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Abstract

We consider a classic competing-species model with the rates changed to include Gaussian
white noise. We show that if the noise is not too large, then the stochastic version
is ergodic. An explicit relation between the noise and the original competing-species
parameters gives a sufficient condition for ergodicity.
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1. Introduction

Consider the coupled ordinary differential equations

dxt = xt (µ − λyt + γ xt ) dt,

dyt = yt (−α + βxt + δyt ) dt,
(1)

where µ, λ, α, and β are positive constants and δ and γ are real-valued constants. This is
a well-known classical model of the population dynamics of two interacting species; see, for
example, [13]. The pair (xt , yt ) represents the population sizes of the two species at time t ≥ 0.
Under certain conditions on the parameters, the solution produces a limit cycle, that is, the
solution lies on a deterministic contour. When the current population size is (x, y), the rates of
population growth are

r1(x, y) = µ − λy + γ x and r2(x, y) = −α + βx + δy. (2)

When γ = 0 and δ = 0, this model becomes the prey–predator process. When γ < 0 and
δ < 0, the two species have self-limitations in the sense that, for a species of fixed size, the rate
of the other species is negative when its population size is large. This case is the well-known
competing-species model. Other combinations of γ and δ, e.g. γ > 0, δ < 0 and γ > 0, δ > 0,
can be considered but, as indicated in [13], they are not of interest as population dynamics
models.

Suppose that

r1(x
∗, y∗) = µ − λy∗ + γ x∗ = 0 and r2(x

∗, y∗) = −α + βx∗ + δy∗ = 0

have the simultaneous solution (x∗, y∗) ∈ R
2+, where R+ = {x : x > 0} is the set of positive

real numbers. Then both the prey–predator and competing-species models from (1), with initial
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Stochastic competing species and ergodicity 739

condition (x0, y0) = (x, y) ∈ R
2+, have nice solutions that are periodic and circle about the

fixed point (x∗, y∗) of the deterministic equations r1(x, y) = 0 and r2(x, y) = 0.
In this note, we consider the case in which the rates (2) are subject to random fluctuations.

Specifically, r1(xt , yt ) dt is replaced by r1(xt , yt ) dt + σ1 dW
(1)
t , that is, the rate is perturbed

by Gaussian white noise. The rate r2 is similarly perturbed by an independent Gaussian white
noise. Thus, we consider the stochastic competing-species model

dxt = xt (µ − λyt + γ xt ) dt + σ1xt dW
(1)
t ,

dyt = yt (−α + βxt + δyt ) dt + σ2yt dW
(2)
t ,

(3)

where {(W(1)
t , W

(2)
t ) : t ≥ 0} is a standard two-dimensional Brownian motion. The rate param-

eters are the positive constants µ, λ, α, and β and the negative constants γ and δ. The noise
parameters are σ1 and σ2.

In this paper, we study the ergodicity properties of (3). We show that if the roots of (2)
are in R

2+ and the noise parameters σ1 and σ2 are sufficiently small, then the solution of (3) is
ergodic. The method of proof gives an explicit relation between the noise parameters and the
rate parameters that guarantees ergodicity. The proof is based on the methodology of [1]. We
modify the results there since [1] gave conditions in terms of radial or Euclidean distances that
are not readily applicable to a process on R

2+.
In Section 2, we discuss some of the recent literature on competing-species models. In

Section 3, we discuss the main result, the construction of the associated stopping times, and
the proof. The sufficient condition involved in the main result has a very nice geometric
interpretation: if a certain ellipse is a subset of R

2+ then the process (3) is ergodic. In Section 4,
we discuss and compare our sufficient condition with those obtained in a recent paper by
Rudnicki [14]. In Section 5, we discuss some other extensions based on the methods we use. In
Appendix A, we show that the solution of (3) is in R

2+ with probability 1; Chessa and Fujita [3]
showed a similar result. Our proof easily extends to multiple species as it depends only on
showing properties of the hitting time of the boundaries of R

2+, via a Markov inequality.

2. Literature review

Other authors have considered stochastic systems obtained from the classical population
dynamics modelled by (1). Gard and Kannan [6] studied the classical prey–predator model
with the rates perturbed by Gaussian white noise. They studied (3) in the case that γ < 0 and
δ < 0, and showed that, on the set of realizations where it remains bounded for all time, the
solution converges to the fixed point (x∗, y∗) [6, Theorem 3.1] or converges to the boundary
of the bounding set [6, Theorem 3.2]. As mentioned above, Chessa and Fujita [3] studied
the prey–predator model and showed that the solution remains in R

2+. Renshaw [13] gave a
good review of the stochastic competing-species models, but did not include ergodic results.
Gard [5] studied the transient behaviour of some population dynamics models, including the
classic stochastic model we consider here. In a very interesting related paper (discussed in
more detail in Section 4), Rudnicki [14] studied a process similar to the one studied here. The
diffusion or variance functions in (3) are σ1x and σ2y.

More recently, there has been work on some variations of the diffusion functions. For
example, Mao et al. [12] considered diffusion functions of the form σ1x

m and looked for
conditions such that the solution is defined for all time when m ≥ 2; that is, such that the
solution does not explode in finite time. Manthey et al. [11] considered a random two-species
interacting population model living on a bounded space O ⊂ R

2. They noted that ‘… as far
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740 Z. CHEN AND R. KULPERGER

we know the stability of solutions to stochastic partial differential equations of multi-species
population dynamics is not well investigated’. We have found that the ergodic properties of
the population dynamics of the type of stochastic systems studied here have not been well
investigated. In [15], the transient behaviour of stochastic prey–predator systems with time-
dependent rate parameter was studied, while in [8] the stochastic prey–predator system (3) with
δ = γ = 0 was studied under the condition that σ1, σ2 → 0. In the latter paper, it was shown
that the solution escapes to infinity. In [10], a stochastic competing-species problem similar
to (3), but with α < 0, was studied, and the probability of extinction obtained.

