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Abstract

We introduce certain C*-algebras and k-graphs associated to k finite-dimensional unitary representations
P1s- .., pr of acompact group G. We define a higher rank Doplicher-Roberts algebra O,,, ., , constructed
from intertwiners of tensor powers of these representations. Under certain conditions, we show that this
C*-algebra is isomorphic to a corner in the C*-algebra of a row-finite rank k graph A with no sources. For
G finite and p; faithful of dimension at least two, this graph is irreducible, it has vertices G and the edges
are determined by k£ commuting matrices obtained from the character table of the group. We illustrate this
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1. Introduction

The study of graph C*-algebras was motivated, among other reasons, by the
Doplicher—Roberts algebra O, associated to a group representation p (see [19, 22]). It
is natural to imagine that a rank k graph is related to a fixed set of k representations
P1, - -, Pk satisfying certain properties.

Given a compact group G and k finite-dimensional unitary representations p; on
Hilbert spaces H; of dimensions d; for i = 1,...,k, we first construct a product
system & indexed by the semigroup (N¥, +) with fibers &, = H" ® - -- @ H™ for
n = (ni,...,n;) € NK. Using the representations p;, the group G acts on each fiber of
& in a compatible way, so we obtain an action of G on the Cuntz—Pimsner algebra
O(&). This action determines the crossed product O(E) = G and the fixed point algebra
oE)°.

The author would like to thank the referee for useful suggestions.
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[2] C~-algebras from k group representations 319

Inspired by Section 7 of [19] and Section 3.3 of [1], we define a higher rank
Doplicher—Roberts algebra O, ., associated to the representations p,. .., . This
algebra is constructed from intertwiners Hom(p", p™), where p" = p?”‘ ® - ® pf"" is
actingon H" = H" @ - @ HZ™ for n = (ny,...,n) € N¥. We show that Oy, is
isomorphic to O(E)C.

If the representations py,...,pr satisfy some mild conditions, we construct a
k-colored graph A with vertex space A° = G, and with edges A% given by some
matrices M; indexed by G. Here &=(0,...,1,...,0) e N* with 1 in position i are
the canonical generators. For v, w € G, the matrices M; have entries

M;(w,v) = {e € A% : s(e) = v, r(e) = w}| = dim Hom(v, w ® p;),

which is the multiplicity of v in w® p; for i = 1,...,k. Note that the matrices M;
commute because p; ® p; = p; ®p; forall i,j = 1,..., k and therefore

dim Hom(v,w ® p; ® p;) = dim Hom(v, w ® p; ® p;).

By a particular choice of isometric intertwiners in Hom(v,w ® p;) for eachv,w € G
and for each i, we can choose bijections

/l,:)' NG X A0 A% — A% X A0 A%,

obtaining a set of commuting squares for A. For k>3, we need to check the
associativity of the commuting squares, that is,

(ld[ X /l,])(/l,g X ld])(ld, X /lj[) = (/1]'[ X ldl)(ldj X /1,[)(/11] X ld[)

as bijections from A% X0 A% Xpo0 A to A% X0 A% X0 A% foralli < j < € (see[14]).
If these conditions are satisfied, we obtain a rank k graph A, which is row-finite with
no sources but, in general, is not unique.

In many situations, A is cofinal and it satisfies the aperiodicity condition, so C*(A)
is simple. For k = 2, the C*-algebra C*(A) is unique when it is simple and purely
infinite, because its K-theory depends only on the matrices M, M,. It is an open
question what happens for k > 3.

Assuming that the representations p, . .., o determine a rank k graph A, we prove
C*(A) is simple, then O, _,, is Morita equivalent to C*(A). In particular cases, we
can compute its K-theory using results from [11].

2. The product system

Product systems over arbitrary semigroups were introduced by Fowler [13], inspired
by work of Arveson, and studied by several authors (see [1, 4, 26]). In this paper,
we are mostly interested in product systems & indexed by (N¥, +), associated to some
representations py, . . . , p; of a compact group G. We remind the reader of some general
definitions and constructions with product systems, but we restrict our attention to the
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320 V. Deaconu [3]

Cuntz—Pimsner algebra O(E) and we mention some properties in particular cases only
(see Example 2.3 for P = N¥),

DEFINITION 2.1. Let (P,-) be a discrete semigroup with identity ¢ and let A be
a C*-algebra. A product system of C*-correspondences over A indexed by P is a
semigroup & = | |,cp &, and a map & — P such that:

e foreach p € P, the fiber &, C &is a C*-correspondence over A with inner product
<', '>]7;
the identity fiber &, is A viewed as a C*-correspondence over itself;
for p,q € P\ {e}, the multiplication map

Mg 8y X8y = Epyy My y(x,y) = xy

induces an isomorphism M, , : &, ®4 &; — &E,y; and
e multiplication in & by elements of &, = A implements the right and left actions of
A on each &,. In particular, M, is an isomorphism.

Let ¢, : A — L(&,) be the homomorphism implementing the left action. The product
system & is said to be essential if each &, is an essential correspondence, that is, if
the span of ¢,(A)E, is dense in &, for all p € P. In this case, the map M, is also an
isomorphism.

If the maps ¢, take values in K(E,,), then the product system is called row-finite or
proper. If all maps ¢, are injective, then & is called faithful.

