
The Journal of Symbolic Logic, Page 1 of 30

SCOTT SENTENCE COMPLEXITIES OF LINEAR ORDERINGS

DAVID GONZALEZ AND DINO ROSSEGGER

Abstract. We study possible Scott sentence complexities of linear orderings using two approaches.
First, we investigate the effect of the Friedman–Stanley embedding on Scott sentence complexity and show
that it only preserves Πin

α complexities. We then take a more direct approach and exhibit linear orderings of
all Scott sentence complexities except Σin

3 and Σin
�+1 for � a limit ordinal. We show that the former cannot be

the Scott sentence complexity of a linear ordering. In the process we develop new techniques which appear
to be helpful to calculate the Scott sentence complexities of structures.

§1. Introduction. In this article we give a comprehensive Scott analysis of the
class of linear orderings using three definitions of rank. Given a structure A, the
(parameterless) Scott rank SR(A) is the least α such that the automorphism orbits
of all tuples in A are Σin

α definable; the parameterized Scott rank pSR(A), is the least
ordinal α such that there is a parameter p̄ ∈ A<� such that SR((A, p̄)) = α; and
the Scott sentence complexity of A, SSC (A) is the least of the complexities Πin

α ,
Σin
α , d -Σin

α such that A has a Scott sentence of one of these complexities. The first
two complexities were defined by Montalbán [19]. He showed that several notions
of structural complexity coincide with these Scott ranks. The last notion was first
formally investigated in [2]. While it does not assign an ordinal to structures, it was
shown there that Scott sentence complexity is indeed a well-defined notion of rank.
Table 1, taken from [22], shows the relationship between these invariants. As can be
seen from the definitions of the two Scott ranks and Table 1, calculating the Scott
sentence complexity of a structure comes down to calculating the complexity of the
automorphism orbits of the structure’s tuples in all but the limit ordinal cases. The
limit ordinal case is robustly treated for the first time in this article and we discuss it
more in Section 2.

By calculating the Scott sentence complexities occurring in a class of structures
we obtain a detailed picture of the descriptive complexity of its isomorphism
relation. By the Lopez-Escobar theorem, a structure’s Scott sentence complexity
corresponds to the Borel complexity of its isomorphism class. It is well known that
the isomorphism relation on a class of structures is Borel if and only if the Scott
ranks in the class are bounded below �1, see, for example, [12, Chapter 12].

The class of linear orderings is a particularly interesting object of study as
it is Borel complete: For every class of structures K there is a Borel function
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2 DAVID GONZALEZ AND DINO ROSSEGGER

SSC pSR SR Complexity of parameters

Σin
α+2 α α + 2 Πin

α+1
d -Σin

α+1 α α + 1 Πin
α

Πin
α+1 α α None

α limit

Σin
α+1 α α + 1 Πin

α

Πin
α α α None

Table 1. [22, Table 1]. Relationship of the different Scott invariants. The last column
contains the complexity of the automorphism orbit of the parameters involved in
the parameterized Scott rank.

f :Mod (K) →Mod (LO) such that for all A,B ∈ K, A ∼= B if and only f(A) ∼=
f(B) [8]. But the class of linear orderings is not complete for stronger forms of
reduction such as faithful Borel reducibility or effective bi-interpretability [11]. If
one dives into the realm of computable structure theory, one quickly sees that linear
orderings are far from being “structurally complete”. For example, Richter’s result
that no linear ordering can code a non-computable subset of � in its isomorphism
type, shows that linear orderings are quite weak in terms of coding power [24].
However, if one turns to non-effective notions such as Scott rank and Scott sentence
complexity, the situation becomes less clear. It is not at all difficult to produce linear
orderings of Scott rankα forα any countable ordinal; in fact Ash shows that one can
find such examples by considering well-orderings [5]. Even among computable linear
orderings one can find every possible Scott rank; Harrison [15] and recently Calvert,
Goncharov, and Knight [7] exhibited computable linear orderings of Scott rank
�CK

1 + 1 and�CK
1 , respectively. For the more fine-grained invariant of Scott sentence

complexity, the possible Scott sentence complexities of computable structures with
Scott rank �CK

1 + 1 or �CK
1 were recently characterized in [1] but the examples

given were not linear orderings. This beckons the question whether there are linear
orderings of all possible high Scott sentence complexities.

There are two approaches one might consider to study the possible Scott sentence
complexities in a specific class of structures. One is to study existing Borel reductions,
such as the Friedman–Stanley embedding [8] and whether this embedding preserves
Scott sentence complexities. We show that this approach fails in Section 2: The
Friedman–Stanley embedding does not preserve Scott sentence complexity. In fact,
for α > �, if SSC (A) = Σin

α , then, SSC (FS(A)) = Πin
α+1 (This is true for finite α

modulo a constant). The picture is different ifSSC (A) = Πin
α : ThenSSC (FS(A)) =

Πin
α even in the case when α is a limit ordinal (again modulo a constant if α is finite).

These results involve a deep analysis on the effect of parameters on the tree of
tuples of a structure and a novel characterization of structures with Scott sentence
complexity Πin

� for � a limit ordinal using what we call unstable �-sequences.
In Section 3 we show that our choice to study the Friedman–Stanley embedding

was not arbitrary; there are no better Borel embeddings into the class of linear
orderings in terms of preservation of Scott sentence complexity. In order to show
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SCOTT SENTENCE COMPLEXITIES OF LINEAR ORDERINGS 3

SSC LO Reference

Πin
1 + 1-element l.o.

d -Σin
1 + n-element l.o. (n > 1)

Πin
2 + Q

Σin
3 - Theorem 3.6

Successor α:

Σin
α+3 + Corollary 4.10
d -Σin

α + Corollary 4.10
Πin
α + Corollary 4.10

� a limit ordinal:

Πin
� + Proposition 4.11

Σin
�+1 ? Question 4.14

Σin
�+2 + Theorem 4.12

Σin
�+3 + Theorem 4.13

Table 2. Scott sentence complexities of linear orderings. Complexities not in the
table are impossible for structures in general.

this, we develop a concept we call α-universality. This tool provides upper bounds
for the number of structures with particular Scott sentence complexities.

In Sections 3.1 and 4 we take another more direct approach and try to find
examples of linear orderings of given Scott sentence complexities. A summary of
our findings can be found in the table above.

1.1. Remarks on effectivity. While this article’s primary concern is not the
effectiveness of the presented results, many of our results in this article can be
effectivized without much effort. The interested reader can find further discussions
on this matter in subsections at the end of Sections 2 and 4. Included are comments
on potential difficulties and open questions that arise from these efforts.

1.2. Preliminaries. We assume that the reader is familiar with the basic techniques
of Scott analysis and with linear orderings in general. For background we refer to
Montalbán’s upcoming book [22] and the standard reference by Ash and Knight [4].

We will make particular use of the following definition and lemma that are used
regularly in Scott analysis.

Definition 1.1 [4, Section 17.4]. We say that a tuple is α-free in the structure A
if for every tuple b̄ ∈ A and every � < α, there are tuples ā′, b̄′ such that

āb̄ ≤� ā′b̄′

ā �≤α ā.

Lemma 1.2 [19]. The unparameterized Scott rank of a structure is the least α such
that no tuple is α-free.
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4 DAVID GONZALEZ AND DINO ROSSEGGER

Let us highlight the following lemmas concerning linear orderings which we will
use as basic tools in our proofs without reference.

Lemma 1.3 [4, Lemma 15.7]. Suppose A,B ∈ LO, ā ∈ An and b̄ ∈ Bn with ā and
b̄ ordered. Then for every α < �1

(A, ā) ≤α (B, b̄) ⇐⇒ (– ∞, a0) ≤α (– ∞, a1) ∧ (a0, a1) ≤α (b0, b1)∧
··· ∧ (an–1,∞) ≤α (bn–1,∞).

Lemma 1.4 [4, Lemma 15.8]. Suppose A,B ∈ LO. Then A ≤1 B if and only if
A is infinite or at least as large as B. For α > 1, A ≤α B if and only if for every
1 ≤ � < α and every partition of B into intervals B0, ... ,Bn, with endpoints in B, there
is a partition of A into intervals A1, ... ,An with endpoints in A, such that Bi ≤� Ai .

§2. The Friedman–Stanley embedding and Scott sentence complexity. Friedman
and Stanley [8] showed that the class of linear orderings is Borel complete by defining
a computable operator Φ that takes a structure in a fixed vocabulary as input and
outputs a linear ordering such that for all A,B, A ∼= B if and only if Φ(A) ∼= Φ(B).
This reduction is commonly referred to as the Friedman–Stanley embedding. It
proceeds in two steps:

(1) Given a structure A it produces a labeled tree TA, the tree of tuples of A.
(2) From TA it produces a linear ordering LA = Φ(A).

The Friedman–Stanley embedding has been heavily studied both by descriptive set
theorists and computable structure theorists. Closely connected to our investigation
are Harrison-Trainor and Montalbán’s study of the tree of tuples construction
[16] and Knight, Soskova, and Vatev’s analysis of possible reductions to linear
orderings [17]. One result obtained in both articles is that one cannot embed
graphs into linear orderings uniformly usingL�1� formulas. This raises the question
whether the Friedman–Stanley embedding or any reduction reducing graphs to
linear orderings can preserve Scott sentence complexity. We consider the first
question in this section by analyzing the two steps of the reduction.

Using the fact that the class of graphs is complete for very strong reducibilities such
as effective bi-interpretability (see [21]), we will only analyse the Friedman–Stanley
embedding from the vocabulary containing one binary relation symbol to linear
orderings. This has the advantage that we do not have to deal with technicalities
resulting from infinite vocabularies in our proofs, but there is no effect on the strength
of our results.

2.1. The tree of tuples and Scott sentence complexity.

Definition 2.1. A replicated labeled tree consists of a tree (T,�) with a parent
function and labeling function l : T → � such that for every � ∈ T with parent �,
there exist infinitely many children �̃ of � such that T� ∼= T�̃ , where T� denotes the
subtree of TA rooted at �.

Recall that the atomic diagram of a tuple ā in A, denoted by DA(ā) is the set of
atomic formulas ϕi in variables (xi)i∈� such that (A, ā) |= ϕi [xj/aj, j < |ā|]. We
use the convention that formulas mentioning variables xj with j ≥ |ā| are not in
DA(ā) and thus, assuming that A is a graph, DA(ā) will always be a finite set.
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SCOTT SENTENCE COMPLEXITIES OF LINEAR ORDERINGS 5

Definition 2.2. Given a graph A letTA be the labeled tree consisting of all tuples
fromAordered by inclusion where each tuple ā is labeled by a natural number coding
DA(ā) and the length of ā. The tree of tuples TA is obtained by replicating every
branch in TA infinitely many times.

Looking at the construction of TA we can see that the Friedman–Stanley
embedding does not preserve much structure. Suppose that A is rigid (i.e., it has
trivial automorphism group). The tree TA will have many automorphisms because
it is replicated, and thus the automorphism groups of A and TA will behave quite
differently.

