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THE PROBABILITY THAT A RANDOM MULTIGRAPH IS SIMPLE. II

BY SVANTE JANSON

Abstract

Consider a random multigraph G∗ with given vertex degrees d1, . . . , dn, constructed
by the configuration model. We give a new proof of the fact that, asymptotically for a
sequence of such multigraphs with the number of edges 1

2

∑
i di → ∞, the probability

that the multigraph is simple stays away from 0 if and only if
∑

i d2
i = O(

∑
i di ). The new

proof uses the method of moments, which makes it possible to use it in some applications
concerning convergence in distribution. Corresponding results for bipartite graphs are
included.
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1. Introduction

Let G(n, (di)
n
1) be the random (simple) graph with vertex set [n] := {1, . . . , n} and vertex

degrees d1, . . . , dn, uniformly chosen among all such graphs. (We assume that such graphs
exist; in particular,

∑
i di has to be even.) A standard method of studying G(n, (di)

n
1) is to

consider the related random labelled multigraph G∗(n, (di)
n
1) defined by taking a set of di half-

edges at each vertex i and then joining the half-edges into edges by taking a random partition
of the set of all half-edges into pairs. This is known as the configuration model, and was
introduced by Bollobás [4]; see also [5, Section II.4]. (See [2] and Wormald [17, 18] for related
constructions.) Note that G∗(n, (di)

n
1) is defined for all n ≥ 1 and all sequences (di)

n
1 such that∑

i di is even (we tacitly assume this throughout the paper), and that we obtain G(n, (di)
n
1) if

we condition G∗(n, (di)
n
1) on being a simple graph.

It is then important to estimate the probability that G∗(n, (di)
n
1) is simple, and in particular

to decide whether
lim inf
n→∞ P{G∗(n, (di)

n
1) is simple} > 0 (1.1)

for given sequences (di)
n
1 =: (d

(n)
i )n1. (We assume throughout that we consider a sequence of

instances, and consider asymptotics as n → ∞. Thus, our degree sequence (di)
n
1 depends on n,

and so do other quantities introduced below; for simplicity, we omit this from the notation.)
Note that (1.1) implies that any statement holding for G∗(n, (di)

n
1) with probability tending

to 1 as n → ∞ does so for G(n, (di)
n
1) too. (However, note also that Bollobás and Riordan [6]

recently showed that the method may be applied even when (1.1) does not hold; in the problem
they studied, the probability that G∗(n, (di)

n
1) is simple may be almost exponentially small, but

they showed that the error probabilities for the properties they studied are even smaller.)
Various sufficient conditions for (1.1) have been given by several authors; see Bender and

Canfield [2], Bollobás [4, 5], McKay [14], and McKay and Wormald [15]. The final result was
proved in [10], where, in particular, the following was shown (but any reader making a detailed
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124 S. JANSON

comparison with that paper should note that our notation here differs slightly). Throughout this
paper, let

N :=
∑

i

di

denote the total number of half-edges; thus, N is even and the number of edges in G(n, (di)
n
1)

or G∗(n, (di)
n
1) is N/2.

Theorem 1.1. ([10].) Assume that N → ∞. Then

lim inf
n→∞ P{G∗(n, (di)

n
1) is simple} > 0 ⇐⇒

∑
i

d2
i = O(N).

Remark 1.1. For simplicity, the graphs and the degree sequences (di)
n
1 = (d

(n)
i )n1 in Theo-

rem 1.1 are indexed by n, and, thus, N = N(n) depends on n too. With only notational
changes, we could instead use an independent index ν as in [10], assuming that n = nν → ∞.

Note also that if we assume that n = O(N)—and this can always be achieved by ignoring
all isolated vertices—then the condition

∑
i d2

i = O(N) is equivalent to
∑

i d2
i = O(n) (see

[10, Remark 1]).

Let Xi be the number of loops at vertex i in G∗(n, (di)
n
1), and let Xij be the number of edges

between i and j . Moreover, let Yij = (Xij

2

)
be the number of pairs of parallel edges between i

and j . Define

Z :=
n∑

i=1

Xi +
∑
i<j

Yij ; (1.2)

thus, G∗(n, (di)
n
1) is simple, which is equivalent to Z = 0.

As shown in [10], in the case that maxi di = o(N1/2), it is not difficult to prove Theorem 1.1
by Bollobás’s [4, 5] approach of proving a Poisson approximation of Z by the method of
moments. In general, however, we can have maxi di = O(N1/2) even when

∑
i d2

i = O(N),
and in this case, Z may have a non-Poisson asymptotic distribution. The proof in [10] therefore
used a more complicated method with switchings.

