
Geological Magazine

www.cambridge.org/geo

Rapid Communication

Cite this article: Pal DC, Selby D, and
Sarangi AK (2023) Timing of shear deformation
in the Singhbhum Shear Zone, India:
implications for shear zone-hosted
polymetallic mineralization. Geological
Magazine 160: 180–186. https://doi.org/
10.1017/S0016756822001091

Received: 1 June 2022
Revised: 26 September 2022
Accepted: 2 October 2022
First published online: 14 November 2022

Keywords:
Re–Os dating; molybdenite; shear zone; IOCG
mineralization

Author for correspondence: Dipak C Pal,
Emails: dipakc.pal@jadavpuruniversity.in;
dcpaly2k@yahoo.com

© The Author(s), 2022. Published by Cambridge
University Press.

Timing of shear deformation in the Singhbhum
Shear Zone, India: implications for shear zone-
hosted polymetallic mineralization

Dipak C Pal1 , David Selby2 and Akshay Kumar Sarangi3,4

1Department of Geological Sciences, Jadavpur University, Kolkata 700 032, West Bengal, India; 2Department of Earth
Sciences, University of Durham, Durham, DH1 3LE, UK; 3Uranium Corporation of India Limited, Jaduguda,
Singhbhum 832102, Jharkhand, India and 4Present address: Flat No. 202, Sai Shivam Apartment, Kalarahanga,
Bhubaneswar 751024, India

Abstract

The Singhbhum Shear Zone in eastern India hosts several Fe oxide–Cu–Au (IOCG)-type poly-
metallic deposits, mined primarily for U, Cu and apatite, with elevated concentrations of rare
earth elements, Ni, Co,Mo, Te and Au in association with low-Ti magnetite. Although themain
stages of hydrothermal U, Cu and rare earth element mineralization are known to be
Palaeoproterozoic in age, the age of shear deformation in the host shear zone has hitherto
not been constrained. Here, we report Re–Os ages of syn-shearing massive molybdenite occur-
ring along shear surfaces transecting the uranium ores in the Jaduguda uranium deposit.
Integrating the obtained Re–Os age of c. 1.64–1.59 Ga of molybdenite, the known ages of min-
eralization and the known tectonothermal events in the adjoining Proterozoic Mobile Belt, we
propose that the main stages of polymetallic hydrothermal mineralization pre-dated the per-
vasive shear deformation event in the Singhbhum Shear Zone.We further suggest that the shear
zone was not the principal foci of the hydrothermal mineralization of the main stages. Instead,
the shear zone was localized during the Palaeoproterozoic to Mesoproterozoic transition
(c. 1.64–1.59 Ga) along pre-existing crustal-scale extensional faults which had earlier been the
foci of hydrothermal alteration and mineralization in Palaeoproterozoic time (c. 1.9–1.8 Ga).
Shear deformation and metamorphism have reconstituted/redistributed existing mineral/metal
inventories with/without neo-mineralization.

1. Introduction

Crustal-scale shear zones often host regional-scale mineralization because they provide suitable
conduits for the circulation of hydrothermal fluids and emplacement of magma. Consequently,
for shear zone-hosted hydrothermal mineralization it is often a common notion that shear
deformation facilitates mineralization, although such perceptions are not always convincingly
demonstrated with robust geochronological data. To develop any comprehensive model for the
physicochemical-temporal evolution of shear zone-hosted mineralization, it is thus important
to understand the temporal relationship of mineralization with shear deformation.

