 PP R
=azy, E % s
awar " Bwaz - T Gway

= a1z + 3uy°.

Suppose that @ # 0, then, since both azy and aty +31z> vanish at p and y does not vanish at p, we have
p € H, N H;. It follows that p = py. This is impossible since p, is a singular point of X. Thus, & = 0.
Then both 31z and atz + 3uy? vanish at p, which implies that y vanishes at p. This is a contradiction.

4.2.e.4. The family Fug
We have g2, = g14, h34, = h21, and we can write

ho4(0,y,2,1) = A8y + ar*y® + Btz + y1y° + 622y + &y,

where A, @, 3, ..., € C. By the quasi-smoothness of X, we have 4 # 0, and by replacing ¢, we can
assume that @ = 0. Since p € H,,, p ¢ Hy and

9?F  0%814(0,y,2,1)

_6t2 =w £ys + 6A1ty,
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we have p € H;. Then p ¢ H, because otherwise p = p,, is a singular point and this is impossible. We
have
F W3814(0, Y, 2,1)
070y 0z0y

+ 6622y,

which implies 6 = 0. Then, by the quasi-smoothness of X, we have & # 0. But the polynomial

O%F _ 0%g14(0,y,2,1)

B_yz w oy + 20)/ty3 + 428y5

does not vanish at p. This is a contradiction.

4.2.e.5. The family Fso
We have g2, = 816, 134, = ho4, and we can write

h24(0,y,2,1) = /1t3y + ;114 + az3y2 +ﬁzzy4 + yzy6 + 6y8,

where 4, u, a, 8,7, 6 € C. By the quasi-smoothness of X, we have 4 # O and u # 0. Sincep ¢ Hy,1 # 0
and

O*F 62g16(0, ¥, t)
W = WT + 6/lty,

we have p € H,. This is a contradiction since p € H, N H; N H,, but H, N H; N H,, consists of singular
points.

4.2.e.6. The family Fege
We have h3,, = hy7, and we can write

h27(0,y,2,1) = A7+ ury* + az?y?,
where a, 4, u € C. By the quasi-smoothness of X, we have 4 # 0 and u # 0. We have

0°F _ 82g18(0, Y,2,1)

= duy’.
ooy " eay MY

This is a contradiction since p € H,,, p ¢ Hy and u # 0.

4.2.e.7. The family Fgq
We have

£24(0,y,2,1) = atzy + 125, hae(0,y,2,1) = put* + Bzy*,
where «, 8, 4, u € C. By the quasi-smoothness of X, we have 4 # 0 and ¢ # 0. We have

6214: 32g24(0,y,2, t)
SR st 12u1%,

which implies p € H, since p € H,, and u # 0. We have

8*F g24(0, Y, 2, t) 2
= =aty + 31z°,
Bwdz 0z iy

which implies p € H; since p € H; and A4 # 0. This shows p = p,,, and this is a contradiction since p,
is a singular point.
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Table 1. L.y : Irreducible and smooth case.

No. Equation No. Equation

11 w2 +h(z, 1) 55 w23z 478
15 w2 +1* +2° 57 w2+rtz+ 20
16 w2z +h(z,t),3€h 66 w3+wzd+13z
17 c(t,w)+z* 68 wl+tt+77
19 w3+ h(z,t) 70 w2+t +12°
21 w2+ h(z,t) 71 w2+dz+2°
26 wiz+zo+13 72 w2413 4210
27 c(t,w)+z2° 74 wiz+3+17°
34 w2+ h(z,1) 75 w2415 420
35 w2+3z 428 76 wlit+t3z+7°
36 wlz+d+123 80 w243z +12°
41 w2t+rt+ 84 w3+wzd +1t
45 w2z +1*+ 25 86 w2tttz +120
48 w2z 413 +77 88 w2+ +77
51 wlatdz 41zt 90 w2341z’
53 w2478 93 w2415 4175
54 wiz 413+ 24 95 w2434zl

Therefore, we derive a contradiction for all families and the proof of Claim 2 is completed.

4.3. Smooth points on L, for families with a, < a», Part 1

In this section and the next sections, we consider a member
X = Xd - P(17 ai,az,as, a4)x,y,,t,w

of a family F; with i € |\ || satisfying a; < a» < a3 < a4 and prove a,(X) > 1/2 for a smooth point p
of X contained in the one-dimensional scheme L, := (x = y = 0) N X. We divide families indexed by
I'\ I} into two types:

o Families F; such that Ly, = (x = y = 0) N X is irreducible and reduced for any member X. These
families are treated in the current Section 4.3.

o Families JF; such that Ly, is either reducible or nonreduced for some member X (see equation (4.1)
for specific families). These families will be treated in Section 4.4.

The objects of this section are members X such that the one-dimensional scheme L,y = (x =y =
0) N X is irreducible and reduced.

Lemma 4.9. Let X be a member of a family F; with i € | which satisfies a1 < ay and which is listed in
Table I (resp. Table 2). Then L,y is an irreducible smooth curve (resp. irreducible and reduced curve
which is smooth along Ly, N Sm(X)).

Proof. Let F be the defining polynomial of X, and set d = deg F. The scheme L, is isomorphic to
the hypersurface in P(as, a3, a4); ;. defined by the polynomial f := F (0,0, z, ¢, w). We explain that f
can be transformed into the polynomial given in Tables |1 and 2 by a suitable change of homogeneous
coordinates.

Supposei ¢ {11, 15,16,17,21,27,34}. Then there are only a few monomials of degree d in variables
z,t,w. We first simply express f as a linear combination of those monomials and then consider the
following coordinate change.

o Suppose d = 2a4. In this case, f is quadratic with respect to w and we eliminate the term of the form
wg (z,t) by replacing w suitably. Then we may assume f = w? + h(z, t) for some quasi-homogeneous
polynomial & = h(z,t) of degree d.
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Table 2. L,y : Irreducible and singular case.

No. Equation Sing. No. Equation Sing.
43 '+ 2’ Pav 77 w2+ o
44 w2t + 74 p: 78 wl+trz® o
46 2 +7 Pav 79 wlz+13 p-
47 w2z +13 [ 81 w?+tiz o
56 3+ 78 Pow 82 w2413 [
59 w3+ 2 [ 83 w2+ 2° [
61 wt+2° p: 85 w2+ Pz
62 w?+13z [ 87 w2+ [
65 wlz +1t3 [ 89 w243 p-
67 w2+ 77 p: 91 w?+13z Pz
69 w2z + 1 [ 92 w2+ P2
73 w2+’ [ 94 w243 p-

o Suppose d = 3ay. In this case, f is cubic with respect to w and we eliminate the term of the form
w?g(z,t) by replacing w suitably. Then we may assume f = w3 + wh(z,t) + hy(z,t) for some
quasi-homogeneous polynomials #; = hy(z,t), h = hy(z,t) of degrees d — a4 = 2a4 and d = 3ay,
respectively.

After the above coordinate change, we observe that f is a linear combination of at most three distinct
monomials and it is possible to make those coefficients 1 by rescaling z, ¢, w. The resulting polynomial
is the one given in Tables | and 2. Once an explicit form of the defining polynomial is given, it is then
easy to show that L, is entirely smooth or is smooth along L, N Sm(X).
Fori={11,15,16,17,21,27,34}, the description of f is explained as follows.

o Suppose i = 11. In this case, f = w2 + h(z,t), where h is a quintic form in z, 7. The solutions of
the equation 2 = 0 correspond to the five singular points of type %(1, 1,1). Thus, & does not have a
multiple component and in particular L, is smooth.

o Suppose i = 15. In this case, f = w? + at* + ft>z> + yz° for some a, 8,y € C. We have a # 0 (resp.
vy # 0) because otherwise X cannot be quasi-smooth at p; (resp. p;). Replacing ¢ and rescaling z, we
may assume @ = 1, 8 = 0 and y = 1, and we obtain the desired form f = w? + r* + z°. It is easy to
see that Ly, is smooth.

o Suppose i = 16. In this case, f = w?z + h(z, 1), where h = at® + Bt?z% + ytz* + 620 for some
a, B,v,06 € C. By the quasi-smoothness of X, we have @ # 0. Moreover, the solutions of 4(z,7) =0
correspond to three singular points of type % (1,1, 1). Thus, h(z, t) does not have a multiple component
and in particular L, is smooth.

o Suppose i = 17. In this case, f = c(t,w) + azt, where a € C and ¢(t,w) is a cubic form in 7, w. By
the quasi-smoothness of X, we have @ # 0 and we may assume a = 1 by rescaling z. Moreover, the
solutions of ¢ (¢, w) = 0 correspond to three singular points of type %(1, 1,3). Thus, c(¢, w) does not
have a multiple component and in particular L, is smooth.

o Suppose i = 21. In this case, f = w? + h(z,t), where h = ar’z + Bt22> + ytz> + 67’ for some
a,B,v,6 € C. By the quasi-smoothness of X at p,, we have 3z € F, that is, @ # 0. Moreover, the
solutions of ar® + Br?z* + ytz* + 6z° = 0 correspond to the three singular points of type %(1, 1,1).
Thus, h does not have a multiple component and in particular Ly is smooth.

o Suppose i = 27. In this case, f = c(t,w) + az’, where @ € C and c(t,w) is a cubic form in ¢, w. By
the same arguments as in the case of i = 17, ¢(¢, w) does not have a multiple component and we may
assume @ = 1. Thus, Ly, is smooth.

o Supposei = 34.Inthis case, f = w?+h(z, 1), where h = at’+Bt>z3 +ytz0+67° forsome @, 8,7, € C.
By the quasi-smoothness of X, we have 3 € F, that is, @ # 0. Moreover, the solutions of & = 0
correspond to three singular points of type %(1, 1, 1). Thus, & does not have a multiple component
and in particular L, is smooth.

This completes the proof. m}
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Proposition 4.10. Let X = X; c P(1,ay,az,a3,a4), a1 < ay < asz < aq be a member of a family F;
with i € |\ || which satisfies a; < a and which is listed in Tables I and 2. Then

ap(X) > 1

for any smooth point p of X contained in Ly.,.

Proof. Take apointp € Ly, NSm(X). LetS € |[A|and T € |a; A| be general members. By Lemma 4.9,
Ly is an irreducible and reduced curve, and we have S - T = L,,. Note that Ly, is quasi-smooth at p,
and we have mult,(Ly,) = 1. By Lemma 3.8, § is quasi-smooth at p. It follows that Ict,(X; S) = 1. By
Lemma 3.17, we have

. al 1
ap(X) = mm{]Ctp(X;S)’ multy(Lyy)’ al(A3)} =1

since 1/a;(A%) > 1 by Lemma 2.29. O

4.4. Smooth points on L, for families with a, < a,, Part 2

In this section, we consider families /; with i € I\ |1 such that L, is either irreducible or reduced for
some member X. Specifically, these families consist of families JF; with

ie{7,9,12,13,15,20,23,24,25,29,30,31, 32,
33,37, 38,39,40,42,49, 50,52, 58, 60, 63, 64}, “4.1

and the aim of this section is to prove the following.

Proposition 4.11. Let X = X5 € P(1,ay,a2,a3,a4), a; < ap < a3 < aq, be a member of a family F;
with i € |\ || which satisfies ay < ay and which is not listed in Tables I and 2. Then

1
X) > -
ap( ) > )

Sor any smooth point p of X contained in L.

The proof of Proposition 4.1 1 will be completed in Section 4.4.b by considering each family separately
and by case-by-case arguments. Those arguments form several patterns, and we describe them in Section
4.4..

4.4.a. General arguments
In this subsection, let

X = Xd - P(]? a’ bl’ b29 b3)x,y,Z],Z2,Z3

be a member of a family F; with i € I\ I;. Throughout this subsection, we assume that a < b; for
i = 1,2,3. Note that we do not assume b < b, < b3. As before, we denote by F = F(x,y, 21, 22, 23)
the defining polynomial of X, and we set A := —Kx.

The following very elementary lemma will be used several times.

Lemmad.12. Leta, ey, 3, e3 be positive integers such that a < e; fori = 1,2,3 and gcd{ey, ez, e3} = 1,
and let A > 1 be a number. Then the following inequalities hold.

l+er+e 1
278 o
ejeres 2
a+ey+ez A 1
2. —————+—-< -+ A
ejeres a 2

3. ala+ey+e3) <eezes.
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Proof. In view of the assumption gcd{e1, €3, e3} = 1, it is easy to see that

1+62+e3 1 1 1
= + +
ejees eiexesz  eles eiez

attains its maximum when (e, e, €3) = (2, 2, 3), which implies (1).
It is also easy to see that

a+ey+e; A
—+

e|eres a’

viewed as a function of a, attains its maximum when a = 1 since 1 < a < vy lejeze3. Combining this
with (1), the inequality (2) follows.
By the assumption, we have eje; > (a + 1)2. Hence, we have
erezes —a(a+ey+e3) =es(ejey —a) — a’ —ae,

> es(a’+a+1)—a*—ae,

=a*(es—1)+a(es —er) +e3

> 0.
This proves (3). m|
Lemma 4.13. Suppose that Ly = (x =y = 0)x is an irreducible and reduced curve which is smooth
along Ly, N Sm(X). Then

ap(X) > 1

foranyp € Ly, N Sm(X).

Proof. Let S € |A| and T € |aA| be general members. Then we have S N T = L,. Take any point
p € Lyy N Sm(X). By Lemma 3.8, § is smooth at p. It follows that mult,(Lyy) = 1 and Ict,(X;S) = 1.
By Lemma 3.17, we have

. 1 l
@p(X) > mln{ICtp(X;S)9 multy(L,,)’ a(AS)} -

since 1/a(A%) > 1 by Lemma 2.29. O

Lemma 4.14. Let S € |A| and T € |aA| be general members. Suppose that the following assertions are
satisfied.

1. T|s =T + A, where ' = (x =y = z1 = 0) is a quasi-line and A is an irreducible and reduced curve
which is quasi-smooth along A N Sm(X).
2. S is quasi-smooth along T' N A.

3. Sil’lgr(X) = {pzw p23}'
Then

1
X) > -
ap( )—2

for any pointp € L., N Sm(X).
Proof. By assumptions (1), (2) and Lemma 3.9, S is quasi-smooth along I'.

Claim 3. The intersection matrix M = M (T, A) satisfies the condition (%).
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Proof of Claim 3. By the assumption (3) and the quasi-smoothness of S, we see that Singp(S) =
{pz,» Pz; } and p;, € S is a cyclic quotient singularity of index b; for i = 2, 3. By Remark 3.10, we have

-1 -1
b, +b3 __b2+b3

)e=-2+ = < 0.
(s by b3 babs
By taking the intersection number of T|s = I' + A and I', we have
+by+b
(T-A)g = —(T)s +(T-T) = L222723
bybs
Note that we have
+b2+b3)
T A)=(12-8) - (T-T)=a*(4%) - % =4 ,
(T-A)= (7 §) = (T T) = *(A%) = 5= = =5t

and then by taking the intersection number of T|s = I" + A and A, we have

(bl - a)(a + b2 +b3) <

2\, — —
(A%)s = (T-4) = (I A)s = =82

0.

Finally, we have

b2+b3 (bl —a)(a+b2+b3) (a+b2+b3)2

detM =
bybs b1byb3 b%b%
_ _a(a + by +b3)(by + by +b3) <0
- b1b2b> '
It follows that M satisfies the condition (). O

Letp € (I'\ A) N Sm(X) be a point. By Lemma 3.7, S is a normal surface. It is easy to check that
adegl’ = a/(byb3) < 1 and that X, S and I" are smooth at p. Thus, we can apply Lemma 3.21 and we
conclude

. 1 . 1 2
ap(X) > ming 1, 1 = minq 1, prrssTeaml = 3
a(A’) + —degl’ b T

where the last inequality follows from Lemma 4.12.
Letp € (A \T) N Sm(X) be a point. Note that A is smooth at p since it is quasi-smooth at p by the
assumption (1). We have

<1

adegA:a(a(A3)— 1 ):a(a+b2+b3)

babs3 b1byb3
by Lemma 4.12. Note that we have

1 1 15
AN+ - —degA=—-+—<14-==
@A)+ 2 —degh =24 <147 =7

since 1 < a < b;. Thus, we can apply Lemma 3.21 and conclude

1 4
ap(X) = min{l, } > 3

a(A3) +1 —degA
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Finally, let p € (I' N A) N Sm(X) be a point. Note that S is smooth at p by the assumption (2), and
we have
1 2 a+ bz + b3 2
deg(l) = — < =, deg(A)= ——= < =,
eg( ) b2b3 a eg( ) b1b2b3 a
where the former inequality is obvious and the latter follows from Lemma 4.12. Thus, we can apply
Lemma 3.23 and conclude that

ap(X) > min{l, %} >

| —

Therefore, the proof is completed. O

Remark 4.15. Let the notation and assumption as in Lemma 4.14. Assume in addition that @ > 2 and
I'NA c Sing(X). Then

Q(X)>43>3
PRI =547 4

for any p € Ly, N Sm(X).
Indeed, since ' N A C Sing(X), we have

) 1 4
ap(X) > mln{l, b 1 §}
bbby T a

by the proof of Lemma 4.14. Since 2 < a < Vb byb3 and a < b; fori = 1,2, 3, we have

This proves the desired inequality.

Lemma 4.16. Suppose that by, by, b3 are mutually coprime and a € {1,2}. Suppose in addition that F
can be written as

F = fi(z1,22)x + f2(z1, 22)y + 25'22 + (X, ¥, 21, 22, 23),

where m € {2,3} and f1, f» € Clz1,22],8 € [x,y,21,22,23] are quasi-homogeneous polynomials
satisfying the following properties.

1. degF = b]b2 +a.
2. g is contained in the ideal (x,y) N (x,y,23)*> € C[x,y, 21, 22, 23]

Then

ap(X) >

N =

for any pointp € L., N Sm(X).

Proof. We have d = mb3 + b, since z§"z2 € F, and combining this with d = a + b| + b, + b3, we have

a+by+ bz =mbs. “4.2)
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Claim 4. We can assume

b b g =
{zzlx -yt te, fa=1, @3)

b b .
Z'lezx+(112—zz‘)y+zg"m+g, ifa=2
after replacing x and y suitably, where k and | are nonnegative integers.

Proof of Claim 4. Suppose a = 1. Then, since deg f| = deg f>» = b1b,, we can write

filzr2)x + (21, 22)y = 25 0 (x,y) + 2P 6(x, ),

where €|, ¢, are linear forms in x, y. We see that £;, ¢, are linearly independent because otherwise we
can write £, = af; for some nonzero @ € C and X is not quasi-smooth along

(x=y=w=€1=zg2+a/zlf‘=0)CX.

This is a contradiction. Thus, £;, £, are linearly independent and we may assume ¢; = x and £, = y, as

desired.
Suppose a = 2. We have f, = azll’z + ,lez" for some a, € C since deg f, = b1b,. By the quasi-
smooth of X at p;, p;, we have @, 8 # 0, and thus we may assume @ = 1, § = —1 by rescaling z, z>.

We see that the equation fi(z1,z2) = f2(z1,22) = 0 on variables zj, zo has only trivial solution because
otherwise X is not quasi-smooth along the nonempty set

(x=y=w= fi(z1,22) = fo(21,22) =0) C X,

which is impossible. This implies that f; # 0 as a polynomial, and there exists a monomial zlez of
degree b1 b, + 1. Since b is coprime to by, z’lez is the unique monomial of degree b1b; + 1 in variables
71, z2. Thus, we have f> = yz’l‘ Zl2 for some nonzero y € C. Rescaling x, we may assume y = 1, and the
claim is proved. O

We continue the proof of Lemma 4.16. Let S € |A| and T € |aA| be general members. We have
T|ls =T +mA,
where
F'=(x=y=2=0), A=(x=y=2z3=0)

since F(0,0,z,t,w) = zé"zg. We see that I' and A are quasi-lines of degree 1/b1b3 and 1/b1by,

respectively, and ' N A = {p,, } c Sing(X). We see that S is quasi-smooth at p,, since zlfzy € F. By
Lemma 3.9, S is quasi-smooth along I' and the pair (S, T) is plt.

Claim 5. The intersection matrix M = M (T, A) satisfies the condition (%).

Proof of Claim 5. We see that d is not divisible by b or b3 since d = b1by +a = mbz + by, a < by and
b, is coprime to b3. It follows that Sing(S) = {p,,, Pz, } and p;; € S is a cyclic quotient singularity of
index b; for i = 1, 3. By Remark 3.10, we have
b -1 by —1 b1+ b3
+ —_— =

g =-2 = 0.
(s ==2+— bs bibs

By taking intersection number of T'|g = I" + mA and I', we obtain

1 bi+b; 1
([-A)s = —(adegT — (M)g) = L2703 _ 1 o,
m mb1b3 by
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Similarly, by taking intersection number of T'|s and A, we obtain

bz—a
mbiby

(A% = %(a degA — (I'-A)g) = — <0,

where the second equality follows from equation (4.2). Finally, we have

_b1+b3 bz—a 1 __a(b1+b2+b3) <
"~ bibs  mbiby b2 bibsbs

O’

where the second equality follows from equation (4.2). It follows that M satisfies the condition (x). O

Letp € (' \ A) N Sm(X). We see that X, S and T" are smooth at p, and it is easy to see adegI' =
a/(b1b3) < 1. Hence, we can apply Lemma 3.21 and we have

1 1 2
ap(X) > min{l, T }:min{l, W} > 3
a(A )+; —degl’ Gt

where the last inequality follows from Lemma 4.12.

It remains to consider p € (A \ I') N Sm(X) since I' N A = {p;, } < Sing(X). We first consider the
case when a = 2. In this case, S = H, is quasi-smooth along A \ {q}, where q = (0:0:1:1:0) €
(A\T) N Sm(X), and S has a double point at g. We have mult,(A) = 1, and adeg A = a/(b1b2) < 1.
Thus, we can apply Lemma 3.22 and conclude

ap(X) = min{ multy (5) }

2
mult, (S)” 2(A3) + 3 — mdegA

. 2 multy (S)
= min s
mult, (S) 5ot z

\%

2

=
—_—

=
Sl-

+ =

[\S][O8)
———

12
T 19

since 1/(b1b3) < 1/12, m € {2,3} and multy(S) € {1,2}.

Suppose a = 1. We set S’ = (z3 =0) N X € [b3A|. Ford e C,wesetT; = (y —Ax =0) N X € |A|.
We can write g(x, Ax, z1,22,0) = x*>h, for some hy = hy(x,z1,22) since g € (x,y,z3)%. In view of
equation (4.3), we have

F(x,Ax,21,22,0) = x¢a(x, 21, 22),
where
da(x,21,22) = Z?z - /lzlz" +xh,.
The polynomial ¢, is irreducible for any nonzero A € C. We have
Tils = A +Eg,

where

Ex=(y-Ax=23=¢,=0)
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is an irreducible and reduced curve. We have A N E; = {q,} € Sm(X), where q; = (0:0: %/2:1:0). 1t
is easy to see that S’ is quasi-smooth at ;. Hence, S’ is quasi-smooth along A by Lemma 3.9.

Claim 6. The intersection matrix M’ = M (A, E,) satisfies the condition (%).
Proof of Claim 6. By Remark 3.10, we have

-1 -1 -1 -1
b3 _2+b1 +b2 :_b1+b2+b3

< 0.
blbz b1 bz ble

(A%)s = -

By taking intersection number of T}|s» = A + £, and A, we obtain

b+ by + b;
A-Es=——2"" 5.
( 2)s biby

By taking intersection number of T |s- and Z,, we obtain

(E)s =0.
It is then obvious that det M’ < 0 and the proof is completed. O

Now, we take any point p € (A \I') NSm(X), and then we can choose a nonzero A € Cso thatp # q,.
By Lemma 3.8, §” is smooth at p since "N 77 is smooth at p. It is easy to see that deg A = 1/(b1b2) < 1.
Thus, we can apply Lemma 3.21 and conclude

1 1 1
X) > min{ b3, =min{ b3, = = =,
p( )‘mm{ 3 b3(A3)+1—degA} mm{ 3 2} 2
where the first equality follows since
b3(A%) +1—-degh = —— +1=2.
3(A7%) eg bibs
This completes the proof. O

Lemma 4.17. Suppose that by, by, b are mutually coprime and a € {1,2,3}. Suppose in addition that
F can be written as

F=25+2]'y - 25x + g(x, y, 21,22, 23),

where m > 2,e1, ey are positive integers and g € C[x,y,z122,23] is a homogeneous polynomial
satisfying the following properties.

1. Ifa > 2, then m < 2a.
2. Ifa=1,thene; < by.
3. g is a homogeneous polynomial contained in the ideal (x,y) N (x,y,23)> € C[x, v, 21,22, 23]

Then

ap(X) =

N =

foranyp e Ly, N Sm(X).

Proof. We first consider the case where a > 2. Let S € |A| and T € |aA| be general members. We have

S-T=mlI,
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where
r:(x:y:Z3:O)

is a quasi-line of degree 1/(b1b2). Letp € Ly, N Sm(X). It is straightforward to check that S is smooth
at p, which implies lct, (X éS) =a. By Lemma 3.17, we have

. a 1 1
ap(X) > mln{a, p m} > 3

since a/m > 1/2 and 1/(a(A>)) > 1 by the assumption (1) and Lemma 2.29, respectively.

