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Abstract
Large-scale transformer-based language models (LMs) demonstrate impressive capabilities in open-text
generation. However, controlling the generated text’s properties such as the topic, style, and sentiment is
challenging and often requires significant changes to the model architecture or retraining and fine-tuning
the model on new supervised data. This paper presents a novel approach for topical language genera-
tion (TLG) by combining a pre-trained LM with topic modeling information. We cast the problem using
Bayesian probability formulation with topic probabilities as a prior, LM probabilities as the likelihood, and
TLG probability as the posterior. In learning the model, we derive the topic probability distribution from
the user-provided document’s natural structure. Furthermore, we extend our model by introducing new
parameters and functions to influence the quantity of the topical features presented in the generated text.
This feature would allow us to easily control the topical properties of the generated text. Our experimental
results demonstrate that our model outperforms the state-of-the-art results on coherency, diversity, and
fluency while being faster in decoding.
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1. Introduction
The advent of transformer language models (Vaswani et al. 2017) has greatly improved the per-
formance of natural language processing (NLP) tasks such as text generation, which is an essential
component in many downstream NLP applications. The use of transformer models like GPT-2
(Radford et al. 2019) and GPT-3 (Brown et al. 2020) to generate and continue text primed with
an arbitrary input prompt has led to coherent and realistic texts. More strongly grounded appli-
cations such as translation, image captioning, and summarization that have input/outputs are
less problematic in text generation with current decoding algorithms (Li et al. 2020). However,
in open-ended tasks (e.g., dialog generation or language modeling (LM)), failures such as repeti-
tive text, unnatural topic switching, and contradictions are often observed (Holtzman et al. 2020).
Exploring new ways to confront these weaknesses is an active area of research in natural language
processing. In this paper, we address the problem of topical language generation (TLG) which
plays a key role in generating long, coherent, and realistic texts. The results can also be used to
improve the downstream open-ended text generation tasks such as dialog generation or predictive
response suggestion (Kannan et al. 2016).

Despite the fact that pre-trained LMs store a vast amount of knowledge about the world
(Petroni et al. 2019), the real potential of them has not been harnessed yet for controlled text gen-
eration. This means that even though there is currently a lot of knowledge about the world in our
pre-trained LMs, we are still unable to control the topical attributes of generated texts. Controlling
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the text generation to incorporate knowledge about specific topics usually requires major changes
to the LM architecture, loss function, or retraining the whole models with annotated data.

Language modeling calculates the probability distribution P(x) of a sequence of tokens x for a
given input text. On the other hand, TLG which is a type of controlled language generation can be
formulated as modeling P(x|t) where t is a specific topic. Different approaches for this problem
have been proposed that usually involve expensive retraining or creating annotated datasets on
restricted controlled attributes. This paper addresses the following research question:

“How to combine the knowledge from topic models such as Latent Dirichlet Allocation (LDA)
and Latent Semantic Indexing (LSI) to control the language generation by pre-trained causal
language models (e.g., GPT, GPT-2) and steer them towards specific topics?”

Our approach does not require any retraining or fine-tuning of the original model, but at the
same time, it is flexible and fast. In our approach, pre-trained topic models (such as LDA or
LSI) can be used or trained to enable the final TLG in a fully unsupervised manner. We publicly
released all the codes, models, and data that have been used in this paper.a

The problem with most existing models is that they do not take into account the distributional
properties of words for a topic. Statistical topic modeling techniques, especially LDA and LSI,
have proven to be successful for data mining and uncovering hidden semantic structures from a
given corpus of text. The main motivation to use topic models is that they analyze and return the
distributional properties of the words based on the themes that run through them. In other words,
just like language models that are trained on large text datasets, topic models find the topical
properties of words after training on a relatively large text corpus. Topic models are more accurate
and robust compared to word lists that have been used extensively in the literature. Moreover,
extraction of word-topic distributions makes the integration with language model vocabularies
easier. Also, topic modeling does not require any prior annotation or labeling of the data. This
makes it a particularly good candidate for controlled text generation with more flexibility and less
cost. It is worth mentioning that the topic coherence of the generated text by the proposed model
has increased due to the fact that unlike other methods that focus on words or hidden variables to
represent topics, every word in the vocabulary gets the correct attention from the topic model.

Our main contributions are as follows:

• Introduction of TLG which consists of generating text conditioned on a specific chosen
topic.

• Demonstrating that the base TLG model follows the Bayesian conditional principle and
introducing parameters that control the strength at which the model generates on-topic
tokens.

• Generation of text with the same topical distribution of the given document. In other
words, we show that we can replicate the topical properties of a given document in the
generated text.

• Comparing TLG with existing state-of-the-art language generation models and show-
ing that our model outperforms them on coherency, fluency, token diversity, and speed
measurements without any extra costly training.

The rest of the paper is outlined as follows: first, we review the related works on the condi-
tional language modeling; then in the proposed approach, we go over a background on the current
state-of-the-art language modeling techniques and then propose our approach on topical-aware
language modeling. We prove the proposed equation mathematically using the Bayes’ rule. Then,
we review the two most used topic modeling techniques: LDA and LSI show how we use them
in conjunction with the proposed method to generate topical texts. In Section 5, we demonstrate

ahttps://github.com/roholazandie/topical_language_generation.
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two different approaches to regulate the TLG. We also propose the simulating document topic
generation as another application of TLG. Experiments consist of demonstrating different aspects
of TLG.We show the results of the method with different topics, comparing it with SOTAmodels,
and show how the parameters change the output, the results of document topic simulation, fine-
tuning, and a graphical user interface for using the method in practice. Finally, in the discussion
section, we demonstrate how the entropy and KL divergence in the TLG are different compared to
the base LM. We also study the different variants of TLG that we introduce and their differences.

2. Related works
In this section, the methods for controlled text generation in NLP are described.We categorize the
methods into Generative Adversarial Network (GAN) and VAEmethods and conditional training
and decoding algorithms.

Controlling image features such as style and color using encoder-decoder, GAN, and VAE
architectures is the main motivation for researchers in NLP to apply the same rules to text inputs.
Researchers mostly use Recurrent Neural Networks (RNN) and adjust the encoder-decoder struc-
ture to control the features of the generated text, in the same manner that has been used with
images. Unfortunately, because text data are discrete and therefore not differentiable, these
methods have not been less successful with text inputs.

The progress in language modeling with new transformer models shift the research to keep
the architecture intact while trying to change either dataset, decoding algorithm, or in some cases
tweaking small parts of the architecture to achieve better results in controlled language genera-
tion. The main reason for this change was the astonishing capabilities of ever larger transformer
models to write long and coherent texts. Changing the dataset usually leads to conditional training
methods, and changing the decoding helps to generate more realistic and diverse texts from the
language model. Another motivation for using transformers is that because the language model-
ing task has been defined as a conditional probability on previous tokens, we can still use the same
rule without introducing new hidden variables that are hard to incorporate and interpret.

