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Abstract

We introduce certain C∗-algebras and k-graphs associated to k finite-dimensional unitary representations
ρ1, . . . , ρk of a compact group G. We define a higher rank Doplicher-Roberts algebra Oρ1,...,ρk , constructed
from intertwiners of tensor powers of these representations. Under certain conditions, we show that this
C∗-algebra is isomorphic to a corner in the C∗-algebra of a row-finite rank k graph Λ with no sources. For
G finite and ρi faithful of dimension at least two, this graph is irreducible, it has vertices Ĝ and the edges
are determined by k commuting matrices obtained from the character table of the group. We illustrate this
with some examples when Oρ1,...,ρk is simple and purely infinite, and with some K-theory computations.
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1. Introduction

The study of graph C∗-algebras was motivated, among other reasons, by the
Doplicher–Roberts algebra Oρ associated to a group representation ρ (see [19, 22]). It
is natural to imagine that a rank k graph is related to a fixed set of k representations
ρ1, . . . , ρk satisfying certain properties.

Given a compact group G and k finite-dimensional unitary representations ρi on
Hilbert spaces Hi of dimensions di for i = 1, . . . , k, we first construct a product
system E indexed by the semigroup (Nk,+) with fibers En = H⊗n1

1 ⊗ · · · ⊗ H⊗nk
k for

n = (n1, . . . , nk) ∈ Nk. Using the representations ρi, the group G acts on each fiber of
E in a compatible way, so we obtain an action of G on the Cuntz–Pimsner algebra
O(E). This action determines the crossed product O(E) � G and the fixed point algebra
O(E)G.

The author would like to thank the referee for useful suggestions.
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[2] C∗-algebras from k group representations 319

Inspired by Section 7 of [19] and Section 3.3 of [1], we define a higher rank
Doplicher–Roberts algebra Oρ1,...,ρk associated to the representations ρ1, . . . , ρk. This
algebra is constructed from intertwiners Hom(ρn, ρm), where ρn = ρ⊗n1

1 ⊗ · · · ⊗ ρ⊗nk
k is

acting on Hn = H⊗n1
1 ⊗ · · · ⊗ H⊗nk

k for n = (n1, . . . , nk) ∈ Nk. We show that Oρ1,...,ρk is
isomorphic to O(E)G.

If the representations ρ1, . . . , ρk satisfy some mild conditions, we construct a
k-colored graph Λ with vertex space Λ0 = Ĝ, and with edges Λεi given by some
matrices Mi indexed by Ĝ. Here εi = (0, . . . , 1, . . . , 0) ∈ Nk with 1 in position i are
the canonical generators. For v, w ∈ Ĝ, the matrices Mi have entries

Mi(w, v) = |{e ∈ Λεi : s(e) = v, r(e) = w}| = dim Hom(v, w ⊗ ρi),

which is the multiplicity of v in w ⊗ ρi for i = 1, . . . , k. Note that the matrices Mi

commute because ρi ⊗ ρj � ρj ⊗ ρi for all i, j = 1, . . . , k and therefore

dim Hom(v, w ⊗ ρi ⊗ ρj) = dim Hom(v, w ⊗ ρj ⊗ ρi).

By a particular choice of isometric intertwiners in Hom(v, w ⊗ ρi) for each v, w ∈ Ĝ
and for each i, we can choose bijections

λij : Λεi ×Λ0 Λεj → Λεj ×Λ0 Λεi ,

obtaining a set of commuting squares for Λ. For k ≥ 3, we need to check the
associativity of the commuting squares, that is,

(id� × λij)(λi� × idj)(idi × λj�) = (λj� × idi)(idj × λi�)(λij × id�)

as bijections fromΛεi ×Λ0 Λεj ×Λ0 Λε� toΛε� ×Λ0 Λεj ×Λ0 Λεi for all i < j < � (see [14]).
If these conditions are satisfied, we obtain a rank k graph Λ, which is row-finite with
no sources but, in general, is not unique.

In many situations, Λ is cofinal and it satisfies the aperiodicity condition, so C∗(Λ)
is simple. For k = 2, the C∗-algebra C∗(Λ) is unique when it is simple and purely
infinite, because its K-theory depends only on the matrices M1, M2. It is an open
question what happens for k ≥ 3.

Assuming that the representations ρ1, . . . , ρk determine a rank k graph Λ, we prove
that the Doplicher–Roberts algebra Oρ1,...,ρk is isomorphic to a corner of C∗(Λ), so if
C∗(Λ) is simple, then Oρ1,...,ρk is Morita equivalent to C∗(Λ). In particular cases, we
can compute its K-theory using results from [11].

2. The product system

Product systems over arbitrary semigroups were introduced by Fowler [13], inspired
by work of Arveson, and studied by several authors (see [1, 4, 26]). In this paper,
we are mostly interested in product systems E indexed by (Nk,+), associated to some
representations ρ1, . . . , ρk of a compact group G. We remind the reader of some general
definitions and constructions with product systems, but we restrict our attention to the
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320 V. Deaconu [3]

Cuntz–Pimsner algebra O(E) and we mention some properties in particular cases only
(see Example 2.3 for P = Nk).

DEFINITION 2.1. Let (P, ·) be a discrete semigroup with identity e and let A be
a C∗-algebra. A product system of C∗-correspondences over A indexed by P is a
semigroup E = ⊔p∈P Ep and a map E → P such that:

• for each p ∈ P, the fiber Ep ⊂ E is a C∗-correspondence over A with inner product
〈·, ·〉p;

• the identity fiber Ee is A viewed as a C∗-correspondence over itself;
• for p, q ∈ P \ {e}, the multiplication map

Mp,q : Ep × Eq → Epq, Mp,q(x, y) = xy

induces an isomorphismMp,q : Ep ⊗A Eq → Epq; and
• multiplication in E by elements of Ee = A implements the right and left actions of

A on each Ep. In particular,Mp,e is an isomorphism.

Let φp : A→ L(Ep) be the homomorphism implementing the left action. The product
system E is said to be essential if each Ep is an essential correspondence, that is, if
the span of φp(A)Ep is dense in Ep for all p ∈ P. In this case, the mapMe,p is also an
isomorphism.

If the maps φp take values in K(Ep), then the product system is called row-finite or
proper. If all maps φp are injective, then E is called faithful.

DEFINITION 2.2. Given a product system E → P over A and a C∗-algebra B, a map
ψ : E → B is called a Toeplitz representation of E if:

• denoting ψp := ψ|Ep , each ψp : Ep → B is linear, ψe : A→ B is a ∗-homomorphism,
and

ψe(〈x, y〉p) = ψp(x)∗ψp(y)

for all x, y ∈ Ep; and
• ψp(x)ψq(y) = ψpq(xy) for all p, q ∈ P, x ∈ Ep, y ∈ Eq.