On the other hand, the (unparameterized) Scott rank of the tree of tuples of a
structure and the Scott rank of the structure are equal. In order to show this we
need a few lemmas.

Lemma 2.3. Let A be a structure in vocabulary �.

(1) Given Πin
α �-formula ϕ, there is a Πin

α formula Tϕ in the vocabulary of labeled
trees such that for any ā ∈ A and every � ∈ TA with � � ā

A |= ϕ(ā) ⇐⇒ TA |= Tϕ(�).

Moreover, Tϕ can be taken to have the same quantifier complexity as ϕ.
(2) Given a Πin

α formula	 in the vocabulary of labeled trees, there is a Πin
α �-formula

	∗ such that for any tuple �̄ = (ā1, ... , ān) ∈ TA

TA |= 	(�̄) ⇐⇒ A |= 	∗(ā, ... , ān).

Proof. We start by proving Item 1. To start suppose thatϕ is finite and quantifier-
free and in disjunctive normal form. For a disjunct ϕi of ϕ, let Tϕi be the formula
expressing that ϕi ⊆ l(x) and let Tϕ =

∨
Tϕi . Since formulas with free variable

indices exceeding the length of a tuple ā are considered to be false in A and l(�) ⊆
l(�) if � � �, we have that A |= ϕ(ā) if and only if for every � � ā, TA |= Tϕ(�), as
required.

Now, say that we have defined Tϕ given ϕ and that Item 1 holds for ϕ(x). Define

T∃xϕ = (∃y � �)
∨∨
i∈�
Tϕ[x/xi ](y),

T∀xϕ = (∀y � �)
∧∧
i∈�
Tϕ[x/xi ](y) ∨ i > |�|,

where ϕ[x/xi ] denotes ϕ with all free occurrences of x replaced by xi . The need for
these replacements arises from our coding: We have that � and � in TA can code a
witness a for x in different positions, say for example that �(i) = �(k) = a for i �= k.
Then � satisfies Tϕ[x/xi ] but � does not. To proceed we will need the following claim.

Claim 1.3.1. Suppose that ϕ is a formula where exactly one free variable x is not
in the range x0, ... , x|a|. Then for all b and d̄ not containing b

TA |= Tϕ[x/x|ā|+1](ā
�b) ⇐⇒ TA |= Tϕ[x/x|ā� d̄ |+1

](ā
�d̄�b).
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6 DAVID GONZALEZ AND DINO ROSSEGGER

Proof. First note that if � = 
(�) where 
 is a permutation of |�|, then for any
formula Tϕ , TA |= Tϕ(�) if and only if TA |= Tϕ[xi/x
(i)](�).1

Now, suppose that TA |= Tϕ[x/x|ā� d̄ |+1
](ā�d̄�b), then as Tϕ does not contain

variable symbols xi for i > |ā| except x, TA |= Tϕ[x/x|ā|+1](ā�b�d̄ ) and in particular

TA |= Tϕ[x/x|ā|+1](ā�b). The other implication is trivial. �

We can now proceed with the induction step of Item 1. We have by the claim that for
given ā and b, TA |= Tϕ(ā�b) if and only if for every � � ā, TA |= Tϕ[x/x|�|+1](��b)
if b �∈ � and TA |= Tϕ[x/xi ](�) if b = �(i). Thus, we get that A |= ∃xϕ(ā) if and only
if for every � � ā, TA |= T∃xϕ(�). ForT∀xϕ note that TA |= T∀xϕ(ā) if and only if for
every � � ā and every i ≤ |�|, A |= ϕ(ā, �(i)), and, since ā = � � |ā|, in particular
A |= ϕ(�(0) ... �(|ā|), �(i)). Thus, A |= ∀xϕ(ā) if and only if TA |= T∀xϕ . We can
extend our definitions to include infinite conjunctions and disjunctions by letting

T∨∨
ϕi =

∨∨
Tϕi and T∧∧

ϕi =
∧∧
Tϕi .

It then follows that for every ā, A |= ϕ(ā) if and only if TA |= Tϕ(�) for all � � ā,
and, by construction Tϕ has the same quantifier complexity as ϕ.

We now prove Item 2 by defining for each �̄ = (ā1, ... , ān) ∈ TA a Turing-
computable embedding from the isomorphism class of A in the extended vocabulary
with additional constant symbols p̄ = p̄1 ... , p̄n such that |p̄i | = |āi | to the class of
trees with constant symbols for �. That is, the embedding Φ� will map Iso(A, p̄) to
Iso(TA, �̄), where �i = p̄i for all i < n and p̄i ∈ A<� . Each of these embeddings will
extend the Friedman–Stanley embedding that acts without parameters.

Fix � = (ā1, ... , ān) ∈ TA and consider a structure (B, p̄) in the extended
vocabulary such that B ∼= A. The Turing computable embedding Φ� computes the
standard tree of structures forB and picks the lexicographically least tuple �̄ from TB
such that each �i codes p̄i and the finite subtree described by �̄ in TB is isomorphic to
the finite subtree described by �̄ (notice that this last condition is necessary since TA
is replicated. While āi and āj could agree on an initial segment, it could happen that
the subtrees generated by the elements coding these tuples in TA are disjoint). It is
not difficult to check that Φ� : (B, p̄) �→ (TB, �̄) is a Turing computable embedding
mapping (A, ā1, ... , ān) to (TA, �̄). Now, for any formula	 in the language of labeled
trees and parameters � = (ā1, ... , ān) by the pull-back theorem for Ψ�̄ there is 	∗

of the same complexity as 	 such that A |= 	∗(ā1 ... ān) if and only if TA |= 	(�̄).
This proves Item 2. �

Lemma 2.3 might suggest that the tree of tuples reduction preserves Scott sentence
complexity. However, as we will see, it does not. The reason for this is the following.
Let K be a class of structures and look at T (K), the set of trees-of-tuples of the
elements of K, then withinT (K), Scott sentences are preserved. However, in general
T (K) is not a Borel subset of the class of labeled trees and thus the Scott sentence
complexity of TA is not a priori connected to the Scott sentence complexity of A.

1One should not be misled to think that the two nodes � and � are automorphic, in particular, their
labeling functions might be differing.
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Proposition 2.4. Given �̄ = (ā1, ... , ān), �̄ = (b̄1, ... , b̄n) ∈ TA, if �̄ ≤α �̄, then for
each i < n, āi ≤α b̄i .

Proof. We prove this by contraposition. Assume that for some i, āi �≤α b̄i .
This is the same thing as saying that there is a Πin

α formula ϕ with A |= ϕ(āi)
and A |= ¬ϕ(b̄i). From Item 1 of Lemma 2.3 we get that TA |= Tϕ(āi) and
TA |= ¬Tϕ(b̄i). Then, since Tϕ is Πin

α , � �≤α �, as desired. �
Lemma 2.5. Given a tree of tuples TA, an element � ∈ TA, and a set of finitely many

children �1, ... , �n of �,

T� ∼= T� \ (T�1 ∪ ··· ∪ T�n ).
Proof. Since TA is replicated, for every child � of � there are infinitely many

children �′ of � such that T ′
�
∼= T�. Hence, T� ∼= T� \ T�. The full lemma follows by

a trivial induction. �
Theorem 2.6. For any structure A, SR(A) = SR(TA).

Proof. Let A be a structure such that SR(TA) = �. Consider a tuple ā ∈ A. Let
	 ∈ Σin

� define the orbit of ā ∈ TA. By Item 2 in Lemma 2.3 we have for all b̄ ∈ A

A |= 	∗(b̄) ⇐⇒ TA |= 	(b̄) ⇐⇒ b̄ ∼= ā.
Therefore, 	∗ defines the orbit of ā as desired and hence, SR(A) ≤ SR(TA).

We now show that SR(TA) ≤ SR(A) = �. Let �̄ = ā1 ... ān be a tuple in TA. The
automorphism orbit of each āi and each of its prefixes is Σin

� definable in A. Thus, by
Item 1 in Lemma 2.3, for every k there is a Σin

� formula, i,k , true only of elements in
� ∈ TA where � codes a tuple with length k prefix automorphic to the length k prefix
of āi . In particular, T� � k ∼= Tāi � k . Now, let 	 describe the finite subtree containing
precisely the elements of � as its leaves and let ϕ be the conjunction of 	 together
with the i,k . Note that ϕ can be taken to have free variables corresponding to �.
Because the labels encode the height of the labeled element in the tree, 	 can be
taken Σin

1 .
Let �̄ = b̄1 ... b̄n satisfy ϕ and consider the subtrees T� and T� containing elements

of TA comparable with �, respectively �. These two subtrees are isomorphic by
Lemma 2.5 and as Tāi � k ∼= Tb̄i � k for all i < n and k < |āi |. Fix h(�) such that
T� ∼= Th(�) yet the tree Th(�) is disjoint from both T� and T� . Since T is replicated
we can find such an h(�) and furthermore find an automorphism h such that �
is switched with h(�) and all points outside of T� and Th(�) are fixed. Similarly,
as T� ∼= Th(�) there is an automorphism f that switches � with h(�) and all points
outside of T� and Th(�) are fixed. Composing these automorphisms appropriately,
we obtain that h–1(f(�)) = �, so � is in the automorphism orbit of �. Thus, ϕ gives
a Σin
� definition of the automorphism orbit of � as required. �

Theorem 2.6 can be viewed as a strengthening of a result of Gao. He showed,
using a different definition of Scott rank, that the ranks of A and TA can be at most
�2 apart [11].

We now turn our attention to the parameterized Scott rank. Unlike the
unparameterized case, parameterized Scott rank will not be preserved. To see
this, we first need the following definitions. Given a tree T with root r and
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8 DAVID GONZALEZ AND DINO ROSSEGGER

a tuple c̄ = (c1, ... , cn) ∈ T , we say that y ∈ T is somewhat comparable to c̄ if
∃z, i z �= r ∧ ci � z ∧ y � z. A tuple is somewhat comparable to c̄ if all of its points
are. Similarly, we say that a point is entirely incomparable to c̄ if it is not somewhat
comparable to c̄ and that a tuple is entirely incomparable to c̄ if all of its points
are entirely incomparable to c̄. Note that if two elements are somewhat comparable,
they must have a length 1 predecessor in common.

Lemma 2.7. For TA a tree of tuples, every α ∈ �1 and tuples ā and b̄ that are
entirely incomparable to p̄,

āp̄ ≤α b̄p̄ ⇐⇒ ā ≤α b̄.