The proof of our main result is based on the ideas of [1], where conditions were given in
terms of radial or Euclidean distances F(x, y) = (x2 + y2)1/2. This is not a natural distance
for us to use, as the solution to (3) takes values in the upper quadrant, that is, in the region R

2+.
Mao et al. [12] used a distance function

F(x, y) = √
x − log(x) + √

y − log(y),

which enabled them to show that their process is nonexplosive. This function is not well suited
to showing ergodicity in the competing-species model. Rather, in this paper, we use the function

F(x, y) = A1x − A2 log(x) + A3y − A4 log(y) + c, (4)

with judicious choices for the constants A1, A2, A3, A4, and c, to play the role of the contour
based on the distance (x2 +y2)1/2 in [1]. For example, in Theorem 1, we take A1 = β, A2 = α,
A3 = λ, A4 = µ, and

c = −α + α log

(
α

β

)
− µ + µ log

(
µ

λ

)
.

In particular, with appropriate constants in (4), in Section 4 we are able to weaken the sufficient
condition in [14]. Thus, this sufficient condition is not necessary for the process to be ergodic.

The literature on deterministic population dynamics is still quite active. A recent example
is [9], in which the prey–predator system with rate parameters having a periodic component was
studied. Many of these equations have solutions that behave nicely under conditions in which
either the initial condition is perturbed or the rates are perturbed in a deterministic manner. One
consequence of the results shown here is that, under a random perturbation of the rates, the
process can change from being stable over time to being unstable. In some cases, the process
may be ergodic under small random permutations.

3. Competing species, ergodicity, and ellipses

Consider the competing-species model (3), where µ, λ, α, and β are positive constants. In
this section we give Theorem 2, the main result.

In Lemma 1, we rewrite the process in a useful form, which is then studied in Theorem 1.
The proof of this theorem is based on finding an appropriate nonnegative function tending to
infinity at the boundaries of R

2+ and judicious use of bounds on expectations of some stopping
times. This leads to a nice geometric condition sufficient for ergodicity.

Lemma 1. Suppose that γ δ > 0; that is, either γ < 0 and δ < 0 or γ > 0 and δ > 0. Let
ε′

1 = γ /β and ε′
2 = δ/λ. Rewrite (3) as

dxt = xt [µ′ − λyt + ε′
1(βxt − α′)] dt + σ1xt dW

(1)
t ,

dyt = yt [−α′ + βxt + ε′
2(λyt − µ′)] dt + σ2yt dW

(2)
t ,
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for appropriate constants µ′ and α′. If either

(i) γ > 0 and 0 < δ < αλ/µ, or

(ii) δ < 0 and −µβ/α < γ < 0,

then µ′ > 0 and α′ > 0.

Proof. Comparing the coupled stochastic differential equation (SDE) in this lemma with (3)
yields

ε′
1 = γ

β
, ε′

2 = δ

λ
, µ′ − ε′

1α
′ = µ, α′ + ε′

2µ
′ = α.

Solving for µ′ and α′ gives

µ′ = µ + ε′
1α

1 + ε′
1ε

′
2
, α′ = α − ε′

2µ

1 + ε′
1ε

′
2
.

When ε′
1ε

′
2 > 0, we have µ′ > 0 and α′ > 0 if and only if either γ > 0 and 0 < δ < αλ/µ or

δ < 0 and −µβ/α < γ < 0, as required. This completes the proof of Lemma 1.

The form of the SDE in Lemma 1 is of use in proving ergodicity, whereas the original
form (3) is not so immediately useful.

Theorem 1. Consider the SDE process

dxt = xt [µ − λyt + ε1(βxt − α)] dt + σ1xt dW
(1)
t ,

dyt = yt [−α + βxt + ε2(λyt − µ)] dt + σ2yt dW
(2)
t ,

(5)

where µ, λ, α, and β are positive constants, with initial condition (x0, y0) = (x, y) ∈ R
2+. If

ε2 < 0 and ε1 < 0 are such that

0 <
σ 2

1 α + σ 2
2 µ

2α2 < −ε1 and 0 <
σ 2

1 α + σ 2
2 µ

2µ2 < −ε2,

then the solution to the SDE (5) is ergodic.

Theorem 2. Consider the stochastic competing-species process (3). Suppose that γ < 0 and
δ < 0 and let ε′

1 = γ /β and ε′
2 = δ/λ. Also suppose that

0 <
σ 2

1 α′ + σ 2
2 µ′

2(α′)2 < −ε′
1 = −γ

β
<

µ

α
and 0 <

σ 2
1 α′ + σ 2

2 µ′

2(µ′)2 < −ε′
2,

where

µ′ = µ + ε′
1α

1 + ε′
1ε

′
2

and α′ = α − ε′
2µ

1 + ε′
1ε

′
2
.

Then the solution to (3) is ergodic.