For each p ∈ P, we write ψ(p) for the homomorphism K(Ep)→ B obtained by
extending the map θξ,η 
→ ψp(ξ)ψp(η)∗, where

θξ,η(ζ) = ξ〈η, ζ〉.

The Toeplitz representation ψ : E → B is Cuntz–Pimsner covariant if ψ(p)(φp(a)) =
ψe(a) for all p ∈ P and all a ∈ A such that φp(a) ∈ K(Ep).

There is a C∗-algebra TA(E) called the Toeplitz algebra of E and a representation
iE : E → TA(E) which is universal in the following sense: TA(E) is generated by iE(E)
and, for any representation ψ : E → B, there is a homomorphism ψ∗ : TA(E)→ B such
that ψ∗ ◦ iE = ψ.

The Cuntz–Pimsner algebra OA(E) of a product system E → P is universal for
Cuntz–Pimsner covariant representations.
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[4] C∗-algebras from k group representations 321

There are various extra conditions on a product system E → P and sev-
eral other notions of covariance besides the Cuntz–Pimsner covariance from
Definition 2.2, which allow one to define the Cuntz–Pimsner algebra OA(E) or
the Cuntz–Nica–Pimsner algebra NOA(E) satisfying certain properties (see [1, 4,
10, 13, 26], among others). We mention that OA(E) (or NOA(E)) comes with a
covariant representation jE : E → OA(E) and is universal in the following sense:
OA(E) is generated by jE(E) and, for any covariant representation ψ : E → B, there
is a homomorphism ψ∗ : OA(E)→ B such that ψ∗ ◦ jE = ψ. Under certain conditions,
OA(E) satisfies a gauge invariant uniqueness theorem.

EXAMPLE 2.3. For a product system E → P with fibers Ep that are nonzero
finite-dimensional Hilbert spaces, and, in particular, A = Ee = C, let us fix an
orthonormal basis Bp in Ep. Then a Toeplitz representation ψ : E → B gives rise to
a family of isometries {ψ(ξ) : ξ ∈ Bp}p∈P with mutually orthogonal range projections.
In this case, T (E) = TC(E) is generated by a collection of Cuntz–Toeplitz algebras
which interact according to the multiplication mapsMp,q in E.

A representation ψ : E → B is Cuntz–Pimsner covariant if∑
ξ∈Bp

ψ(ξ)ψ(ξ)∗ = ψ(1)

for all p ∈ P. The Cuntz–Pimsner algebra O(E) = OC(E) is generated by a collection of
Cuntz algebras, so it could be thought of as a multidimensional Cuntz algebra. Fowler
proved in [12] that if the function p 
→ dimEp is injective, then the algebra O(E) is
simple and purely infinite. For other examples of multidimensional Cuntz algebras,
see [3].

EXAMPLE 2.4. A row-finite k-graph with no sourcesΛ (see [18]) determines a product
system E → Nk with E0 = A = C0(Λ0) and En = Cc(Λn) for n � 0 such that we have a
Tk-equivariant isomorphism OA(E) � C∗(Λ). Recall that, for product systems indexed
by Nk, the universal property induces a gauge action on OA(E) defined by γz(jE(ξ)) =
znjE(ξ) for z ∈ Tk and ξ ∈ En.

The following two definitions and two results are taken from [7]; see also [15, 17].

DEFINITION 2.5. An action β of a locally compact group G on a product system E →
P over A is a family (βp)p∈P such that βp is an action of G on each fiber Ep compatible
with the action α = βe on A, and, furthermore, the actions (βp)p∈P are compatible with
the multiplication mapsMp,q in the sense that

β
pq
g (Mp,q(x ⊗ y)) =Mp,q(βp

g (x) ⊗ βq
g(y))

for all g ∈ G, x ∈ Ep and y ∈ Eq.

DEFINITION 2.6. If β is an action of G on the product system E → P, we define the
crossed product E �β G as the product system indexed by P with fibers Ep �βp G, which
are C∗-correspondences over A �α G. For ζ ∈ Cc(G,Ep) and η ∈ Cc(G,Eq), the product
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ζη ∈ Cc(G,Epq) is defined by

(ζη)(s) =
∫

G
Mp,q(ζ(t) ⊗ βq

t (η(t−1s))) dt.

PROPOSITION 2.7. The set E �β G =
⊔

p∈P Ep �βp G with the above multiplication
satisfies all the properties of a product system of C∗-correspondences over A �α G.

PROPOSITION 2.8. Suppose that a locally compact group G acts on a row-finite and
faithful product system E indexed by P = (Nk,+) via automorphisms βp

g . Then G acts
on the Cuntz–Pimsner algebra OA(E) via automorphisms denoted by γg. Moreover, if
G is amenable, then E �β G is row-finite and faithful, and

OA(E) �γ G � OA�αG(E �β G).

Now we define the product system associated to k representations of a compact
group G. We limit ourselves to finite-dimensional unitary representations, even though
the definition makes sense in greater generality.

DEFINITION 2.9. Given a compact group G and k finite-dimensional unitary represen-
tations ρi of G on Hilbert spaces Hi for i = 1, . . . , k, we construct the product system
E = E(ρ1, . . . , ρk) indexed by the commutative monoid (Nk,+), with fibers

En = Hn = H⊗n1
1 ⊗ · · · ⊗ H⊗nk

k

for n = (n1, . . . , nk) ∈ Nk; in particular, A = E0 = C. The multiplication maps

Mn,m : En × Em → En+m

in E are defined by using the standard isomorphisms ρi ⊗ ρj � ρj ⊗ ρi for all i < j. The
associativity in E follows from the fact that

Mn+m,p ◦ (Mn,m × id) =Mn,m+p ◦ (id ×Mm,p)

as maps from En × Em × Ep to En+m+p. Then E = E(ρ1, . . . , ρk) is called the product
system of the representations ρ1, . . . , ρk.

REMARK 2.10. Similarly, a semigroup P of unitary representations of a group G
determines a product system E → P.