Proof. We go by transfinite induction on α. The α = 0 case is immediate, as is
the limit case. Assume the result for α = � . If āp̄ ≤�+1 b̄p̄, then ā ≤�+1 b̄ follows
immediately. Now assume that ā ≤�+1 b̄ and consider an arbitrary tuple c̄. We
can split c̄ into the points somewhat comparable to p̄, named c̄p, and the points
entirely incomparable to p̄, named c̄i (one of these may be the empty tuple). Because
ā ≤�+1 b̄, there is a tuple d̄i such that ād̄i ≥� b̄c̄i . We show that we can find a d̄ ′i
that is entirely incomparable to p̄ and has ād̄ ′i ≥� b̄c̄i by modifying the given d̄i .
Let p1 ... pn enumerate the length 1 points below any element in the tuple p̄, and
let a1 ... an be similar for ā. Note that p1 ... pn and a1 ... an do not intersect as ā is
entirely incomparable to p̄. We let d1 ... dn be similar for d̄ , but we remove the points
that appear among a1 ... an. For every di let d ′i be an element with Tdi ∼= Td ′i that
does not appear among the p1 ... pn and a1 ... an. This is possible because TA is an
infinitely replicated tree. Consider the automorphism Φ of TA that exchanges Tdi and
Td ′i but fixes all elements not among these subsets. We define d̄ ′i = Φ(d̄ ) and claim
that this tuple has the desired properties. Φ was constructed to fix ā; this means that
d̄ is automorphic to d̄ ′ over ā and therefore ād̄ ′i ≥� ād̄i ≥� b̄c̄i . Furthermore, none
of the d ′i are among the pi by construction so d̄ ′ and p̄ are entirely incomparable.
We can now note that ād̄ ′i and b̄c̄i are entirely incomparable with p̄c̄p as somewhat
comparability is an equivalence relation. In particular, the induction hypothesis
gives that

ād̄ ′i p̄c̄p ≥� b̄c̄i p̄c̄p.

Rearranging the tuples gives that

āp̄d̄ ′i c̄p ≥� b̄p̄c̄i c̄p

which shows that āp̄ ≤�+1 b̄p̄, as desired. �

Lemma 2.8. For every tree of tuples TA, SR(TA) = pSR(TA).

Proof. Consider a tuple ā that is α-free in TA. Without loss of generality
(by picking parameters automorphic to p̄) we have that ā is entirely incomparable
with p̄. We demonstrate that ā is also α-free in (TA, p̄).

Consider b̄ ∈ TA and � < α. We wish to show that there are ā′, b̄′ such that
āb̄p̄ ≤� ā′b̄′p̄ and āp̄ �≤α ā′p̄.

We can split b̄ into the points somewhat comparable to p̄, named b̄p, and the
points entirely incomparable to p̄, named b̄i (one of these may be the empty tuple).
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SCOTT SENTENCE COMPLEXITIES OF LINEAR ORDERINGS 9

Using the α-freeness of ā in TA, we may find ā′ and b̄′i (entirely incomparable to p
via an automorphism fixing ā) such that āb̄i ≤� ā′b̄′i and ā �≤α ā′.

It follows from the previous lemma that āb̄i p̄b̄p ≤� ā′b̄′i p̄b̄p and āp̄ �≤α ā′p̄.
Rearranging the tuples we get that āb̄p̄ ≤� ā′b̄′p̄ and āp̄ �≤α ā′p̄. Therefore, ā is
also α-free in (TA, p̄).

In particular, if there are noα-free tuples in (TA, p̄) then there are noα-free tuples
in TA. Hence, SR(TA) = pSR(TA). �

The previous two results can be used to understand the effect of the Friedman–
Stanley embedding on Scott sentence complexity in all but the limit cases. We use
the following new technique to deal with these cases.

Definition 2.9. For a structure A and a limit ordinal �, a �-sequence in A is a
set of tuples ȳi ∈ A for i ∈ � such that ȳi ≡αi ȳi+1 for some fundamental sequence
(αi)i∈� for �. We say that a �-sequence is unstable if yi �≡αi+1 yi+1.

Lemma 2.10. Consider a structure A with SR(A) = � for � a limit ordinal. The
Scott sentence complexity of A is Πin

� if and only if there are no unstable �-sequences
in A.

Proof. We start with the right to left implication and argue by contraposition.
Assume SR(A) = �, yet A does not have a Πin

� Scott sentence. Then there is a
structureB such thatA ≡� B yetA �∼= B. BecauseAhas Scott rank � this is equivalent
to saying that A ≡� B yet A �≤�+1 B. In other words, there is a tuple x̄ ∈ B such that
for any z̄ ∈ A, z̄ �≡� x̄. However, as A ≡� B, given a fundamental sequence (αi)i∈�
for �, for every i there is some ȳi ∈ A such that ȳi ≡αi x̄. It follows that the ȳi are a
�-sequence. Furthermore, given any i, there must be some k > i such that ȳi �≡αk ȳk .
Otherwise, ȳi ≡� x̄, a contradiction to the choice of x̄. The above k can be taken to
equal i + 1 if we thin out the sequence by removing intermediate elements between
i and k. In particular, the sequence (ȳi)i∈� can be taken to be unstable.

We now prove the left to right implication, again by contraposition. Consider a
structureAwith an unstable �-sequence (ȳi)i∈� . Consider the sequence of structures
given by (A, ȳi)i∈� . By [21, Lemma XII.6], there is a structure B and tuple z̄ ∈ B
such that for each i, (B, z̄) ≡αi (A, ȳi). Note that, in particular, this means that
B ≡� A. Furthermore, for each i there is some k > i such that αk ≥ 2αi + 3, as the
difference between 2αi + 3 and αi is finite. For this k, we can observe that

(A, ȳk) |= ∃x̄ x̄ �≡αi+1 ȳk ∧ x̄ ≡αi ȳk.

By [21, Lemma VI.14] this is a Σin
2αi+3 sentence that is computable inA. As (B, z̄) ≡αk

(A, ȳk), by choice of k,

(B, z̄) |= ∃x̄ x̄ �≡αi+1 z̄ ∧ x̄ ≡αi z̄.

Now consider the automorphism orbit of z̄ inside B. It cannot be defined by a Σin
�

formula for � < �, as if we take αi > � , by the above observation, there is a tuple
that is not in the automorphism orbit of z̄ that is αi -equivalent to z̄. This means
that SR(B) > � so B �∼= A. As B ≡� A, there is no Πin

� Scott sentence for A. �
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The former lemma can be better understood as an internal compactness property
that is present in structures with Scott sentence complexity Πin

� . For the sake of
completeness we include this equivalent formulation here.

Corollary 2.11. Consider a structure A with SR(A) = � for � a limit ordinal.
Then the following are equivalent.

(1) A has Scott sentence complexity Πin
� .

(2) For every fundamental sequence (�n)n∈� for � and complete �n-types pn(x̄) with
m free variables for some m and pn ⊂ pn+1, every type pn is realized in A if and
only if there is ā ∈ Am realizing every type pn.

Proof. Say A has Scott sentence complexity Πin
� and fix m ∈ �. If A realizes

all the �n-types pn(x̄) with m free variables and pn ⊂ pn+1, then any sequence of
elements (ȳn)n ∈ � such that ȳn realizes the type pn(x̄) forms a �-sequence. If
ȳn �≡�k ȳk for k > n on a cofinal subset, then we can obtain an unstable sequence
by thinning out the sequence, a contradiction. Therefore, there is some K for which
ȳn ≡�k ȳk for all k > n ≥ K . Then ȳK realizes every type pn.

On the other hand, if A does not have Scott sentence complexity Πin
� it must

have some unstable sequence, (z̄n)n∈� . If we take the �n-type of z̄n to be pn, then
clearly every type pn is realized in A. However, if there is ā that realizes all of the
types pn, then we have that ā ≡�n z̄n yet ā �≡�n+1 z̄n+1. Therefore the orbit of ā is not
Σin
� definable, a contradiction as SR(A) = �. �

Note that this cannot be upgraded from complete types to general formulas.
In other words, there may be a sequence of properly Πin

�n
formulas ϕn such that

ϕn+1 → ϕn and A |=
∧∧
n ∃x̄ ϕn(x̄) yet A |= ¬∃x̄

∧∧
n ϕn(x̄). To see this, we need

not look past our example of a Πin
� linear order for � a limit given in Proposition 4.11.

In particular the following formulas are a counterexample satisfied by this ordering:

ϕn(z) := ∃x̄, ȳ
∧
i<n

(xi , yi) ∼= Z�i ∧ yi < z.

We now note that unstable sequences transfer between a structure and its tree of
tuples. This will allow us to resolve the final Scott sentence complexity ambiguity.
In order to do this, we first need the following technical lemma.

Lemma 2.12. Let S = (x1, ... , xn) and T = (y1, ... , yn) be ( finite) isomorphic
downward closed subsets of TA. S ≤α T if and only if for all i, xi ≤α yi .

Proof. If S ≤α T , xi ≤α yi for any i follows immediately from the monotonicity
of ≤α .

Say that for all i, xi ≤α yi . Note that for all i, Txi ≤α Tyi . This holds because any
Πin
α formula about Txi can be transformed into a Πin

α formula about xi by restricting
all quantifiers to being above xi . Let

T ∗
xi

:= Txi –

⎛
⎝ ⋃
j:xj is a child of xi

Txj

⎞
⎠ and T ∗

yi
:= Tyi –

⎛
⎝ ⋃
j:yj is a child of yi

Tyj

⎞
⎠ .

Note that TA = �iT ∗
xi

= �iT ∗
yi

as sets. By Lemma 2.5 we can observe that T ∗
xi

∼= Txi
and T ∗

yi
∼= Tyi . In particular, this means that for all i, T ∗

xi
≤α T ∗

yi
.
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We have a sequence of strategies �i where each �i wins the back-and-forth game
for the ∃-player demonstrating that T ∗

xi
≤α T ∗

yi
. We use these strategies to describe

a winning strategy in the back-and-forth game for the ∃-player demonstrating that
S ≤α T . At any given even stage of the game the ∀-player will have played a tuple
(S, d̄ ). Write d̄ = (d̄1 ... d̄n) where d̄i is the (possibly empty) subset of d̄ that is in T ∗

yi
.

The ∃-player will play the move (T, �1(d̄1), ... , �n(d̄n)) in response. The analogous
strategy on the T ∗

xi
is executed on the odd stages. In sum, the ∃-player will play

a winning strategy on each part of the partition TA = �iT ∗
xi

= �iT ∗
yi

completely
agnostic of what is being played on the other parts of the partition.