DEFINITION 2.2. Given a product system & — P over A and a C*-algebra B, a map
Y . & — Bis called a Toeplitz representation of & if:

e denoting ¢, := yYlg,, eachyy, : &, — Bislinear, §, : A — Bis a x-homomorphism,
and

e ({x, y>p) = wp(x)*l/’p(y)

forall x,y € &,; and
o Y, () =ypxy)forall pge P,xe&,,y€&,.

For each p € P, we write P for the homomorphism K(E,) — B obtained by
extending the map 6, — ¥, (&)Y, ()", where

Oc.n({) = &M, 0).

The Toeplitz representation ¢ : & — B is Cuntz—Pimsner covariant if gl/(l’)(gb,,(a)) =
Ye(a) for all p € P and all a € A such that ¢,(a) € K(E)).

There is a C*-algebra 74(E) called the Toeplitz algebra of &€ and a representation
ig : & = T4(&) which is universal in the following sense: 74(E) is generated by ig(&E)
and, for any representation ¢ : & — B, there is a homomorphism .. : 74(E) — B such
that ., o ig = .

The Cuntz—Pimsner algebra O(E) of a product system & — P is universal for
Cuntz—Pimsner covariant representations.
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[4] C*-algebras from k group representations 321

There are various extra conditions on a product system & — P and sev-
eral other notions of covariance besides the Cuntz—Pimsner covariance from
Definition 2.2, which allow one to define the Cuntz—Pimsner algebra O4(E) or
the Cuntz—Nica-Pimsner algebra NO4(E) satisfying certain properties (see [1, 4,
10, 13, 26], among others). We mention that O4(E) (or NO4(E)) comes with a
covariant representation jg : & — O(E) and is universal in the following sense:
04(8) is generated by jg(&) and, for any covariant representation ¢ : & — B, there
is a homomorphism i, : O4(E) — B such that ¥, o jg = . Under certain conditions,
0,4(&) satisfies a gauge invariant uniqueness theorem.

EXAMPLE 2.3. For a product system & — P with fibers &, that are nonzero
finite-dimensional Hilbert spaces, and, in particular, A =&, = C, let us fix an
orthonormal basis B, in &,. Then a Toeplitz representation ¢ : & — B gives rise to
a family of isometries {/(¢) : &€ € B,},cp With mutually orthogonal range projections.
In this case, 7(&) = T¢(E) is generated by a collection of Cuntz—Toeplitz algebras
which interact according to the multiplication maps M,, ; in &.

A representation ¢ : & — B is Cuntz—Pimsner covariant if

> w©w®” = y)

£€8B,

for all p € P. The Cuntz—Pimsner algebra O(E) = O¢(&) is generated by a collection of
Cuntz algebras, so it could be thought of as a multidimensional Cuntz algebra. Fowler
proved in [12] that if the function p — dim &, is injective, then the algebra O(E) is
simple and purely infinite. For other examples of multidimensional Cuntz algebras,
see [3].

EXAMPLE 2.4. A row-finite k-graph with no sources A (see [18]) determines a product
system & — NF with & = A = Cy(A) and &, = C.(A") for n # 0 such that we have a
T*-equivariant isomorphism O4(E) = C*(A). Recall that, for product systems indexed
by N¥, the universal property induces a gauge action on O4(E) defined by y.(jg(é)) =
Fjg(€) forz e TFand € € &,,.

The following two definitions and two results are taken from [7]; see also [15, 17].

DEFINITION 2.5. An action 8 of a locally compact group G on a product system & —
P over A is a family (8”),cp such that 57 is an action of G on each fiber &, compatible
with the action @ = 8¢ on A, and, furthermore, the actions (57),cp are compatible with
the multiplication maps M, ; in the sense that

ng(Mp,q(x ® Y)) = Mp,q g(x) ®ﬁg()’))
forallge G,xe€E,andy € &,.

DEFINITION 2.6. If 8 is an action of G on the product system & — P, we define the
crossed product & =g G as the product system indexed by P with fibers &, =g G, which
are C*-correspondences over A =, G. For { € C.(G,Ep) and i € C.(G, &,), the product
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{n € C(G, Epy) is defined by

@n)(s) = fG My oLt ® B 5))) .

PROPOSITION 2.7. The set &3 G = | |pep Ep xpr G with the above multiplication
satisfies all the properties of a product system of C*-correspondences over A >, G.

PROPOSITION 2.8. Suppose that a locally compact group G acts on a row-finite and
faithful product system & indexed by P = (N*, +) via automorphisms ,85. Then G acts
on the Cuntz—Pimsner algebra O4(E) via automorphisms denoted by vy,. Moreover, if
G is amenable, then & =g G is row-finite and faithful, and

O04(E) 2y G = Op,6(E 25 G).

Now we define the product system associated to k representations of a compact
group G. We limit ourselves to finite-dimensional unitary representations, even though
the definition makes sense in greater generality.

DEFINITION 2.9. Given a compact group G and k finite-dimensional unitary represen-
tations p; of G on Hilbert spaces H; for i = 1,..., k, we construct the product system
&= &(p1,...,pr) indexed by the commutative monoid (NK, +), with fibers

En=H = H™ & - 0 H"
forn=(ny,...,m) € N in particular, A = &y = C. The multiplication maps
Mn,m : 8n X 8m - 8n+m

in & are defined by using the standard isomorphisms p; ® p; = p; ® p; for all i < j. The
associativity in & follows from the fact that

Mn+m,p © (Mn,m X ld) = Mn,m+p © (ld X Mm,p)

as maps from &, X &, X Ep, t0 Eymip. Then & = E(py, ..., px) is called the product
system of the representations py, . . ., Ok.