In the following, we assume a = 1. Weset S’ = (z3 =0)NX € |bsAlandT'= (x =y =23 =0) C §".
We have Ly, =TI  set-theoretically. For 1 € C, we set T; = (y — Ax = 0) N X € |aAl|. We can write

g(x, Ax, 21,22, 0) = X’ (x, 21, 22),
where h, is a quasi-homogeneous polynomial in variables x, 7|, z» since g € (x, y, z3)>. We have
F(x,Ax,21,22,0) = x(Az]" = 25? +xh)).
Claim 7. The quasi-homogeneous polynomial
¢a = Az]" =25 +xhy € Cx, 21, 22]

is irreducible for any A € C\ {0}.
Proof of Claim 7. We assume A # 0. If ¢, is a reducible polynomial, then we can write

er—c)

¢’1:_(Z§2+”.+az?+”.)(ZZ +"'+ﬁZTl_Cl+"')

for some ¢y, ¢y € Z»p with c; < e and 0 < ¢3 < e3, and nonzero @, 8 € C such that @8 = 1. We have
caby = c1by. Since by is coprime to by, we see that c; is divisible by b,. This implies ¢; = e; = bs

since ¢; < e; < b;. By the equality e;b, = e1by, we have ¢, = e, = b;. This is a contradiction since
¢y < ej. Therefore, ¢, is irreducible for A # 0. O

We continue the proof of Lemma 4.17. By Claim 7, we have
Tils =T+ A,
where
A= -Ax=23=¢,=0)
is an irreducible and reduced curve for any 1 € C \ {0}. We have ' N A, = {q,}, where
q.=(0:0:1: ¥/2:0).

It is easy to check that S’ is quasi-smooth at g,. By Lemma 3.9, S” is quasi-smooth along I" and the pair
(8,T) is plt.

—

Claim 8. The intersection matrix M' = M(I', E')) satisfies the condition ().
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Proof of Claim 8. We see that Sing(S”) = {p;,, Pz, } and p;, € S’ is a cyclic quotient singular point of
index b; fori = 1,2. By the same computation as in Claim 6, we have

b] + b2 + b3 -1
MPy=-—"1—"""__ <0,
(s bib,
b1+ by + bj
I'A)sg=—=>0,
( s Db
(As = 0.
It is then easy to see that det M’ < 0, which shows that M’ satisfies (x). O

Now, take a point p € Ly, N Sm(X) = I' N Sm(X). We choose and fix a general 1 € C so that A,
is irreducible and g, # p. Then p € (I' \ E;) N Sm(X). We see that X, S’ and I" are smooth at p, and
degl' = 1/(b1by) < 1. Thus, we can apply Lemma 3.21 and conclude

I I i
X) > min{ b3, —mind{b;, —— b > =,
@p( )‘mm{ 3 b3(A3)+1—degF} mm{ 3 ;—;+1} 2

where the last inequality follows from the assumption (2). This completes the proof. O
Lemma 4.18. Let S € |A| and T € |aA| be general members. Suppose that
S-T=2T,

where' = (x =y = z3 =0). Then

YRS
N —

1
X) > min{lct, (X; S), —, >
ap(X) mln{ ctp( ) a(A3)}
for any point p € Ly, N Sm(X).
Proof. Letp € Ly, NSm(X). We have mult,(I") = 1, and the first inequality follows from Lemma 3.17.

We have mult, (S) < mult,(S - T) = 2, which implies Icty (X;.S) > 1/2. Thus, the second inequality in
the statement follows since 1/(a(A%)) > 1 by Lemma 2.29. O

4.4.b. Proof of Proposition 4.11
This subsection is entirely devoted to the proof of Proposition 4.11.

Let X = Xy c P(1,ay,a2,a3,a4),a; < --- < agq, be amember of a family F; withi € I\ |; satisfying
ay; < ap.LetS € |Aland T € |a;A| are general members so that their scheme-theoretic intersection
S N T coincides with L,,. Note that S is a normal surface by Lemma 3.7 and T is a quasi-hyperplane
section on X. We set

f:=F(0,0,z,t,w)

so that L, is isomorphic to the hypersurface in P(as, a3, a4); ;,w defined by f = 0.

4.4.b.1. The family F7
We have

f=w(z,1) +h(z,1),

where ¢, h are linear and quadratic forms in z, ¢, respectively. By the quasi-smoothness of X, we have
€(z,t) # 0, and h(z,t) does not have a multiple component.
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o Case (i): h is not divisible by . In this case, S - T = L, is irreducible and smooth. By Lemma 4.13,
we have ap(X) > 1 forany p € L, N Sm(X).

o Case (ii): h is divisible by ¢. Replacing z and ¢, we may assume €(z, t) = z. We can write h = zc(z, 1),
where c(z,t) is a cubic form in z,¢. Note that ¢(z,¢) is not divisible by z since hA(z,t) = zc(z,t)
does not have a multiple component, and we can assume c(0,7) = —> by rescaling 7. In this case,
T|s =T + A, where

F=@=y=z=0), A=(x=y=w+c(z1)=0).

We see that T is a quasi-line and A is an irreducible quasi-smooth curve since c(z,t) does not have
a multiple component. We have ' N A = {q}, where q = (0:0:0:1:1) € Sm(X). We claim that S
is quasi-smooth (and hence smooth) at g. We have (0F/dz)(q) = (3F/dt)(q) = (0F/dw)(q) = 0.
Hence, at least one of (0F/0dx)(q) and (0F/dy)(q) is nonzero by the quasi-smoothness of X. By
choosing x and y, we may assume that S = H, and (dF/dy)(q) # 0. It then follows that S is
quasi-smooth at g. Finally, we have Sing(X) = {p;, pw }. Thus, the assumptions of Lemma 4.14 are
satisfied and we have a;,(X) > 1/2 for any L, N Sm(X).

4.4.b.2. The family Foy
We have

f=c(t,w)+ 23001, w),

where £ = €(t,w) and ¢ = c(t,w) are linear and cubic forms in ¢, w, respectively. By the quasi-
smoothness of X, c¢(¢, w) does not have a multiple component.

o Case (i): £(¢,w) # 0 and c(¢, w) is not divisible by £(¢, w). In this case, S - T = L, is irreducible and
smooth. By Lemma 4.13, we have p(X) > 1 for any p € Ly, N Sm(X).

o Case (ii): €(t,w) # 0 and c(t,w) is divisible by €(¢, w). We write c¢(t,w) = €(¢t,w)q(t,w), where
q(t,w) is a quadratic form in #, w which is not divisible by £(¢, w). Replacing ¢ and w, we may assume
£ =t, thatis, f = w(q(t,w) +z°). We may also assume ¢(0, w) = —w? since c(¢, w) does not have a
multiple component. In this case, T|s = " + A, where

F'=kx=y=t=0), A:(x=y=q+z3=0).

We see that I is a quasi-line and A is an irreducible quasi-smooth curve since g(z, w) is not a square
of a linear form. We have ' N A = {q}, where g = (0:0:1:0:1) € Sm(X). By the similar
argument as in Case (ii) of Section 4.4.b, we can conclude that S is quasi-smooth at q. Finally, we
have Sing(X) = {p;, pw }. Thus, by Lemma 4.14, we have a;p(X) > 1/2 for any L., N Sm(X).

o Case (iii): €(¢,w) = 0. In this case, f = €;{>{3, where {1, {», {3 are linear forms in z, w which are not
mutually proportional, and T'|s = I'y + I'; + I'3, where I'j, I, I3 are as follows.

— Fori=1,2,3,T; = (x =y = {; = 0) is a quasi-line and Sing. = {1 x $(1,1), 1 x £(1,2)}.
- IiNTI; = {p;} c Sing(X) fori # j. Moreover, S is quasi-smooth at p, since S € |A| is general.
We can compute (Fl.z) s = —5/6 by the method explained in Remark 3.10 and then we have (I'; - T'j)s =

1/2 for i # j by considering (I'; - T|s)s for [ = 1,2, 3. Thus, the intersection matrix of I'j, I, '3 is
given by

-3 1
6 2

1
2
L1
2 2

RI— I—

(T - T)s) =

e[}
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and it satisfies the condition (x). By Lemma 3.21, we have

3 3
X) > minyl, -} = —
ap( )_mm{,4} y)

for any p € Ly, N Sm(X).

4.4.b.3. The family Fi,

We have w?z € F by the quasi-smoothness of X at p,,. Hence, rescaling w, we can write f =
w2z +awt? + Awz + Bt2z2 + ;115 , where a, B8, 4, u € C. We can eliminate the monomial 2 by replacing
w and hence we assume u = 0. Then, by the quasi-smoothness of X at p,, we have 4 # 0 and we may

assume A = —1 by rescaling z. Thus, we can write
f=wlz+awt®> —wz + B2z,

o Case (i): @ # O and B # 0. In this case, S - T = L,y is irreducible and smooth. By Lemma 4.13, we
have p(X) > 1 forany p € Ly, N Sm(X).

o Case (ii): @ # 0 and either 8 = 0 or 8 = @. When 8 = a, we replace w — w — z> and z — —z. After
this replacement, we may assume S = 0. Moreover, we may assume a = 1 by rescaling ¢. Then we
have f = w(wz+1>—z3) and T|g = ' + A, where

Fr'=x=y=w=0), A=(x=y=wz+t2—z3=0).

We see that I is a quasi-line and A is an irreducible quasi-smooth curve. We have ' N A = {q}, where
g=1(0:0:1:1:0) € Sm(X). By a similar argument as in Case (ii) of Section 4.4.b, we conclude
that S is quasi-smooth at g. Finally, we have Singj-(X) = {p.,p;}. Thus, by Lemma 4.14, we have
@p(X) > 1/2for any p € Ly, N Sm(X).

o Case (iii): @ = 0 and 8 # 0. Rescaling ¢, we may assume 3 = 1. Then we have f = z(w? + wz? +1%7)
and T|s =T"+ A, where

2w +122=0).

F'=(x=y=z=0), A=x=y=w
We see that I" is a quasi-line and A is an irreducible quasi-smooth curve. We have ' N A = {p;} C
Sing(X). By the similar argument as in Case (ii) of Section 4.4.b, we conclude that S is quasi-smooth
at p,. Finally, we have Singr-(X) = {p;, pw }. Thus, by Lemma 4.14, we have ap(X) > 1/2 for any
p € Lyy NSm(X).
o Case (iv): @ = B = 0. In this case, f = zw(w + z?) and T|s = I'} + I, + I3, where I', Iy, I'; are as
follows.
— I't = (x = y = 2 =0) is a quasi-line of degree 1/12 and Sing- () = {1 x %(1, 3),1x %(1,3)}.
-y =(x=y=w=0)and I3 = (x =y = w+z> = 0) are quasi-lines of degree 1/6 and
Singp, (S) = {1 x 3(1, 1), 3(1,2)} fori = 2,3.
—Forl <i<j<3 wehavel; NI'; = {p;} C Sing(X). Moreover, S is quasi-smooth at p, since
S € |A| is general.
By the similar computation as in Case (iii) of Section 4.4.b, the intersection matrix of I'1, I, I3 is
given by
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and it satisfies the condition (x). By Lemma 3.21, we have

3/4, ifp el NSm(X),

ap(X) 2 . .
4/5, ifpel;NSm(X) fori=2,3.

Thus, ap(X) > 3/4 forany p € L, N Sm(X).

4.4.b.4. The family Fi3
We have

f=awr® +Bwz® +yr’z + 617°,

where a, 8,7, d € C. Note that (a,y) # (0,0) since X is quasi-smooth at p;.

o Case (i): @ # 0, (8,6) # (0,0) and (e, y) is not proportional to (3, ). In this case, S - T = Ly,
is irreducible and is smooth outside p,, € Sing(X). By Lemma 4.13, we have a,(X) > 1 for any
p € Lyy NSm(X).

o Case (ii): @ # 0, (8, 6) # (0,0) and («, ) is proportional to (83, §). In this case, f = (aw +y1z) (> +
£7%), where £ := B/a € C is nonzero. Replacing w and z, we may assume f = w(t*> — z°) and
T|s =T+ A, where

F=(x=y=w=0), A=@x=y=1>-2"=0).

We see that I is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p,, } =
ANSm(X). Wehave I'NnA = {q}, whereq = (0:0:1:1:0) € Sm(X). By a similar argument as in Case
(ii) of Section 4.4.b, we conclude that S is quasi-smooth at g. Finally, we have Sing(X) = {p;, p:}.
Thus, by Lemma 4.14, we have a;p(X) > 1/2 for any p € Ly, N Sm(X).

o Case (iii): @ # 0 and (5, 6) = (0,0). In this case, f = >(aw + ytz) and we may assume f = t’>w by
replacing w. We can write

F= fl(Z’ W)x+f2(Za W)y +12W +g(x,y, Z,1, W)»

where fi, fo € C[z,w] and g € Clx, y, z,t, w] are homogeneous polynomials such that g € (x,y) N
(x,y,1)?. By Lemma 4.16, we have ap(X) > 1/2 forany p € Ly, N Sm(X).

o Case (iv): @ = 0 and S # 0. Note that y # 0. In this case, f = z(Bwz> +y13 +6tz°). Then T|s = T +A,
where

F=(x=y=z=0), A=(x=y=pwz+yr +6z7°=0).

We see that I is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p,, } D
A N Sm(X). We have ' N A = {p,, } € Sing(X). By a similar argument as in Case (ii) of Section
4.4.b, we conclude that S is quasi-smooth at p,,. Finally, we have Singr-(X) = {p;, pw }. Then, by
Lemma 4.14, we have ap(X) > 1/2 for any p € L., N Sm(X).

o Case (v): @ = B =0and 6 # 0. Note that y # 0. In this case, f = zt(yt>+6z°) and T|s = I'; + T2 + 13,
where I'|, I'», I'5 are as follows.

— 't = (x = y = z = 0) is a quasi-line of degree 1/15 and Singp () = {1 x §(1,2),1x £(2,3)}.
— Iy = (x =y =1 =0) is a quasi-line of degree 1/10 and Singp, (S) = {1 X %(1, 1), 1x %(2, 3)}.
- T3 = (x =y = y1> + 67> = 0) is an irreducible smooth curve of degree 1/5.

— Forl <i<j<3,wehaveI'; NI'; = {py} C Sing(X). Moreover, S is quasi-smooth at p,,,.

We compute (I'7)s = —8/15 and (I'3)s = —15/19 by the method explained in Remark 3.10. We can
choose z, t as orbifold coordinates of S at p,,. It follows that I'{, I, intersect transversally at the point
over p,, on the orbifold chart of S at p,,, and we have (I'; - I2)s = 1/5. Then, by taking intersections
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with T|g = I' + I, + I's with I; for i = 1,2,3, we see that the intersection matrix of I';, 1,13

is given by
-8 1 2
5 5 5
L _7 3
5 0 5
23
5 05 -l

and it satisfies the condition (x). By Lemma 3.21,

10/13, ifp e I'l N Sm(X),
ap(X) > 415/19, ifp e I N Sm(X),
6/7, if p e I's N Sm(X).
Thus, we have ap(X) > 10/13 for any p € Ly, N Sm(X).

o Case (vi): @ = 8 = 6 = 0. In this case, y # 0 and we may assume that f = 3z by rescaling z. We can
write

F = fi(zow)x + fo(z,w)y + P2+ g(x,y, 2,1, w),
where fi, f» € C[z,w] and g € C|x,y, z,, w] are homogeneous polynomials such that g € (x,y) N

(x,y,1)?. By Lemma 4.16, we have ap(X) > 1/2 forany p € Ly, N Sm(X).

4.4.b.5. The family Fs

We have w? € f. Replacing w, we may assume that the coefficients of z® and ¢* are both 0. Then, by
the quasi-smoothness of X at p,, p; € X, we have 2w, 22w € F. Hence, by rescaling w, t and z, we can
write

f= w2+ (2 = D)w+a?d
for some « € C.

o Case (i): @ # 0. In this case, S - T = Ly, is irreducible and smooth. By Lemma 4.13, we have
ap(X) =1forany p € Ly, N Sm(X).

o Case (ii): @ = 0. Replacing w and rescaling z, we may assume f = w(w +1> —z3) and T|s = T + A,
where

F=(x=y=w=0), A=(x=y=w+> -2 =0).
We see that I" and A are both quasi-lines. We have I' N A = {q}, where g = (0:0:1:1:0) € Sm(X).

By a similar argument as in Case (ii) of Section 4.4.b, we conclude that S is quasi-smooth at q. Finally,
we have Sing-(X) = {p, p;}. Thus, by Lemma 4.14, we have a,(X) > 1/2 forany p € L,, NSm(X).

4.4.b.6. The family F»g
We have w?z € F by the quasi-smoothness of X at p,,. Hence, we can write

f=wlz+aws* + Bz,
where a, 8 € C.

o Case (i): @ # O and B # 0. In this case, S - T = L,y is irreducible and smooth. By Lemma 4.13, we
have @p(X) = 1 forany p € Ly, N Sm(X).
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o Case (ii): @ # 0 and 8 = 0. We have f = w(wz + %) and thus T|s = " + A, where
F=(x=y=w=0), A=(x=y=wz+ar>=0).

We see that I" is a quasi-line and A is an irreducible quasi-smooth curve. We have ' N A = {p,} C
Sing(X). By a similar argument as in Case (ii) of Section 4.4.b, we conclude that S is quasi-smooth
at p;. Finally, we have Sing(X) = {p;,p;}. Thus, by Lemma 4.14, we have ap(X) > 1/2 for any
p € Lyy NSm(X).

o Case (iii): @ = 0 and 8 # 0. We have f = z(w? + Btz?) and thus T|s = I" + A, where

Fr'=(x=y=2z=0), A=(x=y=w2+ﬁtz2:0).

We see that I is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p;} >
A N Sm(X). We have I' " A = {p;}. By a similar argument as in Case (ii) of Section 4.4.b, we
conclude that S is quasi-smooth at p,. Finally, we have Singr(X) = {p;, pw }. Thus, by Lemma 4.14,
we have ap(X) > 1/2 forany p € Ly, N Sm(X).

o Case (iv): @ = 8 = 0. In this case, f = w?z and we can write

F=fi(z,0x+ fo(z, )y + Wiz + g(x,y, 2,1, w),

where fi, f» € C[z,t] and g € C[x, y, z,t, w] are homogeneous polynomials such that g € (x,y) N
(x,y,w)?. By Lemma 4.16, we have ap(X) > 1/2 for any p € Lyy N Sm(X).

4.4.b.7. The family F»3
We have w’t € F by the quasi-smoothness of X at p,,,. Hence, we can write

f= w2t +awz’ + Btzzz,
where a, 8 € C.

o Case (i): @ # Oand 8 # 0. In this case, S-T = L, is irreducible and is smooth outside p; € Sing(X).
By Lemma 4.13, we have ap(X) = 1 for any p € Ly, N Sm(X).
o Case (ii): @ # 0 and 8 = 0. We have f = w(wt + az’) and thus T|s = I" + A, where

F=(x=y=w=0), A=(x=y=wt+az =0).
We see that I" is a quasi-line and A is an irreducible quasi-smooth curve. We have ' N A = {p,} C
Sing(X), and S is quasi-smooth at p; since #’y € F and S = H,. Finally, we have Sing(X) = {p.,p; }-
Thus, by Lemma 4.14, we have ;p(X) > 1/2 for any p € Ly, N Sm(X).
o Case (iii): @ = 0 and 8 # 0. We have f = t(w? + tz%) and thus T|g = " + A, where
F=(x=y=1=0), A=(x=y=w>+ptz>=0).

We see that T is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p;} >

ANSm(X). We have 'NA = {p.}, and S is quasi-smooth at p, since z*y € F and § = H,. Finally, we

have Sing(X) = {p;, pw }. Thus, by Lemma 4.14, we have ap(X) > 1/2 for any p € Ly, N Sm(X).
o Case (iv): @ = 8 = 0. In this case, f = w?f and we can write

F = fi(z,)x+ fo(z,1) +w2t+g(x,y, zZ,t,w),

where f1, f» € C[z,t] and g € Clx,y, z,, w] are homogeneous polynomials such that g € (x,y) N
(x,y,w)?. By Lemma 4.16, we have ap(X) > 1/2 forany p € Ly, N Sm(X).
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4.4.b.8. The family F»a
We have 2 € F and, by rescaling 7, we can write

f=awz*+3+ g,
where a, 8 € C.

o Case (i): @ # 0. In this case, S - T = Ly, is irreducible and is smooth outside p,, € Sing(X). By
Lemma 4.13, we have p(X) = 1 for any p € Ly, N Sm(X).
o Case (ii): @ = 0 and 8 # 0. By rescaling z, we may assume f = 7(¢> + z°). Then T|s = ' + A, where

Fr'=(x=y=t=0), A=(x=y=t2+25=0).

We see that I is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p,,} =
ANSm(X). Wehave I'NnA = {p,, }, and S is quasi-smooth at p,,, by a similar argument as in Case (ii)
of Section 4.4.b. Finally, we have Sing(X) = {p;, pw }. Thus, by Lemma 4.14, we have a;,(X) > 1/2
forany p € L,y N Sm(X).

o Case (iii): @ = 8 = 0. In this case, f = #* and the defining polynomial F of X can be written as

F = w2€1 (x,y) + £+ z7€2(x, y) +whg(x,y,z,1) + hi5(x, v, 2, 1),

where hg, his € Clx,y, z,t] are homogeneous polynomials of degrees 8, 15, respectively, such that
2t ¢ hgand 13, 7'x, z7y ¢ hys, and ¢y, £, are linear forms in x, y. Note that hg, his € (x,y) N (x,y, t)2.
By the quasi-smoothness of X, we see that £; and ¢, are linearly independent. Replacing x, y, we can
assume that

F=w’x+-7'y+g,

where h = whg + h15 € (x,y) N (x,y,1)%. Thus, by Lemma 4.17, we have ap(X) > 1/2 for any
p € Lyy NSm(X).

4.4.b.9. The family F»s
We have z° € F and, by rescaling z, we can write

f=aw* +B7+2°,
where a, § € C.

o Case (i): @ # 0. In this case, S - T = L,, is irreducible and is smooth outside p,, € Sing(X). By
Lemma 4.13, we have p(X) > 1 for any p € Ly, N Sm(X).

o Case (ii): @ = 0. By the quasi-smoothness of X at p;, we have 8 # 0, and hence we may assume
B=1.Then f = z(+ + z°) and we have T|g =" + A, where

Fr'=(x=y=2z=0), A:(x=y=t3+z5=0).

We see that I is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p,, } =
ANSm(X). Wehave I'NA = {p, }, and S is quasi-smooth at p,, by a similar argument as in Case (ii)
of Section 4.4.b. Finally, we have Sing-(X) = {p;, pw }. Thus, by Lemma 4.14, we have ap(X) > 1/2
for any p € Ly, N Sm(X).

4.4.b.10. The family Fy9
We have w? € F and, by rescaling w, we can write f = w?+Awz* +at?>z3 +uz8, where a, A, u € C. By
replacing w, we can eliminate the term uz®, that is, we may assume u = 0. Then, by the quasi-smoothness
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of X at p;, we have wz* € F, that is, 2 # 0. Thus, we can write
f= w2+ wzt + a2,

o Case (i): @ # 0. In this case, S - T = L, is irreducible and is smooth outside p, € Sing(X). By
Lemma 4.13, we have app(X) > 1 for any p € Ly, N Sm(X).
o Case (ii): @ = 0. Then we have f = w(w +z*) and T|s = T" + A, where

F=(x=y=w=0), A=(x=y=w+2z").

We see that I" and A are both quasi-lines. We have I' N A = {p;}, and S is quasi-smooth at p; by
a similar argument as in Case (ii) of Section 4.4.b. Finally, we have Sing(X) = {p., p}. Thus, by
Lemma 4.14, we have ap(X) > 1/2 for any p € Ly, N Sm(X).

4.4.b.11. The family F3

We have w? € F and, by rescaling w, we can write f = w? + Awt? + ut* + atz*, where a, A, u € C.
We may assume yu = 0 by replacing w, and then we have wt> € F by the quasi-smoothness of X at p;.
Thus, we can write

f=wr+w +arzt.

o Case (i): @ # 0. In this case, S - T = Ly, is irreducible and smooth. By Lemma 4.13, we have
ap(X) > 1forany p € Lyy N Sm(X).
o Case (ii): @ = 0. Then we have f = w(w + %) and T|s = I + A, where

F=(x=y=w=0), A=(x=y=w+1>=0).

We see that I and A are both quasi-lines. We have I' N A = {p,}, and S is quasi-smooth at p, by
a similar argument as in Case (ii) of Section 4.4.b. Finally, we have Singp-(X) = {p;,p:}. Thus, by
Lemma 4.14, we have ap(X) > 1/2 for any p € Ly, N Sm(X).

4.4.b.12. The family F3;
We have w?z € F by the quasi-smoothness of X at p,,,, and we have z* € F. Rescaling w and z, we
can write

f= w2z + awt? — z4,
where a € C.

o Case (i): @ # 0. In this case, S - T = Ly, is irreducible and smooth. By Lemma 4.13, we have
ap(X) > 1forany p € Ly, N Sm(X).
o Case (ii): @ = 0. In this case, f = z(w? — z*) and T|s =T + A, where

F:(x:y:z:()), A:(x:y:wz—z3:0)_

We see that T is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p;} >
A NSm(X). Wehave ' N A = {p;} c Sing(X), and S is quasi-smooth at p; by a similar argument as
in Case (ii) of Section 4.4.b. Thus, by Lemma 4.14, we have e (X) > 1/2 for any p € Ly, N Sm(X).