The polymetallic mineralization in the Singhbhum Shear Zone (SSZ) in eastern India is rep-
resented by several U, Cu and apatite-magnetite deposits with elevated concentrations of rare
earth elements (REEs), Au, Co, Ni, Mo and Te, etc. Recent studies suggest that the minerali-
zation in the SSZ has many characters akin to Fe-oxide–Cu–Au (IOCG)-type mineralization
(Pal et al. 2009, 2010, 2011a,b, 2022; Pal & Bhowmick, 2015). The polymetallic ores are hosted
in deformed, metamorphosed andmetasomatized rocks where both the ore bodies and ore min-
erals show signatures of post-mineralization shear deformation (Pal et al. 2009, 2011b; Ghosh
et al. 2013; Chowdhury et al. 2020; Samanta et al. 2021). In situ dating of ore minerals suggests
four major events of mineralization and mobilization at c. 1.88 Ga (light rare earth element
(LREE)-mineralization; laser ablation inductively coupled plasma mass spectrometry (LA-
ICP-MS) U–Pb dating of allanite and monazite), c. ≥1.82−1.80 Ga (U–LREE-mineralization;
LA-ICP-MS U–Pb dating of monazite and electron microprobe analysis (EMPA) U–Th–
PbTotal dating of uraninite), c. 1.66−1.64 Ga (Yþ heavy rare earth element (HREE) ±U min-
eralization; LA-ICP-MS U–Pb dating of allanite and EMPA U–Th–PbTotal dating of uraninite)
and 950 ± 50Ma (primarily remobilization/redistribution; LA-ICP-MS U–Pb dating of epidote,
monazite, florencite and EMPA U–Th–PbTotal dating of uraninite) (Pal et al. 2011a, 2021; Pal &
Rhede, 2013). Further, two stages of apatite mineralization at c. 1950 ± 100Ma and c.
1600 ± 50Ma, magnetite mineralization at c. 1950 ± 100Ma (Vinogradov et al. 1964) and
sulphide mineralization at 1766 ± 82Ma (Johnson et al. 1993) are reported. Multiple events
of sulphide and magnetite formation/mineralization are known in the SSZ (Pal et al. 2009,
2011b; Ghosh et al. 2013; Chowdhury et al. 2020). It is, however, unclear which magnetiteþ
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apatite and sulphide mineralization events the 1950 ± 100Ma and
1766 ± 82Ma dates, respectively, represent. Based on 207Pb/206Pb
of uraninite concentrates from different deposits in the SSZ,
Krishna Rao et al. (1979) reported an age of c. 1.58–1.48 Ga for
uranium mineralization. However, it is known that there were
multiple stages of hydrothermal fluid influx in the SSZ which
has modified the geochemical signatures of existing uraninite
(Pal & Rhede, 2013). Therefore, it is also unclear what the age
obtained from the uraninite concentrates signifies. On the other
hand, studies in the adjoining Proterozoic North Singhbhum
Mobile Belt (NSMB), of which the SSZ is an integral part, suggest
metamorphism occurred over a protracted period between c. 1.56
and 1.30 Ga (Mahato et al. 2008; Rekha et al. 2011; Chatterjee et al.
2013). However, the actual timing of shear deformation within the
SSZ located on the southern boundary of the Proterozoic mobile
belt remains unknown. Here, we directly date the shear deforma-
tion event using Re–Os dating of syn-shearing massive molybden-
ite occurring along shear surfaces in shear bands in the Jaduguda
uranium deposit and discuss its implications for the timing of min-
eralization with respect to shear deformation and metamorphism
in the SSZ.

2. Geological setting

The SSZ in eastern India is a ~200 km long arcuate belt located
close to the boundary between the Archaean craton in the south
and the Proterozoic NSMB in the north (Fig. 1a). The
Singhbhum Craton is a granite-greenstone terrain that evolved
over a protracted period during Palaeoarchaean and
Mesoarchaean times (c. 3.57−3.10 Ga) (Moorbath et al. 1986;
Goswami et al. 1995; Mishra et al. 1999; Acharyya et al. 2010;
Tait et al. 2011; Nelson et al. 2014; Upadhyay et al. 2014, 2019;
Dey et al. 2017; Olierook et al. 2019; Pandey et al. 2019). The
NSMB is subdivided into the northern and southern NSMB (N-
NSMB and S-NSMB, respectively; Fig. 1a). The supracrustal prov-
ince of the NSMB comprises the Chaibasa, Dhalbhum, Dalma and
Chandil formations (from south to north) belonging to the
Singhbhum Group. The supracrustal rocks of the S-NSMB located
in the south of the Dalma Volcanic Belt experienced a major defor-
mation and metamorphic event between c. 1.60 and 1.55 Ga and
potentially mark the earliest amalgamation of the S-NSMB with
the SinghbhumCraton (Rekha et al. 2011; Chakraborty et al. 2019).