REMARK 2.10. Similarly, a semigroup P of unitary representations of a group G
determines a product system & — P.

PROPOSITION 2.11. With notation as in Definition 2.9, assume that d; = dim H; > 2.
Then the Cuntz—Pimsner algebra O(E) associated to the product system & — NF
described above is isomorphic with the C*-algebra of a rank k graph I" with a single
vertex and with \I'®| = d;. This isomorphism is equivariant for the gauge action.
Moreover,

0@&) =0y ® - ® 0,

where O,, is the Cuntz algebra.
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PROOF. Indeed, by choosing a basis in each H;, we get the edges I in a k-colored
graph I' with a single vertex. The isomorphisms p; ® p; = p; ® p; determine the
factorization rules of the form ef = fe for e € I'* and f € I'%, which obviously
satisfy the associativity condition. In particular, the corresponding isometries in
C*(I') commute and determine, by the universal property, a surjective homomorphism
¢ onto O(E), preserving the gauge action. Using the gauge invariant uniqueness
theorem for k-graph algebras, the map ¢ is an isomorphism. In particular, O(E) =
Od1®"‘®0dk' O

REMARK 2.12. For d; > 2, the C*-algebra O(E) = C*(I') is always simple and purely
infinite since it is a tensor product of simple and purely infinite C*-algebras. If d; = 1
for some i, then the isomorphism in Proposition 2.11 still holds, but C*(I') = O(E)
contains a copy of C(T), so it is not simple. Of course, if d; = 1 for all i, then O(E) =
C(T*). For more on single vertex rank k graphs, see [5, 6].

PROPOSITION 2.13. The compact group G acts on each fiber &, of the product system
& via the representation p" = p" ® ---® pi"*. This action is compatible with the
multiplication maps and commutes with the gauge action of TF. The crossed product
& = G becomes a row-finite and faithful product system indexed by N* over the group

C*-algebra C*(G). Moreover,
0(E) » G = Oc+(G)(E = G).

PROOF. Indeed, for g € G and £ € &, = H", we define g-& = p"(g)(£), and since
Pi®p;=pi®p;,wehave g- (£®n) =g-(é®@g-nioré €, n € &,y Clearly,

g v:(6)=g- (") =7"(g & =vy.(86),

so the action of G commutes with the gauge action. Using Proposition 2.7, &< G
becomes a product system indexed by N¥ over C*(G) = C = G with fibers &, = G. The
isomorphism O(E) x G = O¢+()(E = G) follows from Proposition 2.8. ]

COROLLARY 2.14. Since the action of G commutes with the gauge action, the group
G acts on the core algebra ¥ = O(S)Tk.

REMARK 2.15. In some cases, O(E) = G is isomorphic to the self-similar k-graph
C*-algebras Og  introduced in [21]. Moreover, for a self-similar k-graph (G, A)
with |A% = 1, we have Oga = Q(A >« G), where A > G is a Zappa—Szép product
and Q(A > G) is its boundary quotient C*-algebra (see Example 3.10(4) in [21] and
Theorem 3.3 in [20]). I thank the referee for bringing this relationship to my attention.

3. The Doplicher-Roberts algebra

The Doplicher—Roberts algebras O, denoted by Og in [8], were introduced to
construct a new duality theory for compact Lie groups G that strengthens the
Tannaka—Krein duality. Here p is the n-dimensional representation of G defined by
the inclusion G C U(n) in some unitary group U(n). Let 7 denote the representation
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category whose objects are tensor powers p? = p® for p > 0, and whose arrows are
the intertwiners Hom(p?, p?). The group G acts via p on the Cuntz algebra O, and
O¢ = O, is identified in [8] with the fixed point algebra Of. If o denotes the restriction
to Op of the canonical endomorphism of O,, then 7 can be reconstructed from the
pair (O,, o). Subsequently, Doplicher—Roberts algebras were associated to any object
p in a strict tensor C*-category (see [9]).

Given finite-dimensional unitary representations py, ..., of a compact group G
on Hilbert spaces Hj, . .., Hy, we construct a Doplicher—Roberts algebra O,,, ., from
intertwiners

Hom(p", p™) ={T € LIH",H™) | Tp"(g) = p"(g)T forall g € G},

where, for n = (ny,...,n;) € N¥ the representation p" = pf’"‘ ®--- ®pf”" acts on

H" = 7{?"’ ®--- ®‘Hf " Note that p° = ¢ is the trivial representation of G, acting
on H° = C. This Doplicher—Roberts algebra is a subalgebra of O(E) for the product
system &, as in Definition 2.9.

LEMMA 3.1. Consider

A= | ] L, H").

m,neNk

Then the linear span of Ay becomes a x-algebra A with appropriate multiplica-
tion and involution. This algebra has a natural ZF-grading coming from a gauge
action of T*. Moreover, the Cuntz—Pimsner algebra O(E) of the product system & =
E(p1, ..., pr) is equivariantly isomorphic to the C*-closure of A in the unique C*-norm
for which the gauge action is isometric.