Proof. Theorem 2 is a corollary of Theorem 1, which applies since, by Lemma 1, we have
α′ > 0 and µ′ > 0.
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Remark 1. Theorem 2 says that if the noise coefficients σ1 and σ2 are sufficiently small, if the
damping terms γ xt and δyt in the drift of the x component and y component in (3), respectively,
are negative, and if one further condition holds, then the stochastic competing-species process
is ergodic. The extra condition is −βµ/α < γ < 0. The damping term δyt in the drift of the
y component only requires δ < 0 for the system to be ergodic.

Notice that the solution to (2) with vanishing rates is(
x∗
y∗

)
= 1

γ δ + βλ

(
λα − δµ

βµ + γα

)

Thus, x∗ > 0 buty∗ > 0 if and only ifβµ+γα > 0 or, equivalently, if and only ifµ/α > −γ /β.

This extra condition is very natural, requiring that the deterministic competing-species system
has a fixed point in R

2+. Hence, if the self-damping effect of xt is not too large, if the noise is
sufficiently small, and if the deterministic system has a fixed point in R

2+, then the stochastic
competing-species model is ergodic.

The proof of Theorem 1 can be modified to show that if the noise is sufficiently large, the
stochastic competing-species process is transient. This is discussed at the end of this section.

Proof of Theorem 1. Let

F(x, y) = βx − α log(x) + λy − µ log(y) + c, (6)

where

c = −α + α log

(
α

β

)
− µ + µ log

(
µ

λ

)
.

Thus F(α/β, µ/λ) = 0 and F(x, y) > 0 if (x, y) �= (α/β, µ/λ). Also, F(x, y) → ∞ as
(x, y) tends to the boundary of R

2+. This choice of F is a particular case of (4) with A1 = β,
A2 = α, A3 = λ, and A4 = µ.

An application of Itô’s lemma to Ft = F(xt , yt ) yields

dFt = [ε1(βxt − α)2 + ε2(λyt − µ)2 + 1
2 (σ 2

1 α + σ 2
2 µ)] dt

+ σ1(βxt − α) dW
(1)
t + σ2(λyt − µ) dW

(2)
t . (7)

Since ε1 < 0 and ε2 < 0, the drift is bounded above in R
2+ and, thus, by Lemma 3, below, the

solution is in R
2+ with probability 1. Consider the region

D =
{
(x, y) : (x − α/β)2

(σ 2
1 α + σ 2

2 µ)/2|ε1|β2
+ (y − µ/λ)2

(σ 2
1 α + σ 2

2 µ)/2|ε2|λ2
≤ 1

}
,

which has an ellipse as its boundary. Notice that

|ε1| >
σ 2

1 α + σ 2
2 µ

2α2 ⇒ α

β
>

√
σ 2

1 α + σ 2
2 µ

2|ε1|β2 ,

|ε2| >
σ 2

1 α + σ 2
2 µ

2µ2 ⇒ µ

λ
>

√
σ 2

1 α + σ 2
2 µ

2|ε2|λ2 .

Thus, the conditions on ε1 and ε2 imply that D ⊂ R
2+.
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Let k = 1
2 (σ 2

1 α + σ 2
2 µ). There then exists a constant d > 0 such that

α

β
−

(√
k

|ε1|β2 + d

)
> 0 and

µ

λ
−

(√
k

|ε2|λ2 + d

)
> 0,

which imply that

D∗ =
{
(x, y) : (x − α/β)2

(
√

k/|ε1|β2 + d)2
+ (y − µ/λ)2

(
√

k/|ε2|λ2 + d)2
≤ 1

}
⊂ R

2+.

To be specific, we can take

d = 1

2

(
α

β
−

√
σ 2

1 α + σ 2
2 µ

2|ε1|β2

)
∧

(
µ

λ
−

√
σ 2

1 α + σ 2
2 µ

2|ε2|λ2

)
.

Since d > 0, we also have D ⊂ D∗ ⊂ R
2+.

Consider D∗c relative to R
2+:

D∗c =
{
(x, y) ∈ R

2+ : (x − α/β)2

(
√

k/|ε1|β2 + d)2
+ (y − µ/λ)2

(
√

k/|ε2|λ2 + d)2
> 1

}

=
{
(x, y) ∈ R

2+ : |ε1|(βx − α)2

(
√

k + √|ε1|βd)2
+ |ε2|(λy − µ)2

(
√

k + √|ε2|λd)2
> 1

}
.

Therefore, if (x, y) ∈ D∗c then

|ε1|(βx − α)2 + |ε2|(λy − µ)2 > (
√

k + min{√|ε1|βd,
√|ε2|λd})2 ≥ k + d0,

where
d0 := min{√|ε1|βd,

√|ε2|λd}2 > 0.

It follows that, for (x, y) �∈ D∗ and (x, y) ∈ R
2+,

−|ε1|(βx − α)2 − |ε2|(λy − µ)2 + 1
2 (σ 2

1 α + σ 2
2 µ) ≤ −d0 < 0

or, since ε1, ε2 < 0, that

ε1(βx − α)2 + ε2(λy − µ)2 + 1
2 (σ 2

1 α + σ 2
2 µ) ≤ −d0 < 0.

Let (x, y) ∈ R
2+ − D∗, and let (xt , yt ) be the solution to (5) with initial value (x, y). Let

τ = inf{t ≥ 0 : (xt , yt ) ∈ D∗}, let m be sufficiently large that

D∗ ⊂ Dm :=
(

1

m
, m

)
×

(
1

m
, m

)
,

and define τm = inf{t ≥ 0 : (xt , yt ) �∈ Dm}. By Lemma 3, τm → ∞ almost surely as m → ∞.
Below, E(x,y) and P(x,y) respectively denote the expectation and probability measure for the

diffusion process with initial condition (x0, y0) = (x, y). From (7), we have

E(x,y) F (xτ∧τm, yτ∧τm) ≤ F(x, y) − d0 E(x,y)[τ ∧ τm].
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Figure 1: Nested ellipses and their semimajor axes.