2.1 GAN and VAEmethods
GAN models are unsupervised machine learning methods that have been successfully used in
image processing to generate new data with the same statistics as the training set. Controlled text
generation involves some feature extraction that manipulate the GAN process. Unlike image pro-
cessing, the text data in NLP tasks are discrete. Unfortunately, applying GANs for discrete outputs
is problematic because the generator should be differentiable (Goodfellow 2016). There are a few
ways to tackle this problem like using reinforcement learning or changing the generator to pro-
duce continuous outputs. In Yu et al. (2017), they bypassed the problem by directly performing
the gradient policy update. They used the reinforcement learning reward that comes from the
GAN discriminator. In LeakGAN (Guo et al. 2018), the problem of long text generation has been
solved by leaking the reward signal on high-level extracted features and then passing the signal to
the generative network. The generator incorporates such informative signals into all generation
steps through an additional MANAGERmodule, which takes the extracted features of the current
generated words and outputs a latent vector to guide the WORKER module for the next-word
generation.

Other methods involve using continuous hidden variables that control the desired features
like style, topic, sentiment, and content. In Bowman et al. (2015), Hu et al. (2017), Malandrakis
et al. (2019a), VAE has been used to train hidden variables that can control some aspects of the
generated text. For example, in Dethlefs and Cuayáhuitl (2015) the authors address the problem of
language generation in situated tasks that involve human instructions. The model is trained from
human-human corpus data and learns particularly to balance the trade-off between efficiency
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and detail in giving instruction. Both methods are much more flexible compared to traditional
rule-based methods because they model the language as probability distributions, and this brings
more diversity in token generation. But, there are two main problems with GAN and VAE meth-
ods: first, training GAN andVAEwith text inputs is very unstable whichmeans it is difficult to find
the right parameters for the model to converge. Likewise, even with the right parameters, the qual-
ity of the generated text is not very good. Second, it is hard to interpret the hidden variables that
control the generated text. In some cases, one can find some interpretable features, but in general,
we do not have a good intuition about how the hidden variables control the features of the gener-
ated text. By contrast, in our proposed approach we do not rely on hidden variables, the training
is stable, and most of the topics that are extracted from the topic modeling are interpretable.

2.2 Conditional training
In conditional language models, the desired feature is explicitly present in the dataset or training
process. In CTRL (conditional transformer language model) (Keskar et al. 2019), the authors used
control codes along with the input text that governs the style, content, and task-specific behaviors.
They trained their 1.63 billion-parameter transformer model on 140 GB of text. Other methods
of controlled text generation address the problems of repetition, overuse of frequent words, and
logical consistency of the generated text. In Welleck et al. (2020), Li et al. (2020), an unlikelihood
training has been introduced that pushes down the probability of undesired tokens that cause
the aforementioned problems. In Stahlberg, Cross, and Stoyanov (2018), a method that involves
the fusion of language modeling and translation models was employed to improve the fluency
of the generated texts. Unlike GAN and VAE methods, the conditional training is stable and has
higher quality. However, the issue with conditional training methods is that we have to create
datasets that contain the features we want. Even though the quality of the generated texts in con-
ditional training is high, it takes a lot of efforts to create a dataset and train it from scratch leading
to large models that are restricted to the codes in the dataset. Fine-tuning large language models
also suffers from the same limitation, even though fine-tuning in general is relatively less costly
than training from scratch. In comparison, our method does not change the base language model
and training is limited to the training of the topic modeling, which is very inexpensive.

2.3 Style transfer
Another active area of controlled text generation is style transfer. Language style transfer con-
cerns the problem of migrating the content of a source sentence to a target style by separating
the semantic content of what is said from the stylistic dimension of how it is said (Prabhumoye
et al. 2018). Text styles can be defined in terms of sentiment (positive/negative/neutral), formality
(formal/informal), tense (past/present/future), or any other style (Li et al. 2018).

In Mueller, Gifford, and Jaakkola (2017), a recurrent VAE is proposed that maps the input
sentences to a continuous latent space which then revises the latent representation of the sentence
in a certain direction guided by a classifier. In this approach, the decoder imitates the favored
sentiment. Due to the lack of parallel datasets, some researchers (Xu et al. 2018) have tried to
neutralize the input sentence using either neural networks or retrieval-based methods to create a
neutral version of the input and then add the style to it. State-of-the-art models (Zhao et al. 2018)
use GAN to disentangle the content from the style and then transfer the latent representation of
the content to the desired style with a decoder. The use of GAN in style transfer was introduced
in Hu et al. (2017) and has been extensively used in other works (Fu et al. 2018; Zhang, Ding, and
Soricut 2018; Singh and Palod 2018). Style transfer methods are restricted to a predefined set of
control codes, and due to this restriction, their applications are specific. Unlike these methods that
rely on predefined control codes, our approach can get all sorts of topic information from another
source and incorporate them in a general framework.
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2.4 Decoding algorithms
Thesemethodsmodify the basic decoding algorithms without changing the languagemodel archi-
tecture or the training process to control the generated text by the model. Early attempts for
decoding like greedy decoding or beam search result in degenerate texts with repetition, mean-
ing that high-frequency tokens appear too often and low-frequency tokens are drawn rarely. In
Holtzman et al. (2020), the nucleus sampling was introduced that allows for diversity in the token
distribution of the generated text. The resulting text better demonstrates the quality of the human
text, yielding enhanced diversity without sacrificing fluency and coherence.

In Ghazvininejad et al. (2017), Holtzman et al. (2018), a weighted decoding algorithm based
on the fusion of a log probability with a set of manual scoring functions has been used. The score
functions feature some positive aspects of the generated text like reducing repetition, increasing
text diversity, topical words, and sentiment. While our approach has some similarities with this
method, we do not use hand-crafted functions for extracting features. Instead, we rely on trained
features from another successful model.

As demonstrated in See et al. (2019), manual weighted decoding is more specific but it comes
with sacrificing the fluency. Recent research by Malandrakis et al. (2019b) combines the state-of-
the-art pre-trained language models with one or more simple attribute classifiers that guide text
generation without any further training of the language model. Their predefined bag-of-words
(BoW) for TLG limits the use of new topics and also does not consider the exact influence of all
the words in the vocabulary for topics. In their method, they change the gradient of the last layer
and push the base language model gradient to generate desired tokens more often. This approach
is a “plug and play” method which means there is no need to retrain the language model but it is
still very slow.