PROOF. Recall that the Cuntz algebra O, contains a canonical Hilbert space H
of dimension n and it can be constructed as the closure of the linear span of
Up.gent L(H?P, HY) using embeddings

LOHP,HY) C LIHPT, HYY, T Tol,

where HP = H® and I : H — H is the identity map. This linear span becomes a
x-algebra with a multiplication given by composition and an involution (see [8] and
Proposition 2.5 in [16]).

Similarly, for all r € N*, we consider embeddings L(H", H™) € LIH™", H™")
given by T — T ®1,, where I, : H" — H" is the identity map, and we endow A
with a multiplication given by composition and an involution. More precisely, if
Se LIH",H™)and T € L(HY, HP), then the product ST is

(S ® Lpvun) © (T ® L) € LHITPYP GmrpVn=my

where we write p V n for the coordinatewise maximum. This multiplication is well
defined in A and is associative. The adjoint of T € L(H", H™) is T* € L(H"™, H").
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There is a natural Z*-grading on A given by the gauge action y of T, where, for
2=(21,...,z0) € TFand T € L(H", H™), we define

YD&) = 2" g TTE).

Adapting the argument in Theorem 4.2 in [9] for Z*-graded C*-algebras, the C*-closure
of A in the unique C*-norm for which 7, is isometric is well defined. The map

(Tl,...,Tk)i—)T1®"'®Tk,
where
e - :H ->H", (T1® T @ - ®&) =Ti(€1) @+ @ Ti(&)

forT; € .[:(7-(1."", T{i’"") fori =1,...,k preserves the gauge action and it can be extended
to an equivariant isomorphism from O(E) = Oy, ® - - ® Oy, to the C*-closure of A.

Note that the closure of |, qw L(H", H") is isomorphic to the core ¥ = O&)™, that
is the fixed point algebra under the gauge action, which is a UHF-algebra. ]

To define the Doplicher—Roberts algebra O,, . ,,, we again identify Hom(p", p™)
with a subset of Hom(p"*", p"™*") for each r € N¥, via T + T ® I,.. After this identifica-

.....

multiplication and involution inherited from A. Indeed, a computation shows that if
S € Hom(p",p™) and T € Hom(p4, p?), then §* € Hom(p™, p*) and

(S®Iyn-n) o (T® Ian_p))pq+an—P(g)
= PPV () (S ® Lyyn-n) © (T ® Ipyn—p)),

S0 (S ® Iyn-n) © (T ® Lpy—p) € Hom(pTPV"=P, pm*P¥n=1y and 00, is closed under
these operations. Since the action of G commutes with the gauge action, there is a
natural Z*-grading of °0,, _, given by the gauge action y of T* on A.

..........

the Doplicher—Roberts algebra associated to the representations pj,...,por. This
C*-algebra also has a Z*-grading and a gauge action of T*. By construction, Opr..pn S
o).

,,,,,

Morita equivalent with the higher rank Doplicher—Roberts algebra D defined in [1]. It
is also the section C*-algebra of a Fell bundle over Z.

THEOREM 3.3. Let p; be finite-dimensional unitary representations of a compact
group G on Hilbert spaces H; of dimensions d; >2 for i=1,...,k. Then the
Doplicher-Roberts algebra O, . ,, is isomorphic to the fixed point algebra 0E)Y =
Oy, ®--~®Odk)G, where & = &(01,...,pr) is the product system described in
Definition 2.9.

PROOF. We know from Lemma 3.1 that O(E) is isomorphic to the C*-algebra
generated by the linear span of Ay = U, an LIH", H™). The group G acts on
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L(H", H™) by

(g 1)) = p"(@T(p" (g™

and the fixed point set is Hom(p",p™). Indeed, we have g-T =T if and only if
To"(g) = p"(g)T. This action is compatible with the embeddings and the operations,
so it extends to the #-algebra A and the fixed point algebra is the linear span of
Um,nEN" Hom(p", p").

..........

approximated with an element from OOpl ,,,,, o and hence O, = 0(E)°. O
REMARK 3.4. By left tensoring with I, for r € N¥, we obtain some canonical unital
endomorphisms o of O, _,.

In the next section, we show that, in many cases, O,, _,, is isomorphic to a corner
of C*(A) for arank k graph A, so, in some cases, we can compute its K-theory. It would
be nice to express the K-theory of O, _,, in terms of the maps 7 — 7 ® p; defined on
the representation ring R(G).

4. The rank k graphs

For convenience, we first collect some facts about higher rank graphs, introduced
in [18]. A rank k graph or k-graph (A, d) consists of a countable small category A
with range and source maps r and s together with a functor d : A — N¥ called the
degree map, satisfying the factorization property: for every A € A and all m,n € N¥
with d(d) = m + n, there are unique elements y, v € A such that 4 = uv and d(u) = m,
d(v) = n. For n € N¥, we write A" := d~'(n) and call it the set of paths of degree n. For
g =1(0,...,1,...,0) with 1 in position i, the elements in A% are called edges and the
elements in A° are called vertices.

A k-graph A can be constructed from A° and from its k-colored skeleton A% U --- U
A®* using a complete and associative collection of commuting squares or factorization
rules (see [25]).

The k-graph A is row-finite if, for all n € N* and all v € A?, the set vA" := {1 € A" :
(1) = v} is finite. It has no sources if VA" # 0 for all v € A? and n € N¥. A k-graph A
is said to be irreducible (or strongly connected) if, for every u,v € A, there is 1 € A
such that u = (1) and v = s(A1).