4.4.b.13. The family F3,
We have 1* € F, and we can write

f=awz +*+pit,
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where a, 8 € C.

o Case (i): @ # 0. In this case, S - T = Ly, is irreducible and is smooth outside p,, € Sing(X). By
Lemma 4.13, we have ap(X) > 1 for any p € Ly, N Sm(X).

o Case (ii): @ = 0 and 8 # 0. Rescaling z, we may assume 8 = 1 and f = 1(£> + z*). Then T|s =T + A,
where

Fr=(x=y=t=0), A=(x=y=t3+z4=0).

We see that I' is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p,, } =

ANSm(X). Wehave 'NA = {p,, }, and S is quasi-smooth at p,, since w?>y € F and S = H,. Finally,

we have Singr- = {p;, pw }. Thus, by Lemma 4.14, we have ap(X) > 1/2 for any p € Ly, N Sm(X).
o Case (iii): @ = 8 = 0. In this case, f = t*. Since wz3,1z* ¢ F, we have z°x € F, and we can write

F = wzy ++ POx+ why(x,y,z,t) + hig(x,y,2,1),

where g; € Clx,y, z,] is a homogeneous polynomial of degree i such that z> ¢ hg and 1%, 174, 2x ¢
hie. Note that hg, hig € (x,y) N (x,y,7)%. Thus, by Lemma 4.17, we have ap(X) = 1/2 for any
p € Lyy NSm(X).

4.4.b.14. The family F33
We have w?z € F by the quasi-smoothness of X at p,,, and we can write

f= w2z + awt® +,8tz4,
where a, 8 € C.

o Case (i): @ # O and B # 0. In this case, S - T = L, is irreducible and smooth. By Lemma 4.13, we
have ap(X) > 1 forany p € Ly, N Sm(X).
o Case (ii): @ # 0 and 8 = 0. In this case, f = w(wz + a@z?) and T|g =" + A, where

F=(x=y=w=0), A=(@x=y=wz+az>=0).

We see that I" is a quasi-line and A is an irreducible quasi-smooth curve. We have ' N A = {p,} C
Sing(X), and S is quasi-smooth at p, since z°¢ € F and S = H,. Finally, we have Singi-(X) = {p, p:}.
Thus, by Lemma 4.14, we have a;p(X) > 1/2 forany p € L,, N Sm(X).

o Case (iii): @ = 0 and 8 # 0. In this case, f = z(w? + Btz°) and T|s = I" + A, where

F=(x=y=z=0), A=(x=y=w?+ptz=0).
We see that I" is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p;} D
A NSm(X). We have ' N A = {p,} < Sing(X), and S is quasi-smooth at p, since £’y € F and
S = H,. Finally, we have Singp-(X) = {p;, pw }. Thus, by Lemma 4.14, we have a,(X) > 1/2 for any
p € Lyy NSm(X).
o Case (iv): @ = 8 = 0. In this case, f = w?z and we can write

F =fl(z,t)x+f2(z,t)y+wzz+g(x,y,z,t,w),

where fi, f, €™ bC|z,t] and g € Clx,y,z,t,w] are homogeneous polynomials such that g €
(x,y) N (x,y,w)?. By Lemma 4.16, we have a@p(X) > 1/2 forany p € Ly, N Sm(X).
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4.4.b.15. The family F3;
We have w? € F, and we can write f= w2+ Awz? + a3 +uz6, where a, A, u € C. Replacing w, we
may assume u = 0. Then, by the quasi-smoothness of X at p,, we have A # 0. Rescaling z, we can write

f=wr+w+ar’

o Case (i): @ # 0. In this case, S - T = L, is irreducible and is smooth outside p, € Sing(X). By
Lemma 4.13, we have app(X) > 1 for any p € Ly, N Sm(X).
o Case (ii): @ = 0. In this case, f = w(w +z°) and T|s = I + A, where

F=(x=y=w=0), A=(x=y=w+2z>=0)

are both quasi-lines. We have ' N A = {p,}, and S is quasi-smooth at p, since r*y € F and
S = H,. Finally, we have Sing-(X) = {pz,p,}. Thus, by Lemma 4.14, we have a;,(X) > 1/2 for any
p € Lyy NSm(X).

4.4.b.16. The family Fg
We have z° € F, and we can write

f=aw*+B7+2°,

where «, 8 € C. Note that we have (a, 8) # (0,0) by the quasi-smoothness of X.

o Case (i): @ # 0. In this case, S - T = L, is irreducible and is smooth outside p,, € Sing(X). By
Lemma 4.13, we have ap(X) > 1 forany p € Lyy N Xom.
o Case (ii): @ = 0. Note that 8 # 0. In this case, f = z(8t> +z°) and T|s = I + A, where

Fr'=(x=y=2z=0), A=(x=y=ﬁt3+z5=0).

We see that I is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p,, } =
A NSm(X). Wehave 'N A = {p,,} C Sing(X), and S is quasi-smooth at p,, since w?y € F and
S = H,. Finally, we have Sing-(X) = {p;, pw }. Thus, by Lemma 4.14, we have ap(X) > 1/2 for any
p € Lyy NSm(X).

4.4.b.17. The family F39
We have w3 € F and wz> € F by the quasi-smoothness of X. Rescaling w and z, we can write

f= wi+wz + oztzzz,

where a € C.

o Case (i): @ # 0. In this case, S - T = L,, is irreducible and is smooth outside p, € Sing(X). By
Lemma 4.13, we have ap(X) = 1 for any p € Ly, N Sm(X).
o Case (ii): @ = 0. In this case, f = z(w> + z°) and we have T|s = " + A, where

F'=(x=y=2z=0), A:(x=y=w2+z3=0).
We see that T" is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p;} =

ANSm(X). Wehave 'NA = {p,}, and S is quasi-smooth at p; since £’y € F and S = H,. Finally, we
have Singp(X) = {p;,p;}. Thus, by Lemma 4.14, we have a;p(X) > 1/2 for any p € L., N Sm(X).
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4.4.b.18. The family Fao
We have w? € F and 3z € F by the quasi-smoothness of X at p,,, and p;. Rescaling w and z, we can
write

f= w2t +awz + t3z,
where a € C.

o Case (i): @ # 0. In this case, S - T = Ly, is irreducible and smooth. By Lemma 4.13, we have
ap(X) =1forany p € Ly, N Sm(X).
o Case (ii): @ = 0. In this case, f = t(w? +¢2z) and T|s = ' + A, where

F=(x=y=t=0), A=(x=y=w>+t’z=0).

We see that I is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p;} D
ANSm(X). Wehave ’'NA = {p,}, and Sbis quasi-smooth at p, since z*y € F and S = H.. Finally, we
have Sing(X) = {p;, pw }. Thus, by Lemma 4.14, we have ap(X) > 1/2 for any p € Ly, N Sm(X).

4.4.b.19. The family Fy»
We have w? € F, and we can write f = w? + Awt? + ut* + atz’, where @, A, u € C. Replacing w, we
may assume u = 0. Then, by the quasi-smoothness of X at p;, we have 4 # 0. Rescaling ¢, we can write

f= w2+ wi? +atzd.
o Case (i): @ # 0. In this case, S - T = Ly, is irreducible and smooth. By Lemma 4.13, we have
ap(X) =1forany p € Ly, N Sm(X).
o Case (ii): @ = 0. In this case, f = w(w + %) and T|s = I' + A, where
F=(x=y=w=0), A=(x=y=w+>=0).
We see that I" and A are both quasi-lines. We have ' N A = {p,} c Sing(X), and § is quasi-smooth

at p, since z%y € F and S = H,. Finally, we have Singj-(X) = {p.,p;}. Thus, by Lemma 4.14, we
have ap(X) > 1/2 for any p € Ly, N Sm(X).

4.4.b.20. The family Fyg
We have w? € F, and we can write

f= w3+ oztz3,
where a € C.

o Case (i): @ # 0. In this case, S - T = L,, is irreducible and is smooth outside p, € Sing(X). By
Lemma 4.13, we have ap(X) = 1 for any p € Ly, N Sm(X).

o Case (ii): @ = 0. In this case, f = w> and, after replacing x, y suitably, the defining polynomial F of
X can be written as

F=w+ t3y — x4 gn(x,y,z,t,w),

where g7, € C[x, y, z, ¢, w] is ahomogeneous polynomial of degree 21 such that g € (x, y)N(x, y, w)>.
By Lemma 4.17, we have ap(X) > 1/2 for any p € L, N Sm(X).
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4.4.b.21. The family Fs
We have w? € F, and we can write

f= w? + atzs,
where a € C.

o Case (i): @ # 0. In this case, S - T = L, is irreducible and is smooth outside p, € Sing(X). By
Lemma 4.13, we have p(X) = 1 for any p € Ly, N Sm(X).

o Case (ii): @ = 0. We have S - T = 2I', where ' = (x = y = w = 0). By Lemma 4.18, we have
ap(X) > 1/2 forany p € Ly, N Sm(X).

4.4.b.22. The family Fs,
We have w? € F, and we can write

f= w? + at2z3,
where a € C.

o Case (i): @ # 0. In this case, S - T = L, is irreducible and is smooth outside {p, p;} C Sing(X). By
Lemma 4.13, we have app(X) > 1 for any p € Ly, N Sm(X).

o Case (ii): « = 0. We have S - T = 2T", where I' = (x = y = w = 0). By Lemma 4.18, we have
a@p(X) > 1/2 forany p € L, N Sm(X).

4.4.b.23. The family Fsg
We have w?z € F by the quasi-smoothness of X at p,,. Also, we have z° € F. Rescaling w and z, we
can write

f= w2z + awt® + zf’,
where a € C.

o Case (i): @ # 0. In this case, S - T = Ly, is irreducible and smooth. By Lemma 4.13, we have
ap(X) =1forany p € Ly, N Sm(X).
o Case (ii): @ = 0. In this case, f = z(w? +z°) and T|s = ' + A, where

F=(x=y=z=0), A=(x=y=w?>+2=0).

We see that I" is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p;} >
ANSm(X). Wehave 'NA = {p,}, and S is quasi-smooth at p; since £’y € F and § = H,. Finally, we
have Sing(X) = {ps, pw }. Thus, by Lemma 4.14, we have ap(X) > 1/2 for any p € L, N Sm(X).

4.4.b.24. The family Feo
We have w?t € F by the quasi-smoothness of X at p,,.. Also, we have t* € F. Rescaling w and ¢, we
can write

f= w2t +awz’ + 4,
where @ € C.

o Case (i): @ # 0. In this case, S - T = Ly, is irreducible and smooth. By Lemma 4.13, we have
ap(X) =1forany p € Ly, N Sm(X).
o Case (ii): @ = 0. In this case, f = t(w?> +¢’) and T|s = I + A, where

F=(x=y=1=0), A=(x=y=w?+£=0).
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We see that T is a quasi-line and A is an irreducible curve which is quasi-smooth along A \ {p,} D
ANSm(X). We have 'NA = {p.}, and S is quasi-smooth at p, since z*y € F and § = H,. Finally, we
have Sing(X) = {p;, pw }. Thus, by Lemma 4.14, we have ap(X) > 1/2 for any p € Ly, N Sm(X).

4.4.b.25. The family Fg;3
We have w? € F, and we can write

f= w? + a/tz6,
where a € C.

o Case (i): @ # 0. In this case, S - T = L,, is irreducible and is smooth outside p; € Sing(X). By
Lemma 4.13, we have p(X) = 1 forany p € Ly, N Sm(X).

o Case (ii): @ = 0. Wehave S - T = 2I', where ' = (x = y = w = 0). By Lemma 4.18, we have
ap(X) > 1/2 forany p € Ly, N Sm(X).

4.4.b.26. The family Fes
We have w? € F, and we can write

f= w? + atz4,
where a € C.

o Case (i): @ # 0. In this case, S - T = L, is irreducible and is smooth outside p, € Sing(X). By
Lemma 4.13, we have p(X) = 1 for any p € Ly, N Sm(X).

o Case (ii): @ = 0. We have S - T = 2T, where I' = (x = y = w = 0). By Lemma 4.18, we have
ap(X) > 1/2 forany p € L, N Sm(X).

4.5. Smooth points on H, for families with 1 < a| = a;
The aim of this section is to prove the following.

Proposition 4.19. Let X = X; c P(1,ay,...,a4), a1 < -+ < a4, be a member of a family F; with
i€\l suchthat 1 < ay = ay. Then

| =

ap(X) >

for any smooth point p € X contained in H.

Note that a family F; with i € |\ |} satisfies the assumption of Proposition 4.19 if and only if
i e {18,22,28}.

4.5.a. The family Fig
This subsection is devoted to the proof of Proposition 4.19 for the family Fig. Let X = Xj» C
P(1,2,2,3,5) be a member of Fig.

By the quasi-smoothness of X, We have * € F and we may assume coeff (*) = 1 by rescaling 7.
We have (x =y =z=0)NX = {p,} C Sing(X). Hence, we may assume p € H, and p ¢ H, after
possibly replacing y and z, and we can write p = (0:0:1:2: u) for some A, u € C. We can write

F(0,0,z,t,w) = aw?z + ﬁwtz2 +1 4 yt2z3 +62°,

where a, 8,7,6 € C. We will derive a contradiction by assuming a,(X) < 1/2. By the assumption,
there exists an irreducible Q-divisor D € |A|g such that Icty(X; D) < 1/2.
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Suppose 4 # 0. Then, by replacing w by Aw — pzt, we may assume p = (0:0:1:2:0). Let S be a
general member of the pencil |Z,(2A)| so that %S # D. We can take a Q-divisor T € |5A|g such that
mult,(7) > 1 and Supp(7’) does not contain any component of the effective 1-cycle D - § since {x, y, w}
isolates p. Then we have

multy(D) < (D-S-T), <(D-S-T)=2-5-(A%) =2,

which implies Ict, (X; D) > 1/2. This is impossible, and we have A = 0.

By rescaling w, we may assume p = (0:0:1:0:1). Suppose @ # 0. Then we have 6 = —a since
F(p) = 0. In this case, Hy is smooth at p since (3F/3z)(p) = —=5a # 0. In particular, H, # D. We can
take a Q-divisor T' € |3A|g such that multy(7") > 1 and Supp(7’) does not contain any component of the
effective 1-cycle D - H, since {x, y, t} isolates p. Then we have

mult,(D) < (D -Hy-T)y < (D -H,-T) = 3(A%) = g,

which implies lct, (X; D) > 5/3. This is impossible, and we have @ = 0. Note that 6 = 0 since F'(p) =0,
and we have

F(0,0,z,t,w) = t(,sz2 +5+ ytz3).

We claim multy (Hy) < 2. We set ¢ := coeffr (w?y) and 17 := coeffr (z°y). By the quasi-smoothness
of X, we see £,n # 0 since wzy, z® ¢ F. We have

oF oF
ﬁ_y(p) ={+1, E(p) =p.

If either £ +7n # O or B # 0, then we have mult, (H,) = 1. If { +1 = 8 = 0, then we have mult, (H,) = 2
since the term ¢y(w? — z°) appears in F. Thus, the claim is proved.

By the claim, we have lctp(X;H,) > 1/2 and in particular D # H,. We can take a Q-divisor
T € |10A]|g such that mult,(7) > 1 and Supp(7’) does not contain any component of D - H, since
{x,y,t,w? — 27} isolates p. Then we have

mult,(D) < (D -Hy-T)p < (D - Hy -T) = 10(A%) =2,
which implies Ict, (X; D) > 1/2. This is a contradiction and the proof is completed.

4.5.b. The family 7,,
This subsection is devoted to the proof of Proposition 4.19 for the family Fp;. Let X = X4 C
P(1,2,2,3,7) be amember of F»,.

By the quasi-smoothness of X, we have w? € F and we may assume coeff z (w?) = 1 by rescaling w.
Weseethat (x =y =z=0)NX = {p,;}  Sing(X). Hence, we may assume p = (0:0:1:4: u) for some
A, u € C after possibly replacing y and z. We can write

F(0,0,z,t,w) = w? + awtz? + ﬁt4z + 7tzz4 +67,

where a, 8,7,6 € C. We will derive a contradiction by assuming a,(X) < 1/2. By the assumption,
there exists an irreducible Q-divisor D € |A|g such that Icty(X; D) < 1/2. Let S be a general member
of the pencil |Z,(2A)] so that %S #D.

Suppose A = 0. In this case, we can take a Q-divisor T € |3A|g such that mult,(7') > 1 and Supp(T)
does not contain any component of the effective 1-cycle D - S since {x, y, ¢} isolates p. Then we have

multy(D) < (D-S-T) < (D-S-T)=2-3-(A%) =1,

which implies lct, (X; D) > 1. This is impossible, and we have 1 # 0.
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Replacing w by Aw — utz?, we may assume y = 0, that is, p = (0:0:1:1:0). We see that the set
{x,y,1* — 2223} isolates p. It follows that we can take a Q-divisor T € |6A]g such that mult,(T) > 1
and Supp(7T’) which does not contain any component of D - S. Then we have

multy(D) < (D-S-T)y < (D-S-T)=2-6-(A% =2,
which implies @, (X) > 1/2. This is a contradiction, and the proof is completed.

4.5.c. The family Fpg
This subsection is devoted to the proof of Proposition 4.19 for the family Fys. Let X = Xj5 C
P(1,3,3,4,5) be a member of Fog.

By the quasi-smoothness of X, we have w> € F and we may assume coeff (w?) = 1 by rescaling w.
We see that (x =y =z=0)NX = {p;} C Sing(X). Hence, we may assume p = (0:0:1:1:u) for some
A, u € C after possibly replacing y and z. We can write

F(0,0,z,t,w) = w3+ awtz? + ﬁ't3z + yzS,

where a, 8,y € C. We will derive a contradiction by assuming ap(X) < 1/2. By the assumption, there
exists an irreducible Q-divisor D € |A|g such that lct,(X; D) < 1/2. Let S be a general member of the
pencil |Z,(3A)| so that Supp(S) # Supp(D).

Suppose A # 0 and u # 0. In this case, the set {x,y, ut> — 1>wz} isolates p, and we can take a Q-
divisor T' € |8A|g such that mult,(7) > 1 and Supp(7’) does not contain any component of the effective
1-cycle D - S. Then we have

multy(D) < (D -S-T), <(D-S-T)=3-8- (A% =2,

which implies lct, (X; D) > 1/2. This is impossible, and we have either 4 = 0 or u = 0.
Suppose A = 0. In this case, we can take a Q-divisor T € |[4A|g such that mult,(7) > 1 and Supp(T)
does not contain any component of the effective 1-cycle D - S since {x, y, ¢} isolates p. Then we have

multy(D) < (D-S-T)p < (D-S-T)=3-4-(A%) =1,

which implies Ict,(X; D) > 1. This is impossible. We have 4 # 0 and u = 0. In this case, we may
assume A = 1 by rescaling ¢, that is, we may assume p = (0:0:1:1:0).

We claim multy(H,) < 2. We set ¢ := coeffr(£2y) and i := coeffr (z*y). We have 8 +y = 0 since
F(p) = 0. Then

oF OF
—(P)=B+5y =4y, —((p)={+1.
0z dy

If either y # 0 or { + 1 # 0, then we have mult,(H,) = 1. It remains to consider the case where
v = ¢ +1n = 0. Note that we have 8 = 0 since 8 + y = 0. By the quasi-smoothness of X at p,, we have
{ # 0. Then we see that mult, (H,) = 2 since the term { y(#3—z*) appears in F. Thus, the claim is proved.

By the claim, we have Ict,(X;H,) > 1/2 and in particular D # H,. We can take a Q-divisor
T € |12A|g such that mult,(7) > 1 and Supp(7’) does not contain any component of the effective
l-cycle D - H, since {x, y,w, > — z*} isolates p. Then we have

multy(D) < (D - Hy -T)y < (D - Hy - T) = 12(A%) = 1,
which implies ap(X) > 1. This is a contradiction and the proof is completed.
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5. Singular points

The aim of this section is to prove the following.

Theorem 5.1. Let X be a member of a family F; with i € |\ ||. Then

ap(X) =

N =

for any singular point p € X.

Let X be a member of a family ; with i € I\ I;. Then the inequality a;p(X) > 1/2 will follow from
Propositions 5.2, 5.3, 5.5 for singular points p € X which are not BI centers; from Proposition 5.6 for
EI centers; and from Propositions 5.15, 5.16 and 5.18 for QI centers. This will complete the proof of
Theorem 5.1.

5.1. Non-BI centers

Throughout the present section, let X be a member of a family F; withi € I.

5.1.a. Computation by NE(Y)

Proposition 5.2. Let p € X be a singular point with subscript 9 in the fifth column of Table 7, and let
©: Y — X be the Kawamata blowup at p. Then (—Ky)? ¢ IntNE(Y) and D ~ —Ky for the proper
transform of a general member D € |A|. In particular, we have

ap(X) > 1.

Proof. Letr > 1 be the index of the quotient singular point p € X. For every instance, we have either
a; = 1 ord —1isnotdivisible by r. This means that we can take x as a part of local orbifold coordinates
of X at p, and hence D ~ —Ky for a general D € |A|. The point p is excluded as a maximal center by
either Lemma 3.2.2 or 3.2.4 of [CP17].

We set S := D ~ —Ky, where D € |A| is a general member. If p is excluded by [CP17, Lemma
3.2.2], then it follows from its proof that (—-Ky)? = (—Ky) - S ¢ Int NE(Y). If p is excluded by [CP17,
Lemma 3.2.4], then there exists a nef divisor 7 on Y such that (T - S - —Ky) < 0, which implies
(—Ky)? = (-Ky) - S ¢ Int NE(Y). The latter assertion follows from Lemma 3.30. O

5.1.b. Computation by L,

Proposition 5.3. Let p € X be a singular point with the subscript ¢ or ¢’ in the fifth column of Table
7, and let g = qp be the quotient morphism of p € X. We denote by r the index of the cyclic quotient
singularityp € X. Let S € |A| and T € |a;A| be general members. Then the following assertions hold.

1. The pair (X, S) is log canonical at p.
2. The intersection S N T is irreducible, and we have q*S - ¢*T = I, where 1" is an irreducible and
reduced curve such that
0< multp(f‘) <aj.

3. We have

, if the subscript of p is ¢,
, If the subscript of p is ¢'.
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In particular,

1, if the subscript of p is ¢,
ap(X) 2 3 . . .
5, if the subscript of p is ¢'.

Proof. Let p € X be as in the statement. The assertion (3) can be checked individually, and it remains
to consider (1) and (2).

It is straightforward to check that X is a member of a family J; which is listed in one of the Tables 1
and 2. It follows that S N T = Ly, is irreducible. It is easy to check that we may assume p = p,, for
some v € {z,t,w} after replacing coordinates. Let p = p, : U, — U, be the orbifold chart. We set
I"'=(x =y =0) c U,. We see that I is an irreducible and reduced curve since so is Ly, and that
p*S - p*T = TI". Note that ¢ can be identified with p over a suitable analytic neighborhood of p € U,,,
and hence it is enough to prove the inequality multﬁ(f) < a for the proof of (2).

If X is listed in Table 1, then I" is irreducible and smooth by Lemma 4.9. In this case, S is quasi-smooth
at p and thus both (1) and (2) are clearly satisfied.

Suppose that X is listed in Table 2. Then X is a member of a family F;, where

i € {44,47,61,62,65,69,77,79, 83, 85}.

If p is not the unique singular point of Ly, which is described in Table 2, then (1) and (2) follow
immediately. Suppose that p is the unique singular point of Ly,. Then we have i € {44,61,83} and
p = p;. By the equation given in Table 2, we compute mults(I") = 2. This shows (2) since a; > 2. We
see that r = a3 does not divide d — 1, which implies that S is quasi-smooth at p and hence (1) follows.
Therefore, (1), (2) and (3) are verified and the assertion on a,(X) follows from Lemma 3.17. O

5.1.c. Computation by isolating class

Proposition 5.4. Let p € X be a singular point with subscript % in the fifth column of Table 7 which
is also listed in Table 3. Then the set of coordinates given in the fifth column of Table 3 isolates p. In
particular, we have

@p(X) > min{l,c} >

N —

where c is the number given in the seventh column of Table 3.

Proof. Let C be the set of homogeneous coordinates given in the fifth column of Table 3. It is straight-
forward to check that

ﬂ(vzomx

veC

is a finite set of points including p, which shows that C isolates p.