The purpose of this paper is to give a new proof of Theorem 1.1, and of the more precise
Theorem 1.2 below, using Poisson approximations of Xi and Xij to find the asymptotic
distribution of Z. The new proof uses the method of moments. (In [10], we were pessimistic
about the possibility of this; our pessimism was thus unfounded.) The new proof presented
here is conceptually simpler than the proof in [10], but it is not much shorter. The main reason
for the new proof is that it enables us to transfer not only results on convergence in probability
but also some results on convergence in distribution from the random multigraph G(n, (di)

n
1)

to the simple graph G∗(n, (di)
n
1) by conditioning on the existence of specific loops or pairs

of parallel edges; see Section 5 and [12] for an application (which was the motivation for the
present paper), and [11] for an earlier example of this method in a case where

∑
i d2

i = o(N)

and the results of [10] suffice.
Define (with some hindsight)

λi :=
(

di

2

)
1

N
= di(di − 1)

2N
(1.3)

and, for i �= j ,

λij :=
√

di(di − 1)dj (dj − 1)

N
= 2

√
λiλj , (1.4)
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The probability that a random multigraph is simple. II 125

and let X̂i and X̂ij be independent Poisson random variables with

X̂i ∼ Poi(λi), X̂ij ∼ Poi(λij ). (1.5)

By analogy with (1.2), we further define Ŷij := (X̂ij

2

)
and

Ẑ :=
n∑

i=1

X̂i +
∑
i<j

Ŷij =
n∑

i=1

X̂i +
∑
i<j

(
X̂ij

2

)
. (1.6)

We shall show that the distribution of Z is well approximated by Ẑ, see Lemma 4.1, which
yields our new proof of the following estimate. Theorem 1.1 is a simple corollary.

Theorem 1.2. ([10].) Assume that n → ∞ and N → ∞. Then

P{G∗(n, (di)
n
1) is simple} = P{Z = 0}

= P{Ẑ = 0} + o(1)

= exp

(
−

∑
i

λi −
∑
i<j

(λij − log(1 + λij ))

)
+ o(1).

As noted earlier, our proof uses the method of moments, and most of our work lies in
deriving the following estimate, in Section 3. This is done by combinatorial calculations that
are straightforward in principle, but nevertheless rather long.

Lemma 1.1. Suppose that
∑

i d2
i = O(N). Then, for every fixed integer m ≥ 1,

E Zm = E Ẑm + O(N−1/2). (1.7)

Explicitly, the statement means that, for every C < ∞ and m ≥ 1, there is a constant
C′ = C′(C, m) such that if

∑
i d2

i ≤ CN , then | E Zm − E Ẑm| ≤ C′N−1/2.

Remark 1.2. The proof of Lemma 1.1 shows that the error term O(N−1/2) in (1.7) can be
replaced by O(max{di}/N), which by (3.1) is always at least as good.

In Section 6 we give some remarks on the corresponding, but somewhat different, result for
bipartite graphs due to Blanchet and Stauffer [3].

2. Preliminaries

We denote falling factorials by (n)k := n(n − 1) · · · (n − k + 1).

Lemma 2.1. Let X ∈ Poi(λ), and let Y := (
X
2

)
. Then, for every m ≥ 1, E[(Y )m] = hm(λ) for

a polynomial hm(λ) of degree 2m. Furthermore, hm has a double root at 0, so hm(λ) = O(|λ|2)
for |λ| ≤ 1, and if m ≥ 2 then hm has a triple root at 0, so hm(λ) = O(|λ|3) for |λ| ≤ 1.

Proof. (Y )m is a polynomial in X of degree 2m, and it is well known (and easy to see from
the moment generating function) that E Xk is a polynomial in λ of degree k for every k ≥ 0.

Suppose that m ≥ 2. If X ≤ 2 then Y ≤ 1 and, thus, (Y )m = 0. Hence,

hm(λ) =
∞∑

j=3

((
j

2

))
m

λj

j ! e−λ = O(λ3) as λ → 0,

and, thus, hm has a triple root at 0. The same argument shows that h1 has a double root at 0;
this is also seen from the explicit formula

h1(λ) = E Y = E
[ 1

2X(X − 1)
] = 1

2λ2. (2.1)
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Lemma 2.2. Let Ẑ be given by (1.6), and assume that λij = O(1).

(i) For every fixed t ≥ 0,

E[exp(t
√

Ẑ )] = exp

(
O

(∑
i

λi +
∑
i<j

λ2
ij

))
. (2.2)

(ii) For every C < ∞, if
∑

i λi + ∑
i<j λ2

ij ≤ C then

(E Ẑm)1/m = O(m2), (2.3)

uniformly in all such Ẑ and m ≥ 1.

Proof. (i) By (1.6),√
Ẑ ≤

∑
i

√
X̂i +

∑
i<j

√
Ŷij ≤

∑
i

X̂i +
∑
i<j

X̂ij {X̂ij ≥ 2}, (2.4)

where the terms on the right-hand side are independent. Furthermore,

E etX̂i = exp((et − 1)λi) = exp(O(λi)) (2.5)

and, since t is fixed and λij = O(1),

E exp(tX̂ij 1{X̂ij ≥ 2}) = E etX̂ij − P{X̂ij = 1}(et − 1)

= e(et−1)λij − (et − 1)λij e−λij

= 1 + (et − 1)λij (1 − e−λij ) + O(λ2
ij )

= 1 + O(λ2
ij )

≤ exp(O(λ2
ij )). (2.6)

Consequently, (2.2) follows from (2.4)–(2.6).
(ii) Taking t = 1, (i) yields exp(

√
Ẑ) ≤ C1 for some C1. Since exp(

√
Ẑ) ≥ Ẑm/(2m)!, this

implies that

E Ẑm ≤ (2m)! E exp(
√

Ẑ) ≤ C1(2m)2m,

and, thus, E(Ẑm)1/m ≤ 4C1m
2 for all m ≥ 1.