Since F(x, y) > 0 for (x, y) �= (α/β, µ/λ), it follows that

E(x,y) F (xτ∧τm, yτ∧τm) ≥ E(x,y)[F(xτm, yτm) 1(τ ≥ τm)]
≥ min

(u,v)∈∂Dm

F (u, v) P(x,y)[τ ≥ τm],

where 1(·) denotes the indicator function. Clearly,

min
(u,v)∈∂Dm

F (u, v) → ∞ as m → ∞

and, thus,

P(x,y)[τ ≥ τm] ≤ F(x, y)

min(u,v)∈∂Dm
F (u, v)

→ 0

as m → ∞. Since τm → ∞, we have P(x,y)[τ = ∞] = 0 and, hence, (xt , yt ) is recurrent.
From (7), we also have

E(x,y)[τ ∧ τm] ≤ 1

d0
F(x, y).

By an application of the monotone convergence theorem and the convergence τm → ∞, we
thus have

E(x,y) τ ≤ 1

d0
F(x, y).

Furthermore we can choose a1 > 0 and b1 > 0 such that the ellipse

D∗∗ =
{
(x, y) : (x − α/β)2

a2
1

+ (y − µ/λ)2

b2
1

= 1

}

lies between the boundaries of D∗ and Dm.
Figure 1 shows nested ellipses illustrating the construction of D, D∗, and D∗∗. The figure

shows the semimajor axes (which lie in the x-direction). The semimajor axis of the central
ellipse has length a1, while those of the other two ellipses have lengths a1 + d1 and a1 + d2.
Since, by the choice of a1, α/β − a1 > 0, it is clear that we can choose d1 and d2 to satisfy
0 < d1 < d2 and still have the ellipses D∗ and D∗∗ to the right of a line x = 1/m, where
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1/m < α/β−a1. Similarly, we can simultaneously choose d1 and d2, with 0 < d1 < d2, so as to
have the three nested ellipses in the rectangular region Dm. Figure 1 uses the competing-species
parameters (

αλ − γµ

γ δ + βλ
,
αδ + βµ

γ δ + βλ

)
=

(
8

3
,

1

6

)
.

Since D∗∗ ⊂ D∗c, we have

sup
(x,y)∈D∗∗

E(x,y) τ ≤ 1

d0
sup

(x,y)∈D∗∗
F(x, y) < ∞.

Notice that an ellipse centred at (α/β, µ/λ) can be viewed as measuring the distance from
(x, y) to (α/β, µ/λ). In the construction above, we have three nested ellipsoidal regions

D ⊂ D∗ ⊂ convex hull(D∗∗).

D∗ is open and contains (α/β, µ/λ) in its interior. Applying [1, Lemma 3.4] then shows that
the process (5) is ergodic.

This concludes the proof of Theorem 1.

Remark 2. We should note that [1, Lemma 3.4], which is based on the natural Euclidean
distance in R

2, uses circles. However, said lemma follows from [1, Lemma 2.6], which applies
to open sets U and their closures Ū . By choosing these to be ellipses, it is immediate that
[1, Lemma 3.4] can be restated in terms of nested ellipses. We now give the result corresponding
to [1, Lemma 3.4]. To satisfy the conditions of this lemma, we let D∗ correspond to the open
‘ball’ of radius r0 > 0 around z = (α/β, µ/λ), and let D∗∗ correspond to the contour at
distance r1 > r0.

Theorem 3. Suppose that one of the following is true:

(i) γ < 0, δ > 0, and (2µ − σ 2
1 )/(2α + σ 2

2 ) < min{−γ /β, λ/δ};
(ii) γ < 0, δ < 0, and (2µ − σ 2

1 )/(2α + σ 2
2 ) < −γ /β;

(iii) γ > 0 and δ > 0.

Then the process (5) is transient.

Proof. We first prove that the claim follows from part (i). Choose two positive constants,
A2 and A4, such that A4/A2 = min{−γ /β, λ/δ}. Then

γA2 + βA4 ≤ 0, δA4 − λA2 ≤ 0.

In (4), let A1 = A3 = 0 and c = 0. Writing Ft = F(xt , yt ), and applying Itô’s formula, we
have

−dFt = [A2(µ − 1
2σ 2

1 ) − A4(α + 1
2σ 2

2 ) + (δA4 − λA2)yt + (γA2 + βA4)xt ] dt

+ A2σ1 dW
(1)
t + A4σ2 dW

(2)
t

≤ [A2(µ − 1
2σ 2

1 ) − A4(α + 1
2σ 2

2 )] dt + A2σ1 dW
(1)
t + A4σ2 dW

(2)
t .

Since A2(µ − 1
2σ 2

1 ) − A4(α + 1
2σ 2

2 ) < 0 and

lim sup
t→∞

|W(i)
t |√

2t log log t
= 1, i = 1, 2,
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we have

[A2(µ − 1
2σ 2

1 ) − A4(α + 1
2σ 2

2 )]t + A2σ1W
(1)
t + A4σ2W

(2)
t → −∞.

Hence,
−F(xt , yt ) → −∞, t → ∞,

and, since
−F(xt , yt ) = log(x

A2
t ) log(y

A4
t ) = log(x

A2
t y

A4
t )

and the constants A2 and A4 are positive, we obtain x
A2
t y

A4
t → 0. Thus, (xt , yt ) is transient.