The most relevant work to ours is Baheti et al. (2018); in this work, the constraint of topics in
source and target texts is applied by adding a term to the log probability that helps to capture the
similarity of the topics in the source and target texts. They pointed out that the topics extracted
from LDA do not work well in practice, because it gives equal probability to topics and syntax
words. Instead in their approach, they use the HMM-LDA probability that corresponds to the
topic component of the model. Also in Xing et al. (2017) and Lau, Baldwin, and Cohn (2017),
LDA has been used for training and the LDA weights were applied in the attention mechanism.

Also, in Dziri et al. (2018) the concept of topic modeling, particularly LDA, has been used in
the attention mechanism of the encoder. They used the same probability distribution of topic in
the decoder and added it as an extra term to the basic word probability. The encoder-decoder
model is the seq2seq model that has been used in this work. The quality of RNN-GRU in text
generation and the problems with parallelizing the training makes them deprecated for modern
NLP tasks. Like these methods, we also use LDA as the source of our topic information, though
we consider LSI, which opens the door for other topic models that fit the formulation as well.
However, unlike these methods, our model does not need to incorporate them during training.
We show that by choosing the right parameters we can control the influence of the topics without
sacrificing fluency.

3. Proposed approach
3.1 Languagemodeling and decoding
The applications of language generation in NLP can be divided into two main categories: directed
language generation and open-ended language generation. Directed language generation involves
transforming input to output such asmachine translation, summarization. These approaches need
some semantic alignment between the inputs and the outputs. On the other hand, open-ended
language generation has muchmore freedom in the generation process because it does not need to
be aligned with any output. The open-ended language generation has applications in conditional
story generation, dialog systems, and predictive response generation. Even though there is more
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flexibility in choosing the next tokens compared to directed language generation, controlling the
top-level features of the generated text is a desirable property that needs to be addressed and still
is a challenging problem.

Given a sequence of m tokens x1, .., xm as the context, the problem of open-ended language
generation can be formulated as finding the continuation xm+1, ..., xm+n with n tokens. In other
words, if we consider the whole context plus continuation as follows:

x1, .., xm, xm+1, .., xm+n (1)

The language modeling probability can be decomposed using the chain rule as:

P(x1:m+n)=
m+n∏
i=1

P(xi|xi) (2)

The language modeling probability can be used with a decoding strategy to generate the next
token for language generation. Finding the optimal continuation can be formulated as:

x̂m+1:n = argmax
xm+1:n

P(xm+1:n|x1:m) (3)

Solving Equation (3) is not tractable so practical decoding strategies use approximations to
generate the next tokens. The most famous and widely used decoding strategies are greedy decod-
ing and beam search methods. Greedy decoding selects the highest probability token at each time
step, while the beam search keeps a set of hypotheses and then updates the tokens in the hypothe-
ses as it goes through and decodes more tokens. These approaches are well suited for directed
language generation, but they suffer from repetition, genericness, and degenerate continuations
(Holtzman et al. 2020). Both of these approaches are deterministic in the sense that they do not
involve any random selection in their algorithms.

On the other hand, stochastic decoding methods sample from a model-dependent distribution
q (Welleck et al. 2020):

xi ∼ q(xi|xi, p) (4)

The simplest stochastic sampling consists of sampling from top-k probabilities, the use of con-
stant k is problematic because in some contexts the probability distribution of the next token is flat
which means there are plenty of reasonable next tokens to select from but in some other contexts
the distribution is concentrated in a small number of tokens. To solve this problem, Holtzman et
al. (2020) proposed nucleus sampling. In this method, a subset of vocabulary is defined which is
the smallest set V(p) such that: ∑

x∈V(p)

P(x|xi)≥ p (5)

Then, the resulting distribution which is based on the new vocabulary should be re-scaled to form
a probability distribution. Under nucleus sampling, the number of plausible next tokens changes
dynamically with the context and generated tokens. In this work, we use nucleus sampling as the
base decoding technique and propose a newmethod to take into account topical knowledge about
the tokens.

3.2 Topical languagemodeling
Given a list of K topics t = {1...K}, to control the outputs of the language model to follow a certain
topic, at each generation step, we have to model the following probability distribution:

P(x1:m+n|tj)=
m+n∏
i=1

P(xi|xi, tj) (6)
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Compared to Equation (2), the only difference is that it is conditioned on the topic tj. To create
the right-hand side of Equation (6), we change the last layer of the network that creates the logits.

Here, we adopt the GPT transformer architecture. Because of its auto-regressive property, at
any given time step i, the embeddings of input tokens x1, .., xi can be stacked into a matrix X1..i
and then fed into the network as follows to give the probability of the next token given all of the
previous tokens:

h0 =X1..iWe +Wp (7)

hl = TranformerBlock(hl−1) l ∈ [1, n] (8)

S(xi|xi)= hnWT
e (9)

P(xi|xi)= exp(S(xi|xi))∑
z exp(S(z|xi))

(10)

where We is the token embedding matrix and Wp is the positional embedding matrix. Here, we
have n layers. The first layer is fed with h0 and the final layer outputs hn. The logit S is obtained
by passing hn through a feed-forward linear layer. In the original implementation, the logit S has
been used for the final probability distribution over the vocabulary. The TransformerBlock is the
transformer architecture (Vaswani et al. 2017) that takes a hidden state and outputs another hid-
den state with the same shape. More specifically, the TransformerBlock consists of the following
functions that goes from hl to hl+1:

hl = LayerNorm(hl) (11)

Hl =MultiHead(hl)+ hl (12)

Hl = LayerNorm(Hl) (13)

hl+1 = FeedForward(Hl)+Hl (14)

LayerNorm and FeedForward are the usual layers used in modern neural networks. MultiHead
function is the multi-head attention module that is defined as follows:

MultiHead(X)= Concat(z1, ..., zk)W0 (15)

zi =Attention(XWQ
i ,XW

K
i ,XWV

i ) (16)

Attention(Q,K,V)=D−1AV, A= tril(exp(QKT/
√
d)), D= diag(A1L) (17)

where Concat(.) is the concatenation function, tril(.) returns the lower-triangular part of the argu-
ment matrix including the diagonal, and, the diag(.) is a diagonal matrix with the input vector as
the diagonal. Also, 1L is the all-ones vector of length L and exp(.) is applied element-wise. All the
matricesWQ

i ,WK
i ,WV

i , andW0 are trainable parameters.
We can use the Bayes rule on P(xi|xi, tj) to obtain:

P(xi|xi, tj)= P(xi|xi)P(tj|xi, xi)∑
z P(z|xi)P(tj|z, xi)

(18)

Because in topic modeling, documents are treated as bag-of-words we can also assume that the
probability of the topic for each token is independent of the previously generated tokens. Based
on this assumption, we have:

P(tj|xi, x<i)= P(tj|xi) (19)
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Algorithm 1: LDA Generative Process.