Consider tuples (T, ā) and (S, b̄) that are produced at the end of a play where
the ∃-player plays according to the above strategy. To confirm that the strategy is
winning, we need to show that these tuples have the same atomic diagrams. Write
ā = (ā1 ... ān) and b̄ = (b̄1 ... b̄n) where āi is the (possibly empty) subset of ā that is
in T ∗

yi
and b̄i is the (possibly empty) subset of b̄ that is in T ∗

xi
. Because we played a

winning strategy on each of the parts of the partition TA = �iT ∗
xi

= �iT ∗
yi

, we know
that for all i, āi and b̄i have the same atomic diagram. We must only check that the
binary relations between elements in different tuples āi and āj are mirrored in the
binary relations between b̄i and b̄j and that the binary relations between āi and T
are mirrored in the binary relations between b̄i and S. Note that no binary relations
hold between elements of distinct āi and āj as these elements are not comparable;
the same is true for distinct b̄i and b̄j . Given yk ∈ T , it is less than all elements of āi
if yk ≤ yi and incomparable otherwise; the same is true for xk ∈ S and the elements
of b̄i . This confirms that the binary relations between different parts of the tuples
(T, ā) and (S, b̄) are the same in both cases. This means that the strategy is winning
for the ∃-player as claimed and S ≤α T as desired. �

Lemma 2.13. A structure A has an unstable �-sequence if and only if its tree of
tuples, TA does.

Proof. Consider an unstable �-sequence in A given by (ȳk)k∈� . Say each tuple
is coded by the element mk ∈ TA, then Lemma 2.3 gives us at once that mk is an
unstable �-sequence.

On the other hand, consider an unstable �-sequence in TA given by the
fundamental sequence (�k)k∈� and associated tuples (z̄k)i∈� . Let Sk denote
the finite tree of elements less than or equal to some point in the tuple, z̄k . Note that
the isomorphism type of Sk is fixed so long as we have without loss of generality
that �k > 1 for all k. By the definition of unstable �-sequences we have that

z̄k ≡�k z̄k+1 and z̄k �≡�k+1
z̄k+1.

By picking all of the elements in Sk or Sk+1 as the first move of a back-and-forth
game, we obtain that

Sk ≡�k–1
Sk+1 and Sk �≡�k+1

Sk+1.

It follows from Lemma 2.12 that by reducing to some reindexed fundamental
subsequence of (�k)k∈� , say (�k)k∈� , we have that for some sequence of points
xk ∈ Sk

xk ≡�k xk+1 and xk �≡�k+1 xk+1.
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By Lemma 2.3, the ȳk coded by the xk , satisfy

ȳk ≡�k ȳk+1 and ȳk �≡�k+1 ȳk+1.

Therefore, there is an unstable �-sequence in A. Together, we obtain the desired
result. �

Corollary 2.14. A has Scott sentence complexity Πin� if and only if TA has Scott
sentence complexity Πin� .

Corollary 2.15. If A has Scott sentence complexity Γin
� , TA has Scott sentence

complexity Πin
α where α = � if Γ = Π and α = � + 1 otherwise.

Proof. If SR(A) = SR(TA) is not a limit ordinal, then it follows from
SR(TA) = pSR(TA) that TA has Πin

SR(A)+1 Scott sentence complexity.
If SR(A) = SR(TA) = � is a limit ordinal, then by Corollary 2.14 SSC (A) = Πin

�
if and only if SSC (TA) = Πin

� . �

2.2. From tree of structures to linear orderings. We now turn our attention to
the second step of the Friedman–Stanley embedding. Following Friedman and
Stanley [8] we define the linear ordering L(T ) given a labeled tree as follows.

Definition 2.16. Let T be a labeled tree with labeling function lT : T → � and
take the linear ordering Q<� , given by the lexicographic order on finite strings of
elements in Q. We first define a map f : Q<� → T by recursion as follows: Map the
empty string to the root of T, then assuming we have defined f(�) we define f on
elements of the form ��q for q ∈ Q to be a map from Q to {� : ∃i � = ��i} such
that f–1� is dense in {��q : q ∈ Q}. Then, for every � ∈ T , if l(�) = n, then for
every x ∈ f–1(�), replace x by the finite linear ordering of size n + 2. If T is the tree
of structures TA of A, then we refer to L(T ) as LA.

Lemma 2.17. For every α and ordered ā, b̄ ∈ LA such that if ai , or bi are from a
labeled block, then every element in this block is in ā, respectively b̄, ā ≤3+α b̄ if and
only if f(ā) ≤1+α f(b̄).

Proof. The proof is by transfinite induction with the only interesting case being
the base case. For this note that the label and predecessor relation of TA in LA
are both Σin

3 and Πin
3 definable in LTA . Let ϕ be a Σin

1 formula true of ā, then this
formula can be translated into a Σin

3 formula true of f(ā) and thus ā ≤3 b̄ implies
f(ā) ≤1 f(b̄).

On the other hand, assume that f(ā) ≤1 f(b̄) and without loss of generality that
ā and b̄ contain elements from exactly two different blocks. Let us consider the
back-and-forth game where the ∀-player plays elements b̄1 on their first turn. For
every b1

i the ∃-player looks for elements a1
i such that l(f(a1

i )) = l(f(b1
i )), a1

i is in
the same position in its block as b1

i and āā1 and b̄b̄1 are isomorphic in the tree-
ordering. Note that they will find a suitable ā1 because f(ā) ≤1 f(b̄). Now on their
last turn the ∀-player plays a tuple ā2 and the ∃-player has to respond playing b̄2

such that āā1ā2 ≤1 b̄b̄
1b̄2. All they need to do is ensure that the intervals in āā1ā2

are at least as large as the intervals in b̄b̄1b̄2. Between any two elements in different
blocks in LA, there are blocks coding paths in TA. Thus, between any two elements
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in different blocks there are blocks of arbitrary large size and thus the ∃-player can
find elements satisfying this requirement. �

Lemma 2.18. For any structure A, 2 + SR(TA) = SR(LA). In particular, TA has
a Πin

1+α Scott sentence if and only if LA has a Πin
3+α Scott sentence.

Proof. For successor ordinals it is sufficient to note that Lemma 2.17 implies that
a tuple ā in LA is (3 + α)-free if and only if f(ā) is (1 + α)-free in TA. Likewise, a
tuple ā is (1 + α)-free in TA if and only if f–1(ā) is (3 + α)-free in LA.

For α a limit, note that by Lemma 2.17 an α-sequence for LA is unstable if and
only if the pull-back along f is unstable in TA. �

Combining everything developed in this section we obtain the following.

Theorem 2.19. For α > �, the Friedman–Stanley embedding preserves parame-
terized Scott rank, but it does not preserve parameterless Scott rank. In particular, for
any given structure A and any ordinal α:

(1) If SSC (A) = Πin
1+α , then SSC (LA) = Πin

3+α.
(2) If SSC (A) = Σin

1+α or SSC (A) = d -Σin
1+α , then SSC (LA) = Πin

3+α+1.

Another useful characterization of structures with Scott sentence complexity
Πin
� is that they are precisely those structures whose Πin

� infinitary theory is
ℵ0-categorical. Our results thus show the following.

Corollary 2.20. For any limit ordinal � and any structure A, the Πin
� infinitary

theory of A is ℵ0-categorical if and only if the Πin
� theory of LA is ℵ0-categorical.

The above corollary is related to a result by Calvert, Goncharov, and Knight
who showed that there is a linear ordering of Scott rank �CK

1 by proving a
“rank-preservation property” for computable embeddings [7]. Their arguments
show that the Friedman–Stanley embedding preserves ℵ0-categoricity of the
computable infinitary theory of structures. As a structure’s computable infinitary
theory is ℵ0-categorical if and only if it has Scott rank �CK

1 this shows that the
Friedman–Stanley embedding preserves Scott rank at that level (see [1]).

2.3. Remarks on effectivity. Some Borel reductions maintain Scott rank externally
in the sense that they take sufficiently complex Borel isomorphism classes and push
them forward to classes of equal complexity in the image space. In this case, Scott
sentence complexity is preserved for sufficiently high complexities.

Proposition 2.21. If Φ :Mod (�) →Mod (�) is a Borel reduction such that
[Φ(X )]∼= is Borel and that eventually satisfies push-forward, i.e., there is � such that
for � ≥ � and 	 ∈ Πin

� there is 	∗ ∈ Πin
� such that

A |= 	 ⇐⇒ Φ(A) |= 	∗,

then there is an ordinal α such that SR(A) ≥ α implies that

SSC (A) = SSC (Φ(A)).

Proof. Say Φ is Σ0
�-measurable and the image of Φ is Π0

� . Let  ∈ Πin
� describe

the image of Φ inMod (�). Let A have a Γin
� Scott sentence for � > �, say ϕ. Then

ϕ∗ ∧  is a Γin
� Scott sentence for Φ(A). On the other hand say Φ(A) has a Γin

� Scott

https://doi.org/10.1017/jsl.2024.59 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.59


14 DAVID GONZALEZ AND DINO ROSSEGGER

sentence for any �, then by the pullback theorem A has a Γin
�+� Scott sentence. So for

any A with SR(A) > max(� · �, �, �), Scott sentence complexity is preserved. �
Note that this proof has a straightforward effectivization. In particular, if Φ

is hyperarithmetic and 	 computable implies that 	∗ is computable, then the
complexity of the simplest computable formula that describes the isomorphism
type of A is also preserved.

However, as we have seen in Theorem 2.19, the Friedman–Stanley embedding
does not have the property that Scott sentence complexity is eventually preserved.
We thus get the following corollary.

Corollary 2.22. The image of the Friedman–Stanley embedding is not a Borel
subset of the class of linear orderings.

It should be noted that we can observe that the class of trees of structures is not
Borel among the class of labeled trees directly. In particular, consider TA and TB
for structures with A ≡α+1 B yet A �∼= B. We can now define TA,B := TA �r TB, the
tree formed by identifying the roots of TA and TB and adding no other relations
between them. Given our established criteria for ≡α , it is not difficult to show that
TA,B ≡α TA ≡α TB. However,TA,B is not a tree of structures, as it lacks the property
that comeager many paths represent the same structure. By taking α arbitrarily
large we can observe that there can be no L�1� formula defining the class of tree of
structures within the class of labeled trees.

This justifies why the proof of preservation of Scott rank proceeded as it did above.
In particular, Scott rank was treated “internally” by looking at the definitions of
automorphism orbits inside of the structure. Montalbán’s theorem on the robustness
of the Scott rank [19] and the work of Alvir, Greenberg, Harrison-Trainor, and
Turetsky [1] allowed us to take this approach, as it provides a correspondence
between the internal characterization of Scott sentence complexity and the external
one. However, no such correspondence exists for computable formulas. Therefore,
the proof technique used does not make it clear if there is a preservation of
computable Scott rank.

The closest result to an effective version of Montalbán’s theorem is that of Alvir,
Knight, and McCoy [2]. They prove the following.

Theorem 2.23. Let A be a computable structure and consider the following three
properties:

(1) There is a computable function f taking each tuple ā to a computable Σin
α formula

that defines its automorphism orbit.
(2) A has a computable Πin

α+1 Scott sentence.
(3) Every tuple in A has a computable Σin

α -definable automorphism orbit.
Item 1 implies Item 2 implies Item 3.