The proof that the claim follows from part (ii) is similar to the previous argument, and is
actually the result of [14].

We now prove that the claim follows from part (iii). Take an 
 > 0 such that 1
2
σ 2

1 < ε1 and
1
2
σ 2

2 < ε2, and define

H(x) =
∫ x

1
e−
t dt.

Then limx→∞ H(x) < ∞. Recall the definition of F in (6). From (7), we have

dH(Ft ) = H ′(Ft )[ε1(βxt − α)2 + ε2(λyt − µ)2 + 1
2 (σ 2

1 α + σ 2
2 µ)] dt

+ 1
2H ′′(Ft )[σ 2

1 (βxt − α)2 + σ 2
2 (λyt − µ)2] dt

+ H ′(Ft )σ1(βxt − α) dW
(1)
t + H ′(Ft )σ2(λyt − µ) dW

(2)
t

= e−
Ft [(ε1 − 1
2
σ 2

1 )(βxt − α)2 + (ε2 − 1
2
σ 2

2 )(λyt − µ)2 + 1
2 (σ 2

1 α + σ 2
2 µ)] dt

+ e−
Ft σ1(βxt − α) dW
(1)
t + e−
Ft σ2(λyt − µ) dW

(2)
t .

Let D(r) = {(x, y) : F(x, y) ≤ r}. Fix an r0 > 0 and consider the region D(r0). Suppose
that (x, y) �∈ D(r0) and let τ be the hitting time of the set D(r0) for the process (5) with starting
value (x, y). We will show that P(x,y)(τ < ∞) < 1 or, equivalently, P(x,y)(τ = ∞) > 0.

There exists an r > r0 such that (x, y) is in the interior of D(r). Let

τr = inf{t ≥ 0 : (xt , yt ) ∈ D(r)}
be the hitting time of D(r). From Lemma 3 and the properties of F , it follows that τr → ∞ as
r → ∞. Taking expectations, we then have

E(x,y)H(Fτ∧τr ) = H(F(x, y))

+ E(x,y)

[∫ τ∧τr

0
e−
Ft [(ε1 − 1

2
σ 2
1 )(βxt − α)2

+ (ε2 − 1
2
σ 2

2 )(λyt − µ)2 + 1
2 (σ 2

1 α + σ 2
2 µ)] dt

]
≥ H(F(x, y)),

since the integrand is nonnegative. Note that H(Fτ ) = H(r0) and H(Fτr ) = H(r); thus

H(F(x, y)) ≤ E(x,y)H(Fτ∧τr )

= E(x,y)[H(Fτ ) 1(τ ≤ τr )] + E[H(Fτr ) 1(τ > τr)]
= H(r0) P(x,y)[τ ≤ τr ] + H(r) P(x,y)[τ > τr ]
= H(r0) + (H(r) − H(r0)) P(x,y)[τ > τr ]
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and, therefore,

P(x,y)[τ > τr ] ≥ H(F(x, y)) − H(r0)

H(r) − H(r0)
.

By letting r → ∞, we obtain

P(x,y)[τ = ∞] ≥ H(F(x, y)) − H(r0)

H(r) − H(r0)
> 0.

This concludes the proof of Theorem 3.

4. Comparison with other results

In this section, we will make a detailed comparison of our results with those of [14]. In
order to facilitate this comparison, in this section we use the notation of [14]. Table 1 gives the
correspondence between parameters.

Rudnicki [14] studied a system related to ours, but with the Brownian noise W(1) = W(2).
He also made some statements on the case in which W(1) and W(2) are independent Brownian
motions. His main results concern a system that has a singular diffusion noise term. We study
a case in which W(1) and W(2) are independent Brownian motions. Our method is based on
the idea of [1] and thus requires a nonsingular diffusion. Hence, we make comparisons only
with the relevant parts of [14].

Rudnicki [14, Lemma 2] constructed the solution to an SDE as the solution of an operator;
see his equations (19)–(21). This is equivalent to obtaining a strong solution to the SDE (3);
that is, the solution is a specific functional of the Brownian motions W(1) and W(2). This is a
very interesting idea, which may be exploited further. Rudnicki [14, Lemma 5] then gave the
proof of the main part of his Theorem 1, based on a Khasminskii function.

We have the analogue of [14, Theorem 1(III)] in our Theorem 3, and [14, Theorem 1(I)] is a
sufficient condition slightly different from our Theorem 2. We will show in Lemma 2, below,
that if δc1 − µc2 = 0 then (3) is ergodic under certain conditions on σ and ρ. Thus, while
δc1 − µc2 > 0 is sufficient, it is not necessary.

Our proof is based on exploiting a function of the form (4). When Ai > 0, i = 1, 2, 3, 4,
we may take

c = A2

(
log

(
A2

A1

)
− 1

)
+ A4

(
log

(
A4

A3

)
− 1

)

Table 1: The correspondence between our notation and that of Rudnicki [14].

This paper Rudnicki [14]

µ α

λ β

−γ µ

α γ

β δ

−δ ν

σ1 σ

σ2 ρ
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so that F > 0 except at (x, y) = (A2/A1, A4/A3) (at which point F = 0), and F(x, y) → ∞
as (x, y) tends to the boundary of R

2+. From Itô’s lemma applied to (3), we then obtain

dFt = H(xt , yt ) dt + dMt,

where Mt is a zero-mean martingale and H(x, y) is a quadratic function of x and y.