PROPOSITION 2.11. With notation as in Definition 2.9, assume that di = dimHi ≥ 2.
Then the Cuntz–Pimsner algebra O(E) associated to the product system E → Nk

described above is isomorphic with the C∗-algebra of a rank k graph Γ with a single
vertex and with |Γεi | = di. This isomorphism is equivariant for the gauge action.
Moreover,

O(E) � Od1 ⊗ · · · ⊗ Odk ,

where On is the Cuntz algebra.
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PROOF. Indeed, by choosing a basis in each Hi, we get the edges Γεi in a k-colored
graph Γ with a single vertex. The isomorphisms ρi ⊗ ρj � ρj ⊗ ρi determine the
factorization rules of the form e f = f e for e ∈ Γεi and f ∈ Γεj , which obviously
satisfy the associativity condition. In particular, the corresponding isometries in
C∗(Γ) commute and determine, by the universal property, a surjective homomorphism
ϕ onto O(E), preserving the gauge action. Using the gauge invariant uniqueness
theorem for k-graph algebras, the map ϕ is an isomorphism. In particular, O(E) �
Od1 ⊗ · · · ⊗ Odk . �

REMARK 2.12. For di ≥ 2, the C∗-algebra O(E) � C∗(Γ) is always simple and purely
infinite since it is a tensor product of simple and purely infinite C∗-algebras. If di = 1
for some i, then the isomorphism in Proposition 2.11 still holds, but C∗(Γ) � O(E)
contains a copy of C(T), so it is not simple. Of course, if di = 1 for all i, then O(E) �
C(Tk). For more on single vertex rank k graphs, see [5, 6].

PROPOSITION 2.13. The compact group G acts on each fiber En of the product system
E via the representation ρn = ρ⊗n1

1 ⊗ · · · ⊗ ρ⊗nk
k . This action is compatible with the

multiplication maps and commutes with the gauge action of Tk. The crossed product
E � G becomes a row-finite and faithful product system indexed by Nk over the group
C∗-algebra C∗(G). Moreover,

O(E) � G � OC∗(G)(E � G).

PROOF. Indeed, for g ∈ G and ξ ∈ En = Hn, we define g · ξ = ρn(g)(ξ), and since
ρi ⊗ ρj � ρj ⊗ ρi, we have g · (ξ ⊗ η) = g · ξ ⊗ g · η for ξ ∈ En, η ∈ Em. Clearly,

g · γz(ξ) = g · (znξ) = zn(g · ξ) = γz(g · ξ),

so the action of G commutes with the gauge action. Using Proposition 2.7, E � G
becomes a product system indexed by Nk over C∗(G) � C � G with fibers En � G. The
isomorphism O(E) � G � OC∗(G)(E � G) follows from Proposition 2.8. �

COROLLARY 2.14. Since the action of G commutes with the gauge action, the group
G acts on the core algebra F = O(E)T

k
.

REMARK 2.15. In some cases, O(E) � G is isomorphic to the self-similar k-graph
C∗-algebras OG,Λ introduced in [21]. Moreover, for a self-similar k-graph (G,Λ)
with |Λ0| = 1, we have OG,Λ � Q(Λ �� G), where Λ �� G is a Zappa–Szép product
and Q(Λ �� G) is its boundary quotient C∗-algebra (see Example 3.10(4) in [21] and
Theorem 3.3 in [20]). I thank the referee for bringing this relationship to my attention.

3. The Doplicher–Roberts algebra

The Doplicher–Roberts algebras Oρ, denoted by OG in [8], were introduced to
construct a new duality theory for compact Lie groups G that strengthens the
Tannaka–Krein duality. Here ρ is the n-dimensional representation of G defined by
the inclusion G ⊆ U(n) in some unitary group U(n). Let TG denote the representation
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324 V. Deaconu [7]

category whose objects are tensor powers ρp = ρ⊗p for p ≥ 0, and whose arrows are
the intertwiners Hom(ρp, ρq). The group G acts via ρ on the Cuntz algebra On and
OG = Oρ is identified in [8] with the fixed point algebraOG

n . If σ denotes the restriction
to Oρ of the canonical endomorphism of On, then TG can be reconstructed from the
pair (Oρ,σ). Subsequently, Doplicher–Roberts algebras were associated to any object
ρ in a strict tensor C∗-category (see [9]).

Given finite-dimensional unitary representations ρ1, . . . , ρk of a compact group G
on Hilbert spacesH1, . . . ,Hk, we construct a Doplicher–Roberts algebra Oρ1,...,ρk from
intertwiners

Hom(ρn, ρm) = {T ∈ L(Hn,Hm) | Tρn(g) = ρm(g)T for all g ∈ G},

where, for n = (n1, . . . , nk) ∈ Nk, the representation ρn = ρ⊗n1
1 ⊗ · · · ⊗ ρ⊗nk

k acts on
Hn = H⊗n1

1 ⊗ · · · ⊗ H⊗nk
k . Note that ρ0 = ι is the trivial representation of G, acting

on H0 = C. This Doplicher–Roberts algebra is a subalgebra of O(E) for the product
system E, as in Definition 2.9.

LEMMA 3.1. Consider

A0 =
⋃

m,n∈Nk

L(Hn,Hm).

Then the linear span of A0 becomes a ∗-algebra A with appropriate multiplica-
tion and involution. This algebra has a natural Zk-grading coming from a gauge
action of Tk. Moreover, the Cuntz–Pimsner algebra O(E) of the product system E =
E(ρ1, . . . , ρk) is equivariantly isomorphic to the C∗-closure ofA in the unique C∗-norm
for which the gauge action is isometric.

PROOF. Recall that the Cuntz algebra On contains a canonical Hilbert space H
of dimension n and it can be constructed as the closure of the linear span of⋃

p,q∈NL(H p,Hq) using embeddings

L(H p,Hq) ⊆ L(H p+1,Hq+1), T 
→ T ⊗ I,

where H p = H⊗p and I : H → H is the identity map. This linear span becomes a
∗-algebra with a multiplication given by composition and an involution (see [8] and
Proposition 2.5 in [16]).

Similarly, for all r ∈ Nk, we consider embeddings L(Hn,Hm) ⊆ L(Hn+r,Hm+r)
given by T 
→ T ⊗ Ir, where Ir : H r → H r is the identity map, and we endow A
with a multiplication given by composition and an involution. More precisely, if
S ∈ L(Hn,Hm) and T ∈ L(Hq,H p), then the product ST is

(S ⊗ Ip∨n−n) ◦ (T ⊗ Ip∨n−p) ∈ L(Hq+p∨n−p,Hm+p∨n−n),

where we write p ∨ n for the coordinatewise maximum. This multiplication is well
defined inA and is associative. The adjoint of T ∈ L(Hn,Hm) is T∗ ∈ L(Hm,Hn).
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[8] C∗-algebras from k group representations 325

There is a natural Zk-grading on A given by the gauge action γ of Tk, where, for
z = (z1, . . . , zk) ∈ Tk and T ∈ L(Hn,Hm), we define

γz(T)(ξ) = zm1−n1
1 · · · zmk−nk

k T(ξ).