Recall that C*(A) is the universal C*-algebra generated by a family {S, : 1 € A} of
partial isometries satisfying:

e {S,:ve A%is a family of mutually orthogonal projections;
o Sy =848, forall A, € A such that s(1) = r(u);
o 5781 =S8yforall A € A; and
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e forallve A®and n e N¥,

Si= ) 5iS;.

AevA"

A k-graph A is said to satisfy the aperiodicity condition if, for every vertex v €
A, there is an infinite path x € vA® such that 0™x # o"x for all m # n in NK, where
o™ 1 A* — A are the shift maps. We say that A is cofinal if, for every x € A* and
v e A, there is A € A and n € N¥ such that s(1) = x(n) and r(1) = v.

Assume that A is row-finite with no sources and that it satisfies the aperiodicity
condition. Then C*(A) is simple if and only if A is cofinal (see Proposition 4.8 in [18]
and Theorem 3.4 in [23]).

We say that a path u € A is a loop with an entrance if s(u) = r(u), and there exists
a € s(u)A such that d(u) > d(a) and there is no 8 € A with u = of5. We say that every
vertex connects to a loop with an entrance if, for every v € A9, there is a loop with an
entrance y € A, and a path 4 € A with r(1) = v and s(1) = r(u) = s(u). If A satisfies
the aperiodicity condition and every vertex connects to a loop with an entrance, then
C*(A) is purely infinite (see Proposition 4.9 in [18] and Proposition 8.8 in [24]).

Given finite-dimensional unitary representations p; of a compact group G on Hilbert
spaces H; fori = 1,...,k, we want to construct a rank k graph A = A(p1, ..., px). Let
R be the set of equivalence classes of irreducible summands 7 : G — U(H;) which
appear in the tensor powers p”" = p?"‘ ® - ® pf"" for n € N¥, as in [22]. Take A° = R
and, for each i = 1,.. ., k, consider the set of edges A% which are uniquely determined
by the matrices M; with entries

M;(w,v) = {e € A% : s(e) = v, r(e) = w}| = dim Hom(v, w ® p;),
where v, w € R. The matrices M; commute since p; ® p; = p; ® p; and therefore
dim Hom(v,w ® p; ® p;) = dim Hom(v,w ® p; ® p;)
for all i < j. This allows us to fix some bijections
Ajj A% Xp0 AT — AT Xpo AF
forall 1 <i <j <k, which determine the commuting squares of A. As usual,
A% Xp0 A% ={(e, ) € A¥ x A% : s(e) = r(f)}.

For k > 3, we also need to verify that 4; can be chosen to satisfy the associativity
condition, that is,

(ide X Aj)(Aie X id))(id; X Aje) = (Aje X id;)(id; X Aie)(Ay; X idy)
as bijections from A% X0 A% Xpo A% to A% X0 A% Xpo0 A% foralli <j < €.

REMARK 4.1. Many times R = G, so A =G, for example, if p; are faithful and
pi(G) C SU(H,;) or if G is finite, p; are faithful and dimp; > 2 foralli = 1,...,k (see
Lemma 7.2 and Remark 7.4 in [19]).
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PROPOSITION 4.2. Given representations py,...,pr as above, assume that p; are
faithful and that R = G. Then each choice of bijections A satisfying the associativity
condition determines a rank k graph A which is cofinal and locally finite with no
sources.

PROOF. Indeed, the sets A® are uniquely determined and the choice of bijections A;
satisfying the associativity condition is enough to determine A. Since the entries of
the matrices M; are finite and there are no zero rows, the graph is locally finite with
no sources. To prove that A is cofinal, fix a vertex v € A° and an infinite path x € A*.
Arguing as in Lemma 7.2 in [19], any w € A°, in particular, w = x(n) for a fixed n,
can be joined by a path to v, so there is 4 € A with s(1) = x(n) and r(1) = v. See also
Lemma 3.1 in [22]. O

REMARK 4.3. Note that the entry M;(w,v) is just the multiplicity of the irreducible
representation v in w®p; for i =1,...,k. If p =p;, then the matrices M; are
symmetric since

dim Hom(v, w ® p;) = dim Hom(p; ® v, w)

which implies M;(w;v) = M;(v; w). Here p; denotes the dual representation defined by
pi(g) = pi(g~")" and equal, in our case, to the conjugate representation p;.

For G finite, these matrices are finite, and the entries M;(w,v) can be computed
using the character table of G. For G infinite, the Clebsch—Gordan relations can be
used to determine the numbers M;(w, v). Since the bijections A;; are, in general, not
unique, the rank k graph A is not unique, as illustrated in some examples. It is an open
question how the C*-algebra C*(A) depends, in general, on the factorization rules.

To relate the Doplicher—Roberts algebra O, . ,, to a rank k graph A, we mimic the
construction in [22]. For each edge e € A%, choose an isometric intertwiner

T, : Ws(e) — ﬂr(e) ® H;
in such a way that

He @ Hi = () T.T:(H 0 H)

eem A%

for all m € A°, that is, the edges in A% ending at 7 give a specific decomposition of
H, ® H; into irreducibles. When dim Hom(s(e), r(e) ® p;) > 2, we must choose a basis
of isometric intertwiners with orthogonal ranges, so, in general, 7, is not unique. In
fact, specific choices for the isometric intertwiners 7, determine the factorization rules
in A and whether or not they satisfy the associativity condition.