Let ¢ be the number listed in the seventh column of Table 3, and assume that ap(X) < min{1, c}.
Then there exists an irreducible Q-divisor D ~g A such that (X, cD) is not log canonical at p. In
particular, we have omult, (D) > 1/c. If H, (resp. |nA| for some n > 0) is given in the fourth column of
Table 3, then we set S := H, (resp. we define S to be a general member of |nA|). Wesetn =1if S = H,
so that S ~ nA in any case. Let r be the index of the cyclic quotient singularity p € X. We claim that
Supp(D) is not contained in S. This is clear when S € |rA| is a general member. Suppose that S = H,.
Then we see that d — 1 is not divisible by r, which implies that S = H is quasi-smooth at p. Hence,
(X, S) is log canonical at p and we have D # H, as desired. By the claim, D - S is an effective 1-cycle
on X. Let e be the integer given in the sixth column of Table 3. Note that e = max{degv | v € C } and

1
rnemax(A3) =
C
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No. Pt. Type S Isol. set €max c
10 Pr 1(1,1,2) A {x,y,2} 1 1/2
23 py y(L,1,1)  H {x,z,w} 5 6/7
23 Pz 2(1, 1,2) H, {x,y,t,w} 5 4/7
23 Pr 11,1,3) H, {x,y,z} 3 5/7
29 Pzw %(ls 1, 1) IAl {x,y,t} 5 1/2
29 P 5(1,2,3) |A] {x,y,z2} 2 1/2
31 paw %(1, L) A {x,y,1} 5 3/4
33 Pz 3(1,1,2)  Hy {x,y,t,w} 7 10/17
37 Pzw %(1, 1,2) Hy {x,y,t} 4 1
39 pyw  2(1,1,2)  Hy {x,z,t} 5 1
39 p. 3(1,1,3)  Hy {x,y,1} 5 1
40 Pz %(1,1,3) Hy {x,y,t,w} 7 15/19
40 Pr %(1,2, 3)  Hy {x,y,z,w} 4 1
50 pr =(1,3,4) |A| {x,y,2} 3 1/2
61 Py %(1, 1,3)  Hy {x,z,t,w} 9 7/5
63 o 1(1,3,5) H, {x,y,2} 3 1
64 [ i(l,z, 3)  2A] {x,y,t} 6 1/2
66 Py la,1,9  H, {x,z,t} 7 1
68 Py 11,1,2) |44 {x,z,t} 7 1/2
80 Py i(l, 1,2) 44| {x,z,1} 10 1/2
93 Py i(1,3,4) [BA| {x,z,t} 10 1/2
95 Py 2(1,2, 3)  [6A] {x,z,t} 22 1/2

67

There exists an irreducible Q-divisor T ~g eA such that mult,(7) > 1 and Supp(7T’) does not contain
any component of D - S since C isolates p. It follows that

1 1
— <omulty(D) < (gD - qpS - g T <r(D-S-T) = rne(A%) =
c

where g = g, is the quotient morphism of p € X and p is the preimage of p via g. This is a contradiction
and the inequality @, (X) > min{1, c} is proved.

5.1.d. Remaining non-BI centers

]

Proposition 5.5. Let X be a member of a family F; with i € |, and let p € X be a singular point with
subscript & in the fifth column of Table 7 which is also listed below.

O 0 O 0O 0O 0O 0O 0O O O O O O o O

i = 12 and singular points of type %(1, L, 1).

i = 13 and the singular point of type %(1, 1,1).
i = 24 and the singular point of type %(1, 1,1).
i = 27 and the singular point of type %(1, 1, 1).
i = 32 and the singular point of type %(1, 1,2).
i = 33 and the singular point of type %(1, 1, 1).
i = 40 and the singular point of type %(1, 1,2).
i = 47 and the singular point of type %(1, 2,3).

i = 48 and the singular point of type %(1, 1,1).
i = 49 and the singular point of type %(1, 2,3).
i = 62 and the singular point of type %(1, 2,3).
i = 65 and the singular point of type %(1, 1,1).
i = 67 and the singular point of type %(1, 4,5).
i = 82 and the singular point of type %(l, 2,3).
i = 84 and the singular point of type %(1, 2,5).
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Then we have
(X2
a =.
)
The rest of this subsection is to prove Proposition 5.5 which will be separately for each family.

5.1.d.1. The family F,, points of type %(1, I,1)

Let X = X0 c P(1,1,2,3,4) be amember of ), and p a singular point of type %(1, 1,1). We may
assume p = p, after replacing w. Then we have z3w € F by the quasi-smoothness of X at p. By Lemma
3.29, we have

X » 2 4
a —_—— =,
P =0.1.3.(43) 7 5

and the proof is completed in this case.

5.1.d.2. The family F3, the singular point of type %(1, 1, 1)
Let X = X1, c P(1,1,2,3,5) be a member of Fj3 and p = p, the singular point of type %(1, 1,1).
By Lemma 3.29, we have
2 _10 .3
1 b

TR T if 2w ¢ Fand z* € F.

It remains to consider the case where z°w, z*t ¢ F. Then, by choosing x, y suitably, we can write
F=2x+2 s+ 2 s+ 2 f+2fo + fin,

where f; = f;(x,y,t,w) is a quasi-homogeneous polynomial of degree i with 7 ¢ f3 and w ¢ f5.

We claim w?y € F. Assume w’y ¢ F. Then, by the quasi-smoothness of X at p,,, we have
w?x € F and we may assume coeff(w?x) = —1. We can write F = (z°> — w?)x + f’, where f’ =
A+ 2 fs + 22 f + 2fo + fi1 + w2x. It is straightforward to check that f’ € (x, y,)? and thus X is not
quasi-smooth at the point (0:0:1:0:1) € X, which is a contradiction. Thus, w?y € F.

We see that F := F(0,y,1,¢t,w) € (y,t, w)3 and the cubic part of F is not a cube of a linear form

since w2y € F and w3 ¢ F. Thus, we have a,(X) > 1/2 by Lemma 3.28.

5.1.d.3. The family Fa, the point of type (1,1, 1)
Let X = X5 c P(1,1,2,5,7) be a member of F»4 and p = p, the singular point of type %(1, I, 1).
By Lemma 3.29, we have

2 :H, if 7w e F,

ap(X) > {215 T .
i {ﬁ=% ifz*w ¢ Fand 2t € F.

4

Suppose z*w, z°t ¢ F. Then we can write

F=x+f+2fs+ 2 fr+ 2 fo+ 2 fu + 2f13 + fis,
where f; = f;(x,y,t,w) is a quasi-homogeneous polynomial of degree i with 7 ¢ fs and w ¢ f7.

We claim w?y € F. Assume to the contrary w?y ¢ F. Then we can write F = (7’ + g)x + h, where
g € C[x,y,z,t,w] and h € Cly, z,t, w] are quasi-homogeneous polynomials such that & € (y, ). But
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then X is not quasi-smooth along the nonempty subset
(x=y=t=7+g=0)CX.

This is a contradiction, and the claim is proved.
We see that F := F(0,y,1,t,w) € (v,t,w)?,w?y € F and w® ¢ F. In particular, F cannot be a cube
of a linear form and thus @ (X) > 1/2 by Lemma 3.28.

5.1.d.4. The family F», the point of type (1,1, 1)
Let X = X5 € P(1,2,3,5,5) be a member of 7,7 and p = p,, the singular point of type %(1, 1,1).
If either y>w € F or y>t € F, then we have

2 2

%X 2 A T 3

by Lemma 3.29.
Suppose y’w, ¥t ¢ F and y°z € F. Then we can write

F=Yz+y fs+y i+ v fo+ v fil + v fi3 + fis,

where f; = fi(x,z,t,w) is a quasi-homogeneous polynomial of degree i with w,t ¢ f5. We see that
omult, (H;) = 3 and thus lct, (X; %Hz) > 1. Let D € |Alg be an irreducible Q-divisor other than %HZ.
Then we can take a Q-divisor T € |5A|g such that mult,(7) > 1 and Supp(T’) does not contain any
component of D - H, since {x, z, ¢, w} isolates p. Since omult, (H;) = 3, we have

3omulty,(D) <3(¢"D -q"H; - q'T)s <2(D-H,-T) =3

where g = ¢ is the quotient morphism of p € X and p is the preimage of p via g. This shows
Icty(X; D) > 1 and thus ap(X) > 1.
Suppose y>w, y°t, y°z ¢ F. Then we can write

F=yx+yf5+Y fs+y 4+ fo +y2 fil + v fis + fiss

where f; = fi(x,z,t,w) is a quasi-homogeneous polynomial of degree i with z ¢ f3 and w,7 ¢ f5. We
see that F = F(0,1,z,t,w) € (z,t,w)> and the cubic part of F cannot be cube of a linear form since
F(0,1,0,t,w) = F(0,0,0,¢,w) is a product of three linearly independent linear forms in z, w by the
quasi-smoothness of X. By Lemma 3.28, we have Ict, (X; Hy) > 1/2.

5.1.d.5. The family F3,, the point of type %(1, 1,2)
Let X = X6 € P(1,2,3,4,7) be a member of F3; and p = p, the singular point of type %(1, 1,2).
By Lemma 3.29, we have

2

324.(A%)
ap(X) > {3242(A) ~
3.2.7-(A3) —

, if2weF,
, if?w ¢ Fand 7' € F.

NI— ool

3

Suppose 73w, z*t ¢ F. Then z°x € F by the quasi-smoothness of X at p and we can write

F=2x+2 o+ 2+ 22 fio+ 2f13 + fie

where f; = fi(x,y,t,w) is a quasi-homogeneous polynomial of degree i. We have w?y € F by the
quasi-smoothness of X at p,,. It follows that either F = F(0,y,1,t,w) € (y,t,w)>\ (y,t,w)> or
F € (y,t,w)? and the cubic part of F is not a cube of a linear form since w? ¢ F. By Lemma 3.28, we
have ap(X) > 1/2.
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5.1.d.6. The family F33, the point of type %(1, L1
Let X = X17 € P(1,2,3,5,7) be a member of F33 and p = p,, the singular point of type %(1, 1,1).
Suppose that at least one of y>w, y® and y”z appear in F with nonzero coefficient. In this case, H
is quasi-smooth at p and we have Ict,(X; Hy) = 1. Let D € |A|g be an irreducible Q-divisor other than
H,. We can take a Q-divisor T € |7A|g such that omult,(7) > 1 and Supp(7T’) does not contain any
component of of the effective 1-cycle D - H, since the set {x, z, ¢, w} isolates p. It follows that

# * * 17
omulty(D) < (qpD - qoHx - qT)y <2(D - Hy - T) = I

Thus, lcty (X; D) > 15/17 and we have ap(X) > 15/17.
Suppose y>w, y%t, y'z ¢ F. Then y8x € F by the quasi-smoothness of X at p and we can write

F=y%+y 5+ fs+ Y fr + ¥ fo + ¥ fil + ¥2 fis + ¥ fis + firs

where f; = fi(x,z,t,w) is a quasi-homogeneous polynomial of degree i. We see that F :=
F(0,1,z,t,w) € (z,t,w)?, w3 ¢ F and w?z € F. It follows that F € (z,7,w)?, and it cannot be a
cube of a linear form. By Lemma 3.28, we have ap(X) > 1/2.

5.1.d.7. The family Fyo, the point of type (1,1,2)

Let X = X19 c P(1,3,4,5,7) be a member of F4 and p = p,, the singular point of type %(1, 1,2).

Suppose that either y*w € F or y7z € F. In this case, Ity (X5 Hy) = 1 since H is quasi-smooth at p.
Let D € |A|g be an irreducible Q-divisor other than H,. We can take a Q-divisor T € |7A|g such that
omulty (7)) > 1 and Supp(T’) does not contain any component of of the effective 1-cycle D - H, since
the set {x, z, ¢, w} isolates p. It follows that

19
omulty(D) < (qpD - qpHx - qpT)y <3(D - Hy - T) = %0

Thus, Icty(X; D) > 20/19 and we have ap(X) > 1.

Suppose y*w, y3z ¢ F. Then yox € F by the quasi-smoothness of X at p and we can write

F=yx+y fa+ Y fr + 3 fio + Y fiz + ¥ fie + fio,

where f; = fi(x,z,t,w) is a quasi-homogeneous polynomial of degree i. We set F := F(0,1,z,¢,w) €
(z,1,w)3. Itis easy to see that w> ¢ F and w?z € F. It follows that either F € (z,t,w)? or F € (z,1,w)>,
and it cannot be a cube of a linear form. By Lemma 3.28, we have o;p(X) > 1/2.

5.1.d.8. The family Fu7, the point of type %(1, 2,3)
Let X = X1 c P(1,1,5,7,8) be a member of F47 and p = p, the singular point of type %(1, 2,3).
We can write

F=2"x+2fo+ 22 fit + 2fi6 + fo1,
where f; = f;(x,y,t,w) is a quasi-homogeneous polynomial of degree i. By the quasi-smoothness of X

at p,,, we have w? € fi¢, which implies F = F(0,y,1,1,w) € (y,t,w)>\ (y,t,w)>. Thus, by Lemma
3.28, we have ap(X) > 1/2.

5.1.d.9. The family Fas, the point of type (1,1, 1)
Let X = X1 € P(1,2,3,7,9) be a member of F45 and p = p,, the singular point of type %(1, 1,1).

By Lemma 3.29, we have
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2 _ 6 : 6
w(x) > T = Hywel
P s3ocm =3 fyweFandyreF.

Suppose yow, y’t ¢ F and y?z € F. We can write

F=yz2+Y fs+y 1+ fo+ -+ for,

where f; = fi(x,z,t,w) is a quasi-homogeneous polynomial of degree i with t ¢ f; and w ¢ fo. We
have omult, (H,) = 1 and thus Ict,(X; Hy) = 1. Let D € |Alg be an irreducible Q-divisor on X other
than H,. We can take a Q-divisor T € |9A|g with such that mult,(7) > 1 and Supp(7’) does not contain
any component of D - H, since {x, z, ¢, w} isolates p. Then we have

omulty(D) < (¢"D - q*Hy - q'T)s <2(D -Hy -T)=2-1-9- (A% =1,

where ¢ = ¢ is the quotient morphism of p € X and p is the preimage of p via g. This shows
lety(X; D) > 1 and thus ap(X) > 1.
Suppose yow, y’t,y?z ¢ F. Then y'%x € F and we can write

YO+ B sy Y o+ + for,

where f; = f;(x,z,t,w) is a quasi-homogeneous polynomial of degree i with z ¢ f3,¢ ¢ f; and w ¢ fo.
We see that F := F(0,1,z,1,w) € (z,t,w)>, and the cubic part of F is not a cube of a linear form since
w?z € F and w? ¢ F. Thus, by Lemma 3.28, we have ap(X) > 1/2.

5.1.d.10. The family Fag, the point of type %(1, 2,3)
Let X = Xp; € P(1,3,5,6,7) be amember of F49 and p = p, the singular point of type %(l, 2,3).If
2t € F, then

2 4

®X) 2 ST T 7

by Lemma 3.29.
Suppose 73t ¢ F. Then z*x € F and we can write

F =2+ fo+ 22 fi1 + 2f16 + fo1,

where f; = f;(x,y,t,w) is a quasi-homogeneous polynomial of degree i with 7 ¢ fs. We have w3, 13y €
F, and we may assume coeff (w3) = coeffr(3y) = 1.

We claim lctp(X; Hy) > 1/2. If y? € fg, then omulty(Hy) = 2 and thus lcty(X; Hy) > 1/2. We
assume y? ¢ fs. Then we can write

F(0,y,z,t,w) = z(awty +ﬂwy3) W+ y(t3 + yt2y2 + (5ty4 + £y6),

where a, 8,7,0,6 € C. Weset F := F(0,y,1,t,w) € C[y, 1, w].

o Suppose @ # 0. Then F € (y,t,w)> and its cubic part is awty + w3. By Lemma 3.28, we have
lety(X; Hy) > 1/2 in this case.

o Suppose a = 0 and B # 0. Then the lowest weight part of F with respect to wt(y,¢,w) = (6,7,9) is
Bwy® + w3 +3y. By Lemma 3.27, we have

22 -
leto (X5 Hy) > min{ﬁ, Ict(P, Dift; D)},
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where
- P=P(2,7,955w = P(6,7,9",
— Diff = £H; with H; = (f = 0) c B, and
— D is the prime divisor (8w§°> +w> + 7 = 0) on P.
We see that D is quasi-smooth and it intersects H; transversally. It follows that lct(P, Diff; D) = 1
and thus ety (X; H,) > 22/27.
o Suppose @ = B = 0. Then the lowest weight part of F with respect to wt(y,z,t) = (3,6,7) is
w3 + 3y +y12y? + 6ty° + ey’. By Lemma 3.27, we have

1 -
lety(X; Hy) > min{z—?, Ict(P, Diff; D)},

where

- P=P(1,2,9)5.7. =P(3,6, 7)™,

— Diff = 3Hy with Hy = (% = 0) ¢ P, and

— D is the prime divisor (W + 7§ + yi*5° + 675 + £j’ = 0) on P.

We see that D is quasi-smooth. The solutions of the equation 7> +y72§3+675° +&¥’ = 0 corresponds to
the three points of type % (1, 1,2) on X. In particular, the equation has three distinct solutions. It follows
that D intersects H,; transversally, and we have lct(}?’, Diff; D) = 1. Thus, lcty (X; Hy) > 16/21.

Thus, the claim is proved.
The point p is not a maximal center, and the pair (X, H,) is not canonical by Lemma 3.6. Thus,

ap(X) = min{1,lcty(X; Hy)} >

N —

by Lemma 3.5.

5.1.d.11. The family Fe,, the point of £(1,2,3)
Let X = Xp6 C P(1,1,5,7,13) be a member of F¢; and p = p, the singular point of type %(1, 2,3).
Replacing x and y, we can write

F=2x+7"fo+ 22 fit + 22 fis + 2f21 + Poos

where f; = fi(x,y,t,w) is a quasi-homogeneous polynomial of degree i. We have omult,(H,) = 2
since w? € F. Hence, lety(X; Hy) > 1/2. The point p is not a maximal center, and the pair (X, Hy) is
not canonical at p by Lemma 3.6. Thus,

1
ap(X) > min{1, lety(X; Hy)} > 5
by Lemma 3.5.

5.1.d.12. The family Fgs, the point of type %(l, 1,1)
Let X = X57 c P(1,2,5,9,11) be a member of F4s and p = p,, the singular point of type %(1, 1,1).
By Lemma 3.29, we have

2

2 .2
ay(X) > | 750A T
i {#(A‘) =2 ifySw¢Fand)’teF.

ifygw el,

Suppose yw, y°t ¢ F and y!'z € F. Then we can write

F=y"z 4y f 4+ yfos+ for,
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where f; = fi(x,z,t,w) is a quasi-homogeneous polynomial of degree i with t ¢ fo and w ¢ fi1.
We have omult,(H,) = 1 and thus Ict,(X; Hy) = 1. Let D € |A|g be an irreducible Q-divisor on X
other than H,. We see that {x, z, , w} isolates p, hence we can take a Q-divisor T € |11A|q such that
omult,(T) > 1 and Supp(T’) does not contain any component of D - H,. Then we have

3
omulty(D) < (qpD - qyHy - qpT)s < 2(D - Hy -T) =2-1-11-(A%) = =

where ¢, is the quotient morphism of p € X and p is the preimage of p via g,,. This shows Ict, (X; D) > 1
and thus ap(X) > 1.
Suppose that y8w, y?t, y!!z ¢ F. Then y'3x € F and we can write

F=yBx+y2fi+ - +yfs+ for,

where f; = fi(x, z,1, w) is a quasi-homogeneous polynomial of degree i with z ¢ f5,1 ¢ foand w ¢ fi;.
We see that F := F(0, 1,z,t,w) € (z,t,w)>, and the cubic part of F is not a cube of a linear form since
w2z € F and w? ¢ F. By Lemma 3.28, we have ap(X) > 1/2.

5.1.d.13. The family F;, the point of §(1,4,5)
Let X = Xp5 € P(1,1,4,9, 14) be a member of Fg7 and p = p, the singular point of type é(l, 4,5).
Replacing x and y, we can write

2
F=0x+12fio+1fio + fs,

where f; = fi(x,y,z,w) is a quasi-homogeneous polynomial of degree i. We have omult,(H,) = 2
since w? € F. Hence, lety(X; Hy) > 1/2 by Lemma 3.6. Thus,

ap(X) > min{1,lcty(X; Hy)} >

N —

by Lemma 3.5.

5.1.d.14. The family Fg, the point of%(l, 2,3)
Let X = X3¢ C P(1, 1,5, 12, 18) be a member of Fg and p = p, the singular point of type %(1, 2,3).
Replacing x and y, we can write

F=7x+fc+2fii+- + fr6

where f; = fi(x,y,t,w) is a quasi-homogeneous polynomial of degree i. We have omult,(H,) = 2
since w? € F. Hence, lety(X; Hy) > 1/2 by Lemma 3.6. Thus,

ap(X) > min{1,lcty(X; Hy)} >

N —

by Lemma 3.5.

5.1.d.15. The family Fga, the point of type %(1, 2,5)

Let X = X34 c P(1,7,8,9,12) be a member of fg4 and p = p,, the singular point of type %(1, 2,5).
By the quasi-smoothness of X, either y ze For y x € F. Moreover, we have w, 1%, 22w € F and we
assume coeffp (w3) = coeffr (t4) = coeff (z3w) = 1 by rescaling z, ¢, w.

Suppose y*z € F. Let Pp: Up — U the orbifold chart of X containing p. Then we have py H - pp H, =
F, where

I=@=2=w+i*=0)c U,
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is an irreducible and reduced curve with multﬁ(f ) = 3. We see that (X, H,) is log canonical at p since
H, is quasi-smooth at p. Thus, by Lemma 3.17, we have ap(X) > 1.
Suppose y*z ¢ F. Then y°x € F and we can write

F=yx+y* s+ 3 fis + Y f2 + Y oo + fre,

where f; = f;(x,z,t,w) is a quasi-homogeneous polynomial of degree i with z ¢ fg. By setting
a := coeffp (ywtz), we have

F:=F(0,1,z,1,w) = awtz + w> + wz’> +1*.

oIf @ # 0, then F € (z,1, w)3 and the cubic part of F is not a cube of a linear form. Hence,
lety(X; Hy) > 1/2 by Lemma 3.28.

o If @ = 0, then the lowest weight part of F with respect to wt(z, ¢, w) = (8,9, 12) is F = w> + wz3 +*.
By Lemma 3.27, we have

2 .
lety(X; Hy) > min{%, Ict(P, Diff; D)},

where

- P=P(2,3,1): 7w =P(8,9,12)",

— Diff = 3H; + 2H; with H; = (=0) c B, H; = (7=0) c B, and

— D is the prime divisor (W + wZ +7 = 0) on P.

We see that D is quasi-smooth, D N H; N Hy = 0 and any two of D, H;, H; intersect transversally. It
follows that lct(P, Diff; D) = 1 and thus Icty(X; Hy) > 29/36.

Note that p € X is not a maximal center and the pair (X, H,) is not canonical at p by Lemma 3.6. Thus,

ap(X) > min{1,lcty(X; Hy)} >

N —

by Lemma 3.5.

5.2. EI centers
Proposition 5.6. Let X be a member of a family F; withi € | and p € X an EI center. Then

1
X) > —-.
ap( )—2

Proof. We have ap(X) > 1 by Proposition 5.3 for a member X of 7; and p € X, where

i =36 and p is of type (1, 1,3).
i =44 and p is of type %(1, 1,5).
i =61 and p is of type %(1,2,5).
i =76 and p is of type %(1,3,5).

O O O O

We have ap(X) > 1/2 by Proposition 5.4 for a member X of F; and p € X, where

o i=23and p is of type ;11(1, 1,3).
o i =40 and p is of type %(1,2,3).

It remains to consider members of families /7 and JFyg, and singular points of types %(1, 1,1) and
%(1, 1,2), respectively.

https://doi.org/10.1017/fms.2023.87 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.87

Forum of Mathematics, Sigma 75

Let X = Xg c P(1,1,2,2,3) be amember of F7 and p a singular point of type %(1, 1, 1). Replacing
homogeneous coordinates, we may assume p = p; and we can write

F = ISZ + t2f4 +1tfo + f3,
where f; = fi(x,y,z,w) is a quasi-homogeneous polynomial of degree i. Hence, by Lemma 3.29, we
have
2 1

®X) 2 T3y T

Let X = X13 c P(1,1,3,4,5) be a member of F, and p = p, be the singular point of type %(l, 1,2).
If 73t € F, then we have

2 8

%X 2 5T T 1

by Lemma 3.29. Suppose z3¢ ¢ F. Then we can write that

F=2*x+2fi+22f + 2fi0 + fi3,

where f; = fi(x,y,t,w) is a quasi-homogeneous polynomial of degree i with r ¢ f4. We have
omulty(Hy) = 2 since w?z € F by the quasi-smoothness of X at p,,. This shows leto (X5 Hy) > 1/2.
The point p is not a maximal singularity, and the pair (X, Hy) is not canonical at p by Lemma 3.6. Thus,

1
ap(X) > min{l,lcty(X; Hy)} > 3
by Lemma 3.5. This completes the proof. O
5.3. Equations for QI centers
Let
X:XdCP(l,al,...,a4)X0 ,,,,, xy =P

be a member of a family F; with i € I. We set ag = 1 and let F = F(xo,...,x4) be the defining
polynomial of X.

Definition 5.7. Let p € X be a QI center, and let j, k be such that j # k, d = 2ay + a; and the index
of p € X coincides with a;. Then we can choose coordinates so that p = py,. We say that p is an
exceptional QI center if xixl ¢ F forany [ € {0,...,4}.

