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Abstract. Solar oblateness has been the subject of several studies dating back to the nine-
teenth century. Despite difficulties, both theoretical and observational, tangible results have
been achieved. However, variability of the solar oblateness with time is still poorly known. How
the solar shape evolves with the solar cycle has been a challenging problem. Analysis of the
helioseismic data, which are the most accurate measure of the solar structure up to now, leads
to the determination of asphericity coefficients which have been found to change with time. We
show here that by inverting even coefficients of f-mode oscillation frequency splitting to obtain
the oblateness magnitude and its temporal dependence can be inferred. It is found that the
oblateness variations lag the solar activity cycles by about 3 years. A major change occurred
between solar cycles 23 and 24 is that the oblateness was greater in cycle 24 despite the lower
solar activity level. Such results may help to better understand the near-subsurface layers as
they strongly impacts the internal dynamics of the Sun and may induce instabilities driving the
transport of angular momentum.
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1. Introduction

The spherically symmetrical state represents a unique solution of the problem of hydro-
static equilibrium for a fluid mass at rest in the three-dimensional space. The problem
complicates when the mass is rotating. For stars, the axial rotation modifies the shape
of equilibrium by adding a centrifugal acceleration term to the total potential, breaking
the spherical symmetry. The stellar sphere becomes an oblate figure, and we have no a
priori knowledge of its stratification, the boundary shape, planes of symmetry, the angu-
lar momentum transfer, etc. Moreover, when the rotation rate is not constant in radius
and latitude, the surface deviates from a simple oblate figure, and it shape becomes more
complicated, particularly, in the presence of internal stresses caused by magnetic fields,
for instance.

Considering the Earth as a rotating ellipsoid in uniform rotation w, Newton gave in
1687 for the first time, an approximate formulation of its flattening f, as a function of
surface gravity gs: f= %wz - Req/gs, where R, is the equatorial radius. Huyghens, in
1690, reformulated the flattening in the form f = %oﬂ - Req/9s, still commonly used as a
first approximation.
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Let us consider the case of a mass of polytropic gas of index n, rotating at a constant
angular velocity w. The equilibrium configuration and shape of such a body is known
since the works of Milne (1923) and Chandrasekhar (1933). By writing the mechanical
equilibrium equations and seeking a solution in the form of a perturbed case of the non-
rotating configuration, and neglecting high-order effects arising from w*, and defining the
boundary of the star by a constant null density level, the flattering is given by an equation
of the type f=wvw?/Gp., where G is the constant of gravitation, p. the density of the
core, and v is a term depending on the chosen polytropic index. Extensive computations
can be found in Chandrasekhar (1933); for instance for the solar case (n = 3):

2
F= (0.5+0.856”m) W Req (1.1)
pe)  gs

where p,,/pc, is the ratio of the mean to central density. Even if such a formalism can
be now considered as outdated, it could be noticed that the approximation is still rather
good for non polytropic structures with discontinuous variation of density, such as the
Earth.

In the solar case, taking p./pm, = 107.168, w = 2.85 x 1075 rad /s, Ry = 6.955080 x 1010
cm and g = 2.74 x 10* cm/s? (Allen (2000)), it follows that f = 1.04 x 10~°, in satisfying
agreement with the best up-to-date determination of 8.55 x 1076,