Given e € A% and f e A% with r(f) = s(e), we know how to multiply T, €
Hom(s(e), r(e) ® p;) with Ty € Hom(s(f), r(f) ® p;) in the algebra O,,, _,,, by viewing
Hom(s(e), r(e) ® p;) as a subspace of Hom(p",p™) for some m,n, and similarly
for Hom(s(f), r(f) ® pj). We choose edges ¢’ € A%, f" € A% with s(f) = s(e’), r(e) =
r(f"),r(e’) = s(f') such that 7,7y = Ty T.,, where Ty € Hom(s(f"),r(f') ® pj) and
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T. € Hom(s(e'), r(e’) ® p;). This is possible since

T.Ty = (T, ® 1)) o Ty € Hom(s(f). r(e) ® p; ® p)).
Ty Te = (Tp ® 1) o Te € Hom(s(e)), 1(f') ® p; ® ).

and p; ® p; = p; ® p;. In this case, we declare that ef = f’¢’. Repeating this process,
we obtain bijections A; : A% Xxo A% — A% X0 A®%. Assuming that the associativity
conditions are satisfied, we obtain a k-graph A.

We write T,y =T, Ty =Ty Ty = Ty. A finite path 4 € A" is a concatenation of
edges and determines by composition a unique intertwiner

T,: 7‘(5(,1) - (]'(r(/l) H".

Moreover, the paths A € A" with r(1) = ¢, the trivial representation, provide an explicit
decomposition of H" = H{" @ --- & ‘Hl‘f’"" into irreducibles, and hence

H" = @ T\ (H).
AelA?
PROPOSITION 4.4. Assuming that the choices of isometric intertwiners T,, as above,
determine a k-graph A, the family

{TAT; e A" ue N r() = r(u) = t,5(2) = s(u)}
is a basis for Hom(p", p") and each T;T), is a partial isometry.

PROOF. Each pair of paths 4, u with d(1) = m, d(u) = nand r(1) = r(u) = ¢ determines
a pair of irreducible summands T (Hsa)), Tu(Hyy)) of H™ and H", respectively. By
Schur’s lemma, the space of intertwiners of these representations is trivial unless
s(A4) = s(u), in which case it is the one-dimensional space spanned by T,7,. It
follows that any element of Hom(p",p™) can be uniquely represented as a linear
combination of elements 7,7}, where s(1) = s(u). Since T}, is isometric, T;j is a
partial isometry with range Hj,) and hence 7,7}, is also a partial isometry whenever

s(A) = s(u). O

THEOREM 4.5. Consider pq,...,py finite-dimensional unitary representations of a
compact group G and let A be the k-colored graph with A° = R C G and edges A®
determined by the incidence matrices M; defined above. Assume that the factorization
rules determined by the choices of T, € Hom(s(e), r(e) ® p;) for all edges e € A
satisfy the associativity condition, so A becomes a rank k graph. If we consider

PeCi(A),
P= > 5,

At ALD

where  is the trivial representation, then there is a =-isomorphism of the
Doplicher-Roberts algebra O, . ,, onto the corner PC*(A)P.
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PROOF. Since C*(A) is generated by linear combinations of §,S;, with s(1) = s(u) (see
Lemma 3.1 in [18]), we first define the maps

Gum = Hom(p",p") = C*(N),  ¢um(TaT}) = S,S,,

where s(1) = s(u) and r(1) = r(u) = t. Since S,S,, = PS,S,, P, the maps ¢,,,, take values
in PC*(A)P. We claim that, for any r € N¥,

¢n+r,m+r(T/lT;< ®Ir) = ¢n,m(T/lT;)
This is because

Hypy @H" = EB T,T,(Hyn @ H"),

ves()A"

so that

nTyel= Y (eI el)= Y Ty,
ves(H)A" ves(A)A"

and

SIS, = > SiSSIS = > SuSh,
ves(DA” ves()A”

,,,,,

and multiplicative. Indeed,
¢n,m(T/lT;)* = (S/ISZ)* = Sysj = ¢m,n(T;4T;)-

Consider now TAT; € Hom(p",p™), T,T,, € Hom(p?,p’) with s() = s(u),s(v) =
s(w), r(A) = r(u) = r(v) = r(w) = . Since, for all n € N,

Z T =1,

AetA"
we get
T; if u =vp,
T;Tv =T, ifv=ua,
0  otherwise,
and hence

H(TaT,p) = SaS,,  ifpp=vp,
(AT )T, T,) = {p(ThoT,) = SaeS;, if v = pa,
0 otherwise.
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On the other hand, from Lemma 3.1 in [18],

)8t if =B,
S1S.8,S%, = {S1aS"

v if v = pa,

0 otherwise,

and hence
ST T )T, T,) = §(TaT,)H(T,T,).

Since PSS, P = ¢pm(TaTy,) if r(2) =r(w) = and s(2) = s(u), it follows that ¢
is surjective. Injectivity follows from the fact that ¢ is equivariant for the gauge
action. ]

COROLLARY 4.6. If the k-graph A associated to py,...,py is cofinal, satisfies the
aperiodicity condition and every vertex connects to a loop with an entrance, then

.....

equivalent with C*(A\).