Adapting the argument in Theorem 4.2 in [9] for Zk-graded C∗-algebras, the C∗-closure
ofA in the unique C∗-norm for which γz is isometric is well defined. The map

(T1, . . . , Tk) 
→ T1 ⊗ · · · ⊗ Tk,

where

T1 ⊗ · · · ⊗ Tk : Hn → Hm, (T1 ⊗ · · · ⊗ Tk)(ξ1 ⊗ · · · ⊗ ξk) = T1(ξ1) ⊗ · · · ⊗ Tk(ξk)

for Ti ∈ L(Hni
i ,Hmi

i ) for i = 1, . . . , k preserves the gauge action and it can be extended
to an equivariant isomorphism from O(E) � Od1 ⊗ · · · ⊗ Odk to the C∗-closure of A.
Note that the closure of

⋃
n∈Nk L(Hn,Hn) is isomorphic to the core F = O(E)T

k
, that

is the fixed point algebra under the gauge action, which is a UHF-algebra. �

To define the Doplicher–Roberts algebra Oρ1,...,ρk , we again identify Hom(ρn, ρm)
with a subset of Hom(ρn+r, ρm+r) for each r ∈ Nk, via T 
→ T ⊗ Ir. After this identifica-
tion, it follows that the linear span 0Oρ1,...,ρk of

⋃
m,n∈Nk Hom(ρn, ρm) ⊆ A0 has a natural

multiplication and involution inherited from A. Indeed, a computation shows that if
S ∈ Hom(ρn, ρm) and T ∈ Hom(ρq, ρp), then S∗ ∈ Hom(ρm, ρn) and

((S ⊗ Ip∨n−n) ◦ (T ⊗ Ip∨n−p))ρq+p∨n−p(g)

= ρm+p∨n−n(g)((S ⊗ Ip∨n−n) ◦ (T ⊗ Ip∨n−p)),

so (S ⊗ Ip∨n−n) ◦ (T ⊗ Ip∨n−p) ∈ Hom(ρq+p∨n−p, ρm+p∨n−n) and 0Oρ1,...,ρk is closed under
these operations. Since the action of G commutes with the gauge action, there is a
natural Zk-grading of 0Oρ1,...,ρk given by the gauge action γ of Tk onA.

It follows that the closure Oρ1,...,ρk of 0Oρ1,...,ρk in O(E) is well defined, obtaining
the Doplicher–Roberts algebra associated to the representations ρ1, . . . , ρk. This
C∗-algebra also has a Zk-grading and a gauge action of Tk. By construction, Oρ1,...,ρk ⊆
O(E).

REMARK 3.2. For a compact Lie group G, our Doplicher–Roberts algebra Oρ1,...,ρk is
Morita equivalent with the higher rank Doplicher–Roberts algebraD defined in [1]. It
is also the section C∗-algebra of a Fell bundle over Zk.

THEOREM 3.3. Let ρi be finite-dimensional unitary representations of a compact
group G on Hilbert spaces Hi of dimensions di ≥ 2 for i = 1, . . . , k. Then the
Doplicher–Roberts algebra Oρ1,...,ρk is isomorphic to the fixed point algebra O(E)G �
(Od1 ⊗ · · · ⊗ Odk )

G, where E = E(ρ1, . . . , ρk) is the product system described in
Definition 2.9.

PROOF. We know from Lemma 3.1 that O(E) is isomorphic to the C∗-algebra
generated by the linear span of A0 =

⋃
m,n∈Nk L(Hn,Hm). The group G acts on
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L(Hn,Hm) by

(g · T)(ξ) = ρm(g)T(ρn(g−1)ξ)

and the fixed point set is Hom(ρn, ρm). Indeed, we have g · T = T if and only if
Tρn(g) = ρm(g)T . This action is compatible with the embeddings and the operations,
so it extends to the ∗-algebra A and the fixed point algebra is the linear span of⋃

m,n∈Nk Hom(ρn, ρm).
It follows that 0Oρ1,...,ρk ⊆ O(E)G and therefore its closure Oρ1,...,ρk is isomorphic

to a subalgebra of O(E)G. For the other inclusion, any element in O(E)G can be
approximated with an element from 0Oρ1,...,ρk , and hence Oρ1,...,ρk = O(E)G. �

REMARK 3.4. By left tensoring with Ir for r ∈ Nk, we obtain some canonical unital
endomorphisms σr of Oρ1,...,ρk .

In the next section, we show that, in many cases, Oρ1,...,ρk is isomorphic to a corner
of C∗(Λ) for a rank k graphΛ, so, in some cases, we can compute its K-theory. It would
be nice to express the K-theory of Oρ1,...,ρk in terms of the maps π 
→ π ⊗ ρi defined on
the representation ring R(G).

4. The rank k graphs

For convenience, we first collect some facts about higher rank graphs, introduced
in [18]. A rank k graph or k-graph (Λ, d) consists of a countable small category Λ
with range and source maps r and s together with a functor d : Λ→ Nk called the
degree map, satisfying the factorization property: for every λ ∈ Λ and all m, n ∈ Nk

with d(λ) = m + n, there are unique elements μ, ν ∈ Λ such that λ = μν and d(μ) = m,
d(ν) = n. For n ∈ Nk, we write Λn := d−1(n) and call it the set of paths of degree n. For
εi = (0, . . . , 1, . . . , 0) with 1 in position i, the elements in Λεi are called edges and the
elements in Λ0 are called vertices.

A k-graphΛ can be constructed fromΛ0 and from its k-colored skeletonΛε1 ∪ · · · ∪
Λεk using a complete and associative collection of commuting squares or factorization
rules (see [25]).

The k-graph Λ is row-finite if, for all n ∈ Nk and all v ∈ Λ0, the set vΛn := {λ ∈ Λn :
r(λ) = v} is finite. It has no sources if vΛn � ∅ for all v ∈ Λ0 and n ∈ Nk. A k-graph Λ
is said to be irreducible (or strongly connected) if, for every u, v ∈ Λ0, there is λ ∈ Λ
such that u = r(λ) and v = s(λ).

Recall that C∗(Λ) is the universal C∗-algebra generated by a family {Sλ : λ ∈ Λ} of
partial isometries satisfying:

• {Sv : v ∈ Λ0} is a family of mutually orthogonal projections;
• Sλμ = SλSμ for all λ, μ ∈ Λ such that s(λ) = r(μ);
• S∗λSλ = Ss(λ) for all λ ∈ Λ; and
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• for all v ∈ Λ0 and n ∈ Nk,

Sv =
∑
λ∈vΛn

SλS∗λ.

A k-graph Λ is said to satisfy the aperiodicity condition if, for every vertex v ∈
Λ0, there is an infinite path x ∈ vΛ∞ such that σmx � σnx for all m � n in Nk, where
σm : Λ∞ → Λ∞ are the shift maps. We say that Λ is cofinal if, for every x ∈ Λ∞ and
v ∈ Λ0, there is λ ∈ Λ and n ∈ Nk such that s(λ) = x(n) and r(λ) = v.