Theorem 4. Suppose that we can find positive constants A1, A2, A3, and A4 for the function (4)
such that H(x, y) = 0 is an ellipsoidal subset of R

2+, where H is the drift function above.
Equivalent conditions on H are that

(i) H(x, y) > 0 on the interior of this ellipse, and

(ii) H(x, y) < 0 on the exterior of this ellipse, which is guaranteed if

H(0, 0) < 0, H(x, 0) < 0, H(0, y) < 0.

Then the SDE (3) is ergodic.

Proof. We can proceed, in the manner of the proof of Theorem 1, to construct bounds on the
stopping times of return to the central region and, hence, obtain ergodicity using the method
of [1]. This concludes the proof.

Rudnicki [14, Theorem 1(I)] obtained a result of asymptotic stability under the sufficient
conditions c1 > 0 and δc1 − µc2 > 0, where c1 = α − 1

2σ 2 and c2 = γ + 1
2ρ2.

Choose constants A1 = 1, A2 = k1, A3 = A, and A4 = Ak2, whence

F(x, y) = x − k1 log(x) + A(y − k2 log(y)) + c.

Then

H(x, y) = −µ(x − k1)
2 − Aν(y − k2)

2 + (−β + Aδ)(x − k1)(y − k2)

+ (α − µk1 − βk2)(x − k1) − A(γ − δk1 + νk2)(y − k2)

+ 1
2 (σ 2k1 + Aρ2k2). (8)

After some algebra, we obtain

H(0, 0) = −k1(α − 1
2σ 2) + Ak2(γ + 1

2ρ2) = −k1c1 + Ak2c2.

The contour H(x, y) = 0 is an ellipse if and only if

(Aδ − β)2 − 4Aµν < 0,

and the ellipse is a subset of R
2+ if H(x, 0) < 0 and H(0, y) < 0. The function H(x, 0) is a

quadratic form in x and, hence, H(x, 0) < 0 for all x if and only if H(x, 0) = 0 has no real
roots, since the coefficient of x is negative. Similarly, H(0, y) < 0 if and only if H(0, y) = 0
has no real roots. Thus, a set of conditions equivalent to those guaranteeing condition (ii) of
Theorem 4 is

4µ(−c1k1 + Ac2k2) + (α + µk1 − Aδk2)
2 < 0,

4Aν(−c1k1 + Ac2k2) + (−Aγ + βk1 + Aνk2)
2 < 0,

(−β + Aδ)2 − 4Aµν < 0.
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Finally, we take k1 = bδ and Ak2 = bµ, for some positive constant b. Then H(0, 0) =
−b(δc1 − µc2) and the conditions of Theorem 4 are satisfied if δc1 − µc2 > 0, b > 0,
α2 < 4µb(δc1 − µc2), and

[b(µν + βδ) − Aγ ]2 < 4Aνb(δc1 − µc2).

Since A and b are arbitrary, we can take

A = b
(µν + βδ)

γ

such that the previous inequality holds. Thus, we obtain the analogue of [14, Theorem 1(I)],
that is, the ergodicity of (3).

The condition (δc1 − µc2) > 0 can be weakened to include (δc1 − µc2) = 0. It is also
assumed that the deterministic competing-species differential equation has a fixed point in R

2+.

Lemma 2. Suppose that (δc1 − µc2) = 0. Then the system of equations

α − µk1 − βk2 = 0,

γ − δk1 + νk2 = 0,

has a positive solution (k1, k2). Let A = β/δ.
If σ > 0 and ρ > 0 satisfy the following inequalities then (3) is ergodic:

1
2 (σ 2k1 + ρ2Ak2) < µk2

1, 1
2 (σ 2k1 + ρ2Ak2) < Aνk2.

Proof. The proof follows from the method used in the proof of Theorem 1, once we have
chosen the positive constants k1, k2, and A, in (8), such that the ellipse H(x, y) = 0 is a subset
of R

2+. Then the stopping times constructed from this ellipse are obtained, and Battacharya’s
results will apply as they did to Theorem 1.

In (8), we take k1 and k2 to satisfy

α − µk1 − βk2 = 0,

γ − δk1 + νk2 = 0,

that is,

k1 = βγ + αν

βδ + µν
, k2 = αδ − γµ

βδ + µν
.

Clearly, k1 > 0 and k2 > 0 if and only if αδ − γµ > 0. Note that

αδ − γµ = δ(α − 1
2σ 2 + 1

2σ 2) − µ(γ + 1
2ρ2 − 1

2ρ2)

= δc1 − µc2 + 1
2 (δσ 2 + µρ2)

= 1
2 (δσ 2 + µρ2)

is positive, since δc1 − µc2 = 0. Now H simplifies to

H(x, y) = −µ(x − k1)
2 − Aν(y − k2)

2 + (−β + Aδ)(x − k1)(y − k2)

+ 1
2 (σ 2k1 + Aρ2k2).
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Since A = β/δ, we see that H simplifies further to

H(x, y) = −µ(x − k1)
2 − Aν(y − k2)

2 + 1
2 (σ 2k1 + Aρ2k2).

Notice that the constants k1, k2, and A are all positive and do not depend on the noise coefficients
σ and ρ.

Next consider the ellipse H(x, y) = 0, the set of pairs (x, y) satisfying

µ(x − k1)
2 + Aν(y − k2)

2 = 1
2 (σ 2k1 + Aρ2k2) =: 


or, equivalently,
(x − k1)

2


/µ
+ (y − k2)

2


/Aν
= 1.