The story of the solar oblateness began in 1891 when Harzer (1891) introduced for
the first time in a theory of solar rotation an oblateness of the Sun, estimating f as
26.32x 10~2. The history continued in 1895 when Newcomb (1895) described a rapidly
rotating solar interior in “such a way that the surfaces of equal density are non spheri-
cal”. He demonstrated that if the difference between the equatorial and polar radii Ar =
Req — Rpo reached 22500 mas, it would explain the discrepancy between the prediction of
the Newtonian gravitational theory and the perihelion advance of Mercury observed by
Le Verrier in 1859. However, measurements soon ruled out this hypothesis. The discrep-
ancy between the observed advance of Mercury’s perihelion and the gravitational theory
of planets was explained by the formalism developed by Einstein in 1905. In recent
times, even though general relativity had given a satisfactory prediction of Mercury’s
perihelion, the argument was once again debated after Dicke’s historical measurement of
Ar=41.9+ 3.3 mas (Dicke 1970). We know today that such measurements were inac-
curate; nevertheless they have been a source of progress. Based on theoretical premises,
Dicke (1970) proposed that the magnitude of the oblateness should be 8.1 x 107°, with-
out any stress generated by other constraints (magnetic fields at first). Discussion of the
historical data is certainly an interesting tour through different techniques. The precision
required for determination of changes of the solar oblateness at the cutting edge of mod-
ern available techniques was set up, for instance, at the Pic du Midi observatory where
a number of measurements was made (Rozelot et al. (2011), Table 2). But, even with a
deconvolution of atmospheric effects, the measurements still suffered from atmospheric
disturbances. The community was attentive to further progress coming from dedicated
space experiments, first on balloon flights, and then on board of spacecraft, mainly SoHO,
SDO and in a lesser measure RHESSI (Fivian et al. (2008), Hudson & Rozelot (2010))
and Picard (Irbah et al. (2019)). The main conclusions from this brief review have been
summarized in Damiani et al. (2011).

Through helioseismic measurements, considerable efforts have been made, at least since
the eighties and up to now, in measuring from the odd-order frequency splitting coef-
ficients the internal differential rotation of the Sun. Less progress has been made in
analyzing the solar asphericity from the even-order frequency splitting measurements.
Kuhn (1988) was the first to note that frequencies of solar oscillations vary systemat-
ically during the solar cycle, inferring the corresponding temperature change, but also
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noting that these variations could reflect changes in the solar structure due to variations
of the Reynold’s stresses or turbulent pressure. We try here to derive the global outer-
limb shape temporal variations, assuming for this study that the site of the perturbation
is very close to the surface.

2. Data

Thanks to the Michelson Doppler Imager (MDI) (Scherrer et al. 1995) on Solar and
Heliospheric Observatory (SoHO) and the Helioseismic and Magnetic Imager (HMI)
(Scherrer et al. 2012) aboard NASA’s Solar Dynamics Observatory (SDO), and their
capability to observe with an unprecedented accuracy the surface gravity oscillation
(f) modes, it is possible to extract information concerning the coefficients of rotational
frequency splitting, a,. The odd a, coefficients (n=1,3...) measure the differential
rotation, whilst the even one (n=2,4...) measure the degree of asphericity (i.e. depar-
ture from sphericity). The analysis was focused on the low-frequency medium-degree
f-modes in the range of ¢=137—-299, using the data covering nearly two solar cycles,
from April 30, 1996, to June 4, 2017. The a,, (n even) coefficients) are a sensitive probe
of the symmetrical (about the equator) part of distortion described by Legendre poly-
nomials P, (cos 6). Results published by Kosovichev & Rozelot (2018a,b) showed that
the asphericity of the Sun dramatically changes from the solar minimum to maximum.
During the solar minimum (from 1996 to 1998) the asphericity was dominated by the P,
and Py terms, while the Pg contribution was negligible. It was shown that the ellipticity
of the Sun is strongly affected during the solar cycle. We will try here to better quantify
such temporal variations.

According to the von Zeipel’s theorem (1924), the solar-limb contours of temperature,
density, or pressure should be nearly coincident near the photosphere. Rotation, magnetic
fields, and turbulent pressure are the largest local acceleration sources that violate the
von Zeipel’s theorem Dicke (1970). Since (geometrical) asphericities are relatively small
in the Sun, we may describe the distance from the center, for instance, in terms of a
constant isodensity level, (or, similarly, in terms of isotemperature or isogravity) by:

R(c0s 0)|p—constant = Rap |1+ Y _ cn(Rap)Pr(cos 0) (2.1)

where Ry, is the mean limb contour radius, 6 the angle to the symmetry axis (colatitude),
and P, the Legendre polynomial of degree n. The asphericity is described by coefficients
¢n, which are called quadrupole for n = 2 (¢3) and hexadecapole for n =4 (¢4). Terms
of higher orders are conventionally named by adding “-pole” to the degree number. It is
straightforward to determine f from Eq. 2.1 by means of the asphericities coefficients,
co, ¢4 and cg, as f = _%CQ — 204 - %C(,.