Assume that Λ is row-finite with no sources and that it satisfies the aperiodicity
condition. Then C∗(Λ) is simple if and only if Λ is cofinal (see Proposition 4.8 in [18]
and Theorem 3.4 in [23]).

We say that a path μ ∈ Λ is a loop with an entrance if s(μ) = r(μ), and there exists
α ∈ s(μ)Λ such that d(μ) ≥ d(α) and there is no β ∈ Λ with μ = αβ. We say that every
vertex connects to a loop with an entrance if, for every v ∈ Λ0, there is a loop with an
entrance μ ∈ Λ, and a path λ ∈ Λ with r(λ) = v and s(λ) = r(μ) = s(μ). If Λ satisfies
the aperiodicity condition and every vertex connects to a loop with an entrance, then
C∗(Λ) is purely infinite (see Proposition 4.9 in [18] and Proposition 8.8 in [24]).

Given finite-dimensional unitary representations ρi of a compact group G on Hilbert
spaces Hi for i = 1, . . . , k, we want to construct a rank k graph Λ = Λ(ρ1, . . . , ρk). Let
R be the set of equivalence classes of irreducible summands π : G→ U(Hπ) which
appear in the tensor powers ρn = ρ⊗n1

1 ⊗ · · · ⊗ ρ⊗nk
k for n ∈ Nk, as in [22]. Take Λ0 = R

and, for each i = 1, . . . , k, consider the set of edges Λεi which are uniquely determined
by the matrices Mi with entries

Mi(w, v) = |{e ∈ Λεi : s(e) = v, r(e) = w}| = dim Hom(v, w ⊗ ρi),

where v, w ∈ R. The matrices Mi commute since ρi ⊗ ρj � ρj ⊗ ρi and therefore

dim Hom(v, w ⊗ ρi ⊗ ρj) = dim Hom(v, w ⊗ ρj ⊗ ρi)

for all i < j. This allows us to fix some bijections

λij : Λεi ×Λ0 Λεj → Λεj ×Λ0 Λεi

for all 1 ≤ i < j ≤ k, which determine the commuting squares of Λ. As usual,

Λεi ×Λ0 Λεj = {(e, f ) ∈ Λεi × Λεj : s(e) = r( f )}.

For k ≥ 3, we also need to verify that λij can be chosen to satisfy the associativity
condition, that is,

(id� × λij)(λi� × idj)(idi × λj�) = (λj� × idi)(idj × λi�)(λij × id�)

as bijections from Λεi ×Λ0 Λεj ×Λ0 Λε� to Λε� ×Λ0 Λεj ×Λ0 Λεi for all i < j < �.

REMARK 4.1. Many times R = Ĝ, so Λ0 = Ĝ, for example, if ρi are faithful and
ρi(G) ⊆ SU(Hi) or if G is finite, ρi are faithful and dim ρi ≥ 2 for all i = 1, . . . , k (see
Lemma 7.2 and Remark 7.4 in [19]).
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PROPOSITION 4.2. Given representations ρ1, . . . , ρk as above, assume that ρi are
faithful and that R = Ĝ. Then each choice of bijections λij satisfying the associativity
condition determines a rank k graph Λ which is cofinal and locally finite with no
sources.

PROOF. Indeed, the sets Λεi are uniquely determined and the choice of bijections λij

satisfying the associativity condition is enough to determine Λ. Since the entries of
the matrices Mi are finite and there are no zero rows, the graph is locally finite with
no sources. To prove that Λ is cofinal, fix a vertex v ∈ Λ0 and an infinite path x ∈ Λ∞.
Arguing as in Lemma 7.2 in [19], any w ∈ Λ0, in particular, w = x(n) for a fixed n,
can be joined by a path to v, so there is λ ∈ Λ with s(λ) = x(n) and r(λ) = v. See also
Lemma 3.1 in [22]. �

REMARK 4.3. Note that the entry Mi(w, v) is just the multiplicity of the irreducible
representation v in w ⊗ ρi for i = 1, . . . , k. If ρ∗i = ρi, then the matrices Mi are
symmetric since

dim Hom(v, w ⊗ ρi) = dim Hom(ρ∗i ⊗ v, w)

which implies Mi(w; v) = Mi(v; w). Here ρ∗i denotes the dual representation defined by
ρ∗i (g) = ρi(g−1)t and equal, in our case, to the conjugate representation ρ̄i.

For G finite, these matrices are finite, and the entries Mi(w, v) can be computed
using the character table of G. For G infinite, the Clebsch–Gordan relations can be
used to determine the numbers Mi(w, v). Since the bijections λij are, in general, not
unique, the rank k graph Λ is not unique, as illustrated in some examples. It is an open
question how the C∗-algebra C∗(Λ) depends, in general, on the factorization rules.

To relate the Doplicher–Roberts algebra Oρ1,...,ρk to a rank k graph Λ, we mimic the
construction in [22]. For each edge e ∈ Λεi , choose an isometric intertwiner

Te : Hs(e) → Hr(e) ⊗Hi

in such a way that

Hπ ⊗Hi =
⊕
e∈πΛεi

TeT∗e (Hπ ⊗Hi)

for all π ∈ Λ0, that is, the edges in Λεi ending at π give a specific decomposition of
Hπ ⊗Hi into irreducibles. When dim Hom(s(e), r(e) ⊗ ρi) ≥ 2, we must choose a basis
of isometric intertwiners with orthogonal ranges, so, in general, Te is not unique. In
fact, specific choices for the isometric intertwiners Te determine the factorization rules
in Λ and whether or not they satisfy the associativity condition.

Given e ∈ Λεi and f ∈ Λεj with r( f ) = s(e), we know how to multiply Te ∈
Hom(s(e), r(e) ⊗ ρi) with T f ∈ Hom(s( f ), r( f ) ⊗ ρj) in the algebra Oρ1,...,ρk , by viewing
Hom(s(e), r(e) ⊗ ρi) as a subspace of Hom(ρn, ρm) for some m, n, and similarly
for Hom(s( f ), r( f ) ⊗ ρj). We choose edges e′ ∈ Λεi , f ′ ∈ Λεj with s( f ) = s(e′), r(e) =
r( f ′), r(e′) = s( f ′) such that TeT f = T f ′Te′ , where T f ′ ∈ Hom(s( f ′), r( f ′) ⊗ ρj) and
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Te′ ∈ Hom(s(e′), r(e′) ⊗ ρi). This is possible since

TeT f = (Te ⊗ Ij) ◦ T f ∈ Hom(s( f ), r(e) ⊗ ρi ⊗ ρj),

T f ′Te′ = (T f ′ ⊗ Ii) ◦ Te′ ∈ Hom(s(e′), r( f ′) ⊗ ρj ⊗ ρi),

and ρi ⊗ ρj � ρj ⊗ ρi. In this case, we declare that e f = f ′e′. Repeating this process,
we obtain bijections λij : Λεi ×Λ0 Λεj → Λεj ×Λ0 Λεi . Assuming that the associativity
conditions are satisfied, we obtain a k-graph Λ.