3. Proof of Lemma 1.1

Our proof of Lemma 1.1 is rather long in spite of its being based on simple calculations, so
we formulate a couple of intermediate steps as separate lemmas.

Note first that the assumption that
∑

i d2
i = O(N) implies that

max
i

di = O(N1/2) (3.1)

and, thus (see (1.3) and (1.4)),

λi = O(1) and λij = O(1), (3.2)

uniformly in all i and j . Furthermore, for any fixed m ≥ 1,

∑
i

λm
i = O

(∑
i

λi

)
= O

(∑
i d2

i

N

)
= O(1).
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Similarly, for any fixed m ≥ 2,

∑
i<j

λm
ij = O

(∑
i<j

λ2
ij

)
= O

(∑
ij d2

i d2
j

N2

)
= O(1).

In particular, ∑
i

λi +
∑
i<j

λ2
ij = O(1). (3.3)

However, note that there is no general bound on
∑

i<j λij , as is shown by the case of regular
graphs with all di = d ≥ 2 and λij = d(d − 1)/N = (d − 1)/n for all

(
n
2

)
of the λij , so

their sum is (d − 1)(n − 1)/2. This complicates the proof because it forces us to obtain error
estimates involving λ2

ij .
Let Hi be the set of half-edges at vertex i; thus, |Hi | = di . Furthermore, let H := ⋃

i Hi

be the set of all half-edges. For convenience, we order H (by any linear order).
For α, β ∈ H , let Iαβ be the indicator that the half-edges α and β are joined to an edge in

our random pairing. (Thus, Iαβ = Iβα .) Note that

Xi =
∑

{α,β∈Hi : α<β}
Iαβ, (3.4)

Xij =
∑

α∈Hi , β∈Hj

Iαβ . (3.5)

We have E Iαβ = 1/(N − 1) for any distinct α, β ∈ H . More generally,

E(Iα1β1 · · · Iα�β�
) = 1

(N − 1)(N − 3) · · · (N − 2� + 1)
= N−�(1 + O(N−1)) (3.6)

for any fixed � and any distinct half-edges α1, β1, . . . , α�, β�. Furthermore, the expectation in
(3.6) vanishes if two pairs {αi, βi} and {αj , βj } have exactly one common half-edge.

We consider first, as a warm-up, E X�
i for a single vertex i.

Lemma 3.1. Suppose that
∑

i d2
i = O(N). Then, for every fixed � ≥ 1 and all i,

E X�
i = E X̂�

i + O(N−1/2λi). (3.7)

Proof. We assume that di ≥ 2 because the case di ≤ 1 is trivial with λi = 0 and
Xi = X̂i = 0.

Since there are
(
di

2

)
possible loops at i, (3.6) yields

E Xi =
(

di

2

)
1

N − 1
= λi(1 + O(N−1)). (3.8)

Similarly, for any fixed � ≥ 2, there are 2−�(di)2� ways to select a sequence of � disjoint
(unordered) pairs of half-edges at i, and, thus, by (3.6), using (1.3), (3.1), (3.2), and (1.5),

E[(Xi)�] = (di)2�

2�N�
(1 + O(N−1))

= (di(di − 1))� + O(d2�−1
i )

2�N�
(1 + O(N−1))

= λ�
i (1 + O(N−1)) + O

(
di

N
λ�−1

i

)
= λ�

i + O(N−1λ�
i ) + O(N−1/2λ�−1

i )

https://doi.org/10.1239/jap/1417528471 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1417528471
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= λ�
i + O(N−1/2λi)

= E[(X̂i)�] + O(N−1/2λi). (3.9)

Conclusion (3.7) now follows from (3.8)–(3.9) and the standard relations between moments
and factorial moments, together with (3.2).

We next consider moments of Yij , where i �= j .

Lemma 3.2. Suppose that
∑

i d2
i = O(N). Then, for every fixed � ≥ 1 and all i �= j ,

E Y �
ij = E Ŷ �

ij + O(N−1/2λ2
ij ). (3.10)

Proof. We may assume that di, dj ≥ 2 since otherwise λij = 0 and Yij = Ŷij = 0.
An unordered pair of two disjoint pairs from Hi ×Hj can be chosen in 1

2di(di − 1)dj (dj −1)

ways, and, thus, by (3.6), (1.4), and (2.1),

E Yij = didj (di − 1)(dj − 1)

2(N − 1)(N − 3)
= λ2

ij

2
(1 + O(N−1)) = E Ŷij (1 + O(N−1)). (3.11)

Let � ≥ 2. Then (Yij )� is a sum

∑
{αk,α

′
k∈Hi , βk,β

′
k∈Hj : αk<α′

k}

�∏
k=1

(Iαkβk
Iα′

kβ
′
k
), (3.12)

where we sum only over terms such that the � pairs of pairs {{αk, βk}, {α′
k, β

′
k}} are distinct.