Effectivizing our results in the previous section, it is not difficult to see that the
Friedman–Stanley embedding preserves Item 1 and Item 3. However, preservation
of Item 2 may need a different technique, or not be true at all. Alvir, Knight, and
McCoy [2] ask to give a necessary and sufficient condition for a structure A to have a
computable Πin

α+1 Scott sentence. We offer the following variation closer connected
to our studies.
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Question 2.24. Does A have a computable Πin
α+1 Scott sentence if and only if TA

has a computable Πin
α+1 Scott sentence?

If this question has a positive answer, we suspect that the technique involved in
proving this could be used to answer the question of Alvir, Knight, and McCoy.

§3. α-universality and linear orderings. The main purpose of this section is to
show that there is no linear ordering of Scott sentence complexity Σin

3 and that there
is no embedding from any class of structures into linear orderings that is simpler than
the Friedman–Stanley embedding in the sense that it increases the Scott sentence
complexity less.

In order to do this we introduce and study the following notion for the class of
linear orderings.

Definition 3.1. LetK0 ⊆ K1 be isomorphism invariant classes of structures. The
class K0 is α-universal for K1 if for every A ∈ K1 there is B ∈ K0 such that A ≤α B.

Lemma 3.2. If K0 is α-universal for K1, then K0 contains all structures in K1 with
Πin
α Scott sentences.

Proof. Consider A ∈ K1 with a Πin
α Scott sentence. By α-universality, there is

B ∈ K0 with A ≤α B. But then A ∼= B and thus A ∈ K0, as K0 is isomorphism
invariant. �

Corollary 3.3. If K0 is α-universal for K1, then K0 contains all structures in K1

of parameterless Scott rank less than α.

Lemma 3.4. The class K = N ∪ {Q} is 2-universal for LO. In particular, {Q} is
2-universal for infinite linear orderings.

Proof. Let A ∈ LO. If A is finite then A ∈ K . If A is infinite then we claim that
A ≤2 Q. As any interval I in Q is infinite we have that I ≤1 A0 for any interval A0

of A. Thus, A ≤2 Q and, hence, K is 2-universal. �

3.1. Σin
3 is not the Scott sentence complexity of a linear ordering. Alvir, Greenberg,

Harrison-Trainor, and Turetsky [1] showed that no countable structure has Scott
sentence complexity Σin

2 and that no infinite countable structure has a d -Σin
1 Scott

sentence. Thus, the first Σ Scott sentence complexity attainable by a countable
structure is Σin

3 .
Remmel [23] showed that the computably categorical linear orderings are

precisely those with finite adjacency relation. It is well-known that the computably
categorical linear orderings and the relatively computably categorical linear
orderings coincide [10]. Both of these results relativize and thus one gets that the
linear orderings with Σin

3 Scott sentences are precisely those with finite adjacency
relation. For the convenience of the reader we give a simple proof using 2-universality.

Theorem 3.5. A linear ordering has a Σin
3 Scott sentence if and only if its adjacency

relation is finite.

Proof. Say A ∈ LO has a Σin
3 Scott sentence, then by Table 1 there is a parameter

p̄ ∈ A<� such that (A, p̄) has a Πin
2 Scott sentence. By the 2-universality of N ∪ {Q}
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every interval induced by p̄ is isomorphic to either Q or n. Hence, A has at most
finitely many adjacencies.

On the other hand, say that AdjA is finite and let p̄ be the ordered tuple of
elements in the field of AdjA. Then every interval induced by p̄ is either empty or
isomorphic to Q. As Q has a Πin

2 Scott sentence, (A, p̄) has parameterless Scott
rank 1, A has parameterized Scott rank 2, and, thus a Σin

3 Scott sentence. �
Theorem 3.6. No linear ordering has Scott sentence complexity Σin

3 .

Proof. The only candidates for linear orderings with Scott sentence complexity
Σin

3 are by Theorem 3.5 those with finite adjacency relation. Now, these linear
orderings are either finite, isomorphic to Q, 1 + Q, Q + 1, 1 + Q + 1, or isomorphic
to a linear ordering obtained by replacing finitely many points in one of these four
orderings by finite intervals. All but the last case are well-known to have Πin

3 Scott
sentences and thus can not have Scott sentence complexity Σin

3 . Consider an ordering
whose order type falls in the last case, and that, without loss of generality, its order
type is n1 + Q + n2 + Q + n3 + Q + ··· + nk . Let N =

∑
i≤k ni and assume that x

is the jth element in the ordered tuple containing all the successor chains. Then its
orbit is defined by

∃x1 ... xN∀y

⎛
⎝y ≥ x1 ∧ xj = x ∧

∧
i<j,i 	∈{n1,n1+n2,...,N}

S(xi , xi+1)

⎞
⎠ ,

where S is the Π0
1 definable successor relation. The formula is Σin

2 and defines the
orbit of the jth element in the successor chains as required. Now, let x be an element
in the jth Q copy where i =

∑
l≤j nl . Then its automorphism orbit is defined by

∃x1 ... xN

⎛
⎝ ∧
j<N,j 	∈{n1,n1+n2,...,N}

S(xj, xj+1) ∧ xi < x < xi+1

⎞
⎠

and this definition is again Σin
2 . It is easy to see that the defining formula of the

automorphism orbit of any ordered tuple is just the conjunction of the defining
formulas of the automorphism orbits of its elements. Thus, n1 + Q + n2 + Q + ··· +
nk has a Πin

3 Scott sentence. �

3.2. 3-universality and optimality of the Friedman–Stanley embedding.

Theorem 3.7. The following class is 3-universal for the class of linear orderings
K = {� + k, k + �∗, k + Z + k′ : k, k′ ∈ N} ∪ {� + �∗} ∪ {(

∑
i∈k ni +mi ·Q) +

nk+1 : ni ,mi ∈ N, ni > mi–1, mi+1} ∪ {k : k ∈ N}. There is no 3-universal class
J ⊂ K .

Proof. Given a linear ordering L we can write L =W + K +R with W well
ordered or empty, R reverse well ordered or empty, and K empty or without a
greatest or least element.

The element in K that L is ≤3-below will depend on the sizes of W and R, and
the order type of K. Let us consider the different cases.

Case 1. W is infinite and R is finite. In this case,W = � + α for some ordinal α,
so L = � + K′ + k for some k ∈ N and K′ is either empty or without greatest
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element. We claim that L ≤3 � + k. It is sufficient to show that � + K′ ≤3 �.
The ∃-player always wins the corresponding back-and-forth game by playing the
following strategy. In the first round they play isomorphically on the initial �.
Because of that they only need to win the back-and-forth game for � ≤2 � + K′.
Say the ∀-player picks elements such that � + K′ is partitioned into n intervals Ai ,
each of cardinality mi for i < n where mi might be infinite. The ∃-player must pick
a partition of � such that for all intervals Bi , each of cardinality ki , Ai ≤1 Bi . This
inequality holds if and only if mi ≥ ki . Given this inequality, the intervals formed
by picking the first n elements of � clearly form the desired partition.

Case 2. W is finite and R is infinite. This case is analogous to the first case.
Case 3. Both W and R are infinite. In this case, we can write L = � + K′ + �∗.

We claim that L ≤3 � + �∗. The winning strategy for the ∃-player is similar to the
one for Case 1. In the first play they play isomorphically on the initial � and final
�∗ to reduce the game to showing that� + �∗ ≤2 � + K′ + �∗. They can then win
this game by picking partitions with smaller intervals, exactly as above.

Case 4. Both W and R are finite. There are two subcases with different behavior
here. In both we assume that K has no greatest and least element, as if it was empty,
then L would be finite and thus isomorphic to a structure in K.

Subcase 1. There are arbitrarily large successor chains in K. Here we claim that
K ≤3 Z, which gives that L ≤3 k + Z + k′ for k, k′ ∈ N. The ∃-player always wins
the corresponding game by playing the following strategy. Assume the ∀-player plays
an ordered tuple with the distance between least and greatest element n. Then the
∃-player plays a successor chain of size n in K such that K = K1 + n + K2 where K1

has no first element and K2 has no last element. It is then sufficient to show that
�∗ ≤2 K1 and � ≤2 K2. In these games, similar to the cases above, the ∃-player just
needs to ensure that they play partitions of smaller size then the ∀-player and this is
possible by the same strategy.

Subcase 2. There is an n ∈ N such that no element in K has n successors. In this
case, we consider the block relation ∼ given by a ∼ b if and only if [a, b] and [b, a]
are finite. By assumption every block is a linear ordering of size n or less. As no block
can be infinite, no two blocks can be successors in the quotient K/∼. Furthermore,
as there is no least or greatest element, there are no least or greatest blocks in K/∼.
Therefore, K/∼ = Q. In total, this means that K =

∑
q∈Q in(q) where in : Q →

{1, ... , n}. If there are only finitely many blocks of size n, we may write K as a sum
K1 + n + ··· + n + Kl where no block of size n occurs in any of the Ki . Repeating
this process as necessary, we can write K as K1 + n1 + K2 + n2 + ...Kl where each
Ki is given by Ki =

∑
q∈(bi ,ti )

in(q) where ti is the smallest element of ni and bi is
the largest element of ni–1 or – ∞ if i = 1 such that {q ∈ (bi , ti) : in(q) = mi} is
infinite for mi = max range(in �(bi , ti)). Furthermore, we have that mi < ni and if
i > 1, mi < ni–1.

We now show thatL = k+K1 +n1 + ...Kl +k′ ≤3 k+m1 ·Q + n1 ... ml ·Q+k′.
It is enough to show that Ki =

∑
q∈(bi ,ti )

in(q) ≤3 mi ·Q. The ∃-player always wins
this game by playing the following strategy. Every element the ∀-player plays in the
first play is in a block of size mi . The ∃-player can respond by playing elements in
the same position in blocks of size mi . The resulting intervals in Ki are of the form
l1 +

∑
q∈(bji ,t

j
i )
in(q) + l2 where bji > bi and tji < ti . The corresponding intervals
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in mi ·Q are of the form l1 +mi ·Q + l2. Winning the game thus comes down to
finding a winning strategy for the gamemi ·Q ≤2

∑
q∈(bji ,t

j
i )
in(q). Given a partition

in
∑
q∈(bji ,t

j
i )
in(q), the ∃-player needs to find a partition in mi ·Q such that all

intervals are smaller than the intervals in the partition picked by the ∀-player. They
can do that using the fact that the finite blocks are densely ordered and always of
maximum size.

This shows that K is 3-universal. Standard arguments show that each element of
K has a Πin

3 Scott sentence. Therefore, by Lemma 3.2, there is no J ⊂ K such that
J is 3-universal. �

Note that McCoy [18] obtained a similar characterization for the linear orderings
that are Δ0

2 categorical. Theorem 3.7 can be used to show a boldface version of this
result.

Corollary 3.8. If L is a linear ordering with a Πin
3 Scott sentence, then L is in K.

Since by Table 1 and Lemma 1.4 every linear ordering with a Σin
4 Scott sentence is

sum of linear orderings with Πin
3 Scott sentences we obtain the following.