The SSZ occurs close to the stratigraphic boundary between the
Dhanjori Group and the Chaibasa Formation of the Singhbhum
Group. The SSZ is interpreted to represent a deep-seated,
crustal-scale, N-dipping tectonic dislocation zone (Sarkar &
Saha, 1962; Banerji, 1969, 1981), which localized penetrative shear
deformation during top-to-south thrust movement of the NSMB
block onto the southern Archaean Singhbhum Craton (Ghosh &
Sengupta, 1987; Sengupta & Ghosh, 1997; Mukhopadhyay &
Matin, 2020; Roy&Matin, 2020). Based on structural observations,
such as a continuous increase in the deformation intensity, increas-
ing fold tightness and continuity of mineral lineation from the
NSMB to the SSZ, Ghosh & Sengupta (1987) suggested that the
progressive deformation in the mobile belt and in the SSZ was syn-
chronous. The SSZ is largely a ductile shear zone (Ghosh &
Sengupta, 1987; Sengupta & Ghosh, 1997; Joy & Saha, 2000;
Roy & Matin, 2020). However, local brittle/brittle–ductile defor-
mation synchronous with ductile shearing is also described (Roy

Fig. 1. (Colour online) (a) Geological map of the Singhbhum craton with the location
of the Jaduguda deposit (redrawn from Saha, 1994). BIF – banded iron formation; N-
NSMB – north North SinghbhumMobile Belt; S-NSMB – south North SinghbhumMobile
Belt. (b) Schematic cross-section of the Jaduguda hill showing the uranium ore lodes
and the locations of molybdenite samples (compiled and modified from Gupta et al.
2004 and Srinivasan & Sarangi, 1998).
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& Matin, 2020). Regional crustal shortening and progressive duc-
tile shearing associated with this southward crustal movement
resulted in the development of pervasive mylonitic foliation that
dips towards the north (in the central part of the SSZ near
Jamshedpur) or the NE (in the eastern segment of the SSZ, includ-
ing the study area), and formation of down-dip mineral/stretching
lineation (Ghosh & Sengupta, 1987). The mylonitic foliation rep-
resents the C-fabric of the mylonites (Roy &Matin, 2020; Samanta
et al. 2021). The down-dip lineation is roughly parallel to the stria-
tions on slickenside surfaces occasionally seen on syn-shearing
quartz veins that are emplaced parallel to the mylonitic foliations
(Ghosh & Sengupta, 1987).

The Jaduguda uranium deposit, located in the central segment
of the mineralized SSZ, occurs near the boundary between the vol-
cano-sedimentary rocks of the Dhanjori Group and the siliciclastic
rocks of the Chaibasa Formation of the Singhbhum Group (Pal
et al. 2021). There are two mineable uranium lodes, referred to
as the footwall and the hanging wall lodes (Fig. 1b), separated
by a 60–100 m wide barren zone. The hanging wall side of the
hanging wall lode is represented by siliciclastic rocks of the
Chaibasa Formation, and the footwall side of the hanging wall lode
is represented by volcano-sedimentary rocks of the Dhanjori
Group. The uranium ore lodes and the region between these
two uranium lodes are strongly sheared. The footwall lode is the
principal ore lode having a width of ~4 m, which in some mining
levels attains a width of 20–30 m (Sarangi & Shastry, 1987). The
rocks in the Jaduguda deposit are intensely sheared forming a per-
vasive S–C fabric and mylonitic foliation parallel to the C-foliation
of the mylonitic fabric in the host rock (cf. Mishra & Singh, 2003).
The foliation is defined by the preferred orientation of biotite and
chlorite grains. There are various sets of shear planes in the rocks.
The three planar structures, such as bedding planes, foliation/
schistosity and shear planes are mutually parallel to one another
(Venkataraman et al. 1971) and strike NW–SE with a dip varying
from 40° to 60° towards the NE. The down-dip lineation on the
mylonitic foliation is defined by stretched minerals, mineral aggre-
gates and pebbles (Venkataraman et al. 1971).