We approximate E[(Yij )�] in several steps. First, let Ĩαβ for α ∈ Hi and β ∈ Hj be
independent indicator variables with P{Ĩαβ = 1} = 1/N . (In other words, the Ĩαβ are
independent and identically distributed (i.i.d.) Bernoulli random variables Ber(1/N).) By
analogy with (3.5), let

X̃ij :=
∑

α∈Hi , β∈Hj

Ĩαβ, (3.13)

and let Ỹij := (X̃ij

2

)
. Then (Ỹij )� is a sum similar to (3.12), with Iαβ replaced by Ĩαβ . Note that

(3.12) is a sum of terms that are products of 2� indicators; however, there may be repetitions
among the indicators, so each term is a product of r distinct indicators where r ≤ 2�. Since
we assume that � ≥ 2, and the pairs {αk, βk} and {α′

k, β
′
k} are distinct, r ≥ 3 for each term.

Taking expectations and using (3.6), we see that the terms in (3.12), where all pairs {αk, βk}
that occur are distinct, yield the same contributions to E[(Yij )�] and E[(Ỹij )�], apart from a
factor (1 + O(N−1)). However, there are also terms containing factors Iαβ and Iα′β ′ , where
α = α′ or β = β ′ (but not both). Such terms vanish identically for (Yij )�, but the corresponding
terms for (Ỹij )� do not. The number of such terms for any given r ≤ 2� is O(dr−1

i dr
j + dr

i dr−1
j )

and, thus, using (3.6) and (3.1), their contribution to E[(Ỹij )�] is

O

(
dr−1
i dr

j + dr
i dr−1

j

Nr

)
= O

(
dj + di

N
λr−1

ij

)
= O(N−1/2λr−1

ij ).

Summing over 3 ≤ r ≤ 2� and using (3.2) yields a total contribution O(N−1/2λ2
ij ). Conse-

quently,
E[(Yij )�] = E[(Ỹij )�](1 + O(N−1)) + O(N−1/2λ2

ij ). (3.14)
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Next, replace the i.i.d. indicators Ĩαβ by i.i.d. Poisson variables Jαβ ∼ Poi(1/N) with the
same mean, and by analogy with (3.5) and (3.13), let

X̌ij :=
∑

α∈Hi , β∈Hj

Jαβ ∼ Poi

(
didj

N

)
,

and let Y̌
ij

= (X̌ij

2

)
. Then (Y̌ij )� can be expanded as a sum similar to (3.12), with Iαβ replaced

by Jαβ . Take the expectation and note that the only difference from E[(Ỹij )�] is for terms where
some Jαβ is repeated. We have, for any fixed k ≥ 1,

E J k
αβ = 1

N
+ O(N−2) = 1

N
(1 + O(N−1)),

while

E Ĩ k
αβ = E Ĩαβ = 1

N
.

Hence, for each term, the difference, if any, is a multiplicative factor 1 + O(N−1), and, thus,

E[(Y̌ij )�] = E[(Ỹij )�](1 + O(N−1)). (3.15)

Note that here we use Y̌ij = (X̌ij

2

)
, where X̌ij ∼ Poi(didj /N) has a mean λ̌ij = didj /N that

differs from E[X̂ij ] = λij given by (1.4). We have

λ̌ij ≥ λij ≥ (di − 1)(dj − 1)

N
> λ̌ij − di + dj

N
. (3.16)

We use Lemma 2.1 and note that the lemma implies that h′
�(λ) = O(λ2) for each � ≥ 2 and

λ = O(1). Hence, by (3.16) and (3.1)–(3.2),

E[(Y̌ij )�] − E[(Ŷij )�] = h�(λ̌ij ) − h�(λij )

= O(λ̌2
ij (λ̌ij − λij ))

= O

(
di + dj

N
λ̌2

ij

)
= O(N−1/2λ2

ij ). (3.17)

Finally, (3.14), (3.15), and (3.17) yield, for each � ≥ 2,

E[(Yij )�] = E[(Ŷij )�](1 + O(N−1)) + O(N−1/2λ2
ij ). (3.18)

By (3.11), this holds for � = 1 too. By (3.2) and Lemma 2.1, for each � ≥ 1, E[(Ŷij )�] =
O(λ2

ij ), and, thus, (3.18) can be written as

E[(Yij )�] = E[(Ŷij )�] + O(N−1/2λ2
ij )

for each fixed � ≥ 1. The conclusion now follows, as in Lemma 3.1, by the relations between
moments and factorial moments, again using the bound (3.2).

In particular, note that Lemmas 3.1 and 3.2 together with Lemma 2.1 and (3.2) imply the
bounds, for every fixed � ≥ 1,

E X�
i + E X̂�

i = O(λi + λ�
i + N−1/2λi) = O(λi), (3.19)

E Y �
ij + E Ŷ �

ij = O(λ2
ij + λ2�

ij + N−1/2λ2
ij ) = O(λ2

ij ). (3.20)
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Proof of Lemma 1.1. We uncouple the terms in (1.2) by letting {I (i,j)
αβ }

α,β
be independent

copies of (Iαβ)α,β for 1 ≤ i, j ≤ n, and defining, by analogy with (3.4)–(3.5) and (1.2),

Xi :=
∑

{α,β∈Hi : α<β}
I

(i,i)
αβ , (3.21)

Xij :=
∑

α∈Hi , β∈Hj

I
(i,j)
αβ , (3.22)

Y ij :=
(

Xij

2

)
, (3.23)

Z :=
n∑

i=1

Xi +
∑
i<j

Y ij . (3.24)

Note that the summands in (3.21) are not independent; they have the same structure as
(Iαβ)α,β∈Hi

and, thus, Xi
D= Xi , and similarly Xij

D= Xij . However, different sums Xi and
Xij are independent (unlike Xi and Xij ).