Corollary 3.9. If L is a linear ordering with a Σin
4 Scott sentence, then L is a finite

sum of linear orderings in K.

That the Friedman–Stanley embedding is optimal for Scott sentence complexity
now follows easily from Corollary 3.9 by cardinality considerations.

Theorem 3.10. There is no Turing computable embedding Φ :Mod (�) → LO
such that for all A ∈Mod (�), SSC (A) = Πin

2 if and only if SSC (Φ(A)) ∈
{Σin

4 , d -Σin
3 ,Π

in
3 } for any countable vocabulary �.

Proof. We may assume that � contains only one binary relation symbol, i.e.,
that the �-structures are graphs. Notice that there are continuum many graphs with
Scott sentence complexity Πin

2 : For any X ⊆ � the graph consisting of a cycle of
size n + 2 for every n ∈ X has a Πin

2 Scott sentence. To see this just notice that
the automorphism orbit of any element x in a cycle of size cx is definable by the
Σ0

1-formula

∃y1, ... , ycx

(
y1 = x ∧ ycx E y1 ∧

∧
i<cx

yi E yi+1

)
.

However, by Corollary 3.9 there are only countably many linear orderings with a
Σin

4 Scott sentence. As any potential embedding Φ needs to respect isomorphism, it
cannot map every graph with a Πin

2 Scott sentence to a linear ordering with a Scott
sentence of complexity in {Σin

4 , d -Σin
3 ,Π

in
3 }. �

Proposition 3.11. There is no countable class of 4-universal linear orderings.

Proof. As mentioned in the proof of Theorem 3.10 there are uncountably many
graphs with Scott sentence complexity Πin

2 . The Friedman–Stanley embedding
transforms those into linear orderings of Scott sentence complexity Πin

4 . Thus, by
Lemma 3.2 there can not be a countable 4-universal set of linear orderings. �
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§4. Possible Scott sentence complexities of linear orderings. We now exhibit
possible Scott sentence complexities of linear orderings. Many of our examples
are constructed by producing shuffle sums of linear orderings.

Definition 4.1. Given a set S of countable linear orderings, the shuffle sumSh(S)
of S is obtained by partitioning Q into |S| dense setsKi and replacing each point in
Ki with a copy of Si .

Shuffle sums are a very common construction that allows the coding of
information into linear orderings. For example, if one considers a setA ⊆ �, we can
consider it as a set of finite order types and take the shuffle sum Sh(A), effectively
coding the set. For a computability theoretic analysis of the coding strength of
linear orderings that quite heavily uses shuffle sums see, for example, [9]. The crucial
feature of shuffle sums is that if we partition a shuffle sum Sh(S) into intervals Pi
that are closed under the orderings in S (the partition does not split any subordering
of type Si ∈ S), then Pi ∼= Sh(S) for all Pi . This immediately follows from the fact
that every Si is dense in Sh(S). Note that a linear ordering of the form L ·Q is a
special case of a shuffle sum. We begin by proving a couple of lemmas about the
back-and-forth relations of shuffle sums.

Lemma 4.2. Let A be a shuffle sum and B = L ·Q for some ordering L. If A ≤α B
then A + L + B ≤α+2 A + B.

Proof. To show this, we describe a winning strategy for the ∃-player in theα + 2-
back-and-forth game. On the first turn, the ∃-player copies the selected tuple of the
∀-player using an isomorphism of the initial As and the final Bs. The only possible
non-isomorphic interval is the one between the smallest element of the tuple b that
is in B and the largest element of the tuple a that is in A. In other words, we need to
show that

A>a + L + B<b ≥α+1 A>a + B<b.
Because A and B are shuffle sums, A>a ∼= N + A and B<b ∼= B +K for some linear
orderings N and K. This means that we only need to show that A + L + B ≥α+1

A + B if we play isomorphically on N and K.
On the next turn, the ∀-player plays on A + L + B, and the ∃-player responds on

A + B using an isomorphism between the initialAs and an isomorphism ofL + B to
a final segment of B. Assume without loss of generality that c is the smallest element
in L played by the ∀-player in the distinguished copy of L within A + L + B. The
only possible non-isomorphic interval is between c and the largest element a selected
within A. In other words, we need to show that

A>a + L<c ≤α A>a + B + L<c.
As A>a ∼=M + A and the ∃-player can play the isomorphism between the copies
of L<c and M, it is sufficient to show that A ≤α A + B. As A is a shuffle sum
A ∼= A + A. Therefore, it is enough to show that A ≤α B, as desired. �

Corollary 4.3. Let A be a shuffle sum and B = L ·Q for some ordering L. If
A + L + B �∼= A + B and A ≤α B, then A + L + B has no Πin

α+2 Scott sentence.

We are now ready to provide the constructions of example linear orderings.
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Theorem 4.4. There is a linear ordering with Scott sentence complexity Σin
4 .

Proof. Consider the linear ordering L = 2 ·Q + 1 + Q and call the 1 in the
middle c. We claim that SR(L, c) = max{SR(2 ·Q), SR(Q)} ≤ 2 (the first equality
follows from [14, Lemma 11]). The inequality follows from the fact that in 2 ·Q the
orbits of singletons are defined by the Σin

2 -formulas ∃y S(x) = y and ∃y S(y) = x.
This definition extends to tuples by adding in the order of the tuple to the definition
along with any successor relations that hold.

We now show that L has Scott sentence complexity Σin
4 . This will be done by

showing that it does not have a Πin
4 Scott sentence. In order to do this, we appeal to

Corollary 4.3 which implies that all we need to show is that 2 ·Q ≤2 Q. However,
this follows immediately from the 2-universality of Q among infinite linear orderings
(Lemma 3.4). �

Note that the above proof also implies that 2 ·Q + 1 + Q ≤4 2 ·Q + Q.

Theorem 4.5. There is a linear ordering with Scott sentence complexity Σin5 .

Proof. Let A = Sh({1, �}), B = � ·Q, L = A + � + B and denote the first
element of the � in the middle by c. We claim that L has Scott sentence
complexity Σin

5 .
First, we show that SR(L, c) = max{SR(A), SR(B)} ≤ 3 (the first equality

follows from [14, Lemma 11]). Define the following family of formulas that denote
if x is the top of an successor chain of length n > 1:

Sn(x) : ∃x1, ... , xn–1

∧
i<n–1

S(xi , xi+1) ∧ S(xn–1, x).

Note that Sn(x) is Σin
2 . It is not difficult to see that the automorphism orbits of

elements in B are given by the formulas

∀y¬S(y, x) and Sn(x) ∧ ¬Sn+1(x) for n ∈ �.

These formulas are all Σin
3 and the automorphism orbits of tuples can be constructed

by taking conjunctions over them along with adding any needed successor relations
between the elements. Thus, SR(B) ≤ 3. Similarly, within A the automorphism
orbits of elements are given by the formulas

∀y ¬S(x, y), ∀y ¬S(y, x) ∧ ∃y S(x, y) and Sn(x) ∧ ¬Sn+1(x) for all n ∈ �.

To extend these definitions to tuples we only need to add the successor relations that
hold between the elements and the order of the elements. All of these definitions are
Σin

3 and therefore SR(A) ≤ 3.
It remains to show that L does not have a Πin

5 Scott sentence. By Corollary 4.3 it
is enough to show that � ·Q ≥3 A. Towards this let p̄ ∈ � ·Q be an ordered tuple.
We want to find q̄ ∈ A such that (� ·Q, p̄) ≤2 (A, q̄). To do this, take an ordered
tuple q̄ ∈ A such that every qi is in an �-block and in the same position within that
block as pi . Furthermore, assure that for each pair i < j, pi and pj are in the same
�-block if and only if qi and qj are. In particular, finite intervals formed by p̄ within
an �-block are isomorphic to the corresponding finite intervals formed by q̄ within
an �-block. Note that, for each i not accounted for in the above analysis, there
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is some ki ∈ �, such that (pi , pi+1) ∼= � + A + ki and (qi , qi+1) ∼= � + � ·Q + ki .
Therefore, it is enough to show that

A ≥2 � ·Q.
Repeating the style of argument from above we fix a tuple p̄ ∈ A and find a

suitable q̄ ∈ � ·Q such that (A, p̄) ≤1 (� ·Q, q̄). Recall that A ≤1 B if and only if
|B| ≤ |A|. Assuming that p̄ is ordered, (pi , pi+1) has cardinality n ∈ � or ℵ0 with
the first and last intervals always having cardinality ℵ0. Any combination of gaps of
size n and ℵ0 can also be found in � ·Q and we can thus find a suitable tuple q̄ to
finish the proof. �

Given these base case examples of linear orderings of small Scott sentence
complexity, we now devise a method of systematically using these examples to fill in
most of the larger Scott sentence complexities. The examples are quite simple; we
consider orderings of the form Zα · L where L is one of our previously constructed
examples. The more difficult work is determining exactly of what Scott sentence
complexity these orderings are.

This will be proven by demonstrating an upper and lower bound on the complexity
of the Scott sentence. We begin with proving the lower bound. In the proof of the
below lemma we use �α to denote the unique up to isomorphism initial segment
of Zα . It is easy to check that �∗α is the unique end segment of Zα and that
�∗α+1 = �α + Zα · �.

Lemma 4.6. For the sake of organization, consider the following ordinal indexed
propositions.

(Aα) For any K and L, Zα · K ≤2α Zα · L.
(Bα) For any K and L with |K| ≥ |L|, Zα · K ≤2α+1 Zα · L.
(Cα) For any K and any L without a last element, Zα · (� + K) ≤2α+2 Zα ·

(� + L).
For any countable ordinal α, Aα , Bα , and Cα are true.

Proof. The proof is by induction with the statements A0 and B0 trivially true.
We start by showing that Bα implies Aα+1.

Select a tuple a0 ... an in Zα+1 · L = Zα · Z · L. We will find a tuple b0 ... bn in
Zα+1 · K = Zα · Z · K such that (Zα+1 · L, ā) ≤2α+1 (Zα+1 · K, b̄). Pick a point b0

arbitrarily. Given bj , we pick bj+1 as follows. If aj and aj+1 are in the same copy
of Zα+1, we can pick bj+1 such that (aj, aj+1) ∼= (bj, bj+1). If not, we pick bj+1

arbitrarily in the copy of Zα that is the successor of the successor of the copy of Zα

containing bj . In other words, we pick bj+1 with (bj, bj+1) ∼= �∗α + Zα + �α .
To show that our choice of b̄ is correct, we have to confirm the following relations

between non-isomorphic intervals.
(1) (bj, bj+1) ∼= �∗α + Zα + �α ≥2α+1 �

∗
α + Zα · L1 + �α , where L1 is an infinite

order,
(2) (– ∞, b0) ∼= Zα · K1 + �α ≥2α+1 Zα · L1 + �α , where L1 and K1 are some

initial segments of Z · L and Z · K, and therefore infinite, or
(3) (bn,∞) ∼= �∗α + Zα · L1 ≥2α+1 �

∗
α + Zα · K1, where L1 and K1 are some final

segments of Z · L and Z · K, and therefore infinite.
It follows immediately from Bα that all of these back-and-forth relations hold.
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We now show that Bα implies Cα . So assume that K and L have no last element
and that Bα holds. Select a tuple a0 ... an in Zα · (� + L). Without loss of generality,
a0 is in the first copy of Zα . We will find a tuple b0 ... bn in Zα · (� + K) such that
(Zα · (� + L), ā) ≤2α+1 (Zα · (� + K), b̄). For the aj in the initial Zα · �, the bj are
picked isomorphically. We now define the rest of the bj by induction so that all of
them are in the initial Zα · �. If aj is in the same Zα block as aj+1 or aj+1 is in
the successor of aj ’s block, define bj+1 so that (bj, bj+1) ∼= (aj, aj+1). Otherwise,
define bj+1 as being some element in the successor of the successor of the Zα

block containing bj . Not including isomorphic intervals, we only need to check the
following cases.