Now, assuming that we have P(tj|xi), then using Equation (10) we can prove that the conditional
topical language model can be written as:

P(xi|x<i, tj)= exp(S(xi|x<i)+ logP(tj|xi))∑
z exp(S(z|x<i)+ logP(tj|z)) (20)

3.2.1 Proof
Starting with Equation (18) with topic independence assumption of Equation (19), we can write:

P(xi|x<i, tj)= P(xi|x<i)P(tj|xi)∑
y P(y|x<i)P(tj|y) (21)

Now, using the Equation (10), we can rewrite the Equation (21) to:

P(xi|x<i, tj)=
exp(S(xi|x<i))∑
z exp(S(z|x<i))P(tj|xi)∑

y
exp(S(y|x<i)∑
z exp(S(z|x<i))P(tj|y))

(22)

which can be simplified to the following:

P(xi|x<i, tj)= exp(S(xi|x<i))P(tj|xi)∑
y exp(S(y|x<i))P(tj|y) (23)

and finally if we take P(tj|xi) and P(tj|y) into the exponential function, it gives us Equation (21).
The question of how to obtain P(tj|xi) still remains. In the next section, we show how to extract

topical probabilities from the topic modeling techniques.

3.3 Topic modeling
Topic modeling algorithms automatically extract topics from a collection of textual data. They are
based on statistical unsupervised models that discover the themes running through documents.
We use two main algorithms in topic modeling.

1- LDA: The basic idea behind LDA is that in a collection of documents, every document has
multiple topics and each topic has a probability distribution. Moreover, each topic has a distribu-
tion over vocabulary. For example, a document can be on the topics of “Football,” “News” and
“America” and the topic of “Football” can contain words including “NFL,” “Football,” “teams”
with a higher probability compared to other words.

Given a collection of M documents with vocabulary V , we can fix the number of topics to be
K. The LDA can be thought of as a generative process in which each token is generated through
Algorithm 1.

In Algorithm 1, φk ∈ �|V|−1 is a simplex that specifies the probability distribution of topic k.
θd ∈ �K−1 is another simplex that determines the probability distribution of document d over K
topics. First, we draw samples from Dirichlet distribution with parameter α for θd and samples
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from Dirichlet distribution with parameter β for φk. Both parameters α and β are hyperparame-
ters that need to be fixed. Then for each document and token index, we first sample topic index zd,w
from categorical distribution with parameter θd. Then, we sample token xd,w from the categorical
distribution with parameter φzd,w .

The probabilities of topics per documents and topic for tokens can be summarized in matrix
forms, θM×K and φK×|V|, respectively. These parameters should be learned through Gibbs sam-
pling or variational inference methods (Blei, Ng, and Jordan 2003). After the learning, we have the
distributions of topics for each token, and hence, we can write:

P(tj|xi)= φ(j, i) (24)

We incorporate P(tj|xi) in our proposed topical language model.
2- LSI: LSI is the application of singular value decomposition method (Deerwester et al.

1990) to word-document matrix, with rows and columns representing the words and documents,
respectively. Here we use tokens instead of words to have consistency with the language models.
Let X|V|×M be the token-document matrix such that Xi,j is the occurrence of token i in document
j, then singular value decomposition can be used to find the low rank approximation:

X̂|V|×M =U|V|×M�M×MVT
M×M (25)

After the decomposition, U still has the same number of rows as tokens but has fewer columns
that represents latent space that is usually interpreted as “topics.” So, normalizing U gives us the
scores of each token per topic. We can use this score for the probability of topic j for each token i
in the vocabulary:

P(tj|xi)= UT[j, :]∥∥UT[j, :]
∥∥ [i] (26)

In Equation (26), UT[j, :] means jth row of the matrix U.

4. Controllable generation methods
The conditional topical language model in Equation (20) gives us a token generation that is con-
ditioned on a specific topic but we cannot control the amount of the influence. Besides, using the
prior distribution on topics leads to a sub-optimal token generation that hurts the fluency (Baheti
et al. 2018). In this section, we address this issue and change the base Equation (20) for a better
text generation process:

1- Adding topical parameter and logit threshold: adding the term log(P(tj|xi)) directly to
the actual logit from the model can deteriorate the fluency of generated text in some cases. We
propose two methods to alleviate this problem. We introduce a new parameter γ to control the
influence of topical distribution:

P(xi|x<i, tj)= softmax(S(xi|x<i)+ γ log(P(tj|xi))) (27)

Higher values of γ result in more on-topic text generation because the final probability will be
dominated more by log(P(tj|xi)) than the logit from the base language modeling.

The other approach is to cut the log probabilities of the topic with a threshold. The lower
values of S correspond to tokens that the model gives very low probabilities, and we do not want
to change them because it introduces unwanted tokens and diminishes the fluency. In Equation
(28), we only keep log(P(tj|xi)) for all the values of S that are larger than threshold.

logprob (i)=

⎧⎪⎨
⎪⎩
log

(
P

(
tj | xi

))
S (xi | x<i) > threshold

0 otherwise
(28)
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and logprob used in the following equation:
P(xi|x<i, tj)= softmax(S(xi|x<i)+ γ logprob (i)) (29)

lower values of threshold correlates with more on-topic text generation because we change more
tokens from the original model by log(P(tj|xi)).

2 - Using α-entmax instead of softmax: The problem with the softmax function is that it gives
non-zero probabilities to a lot of unnecessary and implausible tokens. The softmax function is
dense because it is proportional to exp function and can never give exactly zero probabilities at
the output. We use α-entmax instead to create more sparse probabilities that are less prone to
degenerate text. α-entmax is defined as (Correia, Niculae, and Martins 2019):

α-entmax(z):= argmax
p∈�|V|−1

{pTz+HT
α (p)} (30)

where �|V|−1:= {p ∈ IR|V|−1,
∑

i pi = 1} is the probability simplex, and for α ≥ 1, HT
α (p) is the

Tsallis entropy which defines the family of entropies (Tsallis 1988) as follows:

HT
α (p)=

⎧⎨
⎩

1
α(α−1)

∑
j (pj − pα

j ) α �= 1

− ∑
j pjlogpj α = 1

(31)

α-entmax is the generalized form of the softmax function. In particular, for α = 1 it exactly
reduces to the softmax function, and as α increases, the sparsity in the output probabilities contin-
uously increases. Here we are specifically interested in α = 2 which results in sparsemax (Martins
and Astudillo 2016):

sparsemax(z)= argmin
p∈�|V|−1

‖p− z‖2 (32)

Unlike the softmax function, sparsemax can assign zero probabilities.
3- Adding temperature and repetition penalty parameters: We need to make some changes

to the base nucleus sampling to control the base distribution flatness and prevent it from generat-
ing repetitive words. We denote the final logit after the above changes as ui. Given a temperature
T, repetition penalty r, and the list of generated tokens g, the final probability distribution for
sampling is:

P(xi|x<i, tj)= softmax(ui/(T.Rg(xi))) (33)
where Rg(xi) is defined as below:

Rg(xi)=
{r xi ∈ g

1 xi /∈ g
(34)

In Equation (33), when T → 0, the sampling reduces to greedy sampling, while if T → ∞
the distribution becomes flatter and more random. The penalized sampling discourages draw-
ing already generated tokens. Following Keskar et al. (2019), we set r = 1.2 which results in a good
balance between fluency and lack of repetition.