This will be a subset of R
2+ when the conditions of the lemma hold.

This concludes the proof of Lemma 2.

5. Discussion

We have shown that, under certain conditions and bounds on the noise, the stochastic
competing-species process (3) is ergodic. The method of proof involves a very natural geometric
object, an ellipse. The region D, given below (7) in the proof, plays a key role. If it is contained
in the interior of R

2+ then the process is ergodic.
A special case of (3) is when the extra damping terms with coefficients γ and δ are zero,

that is, γ = δ = 0. This is the prey–predator system. In this case, (7) becomes

dFt = 1
2 (σ 2

1 α + σ 2
2 µ) dt + σ1(βxt − α) dW

(1)
t + σ2(λyt − µ) dW

(2)
t

and, hence, has constant positive drift when the noise coefficients are positive. There is no
ability to control this drift in this case. The stochastic prey–predator system, given by (3) with
γ = δ = 0, is not ergodic if there is any noise present. In fact, we find that

E F(xt , yt ) = 1
2 (σ 2

1 α + σ 2
2 µ)t + F(x0, y0) → ∞

as t → ∞. Since F(x, y) → ∞ as (x, y) tends to the boundary of R
2+, the pair (xt , yt ) tends

in probability to the boundary of R
2+ as t → ∞. However, this result does not say to where

on the boundary (xt , yt ) goes: it could tend to (0, 0) or xt could tend to infinity. A classic
paper [4] discussed a class of diffusions that wander out to infinity, although this stochastic
prey–predator system does not obey the conditions in that paper. The result for the stochastic
prey–predator system is very different from the stable case of the classical deterministic one,
that is (3) with no noise. This problem was further studied in [2].

The stochastic prey–predator process is also quite different from the stochastic competing-
species process (3). With any noise parameter σ1 > 0 or σ2 > 0 it is never ergodic, whereas (3)
is ergodic with sufficiently small but nonzero noise.

We could interpret a stochastic version of (3) as a Stratonovich integral (S-integral) instead
of an Itô integral. We then have

dxt = xt (µ − λyt + γ xt ) dt ± σ1xt ◦ dW
(1)
t ,

dyt = yt (−α + βxt + δyt ) dt ± σ2yt ◦ dW
(2)
t ,

(9)
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where b(xt ) ◦ dWt denotes the Stratonovich integral. We consider the cases of adding or
subtracting the S-integral separately, as they lead to different results. The S-integral is related
to the Itô integral by

b(xt ) ◦ dWt = 1

2

db(xt )

dx
b(xt ) dWt.

If the diffusion coefficient function is b(x) = σx, then

b(xt ) ◦ dWt = 1
2σ 2xt + σxt dWt.

Thus, (9) gives the equivalent Itô process

dxt = xt ([µ ± 1
2σ 2

1 ] − λyt + γ xt ) dt + σ1xt dW
(1)
t ,

dyt = yt (−[α ∓ 1
2σ 2

2 ] + βxt + δyt ) dt + σ2yt dW
(2)
t .

This is of the form (3), with the added constraints

µ ± 1
2σ 2

1 > 0 and α ∓ 1
2σ 2

2 > 0.

Theorem 1 will again yield a result of the form of Theorem 2, provided that the above positivity
conditions hold. The weakest version of these will be for σ1 > 0 and σ2 < 0. If the noise
parameters σ1 and σ2 are sufficiently small then the S-integral stochastic competing-species
process (9) is ergodic. If either of the noise parameters is too large then the ergodicity conditions
will fail. Karlin and Taylor [7, p. 352] made some remarks about the use of Itô integrals versus
Stratonovich integrals in applications of stochastic integrals.

In Lemma 2, we are also able to weaken the condition of Rudnicki [14] for the ergodicity
of (3) to (δc1 − µc2) ≥ 0. Rudnicki has a slightly different conclusion – that the process is
asymptotically stable – while our conclusion is that the process is ergodic.

Appendix A.

This section gives two technical lemmas, for completeness. The first says that the stochastic
competing-species solution is defined for all finite time and, in particular, that the solution does
not reach the boundary of R

2+ in finite time. The second says that, for any compact set, if the
process starts from the interior it will hit the boundary in finite expected time.

Chessa and Fujita [3] proved that a stochastic prey–predator process of the type studied here
has solution on R

2+. Below, we show that this holds more generally as the proof is based on
an appropriate choice of nonnegative function used to show that the boundary is not reached in
finite time.

Lemma 3. Let (xt , yt ) be an Itô process on R
2+ with respect to the two-dimensional standard

Brownian motion Wt = (W
(1)
t , W

(2)
t )� (where u� means transpose of the matrix u), with

initial value (x, y) ∈ R
2+. Suppose that there exists a positive function F : R

2+ → R+, such
that F(x, y) → ∞ as (x, y) converges to the boundary of R

2+. Suppose also that

dF(xt , yt ) = f (xt , yt ) dt + σ(xt , yt ) dWt,

where σ(·, ·) is continuous and f (x, y) ≤ c for some constant c. Let

τ = inf{t ≥ 0 : (xt , yt ) ∈ ∂R
2+}

be the hitting time of reaching the boundary ∂R
2+ of R

2+. Then P[τ = ∞] = 1.
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Proof. Let m > 0 be an integer such that

(x, y) ∈ Km :=
(

1

m
, m

)
×

(
1

m
, m

)
,

and define
τm = inf{t ≥ 0 : (xt , yt ) �∈ Km}.