(1) (bj, bj+1) ∼= �∗α + Zα + �α ≥2α+1 �
∗
α + Zα · L1 + �α where L1 is infinite,

(2) (bn,∞) ∼= �∗α + Zα · (� + K) ≥2α+1 �
∗
α + Zα · L1, where L1 is some final

segment of � + L, and thus infinite.

All of these relations follow from Bα , as desired.
To complete the proof of the successor step of the induction, we show that Cα

and Aα+1 imply Bα+1.
Select a tuple a0 ... an in Zα+1 · L. These points belong to at most n distinct copies

of Zα+1. Because |K| ≥ |L|, we can match each chosen copy of Zα+1 to one in
Zα+1 · K. Furthermore, if there is a copy of Zα+1 between two of the chosen copies
in Zα+1 · L, we can assure that the corresponding copies in Zα+1 · K are also not
successors. Also, if an is not in the last copy of Zα+1, we can assure that neither
is bn and, similarly for a0 and b0 in the first copy. In particular, not including the
isomorphic intervals, we only need to check the following cases.

(1) (bj, bj+1) ∼= �∗α+1 + Zα+1 · K1 + �α+1 ≥2α+2 �
∗
α+1 +Zα+1 · L1 + �α+1 for some

orderings K1 and L1,
(2) (bn,∞) ∼= �∗α+1 + Zα+1 · K1 ≥2α+2 �

∗
α+1 + Zα+1 · L1 for some orderings K1

and L1,
(3) (– ∞, b0) ∼= Zα+1 · K1 + �α+1 ≥2α+2 Zα+1 · L1 + �α+1 for some orderings K1

and L1,
(4) (– ∞, b0) ∼= �α+1 ≥2α+2 Zα+1 · L1 + �α+1 for some order L1,
(5) (bn,∞) ∼= �∗α+1 + Zα+1 · K1 ≥2α+2 �

∗
α+1 for some order K1.

The first three cases are handled immediately byAα+1. By symmetry it is sufficient
to show case (5). However, this is the same as showing that

�∗α + Zα · � ≤2α+2 �
∗
α + Zα · (� + Z · K1).

This follows directly from Cα .
At last we consider the remaining limit levels. We already have seen that B�

implies C�. The statement A� follows immediately from A� for � < �. A bit more
nuanced is the issue of B�. It follows from A� and C� for � < �. Analogous to the
proof in the successor case, we analyze the possibilities:

(1) �∗� + Z� · K1 + �� ≥� �∗� + Z� · L1 + �� for some orderings L1 and K1,
(2) �∗� + Z� · K1 ≥� �∗� + Z� · L1 for some orderings L1 and K1,
(3) Z� · K1 + �� ≥� Z� · L1 + �� for some orderings L1 and K1,
(4) Z� · K1 + �� ≥� �� for some order K1,
(5) �∗� + Z� · K1 ≥� �∗� for some order K1.
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The first three cases are handled immediately by A�. By symmetry it is clear that
it is enough to show case 5. However, this is the same as showing that for all � < �,

�∗� + Z� · (� + Z · �∗� ) ≤� �∗� + Z� · (Z · �∗� + Z� · K1),

which follows from the C� for � < �.
Therefore, for any countable ordinal α, Aα , Bα , and Cα all hold. �
The proposition Bα is analogous to Lemma II.38 in [22]. However, it has the

notable advantage of being more universal, cleaner to state and easier to apply for
our purposes. It is also independently interesting as it furthers our understanding of
the behavior of powers of Z, which have been studied in [13] and [6]. For our
purpose, what is important is that the proposition Bα serves as the base case
for the following lemma, which generalizes Lemmas 7.2 and 7.3 from [13] and
Proposition 4.8 from [6].

Lemma 4.7. For any L and K L ≤� K =⇒ Zα · L ≤2α+� Z
α · K.

Proof. We demonstrate this by induction on � . Notice that the base case is given
by the above lemma. The limit case follows immediately by the definition of the
back-and-forth relations along with the observation that for any linear ordering N ,
L ≤� K =⇒ N · L ≤� N · K. Thus, we need only look at the successor case.

Let� = � + 1 and assumeL ≤�+1 K. We need to show thatZα · L ≤2α+�+1 Zα · K.
We view Zα ·K as a product ordering with elements of the form (�, b) where b ∈ K
and � ∈ Zα . Consider a play of the game where the ∀-player plays a tuple (�i , bi)i∈k
from Zα · K. If s is a winning strategy for demonstrating that L ≤�+1 K, the ∃-player
may play (�i , s(bi))i∈k in response. Let b–1 = s(b–1) =– ∞ and bk = s(bk) = ∞ by
convention. We need only show that

[(�i , bi), (�i+1, bi+1)] ≤2α+� [(�i , s(bi)), (�i+1, s(bi+1))].

Note that the left-hand side is isomorphic to �α + Zα · (bi , bi+1) + �∗α and the right-
hand side is isomorphic to �α + Zα · (s(bi), s(bi+1)) + �∗α . As s is a winning strategy,
by induction,

Zα · (bi , bi+1) ≤2α+� Z
α · (s(bi), s(bi+1)),

which demonstrates the claim. �
The following corollary follows immediately from Lemma 4.7 and the fact that

multiplying by Zα is an injective map on linear orderings.

Corollary 4.8. For any linear ordering L, if there is a K with L ≤� K yet L �∼= K
then Zα · L has no Πin

2α+� Scott sentence. For any linear ordering L, if there is a K
with L ≥� K yet L �∼= K then Zα · L has no Σin

2α+� Scott sentence.

This allows to transfer lower bounds for the Scott sentence complexity of L to
Zα · L.

We now move to proving the upper bound. In particular, we must demonstrate
that multiplying by a power of Z does not make the Scott rank too high. For this
we use the notion of the block relation ∼α . We follow the definitions in [3].

Lemma 4.9. If L has a Γin
� Scott sentence for Γ ∈ {Σ,Π, d -Σ}, then the linear

ordering Zα · L has a Γin
2α+� Scott sentence.
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Proof. Given a formula ϕ in the language of linear orderings we define ϕα
as being the same as ϕ except for the fact that instances of x < y are replaced
by x < y ∧ x �∼α y and instances of x = y are replaced by x ∼α y. Note that if
ϕ is Γin

� , then ϕα is at worst Γin
2α+� by the fact that ∼α is Σin

2α definable (see [3,
Proposition 4]). It is also not difficult to see that if ϕ is a Scott sentence for L, then
N |= ϕα guarantees that N/∼α ∼= L. Finally, we define

	 = ∀x
∧∧
�<α

∧∧
n∈�

(∃y Sn� (x) = y) ∧ (∃y Sn� (y) = x).

Here, Sn� (x) = y is shorthand for saying that y is the nth �-successor of x. In other
words,

∃z0 ... zn x = z0 ∧ y = zn ∧
∧
i<n

zi �∼� zi+1 ∧ ∀w zi < w < zi+1 → (w ∼� zi ∨ w ∼� zi+1).

Overall, this is Σin
2�+2. This gives that	 is, at worst, Πin

2α+1. Furthermore,	 guarantees
that every ∼α equivalence class is isomorphic to Zα . Therefore, ϕα ∧ 	 gives the
desired Scott sentence for Zα · L. �

This result along with the previous constructions gives that there are linear
orderings with any Scott sentence complexity that is not too close to a limit ordinal.

Corollary 4.10. There are linear orderings of the following Scott sentence
complexities:

(1) Σin
α+n for any countable ordinal α and n ≥ 4,

(2) d -Σin
α+n for any countable ordinal α and n ≥ 1,

(3) Πin
α+n for any countable ordinal α and n ≥ 1.

Proof. Let L4 be the constructed example of Scott sentence complexity Σin
4 and

K4 such that L4 ≤4 K4. Similarly define L5 and K5. For any α we know that Zα · L4

has a Σin
2α+4 Scott sentence, yet it has no Πin

2α+4 Scott sentence as Zα · L4 ≤2α+4

Zα · K4. Thus, Zα · L4 has Scott sentence complexity Σin
2α+4. Similarly, Zα · L5 has

Scott sentence complexity Σin
2α+5. These constructions provide examples for all of

the claimed cases of the form Σin
α+n.

Let L2 := Q + 2 + Q. It is not difficult to see that this order has a d -Σin
2 Scott

sentence and that Q + 3 + Q ≤2 L2 ≤2 Q, so this is indeed optimal. Using the same
reasoning as above, we see that Zα · L2 has Scott sentence complexity d -Σin

2α+2.
Ash [5] analyzed the back-and-forth relations of well-orderings and it follows
from his results that �α · 2 has Scott sentence complexity d -Σin

2α+1 (see [3, proof
of Proposition 19]). These constructions provide examples for all of the claimed
cases of the form d -Σin

α+n.
It is a basic exercise to show that Q has Scott sentence complexity Πin

2 . Using the
same reasoning as above, we see that Zα ·Q has Scott sentence complexity Πin

2α+2.
Furthermore, it again follows from results of Ash [5] that �α has Scott sentence
complexity Πin

2α+1. These constructions provide examples for all of the claimed cases
of the form Πin

α+n. �

This covers every case except for some possibilities that lie close to limit ordinals.
The following results fill most of these gaps.
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Proposition 4.11. For any limit ordinal �, there is a scattered linear ordering of
Scott sentence complexity Πin

� .

Proof. Let (�n)n∈� be a fundamental sequence for �. We show that

L� :=
∑
i∈�
i + Z�n

is of the desired complexity.
First note that it indeed does have a Πin

� Scott sentence. The sentence states the
following:

(1) There is exactly one 1-block isomorphic to each natural number.
(2) These 1-blocks are ordered like the natural numbers.
(3) The order between n and n + 1 is isomorphic to Z�

n
.