Lemma 5.8. Let p € X be a nonexceptional QI center. Then we can choose homogeneous coordinates
Xiys Xiy, Xiy, Xj, Xg of P, where {iy, 2,13, j, k} ={0,1,2,3,4}, such that a;,, a;,, ai, < ax, p = px, and
F = xixj + X5 f (Xiys Xigs Xigo X ) + 8(Xiy, Xiy, Xiy, X ) 5.1)
for some quasi-homogeneous polynomials f, g € Clx;,, xi,,xi;,x;] of degree d — ay, d, respectively.
Proof. Basically, this follows by looking at Table 7. See also [CPR0O0, Theorem 4.9]. O

Let p € X be a nonexceptional QI center, and we choose and fix homogeneous coordinates
Xiy» Xiy» Xy, Xj, X of P as in Lemma 5.8.

Definition 5.9. We say that p is a degenerate QI center if f(x;,,x;,,x;,,0) = 0 as a polynomial, otherwise
we call p a nondegenerate QI center.
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Remark 5.10. It is proved in [CP17, Section 4.1] that a QI center p € X is a maximal center if and only
if it is nondegenerate.

Lemma 5.11. Let p be a degenerate QI center. Then we can choose homogeneous coordinates
Xiy» Xiy Xiy, Xj, Xk Of P such that a;,, a;,, a;; < ag, p = px, and
2
F =xixj +g(xi, Xy, Xi3, X ) 5.2)
for some quasi-homogeneous polynomial g € Clx;,, x;,, xi;, x ] of degree d. Moreover, the hypersurface
(g(xil £ xiz ’ xi3 ’ 0) = 0) C P(ail £ aiz ’ ai3 )Xi] ,xiz,xi3

is quasi-smooth.

Proof. We have f = x; f’ for some f’ € C[x;,,x;,,xi;,x;] since p is degenerate. Filtering off terms
divisible by x; in equation (5.1), we have

szj(xi +xif)+g.

We can eliminate the term xzx; f* by replacing xx + xx — f’/2. This shows the first assertion.

We choose and fix homogeneous coordinates so that F is of the form (5.2). We set § = g(x;,, Xi,, X33, 0).
Then we can write g = g + x;h, where h = h(x; ,x;,,X;;,x;). Suppose to the contrary that (§ = 0) C
P(ai,,ai,,a;,) is not quasi-smooth at a point (a; : @, : @3). We choose and fix 8 € C such that
,82 + h(ay, az, @3,0) = 0 and set

q:=(a1:a2:@3:0:8) € P(a;,, ai,, a5y, aj,ax) =P.
It is easy to see that (0F/dv)(q) = O for any v € {x;;,x,,Xi;,Xx;,xx}. This is impossible since X is
quasi-smooth. Therefore, (§ = 0) € P(a;,, a;,, ai,) is quasi-smooth. O

Lemma 5.12. Let X be a member of a family F; with i € 1\ {2, 8}. Suppose that X has a QI center. Then
one of the following holds.

1. X has a unique QI center. In this case, by a choice of homogeneous coordinates, we have
X = Xpr4e CP(1,a,b,c, r)x,s,u,v,w’

where a is coprime to b, a < b, a+b =r, ¢ < r, and the unique QI center is the point p = p,,, which
is of type %(1, a,b).
2. X has exactly three distinct QI centers. In this case, by a choice of homogeneous coordinates, we have

X = X3V C P(laa$ b7 r, r)x,y,z,t,w,

where a is coprime to b, a < b and a + b = r. The three QI centers are the three points in
(x =y =2z2=0)N X, and they are all of type %(l,a,b).
3. X has exactly two distinct QI centers, and their singularity types are equal. In this case, by a choice

of homogeneous coordinates, we have
X = X4r C P(17 a, b7 r, Zr)x,y,z,t,W7

where a is coprime to b, a < b and a+b = r. The QI centers are the two pointsin (x =y =z =0)NX,
and they are both of type %(1, a,b).

4. X has exactly two distinct QI centers, and their singularity types are distinct. In this case, by a choice
of homogeneous coordinates, we have

X = X4a+3h - P(Laab,rl,rZ)x,u,v,t,w’
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where a is coprime to b, a+b =r| and 2a + b = ry. The QI centers are p; and p,, which are of types
r]—](l, a,b) and r]—z(l, a,a+b), respectively.

Proof. Let
X =X, cP(l,ay,a3,as, 614))50’)(1,)(2,)(3’)(4

be a member of F; withi € I\ {2,8}. We set ag = 1 and assume a; < --- < a4. We assume that X has at
least one QI center.

Suppose d = 3ay. Let p € X be a QI center. Then, after replacing homogeneous coordinates, we may
assume p = py, and xl.zxj € F forsome i € {0,1,2,3,4} and j € {0,1,2,3,4} \ {i}. In particular, we
have d = 3a4 = 2a; + aj, which is possible if and only if a; = a; = a4. Thus, we have a3z = a4 and we
may assume i = 4, j = 3. We see that p € X is of type a%(l, aj,az) and p € X is terminal. It follows
that a; + a> = a4 and a; is coprime to a4 for [ = 1, 2. By setting a := a1, b := a; and r := a3 = aq, this
case corresponds to (2). In the following, we assume d < 3ay.

Suppose d = 2a4. We have aq = a1 +as +az sinced = aj; +az +az +aq =2a4. Letp € X be a QI
center. Then we may assume p = p,, and xl.zxj € F forsomei € {0,1,2,3}and j € {0,1,2,3,4} \ {i}.
In particular, we have d = 2a; + a, and hence

2a;+aj=a+ax+az+as=2(a; +ax+as),

which is only possible when j = 4 and i = 3. Hence, i = 3, j = 4, and we have a4 = 2a3 since
d = 2a3 + a4 = 2a4. We see that p € X is of type als(l, ai,ap) and p € X is terminal. It follows that
az = ay + ay and a; is coprime to a3 for [ = 1,2. By setting a := a;, b := a, r := a3, this case
corresponds to (3).

Suppose d = 2a4 + a3z. We have a4 = a1 + ap since d = a; + ar + az + a4. We see that py € X is of
type a%(l, ai,as), and it is a QI center. It follows that a4 is coprime to a; for [ = 1,2 since ps € X is a
terminal singularity. If X admits a QI center other than p4, then we have d = 2a; +a;, wherei € {1,2,3}
and j € {0,1,2,3,4} \ {i} which is impossible. Thus, p4 € X is a unique QI center, and we are in case
(1) by setting a := ay, b := as, ¢ := a3 and r := a4. Note that we have a < b because otherwise we have
a; =ay =1 and a4 = 2 and X belongs to a family F; with i € {2, 8} which is impossible.

Suppose d = 2a4 + ap. Then a4 = a; + az. We see that py € X is of type a%‘(l,a],a3), and it is a
QI center. If p4 is a unique QI center, then we are in case (1) by setting a := a1, b := a3, ¢ := a; and
r := as. We assume that X admits a QI center p € X other than ps. We may assume p = p; after replacing
homogeneous coordinates, and we have d = 2a; + a; for some i € {1,2,3} and j € {0,1,2,3,4} \ {i}.
Then we have a; = a4 and a; = a3. Thus, i = 3, j = 4 and we have a3 = a; + a;. The singularity of
p=p; € Xisof type a%(l,al, aj) and it is terminal. It follows that a| is coprime to a,. Thus, we are in
case (4) by setting a := a1, b :=ar, r1 :=az and rp = ay.

Suppose d = 2a4 + a;. Then, by interchanging the role of a; and a; in the previous arguments, we
conclude that this case corresponds to either (1) or (4). This completes the proof. ]

Lemma 5.13. Let
X = Xor+e € P(1,a,b,c, ”')x,s,u,V,W

be a member of a family F; with i € 1\ {2, 8} with a unique QI center, where a is coprime to b, a < b,
r =a+b and c < r. Then the following assertions hold.

1. If ¢ = 1, then X belongs to a family F; withi € {24, 46}.
2. If 2r + c is not divisible by b, thenb =a+1,c=a+2, r=2a+ 1 and a € {2,3,4}.

Proof. This follows from Table 7. O
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Lemma 5.14. Let X be a member of a family F; withi € |\ || and let p € X be an exceptional QI center.
Then we are in Case (4) of Lemma 5.12 and p = p;. Moreover, we can write

3.2
F=0u+1t frap +1tfRar26 + faas3ns (5.3)

where f; € C[x,u,v,w] is a quasi-homogeneous polynomial of degree i withw & fru+p-

Proof. We are in (1), (2), (3) and (4) of Lemma 5.12. Suppose that we are in (1). Then p = p,,. Since
p € X is exceptional and X is quasi-smooth at p, we have w™q € F for some m > 3 and a homogeneous
coordinate g € {x, s, u, v}. This implies

2r+c=d=mr+degqg >3r+1,

which is impossible since ¢ < r. By similar arguments we can show that (2) and (3) are both impossible.

It follows that we are in Case (4). In this case either p = p; or p = p,,. The latter is impossible since
d = 4a +3b < 3rp. Hence, p = p;. We have t"'q € F for some integer m > 3 and a homogeneous
coordinate g € {x,u,v,w}. It is easy to see that this is possible if and only if m = 3 and degq = a.
Possibly replacing coordinates we may assume g = u. Then it is straightforward to see that F can be
written as equation (5.3). |

5.4. QI centers: exceptional case

The aim of this section is to prove the following.

Proposition 5.15. Let X be a member of a family F; withi € |\ |1, and let p € X be an exceptional QI
center. Then

1
X) > —-.
ap( )—2

Let X be a member of F; with i € |\ {2, 8} which admits an exceptional QI center, Then, by Lemma
5.14 and Table 7, we have

i € {12,13,20,25,31,33,38, 58}.

The rest of this section is devoted to the proof of Proposition 5.15 which will be done by division into
cases. By Lemma 5.14, we can choose coordinates x, u, v, t,w of P = P(1,a, b, ry, ;) as in Case (4) of
Lemma 5.12 with p = p, and the defining polynomial F is as in equation (5.3).

5.4.a. Case: a > 2and 4a < 3b

This case corresponds to families F33 and Fsg. We have w2y e faa+3p since X is quasi-smooth at p,,.
Moreover, we see that no quadratic monomial in variables x, v, w appear in fo4+p, f3a+2b, faa+3b- This
implies omult,(H,) = 3, and we have

1 a 2
X,-H,|>=->—-.
“p( a ) 373

Let D € |A|g be an effective Q-divisor other than %Hu. We can take a Q-divisor T' € |ryAlg such that
omult,(T) > 1 and Supp(7T’) does not contain any component of the effective 1-cycle D - H,, since
{x,u,v,w} isolates p. Let ¢ = g, be the quotient morphism of p € X, and let p be the preimage of p via
q. Then we have

4a + 3b

3omulty(D) < (¢"D - q"Hy - q'T)s <ri(D-H, -T) = 5

<6

since 4a < 3b. Thus, Icty(X; D) > 1/2 and the inequality ap(X) > 1/2 is proved.
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5.4.b. Case: a =1

This case corresponds to families Fi», Fog and F31. We have either F = F(x,0,v,1,w) € (x,v, w)2 \
(x,v,w)}or F € (x,v,w) € (x,v,w)3, and its cubic part is not a cube of a linear form since w?v € F
and w? ¢ F. By Lemma 3.28, we have a;p(X) > 1/2 since a = 1.

5.4.c. Case: X is a member of the family 73
Let

X = Xll - P(ls 19 23 39 S)X,y,z,t,w
be a member of Fi3 and p € X an exceptional QI center. Then we have
F=Pz+fs+tfy+ fil,

where f; € C[x,y,z, w] is a quasi-homogeneous polynomial of degree i with w ¢ f5, and p = p;. Let
S,T € |A| be general members. We have

F(0,0,z,t,w) = Bzvat+ ,[S'wz3 = z(t3 +at? + szz),
where a, 8 € C. We setI' = (x = y = z = 0), which is a quasi-line of degree 1/15. If 8 # 0, then we set
A=(x=y=F+atz’ +Bwz> =0),

which is clearly an irreducible and reduced curve of degree 3/10 and does not pass through p. Moreover,
we have

T|s =T +A.

Claim 9. If B # O, then the intersection matrix M (I, A) satisfies the condition ().

Proof of Claim 9. We have I' N A = {p, }, and it is easy to see that S is quasi-smooth at p,, since
S € |A] is general. By Lemma 3.9, S is quasi-smooth along I" and we have Sing(S) = {p;, pw }, where
P:, Pw € S are of types %(1, 2), %(2, 3), respectively. By Remark 3.10, we have

2 4 8
MP)g=-24=42=_2
(Ms==2+3+35="73

By taking intersection numbers of T'|g = '+ A and I', A, we have

3 ) 3
F-A)s=2, (A)g=-—.
(M-A)s=3. (A)s=-=

Thus, M (T, A) satisfies the condition (%). O
Suppose 8 =0 and @ # 0. We set

=(x=y=t=0), ®=(x=y=t2+az3=0),

[1]

which are irreducible and reduced curves of degrees 1/10, 1/5, respectively, which do not pass through
p. We have

Tls=T+EZ+0.
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Claim 10. If 8 = 0 and «a # 0, then the intersection matrix M (T, E, ®) satisfies the condition (x).

Proof of Claim 10. Wehave (I'?)g = —8/15 by the proof of Claim 9. We see that 2N (I'U®) = {p,, } and
S is quasi-smooth at p,,. By Lemma 3.9, S is quasi-smooth along = and we have Singz(S) = {pz, pw},
where p,, py, € S are of types %(1, 1), %(2, 3), respectively. By Remark 3.10, we have

We compute the intersection number (I'-2)g. We have 'NE = {p,, }, and the germ p,, € § is analytically
isomorphic to 0 € A%,t /us, where the ps-action on Aﬁ’, is given by

(z,0) = (%2, 0),

and ¢ is the image of the origin o € Ag’,. Under the isomorphism, I" and E corresponds to the quotient
of (z =0) and (¢ = 0). It follows that

— _ 1
(M-B)s =B, =<

Then, by taking intersection numbers of T'|s ="'+ E+ ® and I, E, ©, we have

2 3 4
r-0s==z (E-0)s== (O)=--.
(I'- ©)s 5 (E-O)s 5 (©%)s 5
Thus, M (T, E, ®) satisfies the condition (). O

Suppose 8 = @ = 0. Then
T|s =T +3E,
where E= (x =y =t=0).
Claim 11. If 8 = @ = 0, then the intersection matrix M (', E) satisfies the condition (x).

Proof of Claim 11. We have (I'?)s = —8/15 by the proof of Claim 9. By taking intersection numbers
of T|s =I' +3Z and I', E, we have

1 1
C-B)s=z (8)s=-==

5 30
Thus, M (T, E) satisfies the condition (x). O
By Claims 9, 10, 11 and Lemma 3.21, we have
1 10
X) > minj 1, =—.
@p(X) mm{ 3(A3) 1 - 3degF} 19

5.4.d. Case: X is a member of the family 75
Let

X = X15 - P(l’ 15 3’ 49 7)x,y,z,t,w
be a member of F>s5, and let p be an exceptional QI center. Then we have

F=0z+2f+1tfi1 + fis,
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where f; € C[x,y,z, w] is a quasi-homogeneous polynomial of degree i with w ¢ f;, and we have
p = p;. By the quasi-smoothness we have z° € f;5 and we may assume coeff £ (z°) = 1. Then we have

F(0,0,z,t,w) = B+ = z(l‘3 + z4).
Let S,T € |A| be general members. Then we have
Tls =T'+A,

where I' = (x = y = z = 0) is a quasi-line of degree 1/28 and A = (x = y = £> + z*) is an irreducible
and reduced curve of degree 1/7 that does not pass through p.

Claim 12. The intersection matrix M (I', A) satisfies the condition (%).

Proof of Claim 12. Wehave ’'NA = {p,, } and S is quasi-smooth at p,,,. Hence, S is quasi-smooth along
I by Lemma 3.9, and we have Singr-(S) = {p:, pw }, Where p;,p,, € S are of types %(1,3), %(3,4),
respectively. By Remark 3.10, we have

3 6 11

Mg=—2+>4-=-——.
(Ms=-2+7+5="%

By taking intersection numbers of T'|s = '+ A and I', A, we have

(T as=3 (a5=-2.

It follows that M (I", A) satisfies the condition (x). O

By Claim 12 and Lemma 3.21, we have

. 1 7
@p(X) > minq1, =—.
4(A3) +1-4degl 11

5.4.e. Case: X is a member of the family F3g
Let

X=X3C P(l, 2,3,5, S)X,y,z,t,w
be a member of F33 and p € X an exceptional QI center. Then we have
F=rz+fg+1fi3+ fis,

where f; € C[x,y,z,w] is a quasi-homogeneous polynomial of degree i with w ¢ f3, and p = p;. By
the quasi-smoothness of X, we have z® € fig and we may assume coeff fis (z%) = 1. Then we have

F(0,0,z,t,w) =z +2° =2( +2°).
We set S = H, and T = H,,. We have
T|ls =T +A,

where I" = (x = y = z = 0) is a quasi-line of degree 1/40 and A = (x = y = > +z> = 0) is an irreducible
and reduced curve of degree 1/8 that does not pass through p.
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Claim 13. The intersection matrix M (T, A) satisfies the condition (x).

Proof of Claim 13. By similar arguments as in the proof of Claim 12, we have

4 7 13
P)g=-2+-+-=——),
(Ms==2+3+3="3
and
3 1
IAs==, (A)sg=-=.
(M-A)s =g, (A7)s =3
Thus, M (T, A) satisfies the condition (x). O

By Claim 13 and Lemma 3.21, we have

1 8
@p(X) = minj 1, ; =—.
5:2-(A3)+5—5degl 9

This completes the proof of Proposition 5.15.

5.5. QI centers: degenerate case

The aim of this section is to prove the following, which gives the exact value of @ (X) for a degenerate
QI center p € X.
Let

X = Xd c P(a07 a15 LRI ) a4)X(),X|,XQ,X3,X4

be a member of a family J; withi € |, where 1 =ag < a; <--- < aq, and let p € X be a degenerate QI
center. We choose homogeneous coordinates as in Lemma 5.11.

Proposition 5.16. Let the notation as above, and let p = py, € X be a degenerate QI center. Then

ak+1 . -
ap(X) = { 2l ifaj=1,
1, otherwise.

In particular, we have ap(X) > %

Proof. Let ¢: Y — X be the Kawamata blowup at p with exceptional divisor E. Note that we can
choose x;,, x;,, X;; as a system of orbifold coordinates at p and ¢ is the weighted blowup with weight
Wt(X,, Xiy, Xi3) = aLk(a,-l , @iy, a;y). Filtering off terms divisible by x; in equation (5.2), we have

xp(xg 4 e) = g (xiy Xy, x5, 0) = 3.

Since the polynomial xi + - -+ does not vanish at p, the vanishing order of x; along E coincides with
that of g, which is clearly d/ay. Hence, we have

1. 2 1
Ky +—Hy, +—E=¢' (KX + —ij), (5.4)
i i a

where FIXJ. is the proper transform of H; on Y. In particular, (X, aLijj) is not canonical at p. By Lemma
3.5, we have ap(X) > 1if (X, ainxj) is log canonical at p, and otherwise ap(X) = lcty (X ainxj).
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Suppose a; > 1. The pair (E, %PNIX,. |£) is log canonical since lel. | is isomorphic to
’ J / .

(g(x4), Xiy, X13,0) =0) € P(ay,, a4y, ai,) = E,

which is quasi-smooth by Lemma 5.11. By the inversion of adjunction, the pair (Y, aijI:Ixj + E) is log
canonical along E and so is the pair (Y, aLij_,- + al,E) since 2/a; < 1. By equation (5.4), the pair
(X, ainxj) is log canonical at p. Thus, ap(X) > 1. The existence of the prime divisor H, € A passing

through p shows @p(X) < 1, and we conclude o, (X) = 1 in this case.
Suppose a; = 1. We set

_ ap+1
T 2ap+1

and prove Icty (X; %H x;) = 0. For a rational number ¢ > 0, it is easy to see that the discrepancy of the
- J : .
pair (X, aLijj) along E is
1 cd

ajy ajag

and it is at least —1 if and only if ¢ < 6. This shows Ict, (X %ij) < 6. Moreover, since
J

and the pair (Y, L%I:Ixj + E) is log canonical along E, the pair (X, %ij) is log canonical at p. This
shows ap(X) = 6, and the proof is completed. O

Example 5.17. Let X = X5, c P(1, 1, 3,7, 10) be a member of the family F4¢ and p = p,, the %0(1, 3,7)
point, which is the center of a quadratic involution. Assume that p is degenerate, which is equivalent to
X being birationally superrigid. Then, by Proposition 5.16, we have

a(X) < ap(X) = %

5.6. QI centers: nondegenerate case

The aim of this section is to prove the following.

Proposition 5.18. Let X be a member of a family F; withi € 1\ {2,5,8} and p € X be a nondegenerate
QI center. Then

ap(X) >

The rest of this section is entirely devoted to the proof of Proposition 5.18, which will be done by
dividing into several cases.

5.6.a. Case: X has a unique QI center
By Lemma 5.12, we can choose homogeneous coordinates so that

X=Xr4c C P(L a,b,c, r)x,s,u,v,w’
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where a is corprime to b, a < b,r =a + b and ¢ < r. Let p € X be the QI center. Then p = p,, and the
defining polynomial F of X can be written as

F = Wzv + Wfr+c + f2r+c’

where fric = fric(x,s,u) and forie = forsc(x,s,u,v) are quasi-homogeneous polynomials of the
indicated degree. We will show that lct, (X; %Hv) > 1/2.

Claim 14. Suppose that ¢ > 2 and 2r + c is divisible by b. Then

1 1 1
Ctp(X, EHV) > E
Proof of Claim 14. We first show that p,, ¢ X unless X belongs to the family /7. Suppose p,, € X. By
the quasi-smoothness of X at p,,, we have d = mb + e, where m € Z-¢ and e € {1,a,c,r}. Since d is
divisible by b, we see that e is divisible by b. This is possible only when e = ¢ since r = a + b and a are
both coprime to b. Thus, we can write ¢ = kb for some k € Z(. Take any pointg € (x =s =w =0)NX.
The singularity q € X is of type %(l,a,r) = %(l,a,a). It follows that a = 1 and b = 2 since q € X is
terminal. We have r =a+b =3 and ¢ = 2 since ¢ = kb = 2k < r = 3. Thus, X = Xg c P(1,1,2,2,3)
and this belongs to J7.

We first consider the case where p,, ¢ X. This means that ™ € F for some m € Z.y. We have
omult,(H,) < m = (2r + c¢)/b and hence

Ietp | X 1H > be
C D= > .
P c 2r+c

It remains to prove the inequality bc/(2r + ¢) > 1/2, which is equivalent to (2b — 1)c > 2r. We have
2b-1)c=222b-1)=2(b—-1)+2b =2a+2b=2r

since ¢ > 2 and b > a. This shows lct,(X; %HV) > 1/2.
We next consider the case where p, € X. In this case, X belongs to the family /7 and X = Xg C
P(1,1,2,2,3)x 5.u.v,w With defining polynomial

F=w+ wfs(x,s,u) + fz(x,s,u,v).

We have u* ¢ F since p,, € X. We show that fs(x, s, u) contains a monomial involving u. Suppose to the
contrary that fs5 = f5(x, s) is a polynomial in variables x and s. We can write fy = u3gy + u>g4 + uge +
gs + vhg, where g; = g;(x,s) and hg = he(x, s, u, v) are quasi-homogeneous polynomials of indicated
degree. Then we have F = v(w? + hg) + g, where g = wfs + ugs + u’gy + uge + gg € (x,5)2, and we
see that X is not quasi-smooth at any point in the nonempty set

(t=w?+hs=x=s=0) cP(1,1,2,2,3).

This is a contradiction. It follows that there is a monomial involving u which appears in f5 with nonzero
coeflicient. This implies omult,(H,) < 4, and we have lct, (X; %HV) > 1/2 as desired. O

Claim 15. Suppose that ¢ > 2 and 2r + c is not divisible by b. Then
1 c _ 4
Iet,| X;—-Hy | =2 = > =.
¢ p( c ) 575
Proof of Claim 15. By Lemma 5.13, we have

X =Xsqea CP(L,a,a+1,a+2,2a+ V)x5uv.w
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with a € {2,3,4}. Moreover, p = p,, and the defining polynomial of X can be written as
F =W+ w3043 (x,5,u) + fsara(x,5,u,v).

By the quasi-smoothness of X at p,, we have either uw e f3a+3 OF us e f5a+4. This implies omulty (H, ) <
5, and we have

a+?2
= >
5

w| &~

1
lctp(X; —HV) >
c

| o

This proves the claim. m

It remains to consider the case where ¢ = 1. By Lemma 5.13, X belongs to a family JF; with
i€ {24,46}.