We begin by comparing E Z
m

and E Ẑm. Since the terms in (3.24) are independent, the
moment E Z

m
can be written as a certain polynomial gm(E X�

i , E Y �
ij : i, j ∈ [n], � ≤ m) in

the moments E(Xi)
� = E X�

i and E(Xij )
� = E X�

ij for 1 ≤ � ≤ m and i, j ∈ [n].
By (1.6), E Ẑm can be expressed in the same way as gm(E X̂�

i , E Ŷ �
ij : i, j ∈ [n], � ≤ m) for

the same polynomial gm. It follows that

E Z
m − E Ẑm =

m∑
�=1

∑
i

(E X�
i − E X̂�

i )R�i +
m∑

�=1

∑
i<j

(E Y �
ij − E Ŷ �

ij )R�ij (3.25)

for some polynomials R�i and R�ij in the moments E Xk
i , E X̂k

i , E Y k
ij , and E Ŷ k

ij for k ≤ m; it
is easily seen from (3.19)–(3.20) and (3.3) that

R�i, R�ij = O

( m∑
ν=1

(∑
i

λi +
∑
i<j

λ2
ij

)ν)
= O(1),

uniformly in i, j ∈ [n] and � ≤ m. Hence, (3.25) with (3.7), (3.10), and (3.3) yields

E Z
m − E Ẑm = O

(∑
i

N−1/2λi +
∑
i<j

N−1/2λ2
ij

)
= O(N−1/2). (3.26)

It remains to compare E Zm and E Z
m

. By (1.2) and (3.4)–(3.5), Zm can be expanded as a
sum of certain products

Iα1β1 · · · Iα�β�
, (3.27)

where 1 ≤ � ≤ 2m, and we may assume that the pairs {α1, β1},…,{α�, β�} are distinct. (Some
products (3.27) may be repeated in Zm, but only O(1) times.) Moreover, by (3.21)–(3.24),
Z

m
is the sum of the corresponding products

Iα1β1 · · · Iα�β�
, (3.28)

where Iαβ := I
(i,j)
αβ when α ∈ Hi and β ∈ Hj .

We say that a product (3.27) or (3.28) is bad if it contains two factors Iανβν and Iαμβμ such
that the pairs {ανβν} and {αμβμ} contain a common index, say αν = αμ, and, furthermore,
the two remaining indices, βν and βμ, say, are half-edges belonging to different vertices,
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i.e. βν ∈ Hi and βμ ∈ Hj with i �= j . Otherwise, we say that the product is good. (Note
that a good product may contain factors Iανβν and Iαμβμ with αν = αμ as long as βν and βμ

belong to the same vertex.) It follows from (3.6) that, for each good product, the corresponding
contributions to E Zm and E Z

m
differ only by a factor (1 + O(N−1)). For a bad product,

however, the contribution to E Zm is 0. We thus have to estimate the contribution to E Z
m

of
the bad products.

Define the support of a product (3.28) as the multigraph with vertex set [n] and edge set
{ανβν : 1 ≤ ν ≤ �}, i.e. the multigraph obtained by forming edges from the pairs of half-edges
appearing as indices in the product. If F is the support of (3.28) then F thus has � edges
(possibly including loops). Furthermore, it follows from (3.21)–(3.24) that every edge in F

that is not a loop has at least one edge parallel to it. Hence, a vertex i in F with nonzero degree
has degree at least 2. In other words, if we denote the vertex degrees in F by δ1, . . . , δn then
δi = 0 or δi ≥ 2. Moreover, if (3.28) is bad with, say, αν = αμ ∈ Hi , then there are edges in F

from i to at least two vertices j and k (one of which may equal i), and, thus, the degree δi ≥ 4.
Let F be a multigraph with vertex set [n] and � edges, and again denote its vertex degrees

by δ1, . . . , δn, so
∑

i δi = 2�. Let SF be the contribution to E Z
m

from bad products (3.27)
with support F . A bad product has some half-edge repeated, and if this belongs to Hi , there are
O(d

δi−1
i

∏
j �=i d

δj

j ) choices for the product. Also, as just shown, this can only occur for i with
δi ≥ 4. Since each product yields a contribution O(N−�) by (3.6), we have, using 2� = ∑

i δi

and (3.1) together with the fact that δj �= 1,

SF = O

(
N−�

∑
{i : δi≥4}

d
δi−1
i

∏
j �=i

d
δj

j

)
(3.29)

= O

(
N−1/2

∑
{i : δi≥4}

(
di

N1/2

)δi−1 ∏
j �=i

(
dj

N1/2

)δj
)

(3.30)

= O

(
N−1/2

∏
{j : δj >0}

(
dj

N1/2

)2)
. (3.31)

Summing over all possible F , and recalling that � ≤ 2m, it follows that the total contribution
to E Z

m
from bad products is

∑
F

SF = O

(
N−1/2

∑
F

∏
{j : δj >0}

d2
j

N

)
. (3.32)

For each support F , the set {j : δj > 0} = {j : δj ≥ 2} has size at most � ≤ 2m, and, for each
choice of this set, there are O(1) possible F . Hence,

∑
F

∏
{j : δj >0}

d2
j

N
= O

( 2m∑
k=1

∑
j1<···<jk

k∏
i=1

d2
ji

N

)
= O

( 2m∑
k=1

( n∑
j=1

d2
j

N

)k)
= O(1),

and (3.32) yields ∑
F

SF = O(N−1/2).