5. Simulating document topic generation
An obvious observation from topic models is that many real documents are on more than one
topic. For example, a paper about bioinformatics can be on the topics of genetics, neuroscience,
and computer science. Given the trained parameters, we can modify the generative process of
LDA, which is based on BoW assumption to create multi-topic document generation using a spe-
cific input document. In other words, we can simulate the topical behavior of an input document
using the proposed topical language model.
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Algorithm 2: Simulating Document Topic Generation.

Algorithm 2 redirects the generation process towards topics in the given document as follows:
the algorithm starts with a prompt text and given an input document it iteratesNd times, in which
Nd is the length of the input document. In each iteration, it calculates the logits from the base
language model and also draws a topic from the topic distribution of the given document θd.
Then, the probability distribution of tokens for the selected topic and logits from the base language
model will be combined. This gives us the final probability of tokens that we can draw the next
tokens from. Finally, we concatenate the chosen next token to the input to feed it back to the base
language model.

6. Experiments
We conducted several experiments to evaluate the controlled natural language generation in dif-
ferent aspects. In Section 6.1, we show the ability of the model in generating coherent outputs for
different topics. In Section 6.2, we compare our model with state-of-the-art language generation
models and show that our model outperforms them.

6.1 Topical text generation with different topics
One of the biggest benefits of TLG is that it can be used with different language models without
any retraining or fine-tuning of the base model; however, to generate topical texts we need to have
topics extracted from a text corpus. For training the topic models, we used Alexa Topical-chat
dataset (Gopalakrishnan et al. 2019). This dataset contains conversations and a knowledge base
in a wide variety of topics from politics and music to sports. We do not use the tags for topics in
the dataset but extract them automatically with our LDA and LSI topic models. This unsupervised
approach gives us the flexibility to work with any raw text corpus.

In preprocessing, we first tokenized the dataset using Byte Pair Encoding (BPE) tokenizer (Gage
1994). Then, we filter out the very rare and very frequent tokens because they affect the topic
modeling negatively. Very frequent words are usually stop words and rare words are usually not
very informative. We empirically set the initial number of topics to 8 and the batch size to 200
documents. The final results are not very sensitive to these parameters, and as long as the topics
are intuitively separable, the TLG works fine. The LDA model is trained by Online Variational
Bayes (VB) technique which is based on online stochastic optimization with a natural gradient
step (Hoffman, Bach, and Blei 2010). The training continues by feeding new documents until the
topics converge or until the number of iterations which is set to 600 is reached.

We adopt the results from parameter search based on topic coherence score which will be
discussed in Section 6.4. We set the prior probability on documents to be a symmetric Dirichlet
distribution with α = 0.1. The prior probability of word distribution can be learned from data
using maximum likelihood estimation (Huang 2005).

For training the LSI model, we use the same dataset and preprocessing as LDA.We use stochas-
tic singular value decomposition on a sparse input (Halko,Martinsson, and Tropp 2011) to extract
the matrix U in Equation (26).
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Table 1. TLG with a fixed prompt (The issue is) that is conditioned on different topics

Topic Generated Text

Football The issue is that some football players are not allowed to play in rugby league. “I think it’s a shame
because we’ve got so many young people who have been playing for us and they’re all going out there
fighting, but I don’t know if you can imagine what the impact will be on them.” He said each player would
need professional training before being able go back into regular contact with any of his teammates
behind teams having no official team or club affiliation between their clubs Football League!



Politics The issue is that while presidential leaders are often able to get things done, they can’t do themwithout
the support of their own party members.” In fact state legislatures have been reluctant to enact any kind
for decades due largely government-initiated “party politics,” which has led some states such as New
York into a political crisis over how presidential candidates should approach issues like abortion and gay
rights according in part those concerns about what it means given current trends between parties may be
more important!



Media The issue is that there will not be television coverage of news events in Russia. “We are going to have a lot
less media,” said three people familiar with what set up telecommunication services for the event. last
month—TVmedium companies like Vyldo, and Tmall Television & Radio transmitting their own content
through its network, which has been shut down since May after being accused earlier of violating Russian
law about broadcasting political messages on radio transmission platforms



Physics The issue is that when information about such radio waves are transmitted, the frequency fields of
electromagnetic radiation can be measured.“We have a lot technology to do,” Aquo said. He added
energy-threshold measurements could help scientists understand current conditions and how these
signals interact with electrical circuits through soundmodulating devices using amplitude oscillations
and phase alternating conductor (A&P),“which allows pulse width modulation.” When this happens back
during space transmission medium properties formating an interference pattern



Transportation The issue is that car parts are not cheap because they can be bought at a much lower price than the
original. I have seenmany people who buy cars from Ford and say when you get them, almost all were
sold for $100 US or less after having to pay more in taxes rather than buying new ones with higher prices
(and I’m sure there would always depend on where vehicle was purchased). This has been true of most
other vehicles since it started being used as an alternative fuel source!

In this experiment, a fixed neutral prompt has been used to make sure the model is not condi-
tioned on the few initial tokens. The results in Table 1 show that after selecting a topic from the
topic modeling output, the model can create long, coherent, and fluent text continuation without
manually injecting extra knowledge from other resources or through training on labeled datasets.
The LSI with softmax function is illustrated in Table 1, the LSI with softmax function has been
used. To avoid cherry-picking, the first output with a fixed seed from TLG has been selected.