3. Sample description

Molybdenite is a common accessory mineral associated with ura-
nium ores in the Jaduguda deposit (Sarkar, 1982). It occurs in two
different modes. Disseminated flakes of molybdenite occur in the
footwall uranium lode and in the rocks located between the foot-
wall and the hanging wall uranium lodes. This molybdenite is

associated with uraninite and Ni-sulphides such as millerite and
pentlandite (cf. Sarkar, 1982). On the other hand, prominent shear
surfaces (tens of metres but generally not exceeding 100 m at
stretch) hosting millimetre-wide massive molybdenite transect
the footwall uranium lode where the width of the lode is 20–
30 m (this study; Sarkar, 1982; Sarangi & Shastry, 1987). A number
of such shear surfaces are often localized within tens of centimetres
wide shear zones/bands. The molybdenite-bearing shear surfaces
strike NW–SE and are parallel (similar to the other shear planes
as stated above) to the mylonitic foliation in the surrounding rocks
(Fig. 2) (Venkataraman et al. 1971; Sarangi & Shastry, 1987).
Molybdenite commonly occurs on slickenside surfaces in quartz-
ite, chlorite schist and magnetite-rich bands/pockets (Fig. 3). The
striations/slickenlines on the molybdenite-bearing slickenside sur-
faces generally run parallel to the down-dip lineation on the mylo-
nitic foliation (cf. Ghosh & Sengupta, 1987 for down-dip striations
on syn-shearing quartz veins). For this study, massive molybdenite
(N= 3) defining slickenlines on slickenside surfaces on (a) a mas-
sive magnetite body on the footwall side of the footwall uranium
lode at the 434 m level (J-434A, J-434B) and (b) on quartzite in the
footwall uranium lode at the 555 m level (JM-01) were collected
(Fig. 3a, b). Similar molybdenite-bearing shear surfaces transecting
the uranium lode have been described from the shallower levels in
the Jaduguda mine (Sarkar, 1982). The studied molybdenite layers
are composed of flakes of molybdenite and chlorite. The magnetite
body at the contact with the molybdenite-bearing shear planes is
locally brecciated, and molybdenite-chlorite occurs up to a dis-
tance of 1–2 cm from the slickenside surface into the matrix of
the brecciated magnetite (Fig. 3c).

4. Re–Os geochronology of molybdenite

Three representative samples, two from the 434 m level and one
from the 555 m level were analysed. The rhenium–osmiummolyb-
denite dating was undertaken using a well-established methodol-
ogy of isotope dilution negative thermal ionization mass
spectrometry (ID-NTIMS) at the Durham Geochemistry Centre
(Selby & Creaser, 2001; Lawley & Selby, 2012; Li et al. 2017). In
brief, a pure molybdenite separate was obtained using the HF
methodology and standard mineral separation techniques
(Lawley & Selby, 2012). An aliquot of the molybdenite was ana-
lysed for its Re–Os systematics through digestion and mixing with
a known amount of tracer solution (185Reþ normal Os) in a sealed
carius tube at 220 °C for 24 hours. The Os and Re were isolated and
purified using solvent extraction andmicrodistillation, and solvent