We write Te f = TeT f = T f ′Te′ = T f ′e′ . A finite path λ ∈ Λn is a concatenation of
edges and determines by composition a unique intertwiner

Tλ : Hs(λ) → Hr(λ) ⊗Hn.

Moreover, the paths λ ∈ Λn with r(λ) = ι, the trivial representation, provide an explicit
decomposition ofHn = H⊗n1

1 ⊗ · · · ⊗ H⊗nk
k into irreducibles, and hence

Hn =
⊕
λ∈ιΛn

TλT∗λ(Hn).

PROPOSITION 4.4. Assuming that the choices of isometric intertwiners Te, as above,
determine a k-graph Λ, the family

{TλT∗μ : λ ∈ Λm, μ ∈ Λn, r(λ) = r(μ) = ι, s(λ) = s(μ)}

is a basis for Hom(ρn, ρm) and each TλT∗μ is a partial isometry.

PROOF. Each pair of paths λ, μwith d(λ) = m, d(μ) = n and r(λ) = r(μ) = ι determines
a pair of irreducible summands Tλ(Hs(λ)), Tμ(Hs(μ)) of Hm and Hn, respectively. By
Schur’s lemma, the space of intertwiners of these representations is trivial unless
s(λ) = s(μ), in which case it is the one-dimensional space spanned by TλT∗μ . It
follows that any element of Hom(ρn, ρm) can be uniquely represented as a linear
combination of elements TλT∗μ , where s(λ) = s(μ). Since Tμ is isometric, T∗μ is a
partial isometry with range Hs(μ) and hence TλT∗μ is also a partial isometry whenever
s(λ) = s(μ). �

THEOREM 4.5. Consider ρ1, . . . , ρk finite-dimensional unitary representations of a
compact group G and let Λ be the k-colored graph with Λ0 = R ⊆ Ĝ and edges Λεi

determined by the incidence matrices Mi defined above. Assume that the factorization
rules determined by the choices of Te ∈ Hom(s(e), r(e) ⊗ ρi) for all edges e ∈ Λεi

satisfy the associativity condition, so Λ becomes a rank k graph. If we consider
P ∈ C∗(Λ),

P =
∑

λ∈ιΛ(1,...,1)

SλS∗λ,

where ι is the trivial representation, then there is a ∗-isomorphism of the
Doplicher–Roberts algebra Oρ1,...,ρk onto the corner PC∗(Λ)P.
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PROOF. Since C∗(Λ) is generated by linear combinations of SλS∗μ with s(λ) = s(μ) (see
Lemma 3.1 in [18]), we first define the maps

φn,m : Hom(ρn, ρm)→ C∗(Λ), φn,m(TλT∗μ) = SλS∗μ,

where s(λ) = s(μ) and r(λ) = r(μ) = ι. Since SλS∗μ = PSλS∗μP, the maps φn,m take values
in PC∗(Λ)P. We claim that, for any r ∈ Nk,

φn+r,m+r(TλT∗μ ⊗ Ir) = φn,m(TλT∗μ).

This is because

Hs(λ) ⊗H r =
⊕

ν∈s(λ)Λr

TνT∗ν (Hs(λ) ⊗H r),

so that

TλT∗μ ⊗ Ir =
∑

ν∈s(λ)Λr

(Tλ ⊗ Ir)(TνT∗ν )(T∗μ ⊗ Ir) =
∑

ν∈s(λ)Λr

TλνT∗μν

and

SλS∗μ =
∑

ν∈s(λ)Λr

Sλ(SνS∗ν)S
∗
μ =

∑
ν∈s(λ)Λr

SλνS∗μν.

The maps φn,m determine a map φ : 0Oρ1,...,ρk → PC∗(Λ)P which is linear, ∗-preserving
and multiplicative. Indeed,

φn,m(TλT∗μ)∗ = (SλS∗μ)∗ = SμS∗λ = φm,n(TμT∗λ).

Consider now TλT∗μ ∈ Hom(ρn, ρm), TνT∗ω ∈ Hom(ρq, ρp) with s(λ) = s(μ), s(ν) =
s(ω), r(λ) = r(μ) = r(ν) = r(ω) = ι. Since, for all n ∈ Nk,∑

λ∈ιΛn

TλT∗λ = In,

we get

T∗μTν =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
T∗β if μ = νβ,
Tα if ν = μα,
0 otherwise,

and hence

φ((TλT∗μ)(TνT∗ω)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
φ(TλT∗ωβ) = SλS∗ωβ if μ = νβ,
φ(TλαT∗ω) = SλαS∗ω if ν = μα,
0 otherwise.
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On the other hand, from Lemma 3.1 in [18],

SλS∗μSνS∗ω =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
SλS∗ωβ if μ = νβ,
SλαS∗ω if ν = μα,
0 otherwise,

and hence

φ((TλT∗μ)(TνT∗ω)) = φ(TλT∗μ)φ(TνT∗ω).

Since PSλS∗μP = φn,m(TλT∗μ) if r(λ) = r(μ) = ι and s(λ) = s(μ), it follows that φ
is surjective. Injectivity follows from the fact that φ is equivariant for the gauge
action. �

COROLLARY 4.6. If the k-graph Λ associated to ρ1, . . . , ρk is cofinal, satisfies the
aperiodicity condition and every vertex connects to a loop with an entrance, then
the Doplicher–Roberts algebra Oρ1,...,ρk is simple and purely infinite, and is Morita
equivalent with C∗(Λ).

PROOF. This follows from the fact that C∗(Λ) is simple and purely infinite and because
PC∗(Λ)P is a full corner. �

REMARK 4.7. There is a groupoid GΛ associated to a row-finite rank k graph Λ with
no sources (see [18]). By taking the pointed groupoid GΛ(ι), the reduction to the set
of infinite paths with range ι, under the same conditions as in Theorem 4.5, we get an
isomorphism of the Doplicher–Roberts algebra Oρ1,...,ρk onto C∗(GΛ(ι)).

5. Examples

EXAMPLE 5.1. Let G = S3 be the symmetric group with Ĝ = {ι, ε,σ} and character
table

(1) (12) (123)
ι 1 1 1
ε 1 −1 1
σ 2 0 −1

Here ι denotes the trivial representation, ε is the sign representation and σ is an
irreducible 2-dimensional representation, for example,

σ((12)) =

[
−1 −1

0 1

]
, σ((123)) =

[
−1 −1

1 0

]
.