6.2 Comparison of text generation with other models
To evaluate and compare TLG with other methods, we use topic coherence and n-gram diversity
metrics. Topic coherence (Röder, Both, and Hinneburg 2015) can be measured in many differ-
ent ways. More formally, if the model generates the set of wordsW = {w1,w2, ...,wn}, each word
should be compared to any other word in the generated sequence. The set S is defined as:

S= {(w′,w∗)|w′ =wi;wi ∈W;w∗ =W} (35)
the coherence is the mean value of cosine similarity between the word2vec (Mikolov et al. 2013)
vectors of all the pairs in S:

C = 1
|S|

∑
(w′,w∗)∈S

Vw′ .Vw∗
||Vw′ ||||Vw∗|| (36)

But the topic coherence alone is not enough because if the model degenerates and produces
repetitive tokens then the topic coherence will increase. We also have to make sure that the model
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Table 2. Comparing TLG with other models on topic coherency and Dist-1,2,3 which is an indicator of token diversity.
All the experiments have less than 1e-5 variance

Model Topic Coherence ↑ Dist-1 ↑ Dist-2 ↑ Dist-3 ↑

GPT2 0.48292 93.088 99.681 99.909


CTRL 0.51319 69.888 95.737 98.560


PPLM 0.47280 96.160 99.478 99.666

TLG+LSI 0.56064 91.993 99.419 99.991


TLG+LDA 0.61485 88.457 99.270 99.983

creates diverse n-grams. We report Dist-1, Dist-2, and Dist-3 as the number of unique 1, 2, and
3-grams across all the samples generated for a given topic with different prompts. This score is a
very good indicator of the diversity of samples generated by the models.

Table 2 shows that TLGmodels have superior capability in generating both coherent texts while
keeping the token diversity very high.

One of the main restrictions on most approaches is the limitation on the number of top-
ics/conditions that the model can work on. Even though our model is free from those restrictions,
we have to limit our comparisons on the predefined topics of other approaches. Here, we compare
the methods on the topic of “politics” which is available in all the models.

In Table 3, the result of comparison of our model to the baseline CTRL (Keskar et al. 2019) and
PPLM (Malandrakis et al. 2019b) has been demonstrated. CTRL is a conditional language model
with specific control codes. Although it outputs high-quality text continuation, it does not have
the flexibility for any other topic outside its predefined codes and one has to retrain the network
on a dataset with a new control code that represents that topic. This model is also very large
and contains 1.63 billion parameters that makes it hard to be used in real applications. The text
generated by CTRL also contains meta-information such as “title, text, Score, etc” that was trained
from the original labeled text and it diminishes the quality of the generated text. PPLM is a plug-
and-play language model which means it does not need retraining of the base model; however
because of its nature on perturbing the gradient of the base model, the text generation process of
PPLM is extremely slow. Figure 1 shows that PPLM is slower compared to other models. PPLM
also suffers from the text degeneration problem by repeating itself on some tokens. In PPLM,
topics are represented as predefined BoWwhich gives more flexibility compared to CTRL but still
leaves the creation of new topics a difficult task for users. Also, as a model for topics BoW is overly
simple because it gives the same weight to all the tokens in the bag. It ignores all other tokens that
are not in the BoW and leaves the topic extraction as a manual task for annotators.

On the other hand, TLG does not need any retraining and it works with basemodels of different
sizes. TLG gets the topics from a topic modeling algorithm once, then it can be used or shared with
others just like the base language model itself. In Section 3, we also compare the results of TLG
with different topic models that are combined with both softmax and sparsemax function. Both
functions result in quality outputs. In Section 7, we discuss the differences between them in more
detail.

6.3 Document topic simulation
One of the novel features of our approach is the ability to generate text not only with one specific
topic but also generate documents with the same topical distribution as the given document. In
Table 4, two samples from the document topic simulation have been shown. The left column
shows real samples without anymodification from the Alexa Topical dataset. After processing and
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Table 3. Comparing the results of text generation for different models

Model Sample Text

CTRL The issue is that it will be a huge political liability for Obama if he doesn’t do something about it.
Score: 6 Title: The US government has been spying on its own citizens since at least World War II.
It was only after 9/11 and revelations of NSA surveillance programs in Germany did we start to
see this kind of thing happening here. What are your thoughts? [x-post from r/worldnews]
(X-Post /r/ Worldnews)
Text: I think it’s important not just because I’m American, but also because, as an American
citizen, I’ve never really hadmuch interest or knowledge regarding what goes on



PPLM The issue is controversial. The fault, Greg Moon emphasizes immediately his of a secret camera
that produced an amazing sequence to frame Kennedy Center President Barack Obama’s
embrace of Egypt-Pakistan diplomacy negotiations flaws routine practice in Washington
regularly highlighted by elected officials and reporters alike as evidence camouflage lies while
regular citizens deeply public finances never last pra tax implemented for political

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TLG (LSI+ softmax) The issue is that while presidential leaders are often able to get things done, they can’t do them
without the support of their own party members.”. In fact state legislatures have been reluctant
to enact any kind for decades due largely government-initiated “party politics,” which has led
some states such as New York into a political crisis over how presidential candidates should
approach issues like abortion and gay rights



TLG (LSI+ sparsemax) The issue is that the government has been unable to provide a clear explanation for why it was
not able, or even willing, state-runmedia outlets such as RT and Sputnik.“It’s very difficult,” said
one of president Vladimir Putin’s top aides in Moscow.“We have no idea what he means by
saying this because we don’t know howmany people are involved with his administration at any
given time—but I think there may be some kind of conspiracy theory!



TLG (LDA+ softmax) The issue is that we are not going to be able get any more money from government for our
schools. We needmy support because I believe in the importance of education – and if you look
back at what happened with state funding last fall there should have been a lot less spending on
public services.”In response, president & CEO G&C will announce new $1B investment plan this
year



TLG (LDA+ sparsemax) The issue is that the government has not been able to provide a clear explanation for why it was
so slow in responding.”We have had some very good responses from our partners, but we are
still waiting until after Christmas,” said Mr House of Commons Speaker John Bercow. He added
there should be ”a more thorough and transparent process”. . .& The Government’s response on
this matter will take time

extracting the topic distribution of each document on the left column, we employ the Algorithm 2
to generate similar documents with respect to topical distribution that has been shown on the
right column. One interesting observation is that the generated documents do not have one topic
anymore. For example, the original document on the top left has distribution over topics ofMusic
and America, the same pattern can be observed on the generated text on the top right column.
The down left document is around the topics of Politics and Communication which is replicated
on down right generated text from the algorithm. It should be noted that the samples from the
dataset are those samples that were considered to have the mentioned topics even though they
may not contain the exact topic title words. For example, the sample from the dataset on top left
does not have the word America but still considered to be from the topic America. In general,
the quality of document simulation, which has multi-modal topical distribution, is lower than the
base TLG model. This is probably due to the more complex relationship between topics in the
original text that Algorithm 2 captures using only random sampling.