Fig. 2. Geological map of W3–W5 stope at the
434 m mining level showing the rock types, foli-
ation in the host rocks along with the location
and attitude of molybdenite-bearing shear sur-
faces (redrawn from Sarangi & Shastry, 1987).
Sample for this level was collected from a shear
plane on the magnetite body close to the foot-
wall contact of the uranium lode. Sample from
the 555 m level was collected from similar shear
planes in quartzite.
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extraction and anion chromatography, respectively. Rhenium and
Os isotopic measurements were determined by NTIMS on a
ThermoScientific Tritonmass spectrometer in static Faradaymode
on Faraday detectors. Although negligible, the Re–Os data were
blank corrected (Re= 2.4 pg, Os= 0.25 pg, with an 187Os/188Os
value of 0.24 ± 0.01 (n= 1)). All sources of analytical, mass spec-
trometry and decay uncertainty were propagated to yield the pre-
sented Re–Os data and ages in Table 1.

Sample JM-01 from the 555 m level possesses 4.5 ppm 187Re and
125 ppb 187Os, which yield a Re–Os date of 1638.3 ± 12.6 Ma. The
two samples from the 434 m level are more enriched in 187Re (163–
167 ppm) and 187Os (2772–2829 ppb), which yield Re–Os dates of
1602.2 ± 8.2 Ma (J-434A) and 1595.4 ± 8.2 Ma (J-434B).

5. Discussion and implications

The restricted occurrence of the studied massive molybdenite
(unlike the disseminated molybdenite) localized along the shear
surfaces transecting the uranium ores suggests that this molybden-
ite postdates the main uranium mineralization (≥1.82 Ga; Pal &
Rhede, 2013) at Jaduguda. Based on studies from shallower levels
in the Jaduguda mine, Sarkar (1982) also opined that thie shear
surface (and vein)-hosted molybdenite postdates the disseminated
molybdenite that is associated with uranium mineralization.
Multiple lines of evidence, such as (a) a parallel geometrical rela-
tionship between the molybdenite-bearing shear surfaces and the
pervasive mylonitic foliation in the country rock, which is again
parallel/quasi-parallel to the regional shear foliation (C-plane of
the mylonitic fabric) and the shear zone boundaries in this sector,
and (b) the parallel orientation of the slickenlines on molybdenite-
bearing slickenside surfaces and the down-dip lineation on the
mylonitic foliation of the country rock, suggest that the molybden-
ite and the host shear planes/bands formed synchronously with the
regional ductile shear deformation that characterizes the SSZ.
Therefore, the Re–Os molybdenite date constrains the timing of
ductile shear deformation in the SSZ.

We propose that the c. 1.64−1.59 Ga date obtained from the
molybdenite marks the pervasive event of ductile shear deforma-
tion in the SSZ. Themolybdenite Re–Os ages are close to the timing
of the second generation of allanite/epidote from the Jaduguda and
the Bagjata uranium deposit and that of YþHREE ±U metaso-
matism in the Jaduguda deposit (c. 1.66–1.64 Ga), which modified
the texture and composition of existing older (≥c. 1.82 Ga) uranin-
ite (Pal et al. 2011a, 2021; Pal & Rhede, 2013). The timing of the
pervasive metamorphic event at c. 1.59–1.56 Ga in the S-NSMB is
suggested to record the closure of the S-NSMB basin (Rekha et al.
2011). The overlapping and younger age (1.59−1.56 Ga) of this
metamorphism compared to the shear deformation (1.64
−1.59 Ga) reported in the present study is in accordance with
the understanding that metamorphism outlasted shear deforma-
tion in the SSZ (Sengupta et al. 2005). The new age data in con-
junction with (a) the micro-textural and micro-structural
relationships of the ore minerals with the host-rock fabric sug-
gesting pre-/early-shearing growth of some generations of oremin-
erals (Pal, et al. 2009; Ghosh et al. 2013; Chowdhury et al. 2020), (b)
the morphology of the ore bodies with overprints of ductile defor-
mation (Samanta et al. 2021) and (c) previously published ages of
mineralization (see Section 1; Johnson et al. 1993; Pal et al. 2011a,
2021; Pal & Rhede, 2013) and metamorphism (Mahato et al. 2008;
Rekha et al. 2011) collectively suggest that the polymetallic miner-
alization in the SSZ initiated much before the onset of ductile
shearing and concomitant metamorphism. The rocks in the
NSMB are interpreted to have been originally deposited diachro-
nously over a protracted period in an intracontinental extensional
setting (Bhattacharya &Mahapatra, 2008; Bhattacharya et al. 2015;
De et al. 2015; Mazumder et al. 2015; Olierook et al. 2019).
Moreover, in most tectonic models, the present location of the
SSZ is interpreted, implicitly or explicitly, to be the loci of earlier
deep-seated faults (concomitant with extension) on the northern
margin of the Singhbhum craton, which later localized penetrative