Then τ ≥ τm and
E F(xτm∧t , yτm∧t ) ≤ F(x, y) + ct.

Since min(u,v)∈∂Km
F (u, v) → ∞ as m → ∞, we have

P[τm < t] ≤ F(x, y) + ct

min(u,v)∈∂Km
F (u, v)

→ 0 as m → ∞.

Since P[τ < t] ≤ P[τm < t] for all m > 0 sufficiently large, it follows that P[τ < t] = 0 for
all finite t . This concludes the proof of Lemma 3.

Lemma 4. Let D be any closed subset of R
2+. Consider the SDE (5) with initial condition

(x0, y0) ∈ Do, the interior of D. Let

τ = inf{t ≥ 0 : (xt , yt ) ∈ ∂D}
be the hitting time of the boundary of D. Then E(x0,y0) τ < ∞.

Proof. Consider the functions F , given by (6), and H(u) = ecu, where c is a positive
constant to be determined later. Notice that H is nonnegative and monotone increasing. Let
Ft = F(xt , yt ) and a = 1

2 (σ 2
1 α + σ 2

2 µ). Then

dH(Ft ) = L(xt , yt ) dt + dMt,

where Mt is a zero-mean martingale and the drift term is given by the function

L(x, y) = cH(F(x, y))(a − {|ε1|(βx − α)2 + |ε2|(λy − µ)2}
+ 1

2c{σ 2
1 (βx − α)2 + σ 2

2 (λy − µ)2})
= cH(F(x, y))(a + {( 1

2cσ 2
1 − |ε1|)(βx − α)2 + ( 1

2cσ 2
2 − |ε2|)(λy − µ)2}).

Since D is bounded and L is continuous, we can choose a c such that η = inf(x,y)∈D L(x, y)>0:

c > max

{
2|ε1|
σ 2

1

,
2|ε2|
σ 2

2

}
.

Then

E(x0,y0) H(Fτ ) = H(F0) + E(x0,y0)

∫ τ

0
L(xt , yt ) dt

≥ H(F0) + η E(x0,y0) τ

and, thus,
sup

(x,y)∈D̄

H(F (x, y)) ≥ E(x0,y0) H(Fτ ) ≥ H(F0) + η E(x0,y0) τ,

where D̄ is the closure of D, and

E(x0,y0) τ ≤ 1

η
sup

(x,y)∈D̄

H(F (x, y)) < ∞.

This concludes the proof of Lemma 4.

https://doi.org/10.1239/jap/1127322024 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1127322024


Stochastic competing species and ergodicity 753

Acknowledgements

The authors thank the referee for detailed comments and pointing out the recently accepted
and now published paper [14]. The referee’s remarks led us to a deeper understanding of the
role of the contour level function and its role in obtaining ergodic results for certain diffusions
on R

2+.
This work was done while Zengjing Chen was visiting The University of Western Ontario

in 2003. He deeply appreciates their hospitality, as well as funding from the Fields Institute.
This work was also supported by grants from the Natural Sciences and Engineering Research
Council of Canada.

References

[1] Bhattacharya, R. N. (1978). Criteria for recurrence and existence of invariant measures for multidimensional
diffusions. Ann. Prob. 6, 541–553.

[2] Chen, Z. and Kulperger, R. (2003). A stochastic prey predator process and damping. In preparation.
[3] Chessa, S. and Fujita Y. H. (2002). The stochastic equation of predator-prey population dynamics. Boll.

Unione Mat. Ital. Sez. B. Artic. Ric. Mat. 5, 789–804 (in Italian).
[4] Friedman, A. (1973). Wandering out to infinity of diffusion processes. Trans. Am. Math. Soc. 184, 185–203.
[5] Gard, T. C. (2000). Transient effects of stochastic multi-population models. In Electron. J. Differential Equat.,

Conf. 05 (Proc. Conf. Nonlinear Differential Equations, Coral Gables, FL, 1999), eds S. Cantrell and C. Cosner,
Texas State University, pp. 81–90.

[6] Gard, T. and Kanna, D. (1976). On a stochastic differential equation modeling of prey–predator evolution.
J. Appl. Prob. 13, 429–443.

[7] Karlin, S. and Taylor, H. (1981). A Second Course in Stochastic Processes. Academic Press, New York.
[8] Khasminskii, R. Z. and Klebaner, F. C. (2001). Long term behavior of solutions of the Lotka–Volterra system

under small random perturbations. Ann. Appl. Prob. 11, 952–963.
[9] King, A. et al. (1996). Weakly dissipative predator–prey systems. Bull. Math. Biology 58, 835–859.

[10] Mangel, M. and Ludwig, D. (1977). Probability of extinction in a stochastic competition. SIAM J. Appl.
Math. 33, 256–266.

[11] Manthey, R. and Maslowski, B. (2002). A random continuous model for two interacting populations. Appl.
Math. Optimization 45, 213–236.

[12] Mao, X., Marion, G. and Renshaw, E. (2002). Environmental Brownian noise suppresses explosions in
population dynamics. Stoch. Process. Appl. 97, 95–110.

[13] Renshaw, E. (1991). Modelling Biological Populations in Space and Time. Cambridge University Press.
[14] Rudnicki, R. (2003). Long-time behaviour of a stochastic prey–predator model. Stoch. Process. Appl. 108,

93–107.
[15] Spagnola, B. and La Barbera, A. (2002). Role of the noise on the transient dynamics of an ecosystem of

interacting species. Physica A 315, 114–124.

https://doi.org/10.1239/jap/1127322024 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1127322024