Summarizing, the argument above yields

E Zm = E Z
m
(1 + O(N−1)) + O(N−1/2) = E Z

m + O(N−1/2), (3.33)
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since E Z
m = O(1), e.g. by (3.26) and Lemma 2.2 (or, using an argument similar to the above,

by summing over supports).
The lemma follows from (3.26) and (3.33).

4. Proof of Theorems 1.1 and 1.2

Assume first that
∑

i d2
i = O(N); we prove the following more precise statement.

Lemma 4.1. Suppose that
∑

i d2
i = O(N) and N → ∞. Then dTV(Z, Ẑ) → 0.

Proof. Note that the assumption that
∑

i d2
i = O(N) implies that (3.3) holds.

By Lemma 2.2(ii) and (3.3), E Ẑm = O(1) for each m. In particular, the sequence Ẑ is tight,
and by considering a suitable subsequence we may assume that Ẑ

D−→ Z∞ for some random
variable Z∞. Furthermore, the estimate E Ẑm = O(1) for each m implies that Ẑm is uniformly
integrable for each m ≥ 1, and, thus,

E Ẑm → E Zm∞; (4.1)

see, e.g. [9, Theorems 5.4.2 and 5.5.9]. By Lemma 1.1, we thus also have

E Zm → E Zm∞ (4.2)

for each m ≥ 1. Furthermore, by (2.3) and (4.1),

(E Zm∞)1/m = O(m2). (4.3)

We can now apply the method of moments and conclude from (4.2) that Z
D−→ Z∞. We justify

the use of the method of moments by (4.3), which implies that∑
m

(E Zm∞)−1/2m = ∞; (4.4)

since Z∞ ≥ 0, this weaker form of the usual Carleman criterion shows that the distribution
of Z∞ is determined (among all distributions on [0, ∞)) by its moments, and, thus (since also
Z ≥ 0), the method of moments applies; see, e.g. [9, Section 4.10]. Hence, Ẑ

D−→ Z∞ and
Z

D−→ Z∞, and, thus,

dTV(Z, Ẑ) ≤ dTV(Z, Z∞) + dTV(Ẑ, Z∞) → 0. (4.5)

This shows that the desired result (4.5) holds for some subsequence. The same argument
shows that, for every subsequence of n → ∞, (4.5) holds for some subsubsequence; as is well
known, this implies that (4.5) holds for the original sequence.

Remark 4.1. Note that E et Ŷij = ∞ for every t > 0 when λij > 0. Hence, Ẑ does not have
a finite moment generating function. Similarly, it is possible that E etZ∞ = ∞; consider, for
example, the case in which d1 = d2 ∼ N1/2 when λ12 → 1 and Z∞ ≥ (

X̂
2

)
with X̂ ∼ Poi(1).

In this case, by Minkowski’s inequality,

(E Zm∞)1/m ≥ 1
2 (E(X̂2 − X̂)m)1/m

≥ 1
2 (E X̂2m)1/m − 1

2 (E X̂m)1/m

∼ 1

2

(
2m

e log m

)2

= 2m2

e2 log2 m
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using simple estimates for the moments E X̂m when X̂ ∼ Poi(1), which are the Bell numbers.
(Or by more precise asymptotics in, e.g. [7, Proposition VIII.3] and [16, Section 26.7].)
Hence, in this case,

∑
m(E Zm∞)−1/m < ∞; in other words, Z∞ does not satisfy the usual

Carleman criterion
∑

m(E Zm∞)−1/m = ∞ for its distribution to be determined by its moments.
However, since we here deal with nonnegative random variables, we can use the weaker
condition (4.4). (This weaker version is well known, and follows from the standard version by
considering the square root ±Z∞ with random sign, independent of Z∞. Alternatively, observe
that (4.2) implies that E(±√

Z)k → E(±√
Z∞)k for all k ≥ 0, where the moments trivially

vanish when k is odd; since ±√
Z∞ has a finite moment generating function by (2.2) and Fatou’s

lemma, the usual sufficient condition for the method of moments yields ±√
Z

D−→ ±√
Z∞, and,

thus, Z
D−→ Z∞.)

Proof of Theorems 1.1 and 1.2. In the case
∑

i d2
i = O(N), Theorem 1.2 follows from

Lemma 4.1, since
P{Ẑ = 0} = P{X̂i = Ŷij = 0 for all i, j}

=
∏
i

P{X̂i = 0}
∏
i<j

P{X̂ij ≤ 1}

=
∏
i

e−λi
∏
i<j

(1 + λij )e
−λij . (4.6)

Furthermore, we have λij − log(1 + λij ) = O(λ2
ij ), so it follows from this and (3.3) that

lim infn→∞ P {G∗(n, (di)
n
1) is simple} > 0, verifying Theorem 1.1 in this case.

It remains (by considering subsequences) only to consider the case when
∑

i d2
i /N → ∞.