By choosing ρ1 = σ on H1 = C
2 and ρ2 = ι + σ on H2 = C

3, we get a product
system E → N2 and an action of S3 on O(E) � O2 ⊗ O3 with fixed point algebra
O(E)S3 � Oρ1,ρ2 isomorphic to a corner of the C∗-algebra of a rank two graph Λ. The
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set of vertices is Λ0 = {ι, ε,σ} and the edges are given by the incidence matrices

M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1
0 0 1
1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 1
0 1 1
1 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
This is because

ι ⊗ ρ1 = σ, ε ⊗ ρ1 = σ, σ ⊗ ρ1 = ι + ε + σ,

ι ⊗ ρ2 = ι + σ, ε ⊗ ρ2 = ε + σ, σ ⊗ ρ2 = ι + ε + 2σ.

We label the blue (solid) edges by e1, . . . , e5 and the red (dashed) edges by f1, . . . , f8
as in the figure below.

ι ε σ

e1

e2

e3

e4

e5

f4

f3

f6

f5

f1

f7

f2

f8

ι ε
σ

The isometric intertwiners are

Te1 : Hι → Hσ ⊗H1, Te2 : Hσ → Hι ⊗H1, Te3 : Hε → Hσ ⊗H1,

Te4 : Hσ → Hε ⊗H1, Te5 : Hσ → Hσ ⊗H1,

T f1 : Hι → Hι ⊗H2, T f2 : Hε → Hε ⊗H2, T f3 : Hσ → Hι ⊗H2,

T f4 : Hι → Hσ ⊗H2, T f5 : Hσ → Hε ⊗H2, T f6 : Hε → Hσ ⊗H2,

T f7 , T f8 : Hσ → Hσ ⊗H2

such that

Te1 T∗e1
+ Te3 T∗e3

+ Te5 T∗e5
= Iσ ⊗ I1, Te2 T∗e2

= Iι ⊗ I1, Te4 T∗e4
= Iε ⊗ I1,

T f1 T∗f1 + T f3 T∗f3 = Iι ⊗ I2, T f2 T∗f2 + T f5 T∗f5 = Iε ⊗ I2,

T f4 T∗f4 + T f6 T∗f6 + T f7 T∗f7 + T f8 T∗f8 = Iσ ⊗ I2.

Here Iπ is the identity ofHπ for π ∈ Ĝ and Ii is the identity ofHi for i = 1, 2. Since

M1M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 2
1 1 2
2 2 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

Te2 T f4 , T f3 Te1 ∈ Hom(ι, ι ⊗ ρ1 ⊗ ρ2),

Te2 T f6 , T f3 Te3 ∈ Hom(ε, ι ⊗ ρ1 ⊗ ρ2),

Te2 T f7 , Te2 T f8 , T f1 Te2 , T f3 Te5 ∈ Hom(σ, ι ⊗ ρ1 ⊗ ρ2),

Te4 T f4 , T f5 Te1 ∈ Hom(ι, ε ⊗ ρ1 ⊗ ρ2),

Te4 T f6 , T f5 Te3 ∈ Hom(ε, ε ⊗ ρ1 ⊗ ρ2),

Te4 T f7 , Te4 T f8 , T f2 Te4 , T f5 Te5 ∈ Hom(σ, ε ⊗ ρ1 ⊗ ρ2),

Te1 T f1 , Te5 T f4 , T f7 Te1 , T f8 Te1 ∈ Hom(ι,σ ⊗ ρ1 ⊗ ρ2),

Te3 T f2 , Te5 T f6 , T f7 Te3 , T f8 Te3 ∈ Hom(ε,σ ⊗ ρ1 ⊗ ρ2),

Te5 T f7 , Te5 T f8 , Te3 T f5 , Te1 T f3 , T f6 Te4 , T f4 Te2 , T f7 Te5 , T f8 Te5 ∈ Hom(σ,σ ⊗ ρ1 ⊗ ρ2),

a possible choice of commuting squares is

e2 f4 = f3e1, e2 f6 = f3e3, e2 f7 = f1e2, e2 f8 = f3e5, e4 f4 = f5e1, e4 f6 = f5e3,

e4 f7 = f2e4, e4 f8 = f5e5, e1 f1 = f7e1, e5 f4 = f8e1, e3 f2 = f7e3, e5 f6 = f8e3,

e5 f7 = f6e4, e5 f8 = f4e2, e3 f5 = f7e5, e1 f3 = f8e5.

This data is enough to determine a rank two graph Λ associated to ρ1, ρ2. But this is
not the only choice, since, for example, we could have taken

e2 f4 = f3e1, e2 f6 = f3e3, e2 f8 = f1e2, e2 f7 = f3e5, e4 f4 = f5e1, e4 f6 = f5e3,

e4 f8 = f2e4, e4 f7 = f5e5, e1 f1 = f7e1, e5 f4 = f8e1, e3 f2 = f8e3, e5 f6 = f7e3,

e5 f7 = f6e4, e5 f8 = f4e2, e3 f5 = f7e5, e1 f3 = f8e5,

which determines a different 2-graph.
A direct analysis using the definitions shows that, in each case, the 2-graph Λ is

cofinal, satisfies the aperiodicity condition and every vertex connects to a loop with an
entrance. It follows that C∗(Λ) is simple and purely infinite and the Doplicher–Roberts
algebra Oρ1,ρ2 is Morita equivalent with C∗(Λ).

The K-theory of C∗(Λ) can be computed using Proposition 3.16 in [11] and it does
not depend on the choice of factorization rules. We have

K0(C∗(Λ)) � coker[I −Mt
1 I −Mt

2] ⊕ ker

[
Mt

2 − I
I −Mt

1

]
� Z/2Z,

K1(C∗(Λ)) � ker[I −Mt
1 I −Mt

2]/im
[

Mt
2 − I

I −Mt
1

]
� 0.

In particular, Oρ1,ρ2 � O3.
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On the other hand, since ρ1, ρ2 are faithful, both Doplicher–Roberts algebras
Oρ1 ,Oρ2 are simple and purely infinite with

K0(Oρ1 ) � Z/2Z, K1(Oρ1 ) � 0, K0(Oρ2 ) � Z, K1(Oρ2 ) � Z,

so Oρ1,ρ2 � Oρ1 ⊗ Oρ2 .