To show how much two documents are similar, we use sentence-bert (Reimers and Gurevych
2019) which is based on the BERT model to create embeddings for sentences that can be used
for similarity purposes. To evaluate the document topic simulation, we calculate the similarity
between 1000 samples from Alexa dataset as the given document and the output of the docu-
ment topic simulation for each one of those documents. In the next experiment, we calculate the
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Table 4. Samples of document topic simulation. Original documents come from Alexa Topical dataset and corresponding
simulated documents follow the same topical behaviors of the given document

Original document Simulated document

Classical music is art music produced or rooted in the
traditions of Western culture, including both liturgical
(religious) and secular music. While a more precise term is
also used to refer to the period from 1750 to 1820 (the
Classical period), this article is about the broad span of time
from before the 6th century AD to the present day, which
includes the Classical period and various other periods. The
central norms of this tradition became codified between 1550
and 1900, which is known as the common - practice period.
The major time divisions of Western art music are as follows

The United States/Sates may be the world leader in music,
dance & film production company and has been known
since its inception over 50 years ago through World
musical festivals such as: Party A series 6 Earth called
American House In Uth teamwere held at all of our studios
across every city on earth from New York City almost 100
different times during this time period (1962), Los Angeles
was one only 2nd place for most first television show ever
produced by American studio with more than 1 million
viewers worldwide including many major!



A Russian national who claimed ties to the Kremlin told
President Trump’s personal attorney, Michael Cohen, as early
as November 2015 that he could use his Russian government
connections to help Trump’s business and political prospects.
The new Russia contact was revealed Friday by special
counsel Robert S. Mueller III, as he outlined cooperation that
Cohen has provided the investigation into Russian
interference in the 2016 election

This is a very good example of public policy that has been
successful in the past. “The government should be able to
make sure it’s doing what needs being done, and not just
on social media sites like Facebook where people are
posting their views,” former Labor leader Bill Shorten told
Newstalk 4B TV last month– but he said there needed new
tools for dealing with online abuse as well under various
laws such at any time too early? President Donald Trump
recently signed an executive order!

Figure 1. As the number of generated tokens by the model increases, the time needed to decode them also increases. TLG
methods are the fastest and PPLM is the slowest controlled language generation.

same samples from Alexa dataset but with outputs from GPT-2. In both experiments, we use the
same prompt. The first experiment gives an average of 44.625% cosine similarity compared to the
second experiment which is 11.015% similarity. This shows that the document topic simulation
creates very similar texts to the original retrieved document from the dataset.

6.4 Effects of hyperparamters on TLG
In our proposed approach, we can use γ and threshold as knob parameters to control the amount
of topic influence on the language generation process. More specifically, based on Equation (27)
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Table 5. A few samples of the experiments to find the best hyperparameters for LSI. Each row
is one experiment. The search has been done using the grid search. “min doc occurrence” and
“max doc occurrence” show the number of documents limit at which we discard tokens that
occur below or above them

Min doc occurrence Max doc occurrence Number of topics Coherence

20 444,242 (40%) 5 0.617
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 333,181 (30%) 5 0.623
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 444,242 (40%) 10 0.626
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50 277,651 (25%) 20 0.626
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100 277,651 (25%) 15 0.638
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 277,651 (25%) 15 0.641

higher values of gamma will result in more on topic results. Also, lower values of the threshold are
correlated with more on topic language generation. In the limit, if we set γ = 0 and threshold = 0
TLG reduces to the original language model without any topic. But our experiments have shown
that changing γ values are less detrimental to the fluency of the generated text than changing
the threshold. This is due to the fact that thresholding can easily cut off the probabilities that are
related to function tokens (like stop words) in the vocabulary which hurts the fluency of themodel.
Figure 2 demonstrates the language generation on a fixed topic (football) with different values of
γ and threshold. To show how much each token accounts for the topic, we use color-coding in
which stronger colors show more on topic words. We skipped the last stage of decoding. This is
why the individual tokens from Byte Pair Encoding (BPE) tokenization can be seen.

Because the only training part of our approach is the topic models, the hyperparameters that
need to be found are the number of topics,min_doc_occurrence andmax_doc_occurrence. For the
LDA model, we also need to find α. Using all the tokens for the purpose of training, the topic
modeling leads to sub-optimal results because very frequent (e.g., stop words) or very infrequent
tokens are not informative in understanding the topics. More specifically, we keep tokens which
are contained in at least min_doc_occurrence documents and keep tokens which are in no more
thanmax_doc_occurrence documents. We used coherence to assess which models are better than
others.

Based on the parameter search, for LDA, we discard all the tokens that occur in less than 20
documents and the tokens that happen in more than 30% of all the documents. We also set the
number of topics to 10.

For LSI, using the results from parameter search, we set number of topics to 15,
min_doc_occurrence= 20 and max_doc_occurrence= 333181 which is 30% of all documents.
Table 5 shows the result of hyperparameters on some of our search experiments.

7. Discussion
In this section, we focus on the TLG mechanism and how it modifies the probability distribution
of the base model. The language generation is the task of generating the next token conditioned
on the previously generated tokens. The probability distribution of the next token in the base lan-
guage models is more flat in some token positions andmore peaked at some other token positions.
For example, given the prompt of “The issue is that” there are plenty of possible next tokens com-
pared to the next token of a prompt like “It is focused” which is almost always “on”. This property
of language models gives us the flexibility to meddle in the generation process and steer it towards
desired tokens when the probability distribution is flatter.
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Figure 2. TLG text generation with different settings of parameters. Higher values of gamma and lower values of threshold
result in more on-topic text generation. Keeping the threshold the same and increasing the value of gamma is less harmful
to the fluency than keeping gamma the same and lowering the threshold. Darker shades of red showmore on topic tokens.

The concept of flat or peaked distribution can be easily measured in terms of the entropy of the
distribution. In Figure 3(a) and (b), we compare the entropy of the base model (token entropy)
with the posterior probability distribution from Equation (20) as the total entropy. Higher entropy
for the base model in one position is a sign of its capability to sample from a large set of potential
tokens with almost equal probabilities, but in our conditional language modeling, we want to
restrict that set to a smaller set that conforms with the chosen topic. Therefore, in almost all cases,
the entropy of the TLG model drops significantly compared to the base model. We can observe
the differences are larger for the tokens that represent the topic (like teams, football, culture and,
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(a) (b)

(c) (d)

Figure 3. Comparison between the Entropy and KL divergence of TLGwith different topicmodeling and base GPT-2. Entropy
and KL divergence show TLG probabilities (blue) are smaller and, the model is less certain choosing the next token. KL
divergence shows how TLG deviates from the base model on topic tokens.

music) and smaller for function tokens (like stop words that do not play any role in different
topics).