This is Πin
� because each of the items is Πin

<�. The first two statements can be expressed
using finitely many alternations of quantifiers. The final statement can be expressed
by the Scott sentence ofZ�n relativized to the specific interval, this sentence has Scott
sentence complexity below � by [3], as the Hausdorff rank of the interval is below �
and one can relativize the Scott sentence to the interval using finite quantifier rank
by specifying that the elements are between the corresponding finite 1-blocks.

By Lemma 4.6, the Z�n have unbounded Scott rank below �. As these are all
Δin

0 -definable over parameters in L�, by [20, Lemma 4.3], we have that for each n,
SR(L�) ≥ �n, so Πin

� is indeed the optimal Scott sentence complexity. �

We can use a variation of this construction to get a structure of Scott sentence
complexity Σin

�+2.Unlike some of the previous constructions, this construction is not
a sum of shuffle sums, so Corollary 4.3 will not apply.

Theorem 4.12. For any limit ordinal �, there is a linear ordering of Scott sentence
complexity Σin

�+2.

Proof. Let (�n)n∈� be a fundamental sequence for � and let

L� :=
∑
i∈�
i + Z�n .

Furthermore, define for every n, the linear orderings:

L�,n :=
∑
i<n

i + Z�i +
∑
i≥n
i + Z�

n
.

Note that by Lemma 4.6, L� is approximated by the sequence of these orderings in
the sense that L� ≡2�n L�,n.

Let B = L� · (1 + Q) and A be a copy of Q where an unbounded, increasing
sequence of points cn is replaced by L�,n and each other point is replaced by L�.
We now claim that K = A + B is the desired order. Note that over the parameter
of the initial element of B, pSR(K) = max(SR(A), SR(B)) (this equality follows
from [14, Lemma 11]). We now demonstrate that this quantity is exactly �.

To define the automorphism orbits of elements within B we have to distinguish
elements in the initial copy of L�. For an element b ∈ B, let n be the size of the
finite block to the left of b. We can write a formula of finite rank saying that there is
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precisely one finite block of size n to the left of b and thus use this type of formula
to distinguish elements in the first L� copy. If b is in a finite block we conjunct this
formula or its negation with its position in this finite block; if b is in a copy of Z�n ,
then we relativize the formula defining its automorphism orbit in this ordering to
the interval restricted by block of size n to the left and a block of size n + 1 to the
right, just as in the proof of Proposition 4.11. Conjuncting this with the formula
deciding whether b is in the initial copy of L� yields the defining formula for its
automorphism orbit. To extend this definition to tuples we take the conjunction of
the formulas defining orbits for elements and a formula specifying the order of the
tuple.

For A the definitions are a little more subtle, but generally follow the same plan.
In particular, if the point in Q that x lies in between cn and cn+1, then the following
describes the automorphism orbit of x:

(1) Let z be the greatest element below x with no successor or predecessor.
(2) Let zn be the initial element with no successor or predecessor within cn; i.e.

say that it is the greatest element with no successor or predecessor below an
n + 1 and n + 2 block that bound a structure isomorphic to Z�n .

(3) Define zn+1 analogously to zn, expect it is in cn+1.
(4) Say that zn ≤ x < zn+1.
(5) Check if z = zn or not.
(6) In an analogous manner to the case of A, define the automorphism orbit of

x within its copy of Z�k or the finite block that it is in.

This describes the automorphism orbit of a point and is of complexity less than Σin
� .

In order to extend this definition to tuples the only additional detail needed is the
order of the tuple and whether the tuples lie in the same point inQ or not. This can be
done by comparing the various values of “z” that emerge for each point in the tuple.
To obtain defining formulas for the automorphism orbits of tuples in K = A + B,
we add the first element of B as a parameter p and restrict the formulas for tuples
from B and A to elements greater or less than p. As there is no automorphism
mapping elements from A into elements in B, defining formulas for mixed tuples
can be obtained by combining the formulas for tuples in A and B.

In order to finish the proof, all that remains is to show that SR(K) = �+ 2, or
in other words, that it has an orbit that is not Σin

�+1-definable. Let c be the initial
point in B and b be some other point in B in a block of size 1. We will show that
(K, b) ≤�+1 (K, c), so the orbit of c is not Σin

�+1 definable in K.
Note that K>c ∼= K>b , so it is sufficient to show that K<b ≤�+1 K<c. As K<c is an

initial segment of K<b , for the first turn of the game, the ∃-player can pick whatever
points the ∀-player picked in K<c according to the canonical embedding of K<c in
K<b . Note that each interval is isomorphic except for the one between the greatest
chosen points (call them ak) and c or b respectively. ak may be greater than some
finite number of the cn. Therefore, up to a finite difference in the choice of sequence
�n used to define L�,n, (ak, c) is just M + A where M is L�,>c or L�,n,>c depending
on which type of order ak lives in and (ak, b) is just M + K. In short, it is enough
to demonstrate that

A ≥� K,
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to show the claim. To see this, choose α < � and show that A ≥α K. Take �n > α.
It is indeed the case that for k ≥ n, L� ≡α L�,k . For some point d in a block of size
1 between cn and cn+1 we have that

A = A<d +
∑
q∈Q

Aq and K = A<d +
∑
q∈Q

Bq,

where Aq ≡α L� ≡α Bq . This proves the claim. �

We need a different construction to deal with the Σin
�+3 case. However, it is arguably

simpler than the construction we used for the example of Scott sentence complexity
Σin
�+2, as it is a sum of shuffle sums.

Theorem 4.13. For any limit ordinal �, there is a linear ordering of Scott sentence
complexity Σin

�+3.

Proof. We let L1 := 1 + Z + �� and L2 := 1 + Z + �� · 2. One important initial
observation is that L1 ≤�+1 L2 as �� ≤�+1 �

� · 2. As alluded to above, we take
A = L1 ·Q and B = L2 ·Q. Finally we let L = A + L2 + B and claim that L has the
desired complexity. Let us begin with showing that SR(A) ≤ �. We define several
helping predicates from which the claim will easily follow.

(1) Let pt(x) if x is in a block of size 1.
(2) Let Z(x) say (∃z < x)pt(z) ∧ ∀y z < y < x →

∨
n S
n(y) = x. Note that

Z(x) holds if and only if x is inside one of the copies of Z.
(3) Let init(x) if (∃z < x)pt(z) ∧ (z, x) ∼= Z.Note that init(x) if and only if x is

the first element in a copy of ��.
(4) For every � < �� let �(x) if (∃z < x)init(z) ∧ [z, x) ∼= �. Note that this

definition is of complexity lower than Σin
� as � is a limit ordinal. It describes

the points that are of rank � within a copy of ��.

Using these predicates one can define the automorphism orbits of any tuple in L1,
and thus in A, by formulas of complexity less than Σin

�+1.
All of these predicates have the same meaning within B, however they leave points

in the second copy of�� undefined. But it is still the case that SR(B) ≤ �+ 1. To see
this we need to define the additional relations:

(1) Let

sec(x, z) ⇐⇒ init(z) ∧ z < x ∧ ¬∃y
(
z < y < x ∧ pt(y)

)
∧

∧
�<�

(∀y < x)y �∼� x.

This Πin
� predicate holds only if z is the initial element in the second copy of

�� above the copy that z is initial in.
(2) For every � < �� let �2(x) if ∃y, z sec(y, z) ∧ [y, x) ∼= �. Note that this

definition is of complexity Σin
�+1 as � is a limit ordinal. It describes the points

that are of rank � within a second copy of ��.

Using these relations and those defined above, one can define the automorphism
orbits of tuples in L2, and thus in B.

To get defining formulas for tuples in A + L2 + B one fixes as parameter the first
point p in L2, relativizes the defining formulas for tuples in A to elements less than p,
the defining formulas for tuples in L2 to elements such that there is no point between
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the tuple and p, and the defining formulas for elements of B by saying that there is
at least one more point between p and the left-most point in the tuple. Using these
relativized definitions one can then obtain defining formulas for the automorphism
orbits for any tuples in A + L2 + B.

In order to finish the proof of the claim, we appeal to Corollary 4.3 to show that
there is no Πin

�+3 Scott sentence. This follows immediately as A ≤�+1 B is a direct
consequence of L1 ≤�+1 L2. �

This leaves open the case of Σin
�+1. It is unclear to us if such a linear ordering exists.

Question 4.14. Is there a linear ordering of Scott sentence complexity Σin
�+1 for �

a limit ordinal?

All of the new examples of Scott sentence complexities given in this section except
Proposition 4.11 are linear orderings that contain Q as a subordering and are thus
non-scattered. While it is not hard to adapt the proof of Theorem 3.6 to obtain that
no scattered linear ordering can have Scott sentence complexity Σin

4 , it seems difficult
to look beyond that. An analysis akin to the one presented in this article, but for
Scott sentence complexities of scattered linear orderings seems like it could prove
interesting.

Question 4.15. Which Scott sentence complexities are realized by scattered linear
orderings? In particular, for a given successor ordinal α > 3, is there a scattered linear
ordering of Scott sentence complexity Σin

α ?

4.1. Remarks on effectivity. The examples we presented in this section are
homogeneous enough so that if α is a computable ordinal, then the examples
witnessing Scott sentence complexity Πin

α , Σin
α , or d -Σin

α have computable copies.
Furthermore, these structures have c.e. Scott families, that is there is a computable
enumeration of codes for the formulas defining the automorphism orbits of the
tuples (potentially over a parameter). Thus, our examples give computable linear
orderings having computable Scott sentences.

The situation is a bit more tricky for examples of high Scott rank, that is
computable linear orderings with Scott rank �CK

1 or �CK
1 + 1. Our examples do

not give such structures. However, it is not hard to show that such structures exist
from existing examples in the literature and our results in Section 2. We note that
Calvert, Goncharov, and Knight [7] already showed that there are computable
linear orderings of Scott rank �CK

1 and �CK
1 + 1. The following result is merely a

refinement.

Theorem 4.16. There are computable linear orderings with Scott sentence
complexities Πin

�CK
1

, Πin
�CK

1 +1
, and Πin

�CK
1 +2

.

Proof. As is remarked in [1], the Harrison linear ordering �CK
1 · (1 + Q) has

Scott sentence complexity Πin
�CK

1 +2
. The existence of structures of linear orderings

of Scott sentence complexity Πin
�CK

1 +1
and Πin

�CK
1

follows from Theorem 2.19 and the

existence of a computable graph with these Scott sentence complexities. �

https://doi.org/10.1017/jsl.2024.59 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.59


SCOTT SENTENCE COMPLEXITIES OF LINEAR ORDERINGS 29

As for general limit ordinals we do not know whether there are computable
linear orderings of Scott sentence complexity Σin

�CK
1 +1

. Additionally, we do not know

whether there is a computable linear of Scott rank d -Σin
�CK

1 +1
.

Question 4.17. Is there a computable linear ordering of Scott sentence complexity
Σin
�CK

1 +1
?

Question 4.18. Is there a computable linear ordering of Scott sentence complexity
d -Σin

�CK
1 +1

?
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