Claim 16. Suppose X is a member of the family F»4. Then Icty(X; H, ) > 1/2.
Proof of Claim 16. We have

X = Xl5 c P(LZ, 5, 1’ 7)x,s,u,v,w
and p = p,, is of type %(1, 2,5). We can write
F=w?v+wfy(x,s,u) + fis(x, 5,u,v),

where f3 = fg(x,s,u) # 0 and fis = fi5(x, s, u,v) are quasi-homogeneous polynomials of degrees 8
and 15, respectively. We have u> € fi5, and we may assume coeff 7 (u?) = 1.Weset F := F(x,s,u,0,1).
For a given ¢ = (c1,¢2,¢3) € (Z>0)3, we denote by G, € Clx, s, u] the lowest weight part of F with
respect to the weight wt(x, s, u) = ¢ and let

f
D, = Dgg
be the effective Q-divisor on P(c)*! associated to G.. By Lemma 3.27, we have

ci+cr+cs

leto(X; Hy) 2 min{ dcg G,

, let(P(c)™, Diff; Dc)=, (5.5
where deg G is the degree with respect to the weight wt(x, s, u) = c.
Suppose usx € f3. In this case, we may assume coeff ; (usx) = 1 and we have G, = usx + u? for

¢ =(1,1,1). In this case, P(Q)Wf = P2, Diff = 0 and D, is the sum of a line and a conic intersection at
two distinct points. It is straightforward to check

let(P(c)™, Diff; D,) = let(P*; D,) = 1,

and we have Icty(X; H,) > 1 in this case.
Suppose that usx ¢ fz and s* € fz. In this case, we may assume coeff ¢ (s*) = land coefl £ (us®) =0
by replacing s and w. Hence, we have

F(0,s,u,0,1) = s+l

and thus Ict, (X; H,) > Ity (H, H, |g,) = 7/12, where the equality follows from [Kol97, 8.21 Propo-
sition] (or by Lemma 3.27 with wt(s, u) = (3,4)).

Suppose ux® € fz. In this case, we may assume coeff  (usx) = 1 by rescaling x. We consider a
weight ¢ = (2, e, 3), where e is a sufficiently large integer which is coprime to 6. Then G, = u(x3+u?),
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P(c)™ = P(2,e,3), Diff = 0 and D, is the union of two quasi-smooth curves (u = 0) and (x3+u®=0).
We have

5
1Ct(P(£)Wf» Diff; Dg) = Ict(P(2, e, 3); DQ) = lct(0:1:0) (P(2,¢,3); Dg) = 53

and thus lcty (X; H, ) > 5/9 in this case.
In the following, we assume usx, s*, ux> ¢ fz. We can write

F = (15°x% + aas®x* + azsx® + aux®) + (i +,8us5 + ys7x +g15),

where @y, ...,a4,8,y € Cand gi5 = g15(x, s,u) wlisa quasi-homogeneous polynomial of degree 15
which is contained in the ideal (x,x)? c C[x, s, u]. Note that at least one of a, 3,7, § and & is nonzero
since fy(x,s,u) # 0. Note also that Aus’ and us’x are the only terms in F which is not contained in
(x, u)?. Tt follows from the quasi-smoothness of X that (4, u) # (0, 0).

Suppose B # 0. Replacing u, we may assume 8 = 1 and y = 0. There exists j € {1,2,3,4} such
that @; # O since fg # 0 as a polynomial, and thus we seti = min{ j | a; # 0} € {1,2,3,4}. We may
assume «; = 1 by rescaling x. We set ¢ = (2i+7,4i, 10i). We have G, = sY Y ud vusdfor 1 <i < 4.
Moreover, we see that

. {PQﬁ+125k5ﬁ,if1§is3
2 =

P(3,2, z,5,a, ifi =4,
and
2i-1 . .
=£=—H:,D;), fl1<i<3,
(Dift, D) = (72l X4 l) , 1 . l
- (gHg+§H§,D), ifi =4,
where

D;=G*%+@’+as°=0), D' =(F+d +as=0)

are prime divisors on P(c)™!. We first consider the case where 1 < i < 3. We see that H is quasi-smooth,
and D; is quasi-smooth outside {q}, where q = (1:0:0) € P(c)". Moreover, they intersect at two points
(0:1:0) and (0:—1:1) transversally. It follows that Ict(P(c)"!, Diff; D,) = min{1, lctq(P(c)*!, D.)}
since Hy does not pass through q. If i = 3, then D3 is also quasi-smooth at g, which implies
lct(P(¢), Diff; D) = 1. If i = 1,2, then we have

Ietq(P(c)™, D) = Ict(o,0) (A3 4. (347 + & + @5 = 0))
= Iet(o,0 (A ;. 57+ =0))

3+ (4-i)  T-i
C3(4-i)  3(4-0)

3

since (5%~ +ii> + @5 = 0) is analytically equivalent to (§*~* + 7> = 0). Thus, by Lemma 3.27, we have

(2i+7) +4i +10i

leto (X5 Hy) = min{ , let(P(c)™, Diff; DC)}

30i

3 ifi=1,

=18, ifi=2,
n. ifi=3.
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Suppose 8 = 0. In this case, we have y # 0. We set i = min{j | a; # 0} € {1,2,3,4}. We may
assume y = ; = 1 by rescaling x and s appropriately. We set

L |BG+3).3Q2i-1).15i-4), if1<i<3,
o (3’ 39 8)’ lfl = 4

We have G, = s¥7ix2 4 43 4+ §7x for 1 < i < 4. Moreover, we see that

P(C)Wf _ P(i +3,2i 1,15 - 4);5‘57,;, if1 <i <3,
- P(1, 1, 8)z 5.4 ifi = 4,
and

2 .
Diff = 3 Ha, D.=GE"# +i+5%=0).

We see that H; and D, are both quasi-smooth. If i = 3,4, then H; and D, intersect transversally and
thus we have lct(P(c)"', Diff; D.) = 1. Suppose i = 1,2. Then H; and D, intersect transversally except
at pz = (1:0:0) € P(c)*, and we have
let(P(c)™, Diff; D) = lety, (P(c)™, Diff; D)
=lct(Af 4 2@ =0); " +ia+5 =0))

2

5(
=lct(Af ; 3(@ = 0); 5" +i = 0))
3 ifi=1,
1, ifi=2.

Thus, by Lemma 3.27, we have

. ifi=1,
25 e
g2, ifi=2
leto (X3 Hy) > 33 ’
p(X: Hy) Lt ifi=3,
5. ifi=4
This proves the claim. m}

Claim 17. Suppose X is a member of the family Fas. Then Icty(X; H, ) > 1/2.
Proof of Claim 17. We have
X = XZI Cc P(l’ 3’ 7, 1, lo)x,s,u,v,w
and p = p,, is of type 1—10(1, 3,7). We can write
F=w?v+wfii(x,s,u) + for (x, 5,1,v),
where fi; = fii(x,s,u) # 0 and fo1 = fo1(x, s,u,v) are quasi-homogeneous polynomials of degree
11 and 21, respectively. We have u®,s” € F by the quasi-smoothness of X, and we may assume

coeffr (u?) = coeffr(s7) = 1. We set F = F(x, s,u,0, 1), which can be written as

F = (ausx + Bs*x? + yux* + 65°x° + esx® + ox'") + (i +57),
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Table 4. Family Fus: Weights and LCT.

Case P(c)™f Diff G 7 6

(i) P(1,1,1) 0 i (5% + %) 1 1

i) P2,1,7) 2H; $x+ia+5 2/3 2/3

(i)  P(1,3,1) $Hz + S H; AR+t +5 1 9/14

Giv) P(1,1,7) 2H; SR +a+5 5/6  13/21

~)  P3,1,7) 3H; + 3H; §2+a+§5 1 7/12

o) P11 PHz+S$Hy+3H;  R+ii+3§ 1 131/231

where a, 8, ...,, € C. We introduce various 3-tuples (¢ = (cy, c2, c3) of positive integers accordin
p c p g g

to the following division into cases. We denote by G. the lowest weight part of F with respect to
wt(x, s,u) = c.

(i) a # 0. In this case, we may assume & = 1. We set ¢ = (1, 1, 1). Then we have G, = usx + u.

(i) « =0and g # O In this case, we may assume 8 = 1. We set ¢ = (6,3,7). Then we have
G. = =sx2+ud+s7

(iii) « = B =0and vy 9& 0. In this case, we may assume y = 1. We set ¢ = (7,6, 14). Then we have
G:= ux* +u + 57,

iv) a=p=y= O and ¢ # 0. In this case, we may assume ¢ = 1. We set ¢ = (3,3, 7). In this case, we
have G, = s 20 +ud + 57,

(v) a =B=vy=0=0and ¢ # 0. In this case, we may assume & = 1. We set ¢ = (9, 12,28). In this
case, we have G, = sx8 +u? +57.

(vi) @ = B =7y =06 =¢ =0.In this case, we may assume § = 1. We set ¢ = (21,33, 77). In this case,

we have x!' + 3 + 57.

The descriptions of P(g)Wf, Diff and Gf.’f are given in Table 4, where we choose X, §, i# as homogeneous
coordinates of P(c)"!.

We set D, = Dgfc We explain the computation of 77 := lct(P(c)™', Diff; D.) whose value is given in
the fifth column of Table 4. The computation 77 = 1 is straightforward when we are in case (i) since D,
is the union of of a line and a conic on P? intersecting at two points. In the other cases, D, is the divisor
defined by GWf 0 which is a quasi-line in P(C)Wf If we are in one of the cases (iii), (v) and (vi), then
any two of the components of Diff +D, intersect transversally, which implies = 1. If we are in case
(ii) or (iv), then Hj; and D, intersect transversally except at q = (1:0:0) € P(c)™. We set e = 3,2 if
we are in case (ii), (iv), respectively. Then we have

let(P(c)*, Diff; D) = letq(P(c)™, Diff; D,.)
= let(,0) (A2 5, 2( = 0); (5° + @+ 57 = 0))
= let(,0) (A7 3 (@ = 0); (3° +ii = 0)).

This completes the explanations of the computations of 7. We set

_Ja +cr+cC3
deg (G¥T) 7
which is described in the sixth column of Table 4. By Lemma 3.27, we have Ict,(X; H,) > 6 > 1/2 and

the claim is proved. O

By Claims 14, 15, 16 and 17, we have lct, (X; %HV) > 1/2.Let D € |A|g be an irreducible Q-divisor
other than %H\,. We set A = (r +¢)/(2r + ¢), and we will show that Ict,(X; D) > A. Suppose not, that
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is, (X, AD) is not log canonical at p. Let ¢: ¥ — X be the Kawamata blowup of p € X. Then, for the
proper transforms H; and D of H; and D, respectively, we have

r+c

H, ~cp*A - E,
D ~Q (,D*A - EE,
r
where ¢ € Qs¢. By [Kaw96], the discrepancy of the pair (X, AD) along E is negative, and thus we have

e > 1/A. By [CPROO, Theorem 4.9], =Ky ~g ¢*A — %E is nef (more precisely, —mKy defines the
flopping contraction for a sufficiently divisible m > 0). Hence, (—Ky - H, - D) > 0 and we have

e(r+c)

0 < (-Ky - H; - D) = c(A%) = ——5—(E?)
r
_2r+c_e(r+c)<2r+c_r+c_0
"~ abr abr abr  Adabr

This is a contradiction. Therefore, Icty(X; D) > A and thus

(X) = minllet,(x: 2, ], 2L ]
o' ;= P — —.
P - PV e 2r+c] T2

This completes the proof of Proposition 5.18 when X has a unique QI center.

5.6.b. Case: X has exactly three distinct QI centers
By Lemma 5.12, we can choose homogeneous coordinates so that

X = X3r C P(l, a, b, r, r)x,y,z,lvw’

where a is coprime to b, a < b and a + b =r. Let p € X be a QI center. Then we may assume p = p,,
by replacing # and w suitably. Then the defining polynomial F of X can be written as

F= Wzt +Wfor + far,

where f,(x,y,z) and f3,(x, y, z,t) are quasi-homogeneous polynomials of degrees 2r and 3r, respec-
tively. We have (A3) = 3r/abr* = 3/abr. By Lemma 3.29, we have

(X) > 2 2
o7 > — ==,
P rab(A3) 3

and Proposition 5.18 is proved when X has exactly three distinct QI centers.

5.6.c. Case: X has exactly two distinct QI centers and their singularity types are equal
By Lemma 5.12, we can choose homogeneous coordinates so that

X = X4r C P(l’aa b9 r, 2r)x,y,z,t,w,

where a is coprime to b, a < band a+ b =r. Let p € X be a QI center. We may assume p = p,; by
replacing w suitably. Then the defining polynomial F of X can be written as

F = t2W + tf3r +f4r,
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where f3,(x, y, z) and fa,(x, y, z, w) are quasi-homogeneous polynomials of degrees 3r and 4r, respec-
tively. Note that (A3) = 4r/2abr? = 2/abr. By Lemma 3.29, we have

2

ap(X) > m =1,

and Proposition 5.18 is proved in this case.

5.6.d. Case: X has exactly two distinct QI centers and their singularity types are distinct
By Lemma 5.12, we have

X =Xsa3p CP(L,a,b,71,72)x u,v,0,w5

where a is coprime to b, ry =a + b and r, = 2a + b.
We first consider the QI center p = p; € X of type %(1, a, b). The defining polynomial F of X can
be written as

2
F =t"w+tf3a126 + faa+3bs

where f3g106 = faaron (x,u,v) and fagi3p = faqssp (x, u, v, w) are quasi-homogeneous polynomials of
the indicated degrees. Note that (A%) = (4a + 3b)/abrr,. By Lemma 5.12, we have

2 2,  4a+2h 2

X) > - - 2
@(X) 2 A T da+3b  da+3b 3

We next consider the QI center p = p,, € X of type %(1, a,a + b). Then the defining polynomial F
of X can be written as

2
F=wVv+wfaop + faas3n,

where frq400 = fravop (X, u,t) and fagi3p = fag+3p (x,u,v,t) are quasi-homogeneous polynomials of
the indicated degree.

Suppose t?w € F,thatis, > € fr4425. Then omult, (H,) = 2 and we have Ict, (X; ,%HV) >b/2>1/2.
Let D € |Alg be an irreducible Q-divisor other than %HV. We see that the set {x, u, v} isolates p since
t?>w € F. In particular, a general member T € |aA| does not contain any component of the effective
1-cycle D - H;. Then we have

2omulty(D) < (ppD - poHy - ppT)s < 12(D - Hy, - T)
4a +3b
a+b ’

= rba(A%) =

This implies

2a +2b

Iety(X; D) >
p(X;D) = 7=

1
> —.
2

Therefore, we have ap(X) > 1/2.
In the following, we consider the case where Pwe¢F.

Claim 18. If b > 2, then Icty(X; $H,) > 1/2.

Proof of Claim 18. By the quasi-smoothness of X at p;, we have ’u € fj443p since t>w ¢ F by
assumption. Hence, we have omult, (H, ) < 4 and this shows lct, (X; %H‘,) >1/2. O

If b = 1, then X is a member of a family F; withi € {13,25}.
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Table 5. Family Fi3: weights and LCT.

Case P(o)™f Diff G n 0
6) P(e,3,2) 0 i (@? + %) 5/9 5/9
()  P(7,2,3) 1Hx (A% + 0+ Afid)  2/3 2/3
(i) P4,1,3) 2H:++iH; 2 (x+fa+aa*) >5/9 >5/9
iv) P(3,2,1) §H,-c+§H,; dPER+Prafa) >7/12 >17/12
(v)  P(11,2,3) 3Hx X+ Pa+ Afat >1/2 >1/2

Claim 19. If X is a member of the family Fi3, then Icty(X; H, ) > 1/2.
Proof of Claim 19. We have

F=w?+ wfe(x,u,v,t) + fi1(x,u,v,t).

Note that f(x, u,0,) # 0 as a polynomial since p € X is nondegenerate. We set F = F(x,u,0,t,1) €
Clx,u,t]. We have r*u € F, and we may assume coeff (£*u) = 1. If tux € f;, then the cubic part of F
is not a cube of a linear form, and thus we have Ict,(X; H,) > 1/2 by Lemma 3.28. In the following,
we assume tux ¢ fs. Then we can write

F = (au® + Bu*x® + yix + sux* + ex®) + (FPu + tu* + xg1),

where @, ,...,¢6,4 € C and g19 = gi0(x, u, ) is a quasi-homogeneous polynomial of degree 10. We
introduce 3-tuples ¢ = (c1, c2, ¢3) of positive integers according to the following division into cases.
We denote by G the lowest weight part of F with respect to wt(x, u, ) = c.

(i) a # 0. In this case, we may assume a = 1. We choose and fix a sufficiently large integer e which is
coprime to 2 and 3, and we set ¢ = (e, 3,2). Then we have G, = u® + 3u.
(ii)) @ = 0 and B # 0. In this case, we may assume 8 = 1. We set ¢ = (7,4,6). Then we have
G. = u?x? + Bu + Atu®.
(iii) @ = B = 0 and y # 0. In this case, we may assume y = 1. We set ¢ = (8,6,9). Then G, =
tx3 + Bu + Atu®.
(ivy @ = B =7y =0and 6 # 0. In this case, we may assume § = 1. We set ¢ = (9,8,12). Then
G. = ux® + 3u + Atu®.
(v) @ = B =17y =9 = 0. In this case, we may assume € = 1. We set ¢ = (11, 12, 18). Then we have

X0+ Pu + At

The descriptions of P(c)*f, Diff and Ggf are given in Table 5, where we choose &, i, 7 as homogeneous

coordinates of P(c)™.
We set D, = Dg{ We explain the computation of 7 := lct(P(c)"', Diff; D.) whose value (or lower

bound) is given in the fifth column of Table 5. o
Claim 20. If X is a member of the family F>s, then Icto(X; H,) > 1/2.
Proof of Claim 20. We have

F=whv+wf(x,u,v,0) + fis(x,u,v,1).

Note that f3(x,u,0,7) # 0 as a polynomial since p € X is nondegenerate. We set F = F(x,u,0,t,1) €
C[x,u,t]. We have ’u,u’ € F, and we may assume coeffr (1*u) = coeffr (u’) = 1. If tux € fg, then
the cubic part of F is not a cube of a linear form and thus we have lety(X; Hy) > 1/2 by Lemma 3.28.
In the following, we assume fux ¢ fg. Then we can write

F = (au’x* +,8tx4 + )/ux5 +6x) + (Pu+u’ +Xg14),
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Table 6. Family Fs: Weights and LCT.

Case P(c)™f Diff Ggf n 7]

i) P(3,1,4) 1Hz +%H; aax+fi+a*) 1 23/30
) P(11,3,4) %Hx fx+Pa+a> 1 13/20
(i) P(1,1,1) 2He+3Hz+3H; a'™(x+f+a) 1 47/75
i)  P(5,1,4) IH: +3H; X+fa+iid 1 71/120

where a,8,y,6 € C and g4 = gia(x,u,t) is a quasi-homogeneous polynomial of degree 14. We
introduce 3-tuples ¢ = (c1, ¢, ¢3) of positive integers according to the following division into cases.
We denote by G the lowest weight part of F with respect to wt(x, u,t) = c.

(i) a # 0. In this case, we may assume @ = 1. We set ¢ = (9, 6, 8). Then we have G = u’x* + 3 u+u.

(i) @ = 0 and B # 0. In this case, we may assume 8 = 1. We set ¢ = (11,12, 16). Then we have
Ge = txt + Bu+ .

(iii) @ = B = 0 and y # 0. In this case, we may assume y = 1. We set ¢ = (12, 15,20). Then
G. = ux> + u +ud.

(iv) @« =B =7y =0and § # 0. In this case, we may assume § = 1. We set ¢ = (15,24,32). Then

G£=x8+t3u+u5.

The descriptions of P(c)*, Diff and G‘C"f are given in Table 6, where we choose %, iZ, f as homogeneous
coordinates of P(c)"!.

We set D, = Dgf We explain the computation of 1 := lct(P(c)*", Diff; D.) whose value is given
in the fifth column of Table 6. Suppose that we are in case (ii) or (iv). Then D, is a prime divisor
which is quasi-smooth and intersects any component of Diff transversally. This shows = 1. Suppose
that we are in case (i). Then D, = H; + T, where I' = (ii% + 7 + i* = 0) is a quasi-line. We see that
any two of Hy, H;, Hy, I intersect transversally, and thus 7 = 1. Suppose that we are in case (iii). Then
D, = %Hﬁ + T, where I' = (X + fii + i = 0) is a quasi-line. We see that any two of Hy, H;, Hy and I
intersect transversally, and thus n = 1.

We set
. cr+cy+cs
6 == mingy —————,n ¢,
wte (F)

which is listed in the sixth column of Table 6. By Lemma 3.27, we have lct,(X; H,) > 6 > 1/2 and the
claim is proved. O

By Claims 18, 19 and 20, we have lcty(X; %HV) > 1/2. Suppose ap(X) < 1/2. Then there exists
an irreducible Q-divisor D € |A|g other than %HV such that (X, %D) is not log canonical at p. Let
¢: Y — X be the Kawamata blowup at p with exceptional divisor E. We set A = ordg (D). Since the
pair (X, %D) is not canonical at p, the discrepancy of (X, %D) along E is negative, which implies

2
A>—.
mn

By [CPROO, Theorem 4.9], the divisor —Ky ~q ¢*A — %E is nef. We see that D - H,, is an effective
l-cycle on Y, where D and H,, are proper transforms of D and H,,, respectively. It follows that
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(2a +2b)A

0<(-Ky-D-H,) =b(A% - —(E”)
r
2
_ (4a +3b) — 2Qa +2b)rA - b <o.
aryry aryry

This is a contradiction, and we have ap(X) > 1/2. Therefore, the proof of Proposition 5.18 is completed.

6. Families ]:2, ]:4, ]:5, .7:6, .7:8, ]:1() and f14
This section is devoted to the proof of the following theorem.

Theorem 6.1. Let X be a member of a family F; withi € 1;. Then

a(X) > %

6.1. Families F¢, Fio and Fi4

In this section, we prove Theorem 6.1 for families Fg, Fi9 and F14 whose member is a weighted
hypersurface

X = XZ(a+2) - P(l’ I,l,a,a+ 2)x,y,z,t,w,

where a = 2, 3,4, respectively. Let X be a member of a family F; with i € {6, 10, 14}.
Let p € X be a smooth point. We may assume p = p, by a suitable choice of coordinates. By Lemma
4.3 (see also Remark 4.4), we have

1 1
wX) 2T Ty

Let p € X be a singular point. If i = 14, then p € X is of type %(1, 1, 1) and we have ap(X) > 1 by
Proposition 5.2. If i = 6, 10, then p € X is of type %(1, 1,1), %(1, 1,2), respectively, and in both cases
we have ap(X) > 1/2 by Proposition 5.4. Thus, the proof of Theorem 6.1 for families Fs, F19 and Fi4
is completed.

6.2. The family F,

This section is devoted to the proof Theorem 6.1 for the family /5. In the following, let
X=XscP(L,L,L1,1,2)xy 20w

be a member of F;, with defining polynomial F = F(x,y, z,t, w).

6.2.a. Smooth points

Let p € X be a smooth point. In this subsection, we will prove ap(X) > 1/2. We may assume p = p, by
a choice of coordinates. The proof will be done by division into cases.

6.2.a.1. Case: x>w € F
In this case, we can write

F=xw +x2f3 +xf4+ fs,

where f; = fi(y,z,t,w) is a quasi-homogeneous polynomial of degree i. We have mult,(H,,) > 3.
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Claim 21. let,(X; $H,,) > 1/2.
Proof of Claim 21. This is obvious when mult,(H,,) < 4, hence we assume mult,(H,,) > 5. Then we
can write

F = X3w + x*wa, +)c(ozw2 +wby) + w2cy +wds + es,

where @ € Cand ay, by, ¢y, d3, es5 € Cly, z, t] are quasi-homogeneous polynomials of indicated degrees.
We show that (es = 0) c P(1, 1, 1), . ; is smooth. Indeed, if it has a singular pointat (y:z:¢) = (1:u:v),
then, by setting 6§ € C to be a solution of the equation

% +x2a1 (A, 0, v) + xbo (A, u,v) +d3(A, u,v) =0,

we see that X is not quasi-smooth at the point (6:A: u:v:0) and this is a contradiction. The lowest
weight part of F(1,y,z,t,0) = es with respect to wt(y, z,7) = (1,1, 1) is es which defines a smooth
hypersurface in P2. By Lemma 3.27, we have leto (X, Hy,) = 3/5. Thus, letp(X; %HW) > 6/5 in this
case and the claim is proved. O

Let D € |Al|g be an irreducible Q-divisor other than %HW. We can take a Q-divisor T € |Alg such
that mult, (7)) > 1 and Supp(7’) does not contain any component of the effective 1-cycle D - H,, since
{y, z, t} isolates p. It follows that

3mult,(D) < (D -Hy, -T)py < (D - Hy, -T) = 5.

This shows lct, (X; D) > 3/5 and thus ap(X) > 1/2.

6.2.a.2. Case: x*w ¢ F
By a choice of coordinates, we can write

F = x4t +x3f2 +x2f3 +xf4 +f5,

where f; = f;(y, z,t, w) is a quasi-homogeneous polynomial of degree i with w ¢ f>.

Suppose w? € fy. In this case, mult,(H;) = 2 and hence Icty(X; H;) > 1/2. Let D € |Alg be an
irreducible Q-divisor other than H;. We can take a Q-divisor T € |Alg such that mult,(7) > 1 and
Supp(T’) does not contain any component of the effective 1-cycle D - H, since {y, z,} isolates p so that

2multy(D) < (D -H, -T)y < (D-H,-T) =

N |

This shows Ict, (X; D) > 4/5 and thus ap(X) > 1/2 in this case.