Since then ∑
i

λi =
∑

i d2
i − ∑

i di

2N
=

∑
i d2

i

2N
− 1

2
→ ∞, (4.7)

it follows from (4.6) that P{Ẑ = 0} → 0, and it remains to show that P{Z = 0} → 0. We do
this by the method used in [10] for this case. Fix A > 1, and split vertices by replacing some dj

by dj − 1 and a new vertex n + 1 with dn+1 = 1, repeating until the new degree sequence,
(d̄i)

n̄
1 say, satisfies

∑
i d̄2

i ≤ AN . (Note that the number N of half-edges is unchanged.) Then,
as N → ∞, see [10] for details,

∑
i d̄2

i ∼ AN and, denoting the new random multigraph by G

and using Lemma 4.1 together with (4.6) and (4.7) on G,

P{G(n, (di)
n
1) is simple} ≤ P{G is simple}

≤ exp

(
−

∑
i

d̄i (d̄i − 1)

2N

)
+ o(1)

= exp

(
−

∑
i d̄2

i

2N
+ 1

2

)
+ o(1)

→ exp

(
−A − 1

2

)
.

Since A is arbitrary, it follows that P{G(n, (di)
n
1) is simple} = P{Z = 0} → 0 in this case,

which completes the proof.

Remark 4.2. The proof of Lemma 4.1 shows that if
∑

i d2
i = O(N) for N → ∞ and also that

Ẑ
D−→ Z∞ for some random variable Z∞ (which is a kind of regularity property of the degree

sequences (di)
n
1), then Z

D−→ Z∞, with convergence of all moments.
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5. An application

We sketch here an application of our results (see [12] for details). We believe that similar
arguments can be used for other problems too.

We consider a certain random infection process on the (multi)graph, under certain assump-
tions; let L be the event that at most log n vertices will be infected. It was shown in [12] that, for
the multigraph G∗(n, (di)

n
1), P(L) → � for some � > 0; we want to conclude that, assuming

that
∑

i d2
i = O(N), the same is true for the simple random graph G(n, (di)

n
1), i.e. that

P(L | {Z = 0}) → �, (5.1)

where, as above, Z is the number of loops and pairs of parallel edges. By considering a
subsequence, we can assume that Z

D−→ Z∞ for some random variable Z∞ (see Remark 4.2).
Then, using P{L} → � > 0 and lim inf P{Z = 0} > 0 (Theorem 1.1), (5.1) is equivalent to
P{L ∩ {Z = 0}} → � P{Z∞ = 0} and, thus, to

P{{Z = 0} | L} → P{Z∞ = 0}.
Furthermore, the distribution of Z∞ is determined by its moments, at least among nonnegative
distributions (see the proof of Lemma 4.1). Consequently, it suffices to show that, for every
fixed m ≥ 0,

E[Zm | L] → E Zm∞. (5.2)

Actually, for technical reasons, we show a modification of (5.2): we let Z = Z1 + Z2, where
Z2 is the number of loops and pairs of parallel edges that include an initially infected vertex.
It is easily shown that E Z2 → 0, and, thus, it suffices to show that

E[Zm
1 | L] → E Zm∞. (5.3)

To this end, we write Zm
1 = ∑

γ Iγ , where Iγ is the indicator that a certain m-tuple of loops
and pairs of parallel edges exists in the configuration model yielding G∗(n, (di)

n
1). For each

γ , if we condition on Iγ = 1, we have another instance of the configuration model, with the
degrees at the vertices involved in γ reduced, plus some extra edges giving γ , and it is easy to
see that the result P{L} → � applies to this modification too, and, thus,

P{L | {Iγ = 1}} = � + o(1),

uniformly for all γ . We invert the conditioning again and obtain

E[Iγ | L] = P{L | {Iγ = 1}} P{Iγ = 1}
P{L} = (1 + o(1)) E(Iγ ).

Consequently,
E[Zm

1 | L] =
∑
γ

E[Iγ | L] ∼
∑
γ

E(Iγ ) = E Zm
1 ,

and since E Zm
1 → E Zm∞, this yields (5.3), as desired.

6. Bipartite graphs

A similar result for bipartite graphs has been proved by Blanchet and Stauffer [3]; see,
e.g. [1, 8, 13] for earlier results that are often stated in an equivalent form about matrices
with {0, 1}-valued elements. We suppose as given the degree sequences (si)

n′
1 and (tj )

n′′
1
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for the two parts, with N := ∑
i si = ∑

j tj , and consider a random bipartite simple graph
G(n, (si)

n′
1 , (tj )

n′′
1 ) with these degree sequences as well as the corresponding random bipartite

multigraph G∗ = G∗(n, (si)
n′
1 , (tj )

n′′
1 ) constructed by the configuration model. (These have

N edges.) We order the two degree sequences in decreasing order as s(1) ≥ · · · ≥ s(n′) and
t(1) ≥ · · · ≥ t(n′′), and let s := s(1) = maxi si and t := t(1) = maxj tj . Label the vertices in the
two parts v1, . . . , vn′ and w1, . . . , wn′′ , in order of decreasing degrees; thus, vi[wj ] has degree
s(i)[t(j)].
Theorem 6.1. ([3].) Assume that N → ∞. Then

lim inf
n→∞ P{G∗(n, (si)

n′
1 , (tj )

n′′
1 ) is simple} > 0

if and only if the following two conditions hold:∑
i

∑
j

si(si − 1)tj (tj − 1) = O(N2), (6.1)

n′∑
i=min{t,m}

s(i) = 
(N) and
n′′∑

j=min{s,m}
t(j) = 
(N). (6.2)

(Equation (6.2) is reformulated and simplified from [3]. Recall that x = 
(N) means that
lim inf x/N > 0.)