PROOF. This follows from the fact that C*(A) is simple and purely infinite and because
PC*(A)P is a full corner. O

REMARK 4.7. There is a groupoid G associated to a row-finite rank k graph A with
no sources (see [18]). By taking the pointed groupoid G (¢), the reduction to the set
of infinite paths with range ¢, under the same conditions as in Theorem 4.5, we get an
isomorphism of the Doplicher—Roberts algebra O,, . ,, onto C*(Ga(1)).

5. Examples

EXAMPLE 5.1. Let G = S3 be the symmetric group with G= {t, €,0} and character

table
() | (12) | (123)
1 1 1
€ 1 -1 1
2 0 -1

Here ¢ denotes the trivial representation, € is the sign representation and o is an
irreducible 2-dimensional representation, for example,
-1 -1 -1 -1
((12)) = [ 0 1 ] ((123)) = [ Lo ]

By choosing p; =0 on H; = C? and p, =t + 0 on H, = C3, we get a product
system & — N? and an action of S3 on O(&) = 0, ® O3 with fixed point algebra
0(&)% = 0, 5, isomorphic to a corner of the C*-algebra of a rank two graph A. The
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set of vertices is A’ = {t, €, o} and the edges are given by the incidence matrices

00 1 01
Mi=10 0 1], M,=|0 11
I 1 I 1 2

This is because
LQp1 =0, €ERP =0, CQ®pP =L+€e+0,
L®Pr=tL+0, EQPr=€+0, CQPy=t+€+20.

We label the blue (solid) edges by ey, . .., es and the red (dashed) edges by fi, ..., fs
as in the figure below.

S
el f4 ,/"\\
’/,—" IR \ |
e3 e N
-=< P -=~ - N "
es 1 fi 7% I fa o< G
L € p o - N - - Pl
4 \\\\ ,fi’/ '/ \‘
Sem——-- - \ /
e f2 N_ s
I8

The isometric intertwiners are
T, :H - H,H\, To, : Hy > HQOH,, T,, : He > H, @ Hi,
T, : Hy » H.@Hy, T,y : Hy > Hy @ Hi,
Ty :H > HOIH, Ty, : He > He @ Hy, Ty, : Hoe = H @ Ho,
Ty H = H, @Ho, Ty, : Hy = He @ Ho, Ty, : He = Hy @ Ho,
T, Ts : He = Hye @ H,

such that

T, T + T, T: + T T = I, ® 1y, T,T, = L®1, T, T, = 1.®1,,
TpTh +TpTy =L ® b, TpTy + TpTy = 1@ b,
TiT} + T T + Ty Th + T T}, = I, ® b,
Here I, is the identity of H, for 7 € G and I; is the identity of H; for i = 1, 2. Since

I 1 2
MM,=|1 1 2
2 2 4
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and
T, Ty, TT,, € Hom(t,t® p; ® p2),
T, Tg, T1,T., € Hom(e,t ® p| ® p2),
To,Ttys ToyTir T Toyy T, Tos € Hom(or, 1 ® p1 ® p2),
T, Ty, TrT,, € Hom(i, € ® p; ® p2),
T, T, TsT,, € Hom(e, e ® pi ® p3),
To Ty, T, T, T T,,, T, T., € Hom(o, € ® p1 ® p2),
To,Th> TosTrr T, To, T, To, € Hom(s, 0 ® p1 ® p2),
To,Tp, TosTior T, Toy, T Toy € Hom(e, o ® p ® p3),
Tos T TosTris Tes Tros To, Tt Ts, Ty T Teyy T, Tog, T, Tog € Hom(or, o ® p1 ® p2),
a possible choice of commuting squares is
erfs = fre1, exfs = fres, eafr = fiex, exfs = fres, esfs = fse1, esfs = fses,
esfr = fres, esfy = fses, eifi = frer, esfa = fze1, esfo = fres, esfs = fyes,
esf1 = foea, esfs = faer, esfs = fres, e1fs = fyes.

This data is enough to determine a rank two graph A associated to pj, p,. But this is
not the only choice, since, for example, we could have taken

exfs = frel, exfs = fre3, erfs = fiea, eafr = fres, esfa = fsei, eafo = fses,
esfs = fres, esfr = fses, eifi = fre1, esfs = fze1, esfo = fzes, esfs = fres,
esf1 = foea, esfs = faer, esfs = fres, e1f3 = fges,

which determines a different 2-graph.

A direct analysis using the definitions shows that, in each case, the 2-graph A is
cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an
entrance. It follows that C*(A) is simple and purely infinite and the Doplicher—Roberts
algebra O,,, ,, is Morita equivalent with C*(A).

The K-theory of C*(A) can be computed using Proposition 3.16 in [11] and it does
not depend on the choice of factorization rules. We have

M, -1

= 7/27,
o

Ko(C*(A)) = coker[l - M| [ - M)l & ker[

IR

Ki(C*(A)) = ker[I - M I_Mé]/im[ M —1T ] 0.

2
1-M

In particular, O,, ,, = Os.
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On the other hand, since pj,p, are faithful, both Doplicher—Roberts algebras
0,,,0,, are simple and purely infinite with
KO(O,D]) = Z/Q'Za Kl(Opl) = 0’ KO(Opz) = Za KI(OpQ) = Z,

SO Opl,pz ¥ Opl ®O,02'

EXAMPLE 5.2. With G =83 and p; = 2,05 =t + €, then R = {(,€}, so A has two
vertices and incidence matrices

20 1 1
M1=[0 2}, M2=[1 1],

which give

€] €3
f
I . 1
L € {1_,’7?\~‘_,,~’/5\\\~J?
S
(%) [

Again, a corresponding choice of isometric intertwiners determines some factoriza-
tion rules, for example,

erfi = fiex, exfi = fier, e1fz = fres, exfs = fzea,
esfr = fre1, esfo = frer, esfa = faes, eafs = faes.