Fig. 3. (Colour online) Molybdenite on slickenline surfaces on (a) quartzite and (b)
massive magnetite. (c) Unpolished sample cut from the sample in (b) showing the
locally brecciated nature of magnetite close to the shear surface and molybdenite
cementing the magnetite fragments.
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deformation and metamorphism during southward thrusting of
the S-NSMB onto the Archaean Singhbhum Craton at the time
of closure of the extensional basin (Banerji, 1969, 1981;
Mukhopadhyay, 1990; Gupta & Basu, 2000; Bhattacharya &
Mahapatra, 2008; Bhattacharya et al. 2015). Recently,
Chakraborti et al. (2021) reported a c. 1.88 Ga gabbroic body from
the Chaibasa Formation in the northeastern part of the NSMB and
suggested that these gabbroic bodies were emplaced during the rift-
drift transition of the Chaibasa intracontinental rift basin. Crustal-
scale thermal perturbation and widespread extension-related c.
1.88 Ga mafic dyke swarms are also known from the Bastar and
the Dharwar cratons (French et al. 2008; Belica et al. 2014;
Shellnutt et al. 2018). This crustal-scale extensional event in the
NSMB in particular, and in peninsular India in general, coincides
with the first event of hydrothermal LREE-mineralization at
1.88 Ga in the SSZ (Pal et al. 2011a, 2021). To our knowledge,
the ≥1.82−1.80 Ga hydrothermal U–LREE-mineralization event
has not yet been directly linked by robust dating with the exten-
sional events in the NSMB. However, considering the multi-stage
evolutionary history of the NSMB extensional basin during
Palaeoproterozoic time (Bhattacharya et al. 2015; Olierook et al.
2019 and references therein), we interpret that the major hydro-
thermal mineralization and associated alteration in the SSZ took
place in Palaeoproterozoic time (c. 1.9−1.8 Ga) along crustal-scale
faults during the initial opening of the extensional basin and reac-
tivation of the faults during subsequent extensions, way before the
closing of the S-NSMB basin and concomitant shear deformation
at the Palaeoproterozoic–Mesoproterozoic boundary (c. 1.65
−1.60 Ga). As a corollary of this interpretation we further propose
that shearing did not trigger the primary hydrothermal minerali-
zation in the SSZ, rather hydrothermal mineralization and conse-
quent widespread alteration in Palaeoproterozoic time (c. 1.9
−1.8 Ga) along crustal-scale extensional faults on the northern
periphery of the Singhbhum granite complex (between the
Dhanjori Group and Chaibasa Formation) later localized shear
deformation at the time of thrusting of the NSMB over the
Archaean craton at the Palaeoproterozoic–Mesoproterozoic boun-
dary (c. 1.65–1.6 Ga; also see Pal et al. 2021). The overprinting
shear deformation and metamorphism, however, resulted in redis-
tribution/reorganization of the existing metal/mineral inventory
with or without neo-mineralization.
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