Suppose w? ¢ f;. We have Bs |Z,(A)| =T, where I = (y = z =t = 0) C X is a quasi-line. We
assume ap(X) < 1/2. Then there exists an irreducible Q-divisor D € |A|g such that (X, %D) is not log
canonical at p. Let S € |Z,(A)| be a general member so that S # Supp(D). Then S is a normal surface by
Lemma 3.7 and it is quasi-smooth along I'. Moreover, for another general T € |Z,(A)|, the multiplicity
of T'|s along I" is 1, that is, we can write

Tls =T +A,

where A is an effective divisor on S such that I" ¢ Supp(A). We see that I" is a quasi-line, S is quasi-
smooth at p,,,, I" passes through the %(1, 1) point p,, of S and (Kg - I') = 0. It follows that

1 3
2y . _ - _=Z
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by Remark 3.10. Hence,
(A-T)s = (Tls - Ds = (s = 2.

The divisor D|s on S is effective, and we write %D |s = yI'+E, where y > 0 and E is an effective divisor
on S such that I ¢ Supp(E). Since Bs|Z,(A)| = I" and S is general, we may assume that Supp(Z) does
not contain any component of Supp(A). In particular, (E- A)g > 0. Note also that

(Dls - A)s = (T|s - A)s = ((A?) = (T - T)s) = 2.
It follows that

2=(Dl|s-A)s 22y(I'-A)s =4y,

(S, %Dls + (1 —y)I') is not log canonical at p. By the inversion of adjunction, we have

which implies y < % We see that (X, %DIS) is not log canonical at p, and hence (S,I" + E) =

1 3 1
1> -+=-y= ((§D|S -y - D)s=(A-T)s = multp(Alr) > 1.

This is a contradiction and the inequality ap(X) > 1/2 is proved.

6.2.b. The singular point of type 3(1,1,1)
Let p = p,, be the singular point of type %(1, 1, 1). Note that the point p € X is a QI center.

6.2.b.1. Case: p is nondegenerate
By a choice of coordinates, we can write

F=w’t+wf3(x,y,2) +g5(x,v,2,1),

where f3, g5 are nonzero homogeneous polynomials such that f3 # 0 as a polynomial. Let ¢: ¥ — X
be the Kawamata blowup at p with exceptional divisor E.

Claim 22. lcty (X, H,) > 1.

Proof of Claim 22. The lowest weight part of F(x, y, z,0, 1) with respect to wt(x, y,z) = (1,1, 1) is f3.
By Lemma 3.28, we have ap(X) > 1/2 unless f3 is a cube of a linear form. Hence, it remains to prove
the claim assuming that f3 is a cube of a linear form. By a choice of coordinates, we may assume f3 = z°.
Let S be the divisor on X defined by x — Ay = 0 for a general A € C. By the quasi-smoothness of X, the
polynomial F cannot be contained in the ideal (z,7) C C[x,y, z,t, w]. This implies gs(x, y,0,0) # 0,
and hence gs(dy,y,0,0) # 0. By eliminating x, the surface S is isomorphic to the hypersurface in
P(1,1,1,2), 7.+ w defined by

G :=wit+wz +ay5 +2za4 +tby =0,

where a4 = a4(y, z), bs = ba(y, z,t) are homogeneous polynomials of degree 4 and « # 0 is a constant.
The lowest weight part of G(x, z,0, 1) with respect to wt(y, z) = (3,5) is z° + @y’ which defines a
smooth point of P(3, 5),, .. By Lemma 3.27, Ict, (S; H,|s) > 8/15, and hence Ict, (X; H;) > 8/15. Thus,
the claim is proved. m}

Let D € |Alg be an irreducible Q-divisor on X other than H,. We can take T € |A|g such that
mult,(7) > 1, and Supp(T) does not contain any component of the effective 1-cycle D - H; since
{x, y, z,t} isolates p. Then

3omulty(D) <2(D-H,;-T) =5
since omult, (H;) = 3. This shows lct,(X; D) > % and thus ap(X) > %
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6.2.b.2. Case: p is degenerate
In this case, we have ap(X) = 3/5 by Proposition 5.16. Therefore, the proof of Theorem 6.1 for the
family J, is completed.

6.3. The family F,

This subsection is devoted to the proof of Theorem 6.1 for the family F4. In the following, let
X = X6 - P(la 1’ 19 2’ z)x,y,z,t,w
be a member of F; with defining polynomial F = F(x, y, z,t,w).

6.3.a. Smooth points
Let p be a smooth point of X. We will prove ap(X) > 1/2. We may assume p = p, by a choice of
coordinates. The proof will be done by division into cases.

6.3.a.1. Case: Either x*w € Forx*t € F
In this case, we have

2 2

%X > T T3

by Lemma 3.29.

6.3.a.2. Case: x*w,x%t ¢ F
We can write

F=Xy+x'h+X s+ fa+xfs + fo,

where f; = f;(y,z,t,w) is a quasi-homogeneous polynomial of degree i with £, w ¢ f5.
We claim lcty(X;Hy,) > 1/2. This is obvious when mult,(Hy) < 2 and hence we assume
mult, (Hy) > 3. Then we can write

6
F:=F(1,0,z,t,w) = Zfi(O, Z,t,w) = az’ +ﬁtz2 +)/wz2 +c(t,w) + h,
i=2

where ¢(t,w) = f5(0,0,z,7) and h = h(y,t,w) is in the ideal (y,#, w)*. By the quasi-smoothness of X,
c cannot be a cube of a linear form. This implies that the cubic part of F is not a cube of a linear form.
Thus, lct,(X; Hy) > 1/2 by Lemma 3.28 and the claim is proved.

Let D € |A|g be an irreducible Q-divisor other than H,. We can take T € |2A|g such that
mult,(7) > 1 and Supp(7) does not contain any component of the effective 1-cycle D - H, since
{y, z,t,w} isolates p. Then we have

2multy(D) < (D -Hy -T) =2(A%) =3
since mult, (Hy) > 2. This implies Ict,(X; D) > 2/3 and thus ap(X) > 1/2.
6.3.b. Singular points of type %(1, 1,1)
Let p be a singular point of type %(1, 1,1). Then we have ap(X) > 1/2 by Proposition 5.18 (actually

we have ap(X) > 2/3 by the argument in Section 5.6.b). Therefore, the proof of Theorem 6.1 for the
family F4 is completed.
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6.4. The family F;

This subsection is devoted to the proof Theorem 6.1 for the family 5. In the following, let
X=X;C P(lv 1,1,2, 3)x,y,z,t,w
be a member of family F5 with defining polynomial F = F(x,y, z,t,w).

6.4.a. Smooth points
Let p be a smooth point of X. We will prove a;,(X) > 1/2. The proof will be done by division into cases.

6.4.a.1. Case:peU,UU,UU,
By a choice of coordinates x, y, z, we may assume p = py. By Lemma 3.29, we have

2 _6 o4
ay(X) 2 Ti2.(A) = 7° ifx*w € F,
P ﬁ =2, ifx*we¢ Fandx’t € F.

It remains to consider the case where x*w, x3¢ ¢ F. In this case, we can write
F=xy+X’fo+x* i+ fut X fs+xfo + fi,
where f; = f;(y, z,t,w) is a quasi-homogeneous polynomial of degree i with t ¢ f> and w ¢ f3.

Claim 23. Ict,(X; Hy) > 1/2.

Proof of Claim 23. This is obvious when mult,(H,) = 2, and we assume mult,(Hy) > 3. It follows that
each monomial appearing in F is contained in (y)U(z, 1, w)3. A monomial of degree d € {2,3,4,5,6,7}
in variables y, z,#, w which is contained in (y) U (z,, w)? is contained in (y) U (z,7)* except for the
monomial w2z of degree 7. Hence, we can write

F=x%+yg+h+aw’s,

where g = g(x,y,z,t,w) € Clx,y,z,t,w] and h = h(x,z,t,w) € (g, )% If @ = 0, then X is not
quasi-smooth at any point of the nonempty set

(y=x+g=z=1=0)cP(1,1,1,2,3).

Thus, w2z € F and we see that F = F(1,0,z,t,w) € (2,t, w)3 and the cubic part of F is not a cube of
a linear form since w?z € F and w> ¢ F. By Lemma 3.28, we have lct,(X; Hy) > 1/2, and the claim is
proved. O

Let D € |A|g be an irreducible Q-divisor other than H,. We can take a Q-divisor T € |3A|g such
that mult,(7) > 1 and Supp(7’) does not contain any component of the effective 1-cycle D - Hy, since
{y,z,t,w} isolates p. Then

7
2multy,(D) < (D -Hy-T), < (D -Hy -T) =3(A%) = 3
since mult, (Hy) > 2. This shows lct,(X; D) > 4/7 and thus p(X) > 1/2.

6.4.a.2. Casep¢ U, UU, VU,

If wt?> € F, then X \ (U, U U, UUy,) consists of singular points. Hence, we have wt? ¢ F in this case,
and p is contained in the quasi-line I' := (x = y = z = 0) ¢ X. We will show ap(X) > 1. Assume to the
contrary that ap(X) < 1. Then there exists an irreducible Q-divisor D € |A|g such that the pair (X, D)
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is not log canonical at p. Let S € |A| be a general member and write D|s = yI"+ A, where y > Ois a
rational number and A is an effective 1-cycle on S such that I" ¢ Supp(A).

Claim 24. (I'%)g = —-5/6 andy < 1.

Proof of Claim 24. We see that S has singular points of type %(1, 1) and %(1, 2) at p; and p,,, respec-
tively, and smooth elsewhere since S € |A| is general. Since I" is a quasi-line on S passing through
ps, Pw and Kg = (Kx + S)|s ~ 0 by adjunction, we have

1 2 5
N - h 22
(I')s = 2+2+3 5

We choose a general member T € |A| which does not contain any component of A. This is possible
since Bs |A| = T". We write T'|s = I"+ E, where E is an effective divisor on S such that I" ¢ Supp(E). We
have

(Dls-E)s = (Dls - (Tls —T))s =
(I-B)s =T (Tls -T))s =
Note that Z does not contain any component of A by our choice of 7, and hence
1=(Dls-B)s=((yT'+A)-E)s 2 y(I'-E)s =,
as desired. O

The pair (S, Dl|s) = (S,yI" + A) is not log canonical at p. Hence, the pair (S,I" + A) is not log
canonical at p since y < 1. By the inversion of adjunction, we have mult,(A|r) > 1 and thus

1

1< multp(Alr) < (A-D)s = (Dls =y1) -D)s = ¢ +

AN

y <1

This is a contradiction, and we have ap(X) > 1.

6.4.b. The singular point of type %(1, 1, 1)
Let p = p; be the singular point of type %(1, 1,1).

6.4.b.1. Case: t>*w € F
In this case, we have

®X) 2 Ty T

by Lemma 3.29.

6.4.b.2. Case:’w ¢ F
Replacing x, y, z, we can write

F=0x+f+tfs+ fr,
where f; = f;(x,y, z, w) is a quasi-homogeneous polynomial of degree i with w ¢ f3.
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Claim 25. If mult,(H,) > 3, then either w2y € F orw?z € F.

Proof of Claim 25. Suppose w?y, w?z ¢ F. Then h := F(0,y, z,,w) is contained in the ideal (y, z)> C
Cly, z,t,w], and we can write F = xg + h, where g = g(x, v, z,t, w). We see that X is not quasi-smooth
at any point in the nonempty subset

(x=y=z=g=0)cP(1,1,1,2,3).
This is a contradiction, and the claim is proved. O

We set F := F(0,y,z,1,w). By Claim 25, either F e (v, z2w)2\ (v, z,w)? or F € (y,z,w)? and the
cubic part of F is not a cube of a linear form since w3 ¢ F. By Lemma 3.28, we have ap(X) > 1/2
since p € X is not a maximal center.

6.4.c. Singular point of type %(1, 1,2)
Let p = p,, be the singular point of type %(1, 1,2). We can write

F=w’x+w(at* +tar(y,2) + ba(y,2)) + f1(x,y,2,1),

where @ € C and ay = az(x,y), by = bs(y,2), f7 = f1(x,y,z,t) are quasi-homogeneous polynomials
of degree 2, 4,7, respectively. Let g = gp be the quotient morphism of p € X and p be the preimage of p.

6.4.c.1. Case:a #0

We have multy,(Hy) = 2 and lcty(X; Hy) > 1/2. Let D € |A]g be an irreducible Q-divisor other
than H,. We can take a Q-divisor T' € |A|g such that mult,(7) > 1 and Supp(7T’) does not contain any
component of the effective 1-cycle D - H, since {x, y, z} isolates p. Then

2omulty(D) < (¢"D - q¢"Hy - q'T)s <3(D-H, -T) = >

This shows lct, (X; D) > 4/7 and thus ap(X) > 1/2.

6.4.c.2. Casea=0anda, #0

The cubic part of F(0, y, z,¢, 1) is tas, and, by Lemma 3.28, we have Icty (X; Hy) > 1/2.LetD ~g A
be an irreducible Q-divisor on X other than H. Then we can take a general T € |Z,(2A)| = |2A| which
does not contain any component of DN H, since Bs |2A| = p. We see that T is defined by r—g(x, y,z) =0
on X, where g € C[x, y, z] is a general quadratic form. Let p = pp: l7p — Up be the orbifold chart of X
containing p and let p be the preimage of p. It is then easy to see that the effective 1-cycle p*H, - p*T
on Up has multiplicity 4 at p. Then we have

4omulty(D) < (p*D - p*Hy - p*T)s <3(D -Hy-T) =17

This shows Ict, (X; D) > 4/7 and thus ap(X) > 4/7.

6.4.c.3. Case:a =ay=0and by #0
By similar arguments as in the proof of Claim 25, we see that either £’y € f7 or £z € f7. We choose
zand 7 so that b4 (0, z) = z* and coeff ¢ (3z) = 1. Then we have

F(0,0,z,,1) = A4z +,81‘223 + ytzs + 5Z7,
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where 3,7, 6 € C. The lowest weight part of F(0,0, z, ¢, 1) with respect to wt(z,7) = (1, 1) is z* + £z
which defines four distinct points of P;J. Hence, we have

1
lety(X; Hy) > lctp(Hy;Hx|Hy) > 3

by Lemma 3.27. Let D € |A|g be an irreducible Q-divisor other than H,. We can take a Q-divisor
T € |2A]g such that omults(7) > 1 and Supp(7T’) does not contain any component of the effective
1-cycle D - H,, since {x, y, z, t} isolates p. Then

4omulty(D) < (¢*D -q"Hy - q'T)s <3(D-Hy-T) =17

since omult, (H,) = 4. This shows Ict,(X; D) > 4/7 and thus op(X) > 1/2.

6.4.c4. Case:a=a,=bs=0
In this case, the point p € X is a degenerate QI center and we have o (X) = 4/7 by Proposition 5.16.

6.5. The family F3g

This subsection is devoted to the proof of Theorem 6.1 for the family Fg. In the following, let
X=XocP(1,1,1,3, %)y z.1,w

be a member of Fg with defining polynomial F = F(x,y, z,t,w).

6.5.a. Smooth points

Let p € X be a smooth point. We will prove a;(X) > 1/2. We may assume p = py. The proof will be
done by division into cases.

6.5.a.1. Case: x>w € F
We can write

F=xw +x4f5 +x3f6 +x2f7 +xfg + fo,
where f; = fi(y, z,t, w) is a quasi-homogeneous polynomial of degree i. We have mult, (H,,) = 3 since
> € fo. Let D € |A|g be an irreducible Q-divisor on X. Let S € |Z,(A)| be a general member so that
Supp(D) # S. Since {y, z, w} isolates p, we can take a Q-divisor T’ € |A|g such that Supp(7’) does not

contain any component of the effective 1-cycle D - S and mult,(T") > 3/4 (Note that T is one of Hy, H,
and %HW). Then we have

3 3
This shows lct, (X; D) > 1 and thus ap(X) > 1.

6.5.a.2. Case: x>w ¢ F and x%t € F
We can write

F = x6t +x5f4 +X4f5 +x3f6 +x2f7 +xfg + fg,

where f; = f;i(y, z,t,w) is a quasi-homogeneous polynomial of degree i with w ¢ f4. Let S, T € |Z,(A)|
be general members. Note that S is smooth at p. The intersection S N T is isomorphic to the subscheme
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in P(1y, 3;,4,,) defined by the equation F(x,0,0,¢, w) = 0, and we can write
F(x,0,0,t,w) = X0t + a3t + ﬁxzwt + yxw2 +13,

where a, 8,y € C.

Claim 26. Ify # 0, then S - T =T, where T is an irreducible and reduced curve of degree 3/4 that is
smooth at p.

Proof of Claim 26. Suppose y # 0. Then it is easy to see that the polynomial F(x,0,0, ¢, w) is irre-
ducible. Hence, the curve

I'=(y=z=F(x,0,0,t,w)=0) cP(1,1,1,3,4).
is irreducible and reduced. It is also obvious that degI" = 3/4 and I is smooth at p. O

If v # 0, then we have @p(X) > 1 by Claim 26 and Lemma 3.17.
In the following, we consider the case where y = 0. We set

A:(y:z:[:o)CP(1,1,1,3,4),

which is a quasi-line of degree 1/4 passing through p. Note that A is smooth at p.

Claim 27. If y =0 and B # O, then T|s = A + E, where E is an irreducible and reduced curve which
does not pass through p. Moreover, the intersection matrix M (A, E) satisfies the condition (x).

Proof of Claim 27. We have
F(x,0,0,¢t,w) = t()c6 +axt +ﬁx2w + 12),
and the polynomial x° + ax3t + Bx?w + 2 is irreducible since B # 0. It follows that T|g = A + Z, where
E=(y=z=x+ax’t+px*w+1*=0) c P(1,1,1,3,4)

is an irreducible and reduced curve of degree 1/2 that does not pass through p. We have ANE = {p,,,q},
where g = (1:0:0:0:-1/p). It is easy to see that S is quasi-smooth at p,, and g, hence S is quasi-
smooth along A by Lemma 3.9. We have Sing-(S) = {p, } and p,, € S is of type %(1, 3). By Remark
3.10, we have

By taking intersection number of T'|s = A + E and A and then T'|s and E, we have

3
A-B)y=2, (B)5=-1.
(A-B)=35, (Es

It follows that the intersection matrix M (A, E) satisfies the condition (x). O

Claim 28. If y = =0and a # £2, then T|s = A + ©1 + Oy, where O and O, are distinct quasi-lines
which does not pass through p. Moreover, the intersection matrix M (A, ©1, ®,) satisfies the condition

(%)
Proof of Claim 25. We have

F(x,0,0,1,w) = t(x® + ax’t +12) = t(r — ) (t — A7'x%),
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where 4 # 0, 1 is a complex number such that @ = 1 + A~!. Hence, we have
Tls=A+0;+0,,

where

[1]

1 =(y=z=t—/1x3=0), Ezz(y=zzt—/l_1x3=0)
are both quasi-lines of degree 1/4 that do not pass through p. We have A N (©; U ©,) = {p,y}

and S is clearly quasi-smooth at p,,. It follows that S is quasi-smooth along I' by Lemma 3.9, and
Sing, (S) = {pw}, where p,, € S is of type %(1, 3). Thus, we have

(a5 =-2.

By similar arguments, we see that S is quasi-smooth along ®; and Singg (S) = {pw } fori = 1,2, and
hence

5
(©])s =7

By taking intersection number of T'|s = A + ®] + ©, and A, ©1, ©;, we conclude
3
(A-O1)s =(A-0O)s = (01 02)s = T
It is then straightforward to see that M (A, ©1, ®;) satisfies the condition (*). O

Claim 29. If y =B =0and a = £2, then T|s = A + 20, where © is an irreducible and reduced curve
which does not pass through p. Moreover, the intersection matrix M (A, ®) satisfies the condition ().

Proof of Claim 29. Without loss of generality, we may assume @ = —2. We have
F(x,0,0,1,w) = t(t — x*)2,
and hence
Tls = A +20,
where
O=(y=z=1-x"=0)cP(1,1,1,3,4)

is a quasi-line of degree 1/4 that does not pass through p. By the same arguments as in Claim 28, we have

(A% =3,

Then, by taking intersection number of T'|s = A + 20 and A, ®, we have
3 1
A-Os== (0)g=—.
( )s =7, (O)s=—7
Thus, the matrix M (A, ©) satisfies the condition (%). O
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By Claims 27, 28, 29 and Lemma 3.21, we conclude

1 2
X)>min{l, —— -2
@p( )—mm{ (A3)+1—degA} 3

6.5.a.3. Case: x>w,x%t ¢ F
Replacing y and z, we can write

F=x3y+xX"p+x8f+ X0 fa+x* fs + 3 fo + X2 fr + x fs + fo,

where f; = f;(y, z,t,w) is a homogeneous polynomial of degree i with w ¢ f4 and 7 ¢ f5. Note that we
have 2 < mult,(Hy) < 3 since P eF.

Let D € |A|g be an irreducible Q-divisor other than H,. We can take a Q-divisor T € |4A|g such
that mult,(7) > 1 and Supp(7’) does not contain any component of the effective 1-cycle D - Hy, since
{y,z,t,w} isolates p. Then

2multy(D) < (D - Hy -T)y < (D - Hy - T) = 4(A%) = 3.

This shows Ict, (X; D) > 2/3 and thus it remains to show that Ict(X; Hy) > 1/2.

Suppose that either mult,(Hy) = 2 or multy(Hy) = 3, and the cubic part of F := F(1,0,z,¢,w) isa
cube of a linear form. Then lct,(X; Hy) > 1/2 by Lemma 3.28, and we are done.

In the following, we assume that mult,(H,) = 3 and the cubic part of F is a cube of a linear form.
Since 3 € F and w3 ¢ F, we may assume that the cubic part of F is 13 after replacing ¢.

We claim w?z € F. We see that a monomial other than w2z which appears in F with nonzero
coefficient is contained in the ideal (z,7)> ¢ C[z,t,w]. We can write F = yG + F(x,0,z,t,w) for
some homogeneous polynomial G(x, y, z,t,w). If w?>z ¢ F, then F(x,0,z,t,w) € (z,7)* and X is not
quasi-smooth at any point contained in the nonempty set

(yzzz[:GZO)CP(1,1,1’374)'

This is a contradiction and the claim is proved.
Then we may assume coeff (w?z) = 1 and, by replacing  and w, we can write

F=ast+as2’ + (ﬁtz3 +ae2®) + (ywz3 +o1t + a7z )+
+(ew + (22 + 2 + ag2®) + WPz + 2 + 0772 + 220 + a92d),

where a4, ...,@9,8,7,...,4 € C. The lowest weight part of F with respect to wt(z,t,w) = (6, 8,9) is
G = asz* + w2z + 1. We set P = P(6, 8,9). Then P* = P(1,4,3); ;. and, by Lemma 3.27, we have

23
leto(X; Hy) > min{ﬁ, lct(P“’f, Diff; F)},

where

PP
D]ﬂ:=§ ?/f‘l'EH‘%t,

[=DY = (auz* + Wz +7=0) c P(1,4,3),

are (Q-)divisors on P* with Htﬁ"f =(f=0)and Hv‘;f = (w = 0). It is easy to see that any pair of curves
H;”f, H" and I intersect transversally. If @, # 0, then H;”f NHY'NT = 0, and thus lct(P*", Diff; T) = 1.
If a4 = 0, then H[YVf N Hgf N T = {pz}. In this case, by consider the the blowup at pz, we can confirm
the equality Ict(P¥, Diff; T") = 5/6. Thus, we have lety(X; Hy) > 5/6, and the proof is completed.
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6.5.b. The singular point of type %(1, 1,3)
Let p = p,, be the singular point of type 31(1, 1,3). We can write

F=wix+w(tax(y,2) +bs(y,2)) + fo(x,y,2,1),

where a; = ax(y,z), bs = bs(y,z) and fy = fo(x,y, z, t) are homogeneous polynomials of degrees 2, 5
and 9, respectively.

Suppose that a, # 0 as a polynomial. Then F := F(0,y,z,t,1) € (y,z,¢)* and its cubic part
tay + 13 is not a cube of a linear form. It follows that Icty (X5 Hy) > 2/3 by Lemma 3.28. Let D € |A|g
be an irreducible Q-divisor other than H,. Since the set {x, y, z} isolates p, we can take a Q-divisor
T € |Alg such that omulty(7) > 1 and Supp(7’) does not contain any component of D - H,. We have
omult, (H,) = 3. It follows that

3omulty(D) < (¢"D -q"Hy - q'T)s <4(D-Hy-T) =3,

where ¢ = ¢ is the quotient morphism of p € X and p is the preimage of p via g. This shows
lcty(X; D) > 1 and thus ap(X) > 1/2.

Finally, suppose that a; = 0 and b5 # 0. Replacing y and z, we may assume z> € bs and coeffp (z°) = 1.
We may also assume that coeff 4 (£3) = 1 by rescaling ¢. Then we have

F(0,0,z,2,1) = 22+ f5(0,0, z,1).

The lowest weight part with respect to the weight wt(z, 7) = (3,5) is z° + ¢ and thus

8

leto(X; Hy) > lctp(Hy;Hx|Hy) = R

We have omult,(H,) = 3 and the set {x,y, z} isolates p. Hence, by the same argument as in the the

case ap # 0, we have Icty,(X; D) > 1 for any irreducible Q-divisor D € |A|g other than H,. Thus,
ap(X) > 1/2.