Even though pi,p, are not faithful, the obtained 2-graph is cofinal, satisfies the
aperiodicity condition and every vertex connects to a loop with an entrance, so Op, ,,
is simple and purely infinite with trivial K-theory. In particular, O, ,, = O.

Note that, since p;, p, have kernel N = ((123)) = Z/3Z, we could replace G by
G/N = Z/27Z and consider p, p, as representations of Z/27Z.

EXAMPLE 5.3. Consider G = Z/2Z = {0, 1} with G = {t, x} and character table

0 1
|1 1
x| 1]-1

Choose the 2-dimensional representations

pr=t+x, p2=2, p3 =2,

which determine a product system & such that OE)=0,0,®0; and a
Doplicher—Roberts algebra O,, ,, ,, = O(E)*/*.
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An easy computation shows that the incidence matrices of the blue (solid), red

(dashed) and green (dotted) graphs are

I 1 2 0 0 2
M = M = M = .

R i 0

€2 \ i \ ’ 2
\.K \.L‘ *
4] ’ » €4 /,L\\ /1)(\\ . Y

e3 1 \ / \
'\\lel '\\f4/: 84

With labels as in the figure, we choose the following factorization rules.
e1fi = fre1, elfa = fier, exfi = faer, e2fo = frea,
e3f3 = fes, esfs = fies, esfs = freq, esfs = faes,
1181 = 82/3, [182 = 81f3, 281 = 82fas J282 = g1 /4,
1383 = gafi, f384 = 831, 483 = 8af2. faga = g3 12,
€181 = 82€4, €182 = 81€4, €281 = §3€3, €282 = §4€3,

€383 = g1€2, €384 = 82€2, €483 = Za€], €484 = g3€].

A tedious verification shows that all the following paths are well defined.

e1f181, e1f182, e1281, e1/282, exf181, e2f182, exfo81, exf282,

e3f383, €3f384, €3f183, €3fig4, €4f383, €4f384, €afa83, eafsga,

so the associativity property is satisfied and we get a rank three graph A with two
vertices. It is not difficult to check that A is cofinal, satisfies the aperiodicity condition
and every vertex connects to a loop with an entrance, so C*(A) is simple and purely
infinite.

Since 8y = [I - M} I - M, I — M) : Z° — Z? is surjective, using Corollary 3.18 in
[11], we obtain

Ko(C*(A)) = kerd,/im 05 = 0, K;(C*(A)) = ker9;/im 0, ® ker 9z = 0,

where
M;—I Mg—l 0 I—Mg
0 = I—M; 0 Mg—l , O3 = M;—I ,
0 I—M; I—M; I—Mi

and, in particular, O, ,, p, = O;.
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EXAMPLE 5.4. Let G = T. We have G = {y; : k € Z}, where yx(z) = z* and y ® y¢ =
Xi+¢- The faithful representations

P1 =X-1* X0, P2 = X0 T X1

of T determine a product system & with O(E) = O, ® O, and a Doplicher—Roberts
algebra O,, o = O(&)" isomorphic to a corner in the C*-algebra of a rank 2 graph A
with A? = G and infinite incidence matrices, where

MGy )= 1 if¢=korl=k-1,
Wk X = 0 otherwise,

1 ift=korf=k+1,
Mo(i, x o) = )
0 otherwise.

The skeleton of A looks like

and this 2-graph is cofinal, satisfies the aperiodicity condition and every vertex
connects to a loop with an entrance, so C*(A) is simple and purely infinite.

EXAMPLE 5.5. Let G = SU(2). It is known (see page 84 in [2]) that the elements in G
are labeled by V,, for n > 0, where V = ¢ is the trivial representation on C, V| is the
standard representation of SU(2) on C?, and, for n > 2, V,, = "V}, the nth symmetric
power. In fact, dim V,, = n + 1 and V,, can be taken as the representation of SU(2) on
the space of homogeneous polynomials p of degree n in variables z;, zo, where, for
g=[eh]esu),

(g - p)2) = plazi + c22, bz + dz2).

The irreducible representations V), satisfy the Clebsch—Gordan formula

q
Vi® Ve = (D) Visj. ¢ = minik, 0}
j=0

If we choose p; = V1,2 = V5, then we get a product system & with O(E) = O, ® O3
and a Doplicher-Roberts algebra O, ,, = O(E)SY® isomorphic to a corner in the
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C*-algebra of a rank two graph with A° = G and edges given by the matrices

1 ifk=0and ¢ =1,
M{(Vi,Ve) =491 ifk>1landefk—1,k+1},

0 otherwise,

ifk=0and £ =2,
ifk=1and e {l,3},
ifk>2and e {k -2,k k+2},

otherwise.

M>(Vie, Ve) =

O = = =

The skeleton looks like

and this 2-graph is cofinal, satisfies the aperiodicity condition and every vertex
connects to a loop with an entrance; in particular, O,,, ,, is simple and purely infinite.
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