EXAMPLE 5.2. With G = S3 and ρ1 = 2ι, ρ2 = ι + ε, then R = {ι, ε}, so Λ has two
vertices and incidence matrices

M1 =

[
2 0
0 2

]
, M2 =

[
1 1
1 1

]
,

which give

ι ε ι ε

e1

e2

e3

e4

f1

f2

f3

f4

Again, a corresponding choice of isometric intertwiners determines some factoriza-
tion rules, for example,

e1 f1 = f1e2, e2 f1 = f1e1, e1 f3 = f3e3, e2 f3 = f3e4,

e3 f2 = f2e1, e4 f2 = f2e2, e3 f4 = f4e4, e4 f4 = f4e3.

Even though ρ1, ρ2 are not faithful, the obtained 2-graph is cofinal, satisfies the
aperiodicity condition and every vertex connects to a loop with an entrance, so Oρ1,ρ2

is simple and purely infinite with trivial K-theory. In particular, Oρ1,ρ2 � O2.
Note that, since ρ1, ρ2 have kernel N = 〈(123)〉 � Z/3Z, we could replace G by

G/N � Z/2Z and consider ρ1, ρ2 as representations of Z/2Z.

EXAMPLE 5.3. Consider G = Z/2Z = {0, 1} with Ĝ = {ι, χ} and character table

0 1
ι 1 1
χ 1 −1

Choose the 2-dimensional representations

ρ1 = ι + χ, ρ2 = 2ι, ρ3 = 2χ,

which determine a product system E such that O(E) � O2 ⊗ O2 ⊗ O2 and a
Doplicher–Roberts algebra Oρ1,ρ2,ρ3 � O(E)Z/2Z.
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An easy computation shows that the incidence matrices of the blue (solid), red
(dashed) and green (dotted) graphs are

M1 =

[
1 1
1 1

]
, M2 =

[
2 0
0 2

]
, M3 =

[
0 2
2 0

]
.

ι χ ι
e1

e2

e3

e4

f1

f2

f3

f4

g1

g2

g4

g3
χ ι χ

With labels as in the figure, we choose the following factorization rules.

e1 f1 = f2e1, e1 f2 = f1e1, e2 f1 = f4e2, e2 f2 = f3e2,

e3 f3 = f2e3, e3 f4 = f1e3, e4 f4 = f3e4, e4 f3 = f4e4,

f1g1 = g2 f3, f1g2 = g1 f3, f2g1 = g2 f4, f2g2 = g1 f4,

f3g3 = g4 f1, f3g4 = g3 f1, f4g3 = g4 f2, f4g4 = g3 f2,

e1g1 = g2e4, e1g2 = g1e4, e2g1 = g3e3, e2g2 = g4e3,

e3g3 = g1e2, e3g4 = g2e2, e4g3 = g4e1, e4g4 = g3e1.

A tedious verification shows that all the following paths are well defined.

e1 f1g1, e1 f1g2, e1 f2g1, e1 f2g2, e2 f1g1, e2 f1g2, e2 f2g1, e2 f2g2,

e3 f3g3, e3 f3g4, e3 f4g3, e3 f4g4, e4 f3g3, e4 f3g4, e4 f4g3, e4 f4g4,

so the associativity property is satisfied and we get a rank three graph Λ with two
vertices. It is not difficult to check that Λ is cofinal, satisfies the aperiodicity condition
and every vertex connects to a loop with an entrance, so C∗(Λ) is simple and purely
infinite.

Since ∂1 = [I −Mt
1 I −Mt

2 I −Mt
3] : Z6 → Z2 is surjective, using Corollary 3.18 in

[11], we obtain

K0(C∗(Λ)) � ker ∂2/im ∂3 � 0, K1(C∗(Λ)) � ker ∂1/im ∂2 ⊕ ker ∂3 � 0,

where

∂2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Mt

2 − I Mt
3 − I 0

I −Mt
1 0 Mt

3 − I
0 I −Mt

1 I −Mt
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , ∂3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
I −Mt

3
Mt

2 − I
I −Mt

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
and, in particular, Oρ1,ρ2,ρ3 � O2.
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EXAMPLE 5.4. Let G = T. We have Ĝ = {χk : k ∈ Z}, where χk(z) = zk and χk ⊗ χ� =
χk+�. The faithful representations

ρ1 = χ−1 + χ0, ρ2 = χ0 + χ1

of T determine a product system E with O(E) � O2 ⊗ O2 and a Doplicher–Roberts
algebra Oρ1,ρ2 � O(E)T isomorphic to a corner in the C∗-algebra of a rank 2 graph Λ
with Λ0 = Ĝ and infinite incidence matrices, where

M1(χk, χ�) =

⎧⎪⎪⎨⎪⎪⎩
1 if � = k or � = k − 1,
0 otherwise,

M2(χk, χ�) =

⎧⎪⎪⎨⎪⎪⎩
1 if � = k or � = k + 1,
0 otherwise.

The skeleton of Λ looks like

χ−1· · · χ0 χ1 χ2 · · ·

and this 2-graph is cofinal, satisfies the aperiodicity condition and every vertex
connects to a loop with an entrance, so C∗(Λ) is simple and purely infinite.

EXAMPLE 5.5. Let G = SU(2). It is known (see page 84 in [2]) that the elements in Ĝ
are labeled by Vn for n ≥ 0, where V0 = ι is the trivial representation on C, V1 is the
standard representation of SU(2) on C2, and, for n ≥ 2, Vn = SnV1, the n th symmetric
power. In fact, dim Vn = n + 1 and Vn can be taken as the representation of SU(2) on
the space of homogeneous polynomials p of degree n in variables z1, z2, where, for
g =
[ a b

c d
] ∈ SU(2),

(g · p)(z) = p(az1 + cz2, bz1 + dz2).

The irreducible representations Vn satisfy the Clebsch–Gordan formula

Vk ⊗ V� =

q⊕
j=0

Vk+�−2j, q = min{k, �}.

If we choose ρ1 = V1, ρ2 = V2, then we get a product system E with O(E) � O2 ⊗ O3
and a Doplicher–Roberts algebra Oρ1,ρ2 � O(E)SU(2) isomorphic to a corner in the
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C∗-algebra of a rank two graph with Λ0 = Ĝ and edges given by the matrices

M1(Vk, V�) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if k = 0 and � = 1,
1 if k ≥ 1 and � ∈ {k − 1, k + 1},
0 otherwise,

M2(Vk, V�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if k = 0 and � = 2,
1 if k = 1 and � ∈ {1, 3},
1 if k ≥ 2 and � ∈ {k − 2, k, k + 2},
0 otherwise.

The skeleton looks like

V0 V1 V2 V3 V4 V5 · · ·

and this 2-graph is cofinal, satisfies the aperiodicity condition and every vertex
connects to a loop with an entrance; in particular, Oρ1,ρ2 is simple and purely infinite.
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