In Figure 3(c) and (d), the same can be observed for the KL divergence between the
total probability and token probability. In other words, we measure the KL divergence
between the posterior and prior distributions which is the mathematical definition of surprise
(Baldi and Itti 2010):

Surprise (xi, tj|x<i)=KL (P(xi|x<i, tj)||P(xi|x<i))=
∑
xi

P(xi|x<i, tj) log (
P(xi|x<i, tj)
P(xi|xx<i)

) (37)

Surprise can also be described as the difference between the cross-entropy between TLG and
base model and the entropy of TLG:

Surprise (xi, tj|x<i)=H (P(xi|x<i, tj)|P(xi|x<i))−H (P(xi|x<i, tj)) (38)

In this definition, a topic tj has no surprise, or new information if it leaves the base language
model unaffected. For example, in Figure 3(c) the token generation that leads to “of” is unaffected
by the topic of “football”. On the other hand, if the topic brings new information, the language
model will be altered by it. For example, in Figure 3(d) the token generation that leads to the token
“music” is affected by the chosen topic which is culture.
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(a) (b)

Figure 4. Comparison between the probability of top-5 tokens in softmax and sparsemax: Both functions have candidates
that are compatible with topic football. The sparsemax puts less probability on alternatives and that makes it more robust
in text generation compared to softmax that always has non-zero probability for all tokens in the vocabulary.

Another interesting observation is how the prior distribution that was extracted from topic
modeling forces the language model to choose the topical tokens. The top-5 most likely tokens
in a generation process are depicted in Figure 4. For the topic of Football, the top-5 candidate
tokens chosen by the model are compatible with the chosen topic. Both softmax and sparsemax
get to choose the relevant candidates for the generation but the softmax function is smoother and
as mentioned in Section 4 has non-zero probabilities for all tokens that can potentially go off on
a tangent by choosing tokens outside the desired tokens of the prior probability. However, the
sparsemax function puts less probability and in most cases even zero probability on out-of-topic
tokens. This makes the sparsemax function more robust in topical generation than softmax. Even
though sparsemax usually chooses a very small set of candidate tokens, our experiments have
shown that it does not affect the overall fluency of the text generation. Table 3 shows that this has
been achieved without any detrimental effect on coherence or repetition.
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(a) (b)

(c) (d)

Figure 5. Comparison between the Entropy and KL divergence of TLG with different activation functions. Entropies of soft-
max function are more uncertain compared to sparsemax. The KL divergence between the TLGmodel and the basemodel is
also wider when sparsemax function has been used.

The difference between the effect of sparsemax versus softmax function also can be observed
by carefully choosing two very close examples. As mentioned above, the sparsemax function has
less uncertainty in choosing the next token and it can be seen in Figure 5(b) when the model has to
choose the word “state” in the topic of politics. This behavior also results in more divergence from
the base model because sparsemax comes with more on-topic and certain choices. Figure 5(c) and
(d) shows that even though the shape of KL-divergence in both cases is almost the same, with
sparsemax the difference is larger.

Since we use Byte Pair Encoding (BPE) tokenized inputs for our topic modeling, it is usual
to see at least one topic with token sets for topics that are not a complete word. For example,
in Table 6 the first and second rows show tokens: “qu”, “&”, “Earth”, “rs”, “her”, “ld”, “ld”, “rd”,
“she”, “we”, most of which are not complete words. The same phenomena have been observed
for both LDA and LSI. The resulting generated text from these topics is not fluent. It is also full
of acronyms, links, and even non-English characters have been produced. The second row shows
a generated text that is more fluent but still does not make sense and is full of glitches. Another
case in topic models is when the topic is vague and the words in it do not seem to belong to one
topic. For example, the third row shows a topic with tokens: “comedy”, “social”, “comic”, “public”,
“Greek”, “students”, “company” that does not conform to one topic. In this case, the generated text
degenerates at the end. In our experiments, we observed that this problem is less likely to happen
with the LSI model compared to LDA for topic models. For example, the last row shows one case
of a topic that does not have complete words in it except the last two. Even in this case, the quality
of the generated text is better than others and its relevance to the last two tokens “medium” and
“television” has been represented more accurately.
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Table 6. Samples frombad examples generated by TLGmodel. The first, second and, last rows show examples of “non-word”
topic top tokens for the task of text generation, and the third row shows an example of a vague topic

Topic top tokens Model Generated text

’qu’, ’&’, ’Earth’, ’rs’,
’her’, ’ld’, ’rd’, ’she’,
’we’

LDA The issue is that the company has been accused of using “the social media platform to
promote its products and services.”.@SocietyInTupelo public Facebook page, which was
used by@ianeste for a fewmonths now—https://t:co/Yq6J5Xj7x4 —Greekpic.@Societates
political party in #IPL_in February 2016 Google+ view All photos C© 2014 any user at largest



’qu’, ’&’, ’Earth’, ’rs’,
’her’, ’ld’, ’rd’, ’she’,
’we’

LDA The issue is that the new version of Earth’s magnetic field has been so weak, it can’t be
used as a magnet because there aren”quasitant magnets.” The problem? It doesn’t. “It
takes about 10 percent less energy to create an electric current than would normally
occur in nature,” she says [1] But this isn’t enough if we’re going like herrsy & Healy just
now where you have all those super good things happening at once and then!



’comedy’, ’social’,
’comic’, ’public’,
’Greek’, ’students’,
’company’

LDA He goes to public meetings and he’s a very good speaker. He has the ability —the
capacity—to make people feel comfortable with him without being too judgmental.”
(Photo courtesy Facebook.) It was created by an anonymous user who posted about his
experience at comedy clubs in New York City during one comic strip called 4 billion dollars
worth of jokes from comedians like Bill Maher any day later when it became clear they
were not going anywhere because their audience hadalready seen them perform for free
online before getting paid $10m per episode far:
http://idianateseestinireusesfromandropollimeloemokesizedramaI’m



’qu’, ’&’, ’o’, ’rs’, ’ld’,
’rd’, ’medium’,
’television’

LSI The issue is that the medium used here does not have telecommunication capabilities. In
other words, it’s a very small area where you can’t really use your phone to communicate
with people in real time when they’re on television.” I asked he about what would happen
if we had an Internet service provider like Comcast or Verizon and said there were no
plans for such services at all

8. Conclusion
In this paper, we introduced TLG using transformers. Our approach lays out a very simple way
to assemble any transformer-based model with a topical language model trained on a corpus of
choice to produce high-quality controlled text. The Bayesian approach helped us to verify that
the controlled language generation is the posterior probability with base LM being likelihood and
the topic modeling being prior. We believe our approach can be used as a baseline for challeng-
ing open-ended controlled language generation tasks. For example, one can extend this work to
include more diverse priors such as sentiment, formality, and style. The choice of topic models
also can be extended to other approaches that gather distributional properties of words on a con-
trol variable. For example, approaches that use word embeddings learned conditioned on topics
or other variables are also can be used. The ever-increasing power of LMs still needs better decod-
ing techniques that our approach has achieved, but more importantly, it opens the door for even
more exciting research in the future.
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