Remark 6.1. Here (6.1) corresponds to the condition
∑

i d2
i = O(N) in Theorem 1.1, while

(6.2) is an additional complication. Note that if s = o(N) then the first part of (6.2) holds,
because the sum is greater than or equal to N − (m−1)s; similarly, if t = o(N) then the second
part of (6.2) holds. Hence, (6.2) is satisfied, and (6.1) is sufficient, unless for some subsequence
either s = 
(N) or t = 
(N). Note also that both these cannot occur when (6.1) holds; in
fact, if s = 
(N) then (6.1) implies that

∑
j tj (tj − 1) = O(1) and, thus, t = O(1). On the

other hand, in such cases, (6.1) is not enough, as pointed out by Blanchet and Stauffer [3].
For example, if s1 = N −o(N), t1 = 2, and tj = 1 for j ≥ 2, then (6.1) holds but (6.2) fails for
m = 2. Indeed, in this example, there is with high probability (i.e. with probability 1 − o(1))
a double edge v1w1, and, thus, G∗ is with high probability not simple.

We can also prove Theorem 6.1 by the methods of this paper (the proof by Blanchet and
Stauffer [3] is different). There are no loops, and, thus, no Xi , but we define Xij and Yij as
above (with the original labelling), and let Z := ∑n′

i=1
∑n′′

j=1 Yij . Similarly, we define, for
i ∈ [n′] and j ∈ [n′′],

λij :=
√

si(si − 1)tj (tj − 1)

N
,

let X̂ij ∼ Poi(λij ) and Ŷij := (X̂ij

2

)
be as above, and let Ẑ := ∑n′

i=1
∑n′′

j=1 Ŷij . Note that (6.1)
is

∑
i,j λ2

ij = O(1).

Theorem 6.2. Assume that N → ∞ and that s, t = o(N). Then

P{G∗(n, (si)
n′
1 , (tj )

n′′
1 ) is simple} = P{Z = 0}

= P{Ẑ = 0} + o(1)

= exp

(
−

∑
i,j

(λij − log(1 + λij ))

)
+ o(1).
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Proof (sketch). The proof is similar to that of Theorem 1.2, using analogues of Lemmas 1.1
and 4.1 with only minor differences. Instead of (3.1) use the assumption that s, t = o(N),
which leads to error terms of the order O((s + t)/N); cf. Remark 1.2. Furthermore, (3.31) has
to be modified. Say that the vertex with a repeated half-edge is bad, and suppose that the bad
vertex is in the first part. Let the nonzero vertex degrees in F be a1, a2, . . . in the first part
and b1, b2, . . . in the second part, in any order with the bad vertex having degree a1. Thus,∑

ν aν = ∑
μ bμ = �. Using Hölder’s inequality and (6.1), the contribution from all F with

given (aν) and (bμ) is

O

(
N−�

∑
{i : si≥2}

s
a1−1
i

∏
ν≥2

( ∑
{i : si≥2}

s
aν

i

) ∏
μ≥1

( ∑
{j : tj ≥2}

t
bμ

j

))

= O

(
N−�

( ∑
{i : si≥2}

s2
i

)(a1−1)/2+∑
ν≥2 aν/2( ∑

{j : tj ≥2}
t2
j

)∑
μ bμ/2)

= O

(
N−�

(∑
i

si(si − 1)

)(�−1)/2(∑
j

tj (tj − 1)

)�/2)

= O

(
N−1

(∑
j

tj (tj − 1)

)1/2)

= O

(
t1/2

N1/2

)
.

Summing over the finitely many (aν) and (bμ), and adding the case with the bad vertex in the
second part, we obtain O((s + t)1/2/N1/2) = o(1).

Proof of Theorem 6.1. The case s, t = o(N) (when (6.2) is automatic) follows from Theo-
rem 6.2; note that

−
∑
i,j

(λij − log(1 + λij )) = O(1) ⇐⇒
∑
i,j

λ2
ij = O(1) ⇐⇒ (6.1).

By symmetry and considering subsequences, it remains to consider only the case s = 
(N).
It is easy to see that (6.1) is necessary in this case too, so we may assume that (6.1) holds. As
noted above, this implies that t = O(1), and, furthermore, that only O(1) degrees tj are greater
than 1. By taking a further subsequence, we may assume that t is constant. Then the second
part of (6.2) always holds, and it suffices to consider the case m = t in the first part of (6.2), i.e.

n′∑
i=t

s(i) = 
(N). (6.3)

If (6.3) does not hold then (at least for a subsequence), with high probability,
∑n′

i=t s(i) =
o(N), and then, with high probability, the t edges from w1 go only to {vi : i < t}, so, by the
pigeonhole principle, there is a double edge.

Conversely, if (6.3) holds, it is easy to see that if we first match the half-edges from w1, w2,
…, in this order, there is (for large n) for each half-edge a probability at least ε for some ε > 0
not to create a double edge; since there are only O(1) such vertices with tj > 1, it follows that
P{G∗ is simple} is bounded below.
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