Suppose thata, = bs = 0. Then we have a;p, (X) = 5/9 by Proposition 5.16, and the proof is completed.

Remark 6.2. The singular point p € X of type i(l, 1,3) is a QI center. When p is nondegenerate,
the above proof shows that Ict,(X; D) > 1 for any irreducible Q-divisor D € |A|g other than H, and
leto(X; Hy) > 1/2.

7. Further results and discussion on related problems
7.1. Birationally superrigid Fano 3-folds of higher codimensions

We can embed a Fano 3-fold into a weighted projective space by choosing (minimal) generators of the
anticanonical graded ring. We consider embedded Fano 3-folds. We have satisfactory results on the
classification of Fano 3-folds of low codimensions ([IFO0], [CCC11], [ABRO02]), and the following are
known for their birational (super)rigidity.

o Fano 3-folds of codimension 2 are all weighted complete intersections and they consist of 85 families.
Among them, there are exactly 19 families whose members are birationally rigid ([Okal4], [AZ16]).

o Fano 3-folds of codimension 3 consist of 69 families of so-called Pfaffian Fano 3-folds and one family
of complete intersections of three quadrics in P°. Among them, there are exactly three families whose
members are birationally rigid ([AO18]).

o Constructions of many families of Fano 3-folds of codimension 4 has been known (see, e.g., [BKR12],
[CD18]), but their classification is not completed. There are at least two families of birationally
superrigid Fano 3-folds of codimension 4 ([Oka20a]).
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For birationally rigid Fano 3-folds of codimension 2 and 3, K-stability and existence of KE metrics
are known under some generality assumptions.

Theorem 7.1 [KOW 18]. Let X be a general quasi-smooth Fano 3-folds of codimension ¢ € {2,3} which
is birationally rigid. We assume that X is a complete intersection of a quadric and cubic in P> when
¢ =2. Then a(X) > 1, X is K-stable and admits a KE metric.

Theorem 7.2 [Zhu20b, Theorem 1.3]. Let X be a smooth complete intersection of a quadric and cubic
in P°. Then X is K-stable and admits a KE metric.

Question 7.3. Can we conclude K-stability for any quasi-smooth Fano 3-fold of codimension 2 and 3
which is birationally (super)rigid? How about for Fano 3-folds of codimension 4 or higher?

7.2. Lower bound of alpha invariants
In the context of Theorem 1.6, the following is a very natural question to ask.

Question 7.4. Is it true that @ (X) > 1/2 (or a(X) > 1/2) for any birationally superrigid Fano variety?
If yes, can we find a lower bound better than 1/2?

The following example suggests that the number 1/2 is optimal (or the lower bound can be even
smaller).

Example 7.5. For an integer a > 2, let X,, be a weighted hypersurfaces of degree 2a + 1 in P(19*2, q) =
ProjC[xy, ..., X442, ], given by the equation

y2x1 + f(X1,. .., Xas2) =0,

where f is a general homogeneous polynomial of degree 2a + 1. Then X, is a quasi-smooth Fano
weighted hypersurface of dimension a + 1 and Picard number 1 with the unique singular point p of type

a+1
| N
~(1,...,1).
a

The singularity p € X is terminal. By the same argument as in the proof of Proposition 5.16, we obtain

a+1
2a+1°

a(X) < ap(X) =lctp(X; Hy,) =

When a = 2, X, = X, is a member of the family F, and it is birationally superrigid. We expect that X,
is birationally superrigid, although this is not proved at all when a > 3. If X,, is birationally superrigid
for a > 0, then it follows that there exists a sequence of birationally superrigid Fano varieties whose
alpha invariants are arbitrary close to (or less than) %

Question 7.6. Let X, be as in Example 7.5. Is X, birationally superrigid for a > 3?

7.3. Existence of KE metrics

For a quasi-smooth Fano 3-fold weighted hypersurface of index 1 which is strictly birationally rigid, we
are unable to conclude the existence of a KE metric as a direct consequence of Theorem 1.8. However,
for a Fano variety X of dimension n with only quotient singularities, the implication

n
a(X) > — = existence of a KE metric on X
n

is proved in [DKO1, Section 6]. The aim of this section is to prove the existence of KE metrics on
quasi-smooth members of suitable families.
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We set
i = {42,44,45,61,69,74,76,79} C Igg,
and

’
kg = Igsr U lKE‘

Note that |lgg| = 56. For a family F; with i € |, the mark ‘KE’ is given in the right-most column of
Table 7 if and only if i € Ixg.

Theorem 7.7. For a member X of a family JF; with i € Iy, we have

a(X) > %

In particular, any member of a family F; with \xg admits a KE metric and is K-stable.

Proof. By Corollary 1.9 and the above arguments, it is enough to prove the first assertion. Let

X =Xq CP(1,a1,a2,a3,a4)x,y.z.1,w

4

KB’
Claim 30. o, (X) > 1 for any p € U; N Sm(X).

be a member of a family F; with i € I},., where we assume a; < a; < a3 < as. Note that | < a; < a».

Proof of Claim 30. Let p be a smooth point of X contained in Uj.

Suppose i = 42. Then d = 20 is divisible by a4 = 10 and asa3(A®) = 1. By Lemma 4.3, we have
ap(X) > 1.

Suppose i € {69, 74,76, 79}. Then a2a4(A3) < 1. By Lemma 4.2, we have a;p(X) > 1 in this case.

Suppose i € {44,45,61}. Then azas(A3) < 2. We may assume p = p,. Then we have ap(X) 2
2/azas(A3) > 1 by Lemma 3.29. This completes the proof. O

Claim 31. o, (X) > 1 foranyp € (Hx \ Lyxy) N Sm(X).
Proof of Claim 31. This follows immediately from Proposition 4.8. O
Claim 32. a,(X) > 43/54 > 3/4 for any p € Ly, N Sm(X).

Proof of Claim 32. Let p be a smooth point of X contained in Ly, . Suppose that X is a member of one of
the families listed in Tables 1 or 2, that is, X is a member of a family J; withi € {44, 45, 61,69, 74,76,79}.
Then the claim follows immediately from Proposition 4.10.

Suppose i = 42. Then, by the proof of Proposition 4.11 (see Section 4.4.b), either ap(X) > 1
for any p € Ly, N Sm(X) or X satisfies the assumption of Lemma 4.14. In the latter case, we have
ap(X) > 43/54 by Remark 4.15. This completes the proof. O

By Claims 30, 31 and 32, we have a,(X) > 3/4 for any smooth point p € X. It remains to consider
singular points.

Claim 33. o, (X) > 3/4 for any p € Sing(X).

Proof of Claim 33. Let p € X be a singular point. If the subscript © (resp. ¢) is given in Table 7, then
ap(X) > 1 by Proposition 5.2 (resp. Proposition 5.3). It remains to consider the case where i = 42 and

p is of type %(1, 2,3). In this case, we have a;,(X) > 1 by the proof of Proposition 5.18 (see Section
5.6.0). m]

This completes the proof of Theorem 7.7. O
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7.4. Birational rigidity and K-stability

7.4.a. Generalizations of the conjecture

Birational superrigidity is a very strong property. It is natural to relax the assumption of birational
superrigidity to birational rigidity in Conjecture 1.1, and we still expect a positive answer to the
following.

Conjecture 7.8 [KOW 18, Conjecture 1.9]. A birationally rigid Fano variety is K-stable.

We explain the situation for smooth Fano 3-folds. There are exactly two families of smooth Fano
3-folds which is strictly birationally rigid: One is the family of complete intersections of a quadric and
cubic in P® ([TP96]), and another is the family of double covers V of a smooth quadric Q of dimension 3
branched along a smooth surface degree 8 on Q ([Isk80]). Former Fano 3-folds are K-stable and admit
KE metrics ([Zhu20b]), and so are the latter Fano 3-folds (this follows from [Derl6a] since Q is K-
semistable). More evidence is already provided by Theorems 1.2 and 7.1, and we will provide further
evidences in the next subsection (see Corollary 7.13).

It may be interesting to consider further generalization of Conjecture 7.8. According to systematic
studies of Fano 3-folds of codimension 2 [Okal4; Okal8; Oka20b], existence of many birationally
birigid Fano 3-folds are verified. Here, a Fano variety X of Picard number 1 is birationally birigid if
there exists a Fano variety X’ of Picard number 1 which is birational but not isomorphic to X, and up to
isomorphism {X, X’} is all the Mori fiber space in the birational equivalence class of X. Extending the
birigidity, tririgidity and so on notion of solid Fano variety is introduced in [AO18]: A Fano variety of
Picard number 1 is solid if any Mori fiber space in the birational equivalence class is a Fano variety of
Picard number 1. Solid Fano varieties are expected to behave nicely in moduli ([Zhu20a]). Only some
evidence is known ([KOW19]) for the following question.

Question 7.9. Is it true that any solid Fano variety is K-stable?

7.4.b. On K-stability for 95 families

For strictly birationally rigid members of the 95 families, we are unable to conclude K-stability by
Theorem 1.8, except for those treated in Theorem 7.7. The aim of this subsection is to prove K-stability
for all the quasi-smooth members of suitable families indexed by Igr. This will be done by combining

the inequality @ > 1/2 obtained by Theorem 1.8 and an additional information on local movable alpha
invariants which are introduced below.

Definition 7.10. Let X be a Fano variety of Picard number 1 and p € X a point. For a nonempty linear
system M on X, we define Apq € Q¢ to be the rational number such that M ~g —ArKx. For a
movable linear system M on X and a positive rational number y, we define the movable log canonical
threshold of (X, uM) at p to be the number

letg'™ (X; uM) = sup{ ¢ € Qs | (X, cuM) is log canonical at p },
and then we define the movable alpha invariant of X at p as
@™ (X) = inf{1ctT® (X, A3} M) | M is a movable linear system on X}.

Proposition 7.11 (cf. [SZ19, Corollary 3.1]). Let X be a quasi-smooth Fano 3-fold weighted hypersurface
of index 1. Assume that, for any maximal center p € X, we have

apy™(X) 21 and (ap*(X), ap(X)) # (1,1/2).

Then X is K-stable.

Proof. By the main result of [CP17] (cf. Remark 2.25), we have ag®'(X) > 1 for any point q € X
which is not a maximal center. It follows that the pair (X, /11}1 M) is log canonical for any movable
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linear system M on X. Combining this with the inequality a(X) > 1/2 obtained by Theorem 1.8, we
see that X is K-semistable by [SZ19, Theorem 1.2].

Suppose that X is not K-stable. Then, by [SZ19, Corollary 3.1], there exists a prime divisor E
over X, a movable linear system M ~g —nKx and an effective Q-divisor D ~g —Kx such that E
is a log canonical place of (X, %./\/l) and (X, %D). Note that the center I of E on X is necessarily a
maximal center, and a maximal center on X is a BI center. Thus, I = p is a BI center, and this implies
(g™ (X), ap(X)) = (1,1/2). This is impossible by the assumption. Therefore, X is K-stable. O

We define
Ik ={6,8,15,16,17,26,27,30,36,41,47, 48, 54, 56, 60, 65, 68} C Igr.

Theorem 7.12. Let X be a member of a family F; with i € |i.. Then, for any Bl center p € X, we have

1
ay™(X) 21 and ap(X) > 5 (7.1)

In particular, X is K-stable.

Proof. Let X be a member of F;, where i € I;.. We first show that the inequalities (7.12) are satisfied.

Suppose i € {16,17,26,27,36,47,48,54,65}. Then the subscript ¢ is given in the fourth column of
Table 7 for any BI center on X. By Proposition 5.3, we have ap(X) > 1, and hence oy (X) > 1, for
any Bl center p € X.

Suppose i € {6,15,30,41,68}. In this case, X admits two QI centers of equal singularity type and
does not admit any other BI center. By the proof of Proposition 5.18 (see Section 5.6.c), we have
@p(X) > 1 for any QI center p € X. In particular, we have o (X) > ap(X) 2 1.

Suppose i € {8, 56, 60}. In this case, X admits a unique BI center and it is a QI center. The inequalities
(7.1) follow from Remark 6.2 and Propositions 7.14, 7.15. This completes the verifications for the
inequalities (7.1).

The K-stability of X follows from the inequalities (7.1), Theorem 1.8 and Proposition 7.11. O

We define
Ik = |f< L Ikg.

Note that |Ix| = 73. Combining Theorems 7.7, 7.12 and Corollary 1.9, we obtain the K-stability of
arbitrary quasi-smooth member for families indexed by Ik.

Corollary 7.13. Let X be a member of a family F; with i € Ix. Then X is K-stable.

7.5. Further computations of alpha invariants

In this section, we compute local alpha invariants for a few families in order to give better lower bounds.
The results obtained in this section are used only in the proof of Theorem 7.12.

Proposition 7.14. Let X be a member of the family Fs¢ and p = p,, € X be the singular point of type
1
H(l, 3,8). Then

ap(X) >

W

and ay*"(X) = 1.
Proof. We set p = p,,. We can write the defining polynomial of X as

F=w’y+ fis+ fu,
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where f; = f;(x,y, z, t) is a quasi-homogeneous polynomial of degree i. By the quasi-smoothness of X,
we have 13 € F. It is easy to see that F(x,0,z,t,1) € (x,z, t)3. It follows that omult,(H,) = 3, which
in particular implies Ict, (X; %Hy) >2/3.

Let D € |A|g be an irreducible Q-divisor other than %Hy. We can take a Q-divisor T € |3A|g such
that omult, (7)) > 1 and Supp(7’) does not contain any component of the effective 1-cycle D - Hy,. We
have

3omulty(D) < 11(D -H, -T) = 3.

This shows Ictp (X; D) > 1. Therefore, ap® (X) > 1 and ap(X) > 2/3. O

Proposition 7.15. Let X be a member of the family Fey, and let p = p,, be the singular point of type
§(1,4,5). Then

ap(X) =1

Proof. WesetS =H, ~A,T=H,andI' =5NT = (x =z=0)x.Letp = pp: [7p — Up be the
orbifold chart of p € X, and we set I' = (¥ = 7 = 0) C Up. We can write the defining polynomial
of X as

F=wt+wfis+ fu,

where f; = f;(x,y,z,t) is a quasi-homogeneous polynomial of degree i. By the quasi-smoothness of
X, we have r*,y® € F, and we may assume coeff (t*) = coeff(y®) = 1 by rescaling y and ¢. We set
A = coeff (12y?) € C. Then

U= W+t + 2% + 0 =0) < P(3,10,17)y 1.,

o (w2% ¥ 37283 L u6 _ 3
' W+ + A9 +35° =0) Cij’W.
It is easy to see that I' is an irreducible and reduced curve, and multp(f) =1, where p = 0 € A’ is the
preimage of p via p.

We see that H is quasi-smooth at p, and hence lct, (X; Hy) = 1. Therefore, we have ap(X) > 1 by
Lemma 3.17. O

8. The table

The list of the 93 families together with their basic information are summarized in Table 7, and we
explain the contents.

The first two columns indicate basic information of each family and the anticanonical degree (A%) =
(=Kx)? is indicated in the third column.

In the fourth column, the number and the singularities of X are described. The symbol %[a, r—al
stands for the cyclic quotient singularity of type %(l,a, r —a), where 1 < a < r/2. Moreover, the
symbols %, % and % stand for singularities of types %(1, 1,1), %(l, 1,2) and ‘1—1(1, 1, 3). The superscripts
QI and El indicate that the corresponding singular point p is a QI center and EI center, respectively (see
Section 2.3.b for definitions). The meaning of the subscripts is explained as follows.

The subscript © indicates that @, (X) > 1 is proved by Proposition 5.2.

The subscript ¢ (resp. ¢”) indicates that @p(X) > 1 (resp. ap(X) > 2/3) is proved by Proposition 5.3.
The subscript % indicates that a;p(X) > 1/2 is proved by Proposition 5.4.

The subscript & indicates that ap(X) > 1/2 is proved by Proposition 5.5.

o O O o

In Theorem 1.8, any birational superrigid member of each of the 95 families is proved. Apart from this
main result, we have results on the existence of KE metrics or K-stability for any quasi-smooth member
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Table 7. The 93 families.

No. Xy cP(1,ay,az,as,as) (A3) Singular points

2 Xs cP(1,1,1,1,2) 3 1

4 Xe c P(1,1,1,2,2) 2 3%

5 X; CB(1,1,1,2,3) 1 19 1@

6 Xs cP(1,1,1,2,4) 1 2x 19

7 Xs c P(1,1,2,2,3) 3 4X%E‘, %Q‘

8 Xo CP(1,1,1,3,4) 2 1

9 Xo c P(1,1,2,3,3) i 1, 3x1¢

10 X0 cP(1,1,1,3,5) z i,

11 X1 € P(1,1,2,2,5) 3 5%,

12 X0 cP(1,1,2,3,4) 3 axd,, 19 19

13 Xi CP(1,1,2,3,5) u L, 19 3

14 X cP(1,1,1,4,6) 1 24,

15 X1z CP(1,1,2,3,6) ! 2x), 2x 1Y

16 X1» cP(1,1,2,4,5) & 3xdo, 4@

17 X1, cP(1,1,3,4,4) ! 3x i

18 X1, cP(1,2,2,3,5) 1 6x3.. 12,319

19 X1 €P(1,2,3,3,4) : 3x3.. 4xi

20 X3 € B(1,1,3,4,5) L LB QL 41
21 Xis € P(1,1,2,4,7) 1 3x3.. &,

22 X4 € P(1,2,2,3,7) : T3, %

23 Xis € P(1,2,3,4,5) & 3xd,, 4, 181 3@
24 X5 < P(1,1,2,5,7) & 1., 212,519

25 Xis € P(1,1,3,4,7) S 19 13,41

26 X5 € P(1,1,3,5,6) i 2x1 111, 51¢

27 X5 ¢ P(1,2,3,5,5) + L.3xi2, 3@

28 Xis € P(1,3,3,4,5) & 5x%o, 4o

29 X6 CP(1,1,2,5,8) i 2x3,. 1[2.3]a

30 Xi6 CP(1,1,3,4,8) L 1, axie

31 X1 CP(1,1,4,5,6) Z 3.0 11,419, 41,51
32 X1 € P(1,2,3,4,7) % axto, 3., 13,419
33 Xi7 € P(1,2,3,5,7) s $ar 340 312,319 112,519
34 X1 € P(1,1,2,6,9) i 3x3.. %

35 X3 cP(1,1,3,5,9) Z 2x4.. 11,41

36 X5 € P(1,1,4,6,7) 2 O L P

37 Xig € P(1,2,3,4,9) + axiooxl b

38 Xi5 € P(1,2,3,5,8) & 2x%o, 112,519, 43,519
39 X3 c P(1,3,4,5,6) = Tor 3%3, far 51416
40 X0 cP(1,3,4,5,7) = 1o ks 22,318, 13,41
41 Xy € P(1,1,4,5,10) L 1o, 2xi(1,41

42 X5 c P(1,2,3,5,10) = a1, 40, 2x4[2,3]Y
43 X0 € P(1,2,4,5,9) = 5x3.. 514,519

44 Xo0 € P(1,2,5,6,7) & 3xio, 41,518, L2, 51¢

KE
KE

KE

=

KE

KE

KE
KE

KE
KE

KE

KE

KE
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Table 7. (Continued).

No. Xg cP(1,ay,az,as,as) (A3) Singular points

45 Xo0 € P(1,3,4,5,8) = Looaxt o, b5 KE
46 Xp1 € P(1,1,3,7,10) - 53,71«

47 X, cP(1,1,5,7,8) = 12,30, 11,71 K
48 X2 CP(1,2,3,7,9) = $oo2xdo I 7Y K
49 X1 € P(1,3,5,6,7) 5 3xi.. 12,31, E[L5]0 KE
50 X5 cP(1,1,3,7,11) % 1o 113,408 KE
51 X» cP(1,1,4,6,11) 5 Tor 300 £11,51 KE
52 Xp cP(1,2,4,5,11) o Sxi.. 100 31,410 KE
53 Xo CP(1,1,3,8,12) 5 2300 1o KE
54 Xo4 CP(1,1,6,8,9) & Lo do s K
55 Xo4 € P(1,2,3,7,12) = x4t 2xd o, L2, 5], KE
56 Xos € P(1,2,3,8,11) = 3x3,. 13,819 K
57 Xo CP(1,3,4,5,12) = 2x% . 2x 40, $[2.3] KE
58 Xp4 CP(1,3,4,7,10) o 1o 313,419, 513,71¢

59 X4 € P(1,3,6,7,8) = Tor 4xdo, A[1,6]0 KE
60 Xo4 € P(1,4,5,6,9) = 2x;0, 1o L4, §[4,5]Y K
61 X5 € P(1,4,5,7,9) = 1.0 F2.518, 14,50, KE
62 X6 C P(1,1,5,7,13) % 112,31, 1[1,6] KE
63 X2 € P(1,2,3,8,13) = 3xio. o0 313,50 KE
64 X6 € P(1,2,5,6,13) 5 axto, 12,3]s, £[1,5]0 KE
65 Xy ¢ P(1,2,5,9,11) 5 Lo ML 4lo, £12,91 K
66 X7 € P(1,5,6,7,9) 2 1o 2141, $[1.5]0, $12,5)0 KE
67 Xo3 c P(1,1,4,9,14) = 1o 514,51a KE
68 X3 CP(1,3,4,7,14) 5 Tow 4. 2xi3,41 K
69 X3 € P(1,4,6,7,11) = 2x4o, L1,ste, L4, KE
70 X30 € P(1,1,4, 10, 15) x5 or 11, 4]0 KE
71 X30 € B(1,1,6,8,15) = Tor 300 11716 KE
72 X30 € P(1,2,3,10,15) = 3x3.. 2%t 12,30 KE
73 X30 € P(1,2,6,7,15) = 5xi.. %o, H[1,6]o KE
74 X309 c P(1,3,4,10, 13) 5 Tor 3on 173[3,101<> KE
75 X3 C P(1,4,5,6,15) = 2><%U, 1o For 2x1[1, 4]0 KE
76 X0 € P(1,5,6,8,11) = 1o 33518, Lis. 61 KE
77 X3 cP(1,2,5,9,16) = 2%, [1,4]0, 12,715 KE
78 X3 c P(1,4,5,7,16) = axt o, 1,416, $12.5]0 KE
79 X33 c P(1,3,5,11, 14) 2 %[1,4]% 5[3 11 KE
80 X34 € P(1,3,4,10,17) = 1o bes W, 13,710 KE
81 X34 CP(1,4,6,7,17) = 2x%, %00 £, 510, 113,410 KE
82 X36 € P(1,1,5,12,18) = 112,31, £ (1,500 KE
83 X3 CP(1,3,4,11,18) = Tor 2%%0, 4,70 KE
84 X3 CP(1,7,8,9,12) = gv, 1o 312,50, 3[1, 710 KE
85 X33 c P(1,3,5,11,19) = 1o, F[1.41, 103,81 KE
86 X33 € P(1,5,6,8, 19) s 3or $[1,4lo, £[1,515, §13.5)c  KE
87 X4 c P(1,5,7,8,20) oo 1o 2X3[2,3]5, (1,60 KE
88 X4 < P(1, 1,6, 14,21) = Tor 3or 11,60 KE
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Table 7. (Continued).

No. Xg cP(1,ay,az,as,as) (A%) Singular points

89 Xp cP(1,2,5,14,21) - 3x3.. t[1.4]e, 512,50 KE
90 X4 C P(1,3,4,14,21) o $or 2x3, fo. 213,40 KE
91 Xu € P(1,4,5,13,22) oo 1o 11230, 54,91 KE
92 X43 € P(1,3,5,16,24) G 2x4, 1,410, 13,500 KE
93 Xs0 € P(1,7,8,10,25) o 1o 112,310, 303,408, §11.7)0 KE
94 Xs4 CP(1,4,5,18,27) o Tor 300 512,310, §14,500 KE
95 Xe6 C P(1,5,6,22,33) 7 Tor 300 112.3]a, 15,600 KE

of suitable families. In the right-most column the mark ‘KE’ and ‘K’ are given and their meanings are
as follows.

o The mark ‘KE’ in the right-most column means that any quasi-smooth member admits a KE metric
and is K-stable (see Section 7.3).

o The mark ‘K’ in the right-most column means that any quasi-smooth member is K-stable (see Section
7.4.b).

Remark 8.1. We explain what is left about K-stability of quasi-smooth Fano 3-fold weighted hypersur-
faces of index 1.

As it is explained in Section 1.4, the result [LXZ22] obtained after this paper is written in particular
implies that the K-stability of a quasi-smooth Fano 3-fold weighted hypersurface is equivalent to the
existence of a KE metric. It follows that the meaning of the mark ‘KE’ and ‘K’ in the right-most column
of Table 7 are the same: It indicates that any quasi-smooth member is K-stable (and admits a KE metric).
All in all, we obtain the following results in this article:

o Any quasi-smooth member in a family F; with a mark ‘K’ or ‘KE’ in the right-most column of Table
7 is K-stable.

o Any quasi-smooth and birationally superrigid member in a family F; with a blank right-most column
in Table 7 is K-stable.

Therefore, it remains to determine K-stability for quasi-smooth members in a family J; with a blank
right-most column that are not birationally superrigid.
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