The measured splitting coefficients a,, are related to the shape coefficients ¢, through
a normalization factor K. An efficient method for calculating this factor was developed
by Kuhn (1989) who showed that it was possible to invert the splitting data to obtain the
structural asphericity; he obtained a, = K¢, R, (¢). Assuming R,, = R, as this analysis
is conducted only very close to the surface (i.e. the seismic radius at the surface), the
corresponding average factors are:

as=—6x10"*caRyp; as=1x10""c4Ryp; ag=—14x 10" *cs Ry,

where the a,, frequency splitting coefficients are measured in Hz (Kuhn (1989)).
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Figure 1. Left: Solar oblateness f (left scale) and the solar sunspot number SSN (red, right
scale) as a function of time. A periodic oscillation appears, with two minima around 2000 and
2011 and two maxima around 2005 and 2016. Right: The difference between the equatorial and
polar radius Ar (in mas) versus the solar activity described by the sunspot numbers. A slight
anticorrelation is visible.
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Figure 2. Annual mean difference between the equatorial and polar radius Ar (in mas) versus
the solar activity during cycles 23 (left) and 24 (right). The two cycles show a different behavior:
a negative trend for cycle 23 and a positive one for cycle 24. (Source of the sunspot data:
WDC-SILSO, Royal Observatory of Belgium, Brussels).

3. Results

Results displayed in Fig. 1(left) show the solar oblateness f as a function of time from
1996 to 2017. A periodic oscillation appears, with two minima around the years of 2000
and 2011 and two maxima around 2005 and 2016. If these minima and maxima correspond
to the minima and maxima of the solar activity cycles, then there is a shift between the
asphericity and activity of around 3 years. Fig. 1(right) displays the difference between
the equatorial and polar radii, Ar, in millisecond of arc (mas) versus the solar activity,
the sunspot number taken as a proxy (Clette et al. 2016). In order to get a better view
of the two cycles that are significantly different in the level of magnetic activity, we
calculated variations of the Ar annual means separately for these cycles. The two cycles
show a different behavior as seen in Fig. 2, left panel for cycle 23 and right panel for cycle
24. Straight lines show a linear regression fit. A negative trend for cycle 23 is noticeable,
while a positive trend appears for cycle 24.

4. Conclusion

The analysis of the helioseismology data from the SoHO and SDO space missions
permits to determine accurately the splitting rotational coefficients together with the
structural shape parameters.

The preliminary results obtained here by averaging the f mode frequency variations
over two solar cycles for the whole observed angular degree range, { = 137-299, lead to
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a mean solar oblateness of f = 8.76 x1075. The mean structural asphericity coefficients
are respectively:

o =—117%x107% ¢,=242x107° and ¢g=—-5.03x 10"

These even splitting coefficients vary in time as they depend on latitudinal inhomo-
geneities caused by aspherical perturbations due to the solar rotation, magnetic fields
beneath the surface, and even temperature variations.

It is shown that the solar oblateness is time dependent. However, its variation is quite
complex, both in magnitude and time. If the solar oblateness shows a periodicity of about
11 years, it does not follow exactly the solar cycle. Currently, we have no explanation
for the ~3-year time lag of the flattering parameter f relative to the activity cycle,
bearing in mind that the as, as and ag coefficients are respectively shifted from the solar
cycle by around 0.1, 1.6 and —1.6 years (Kosovichev & Rozelot (2018a)). The significant
variations in time and the phase shifting according to the solar cycle activity (as seen
in Fig. 1) are probably two main reasons why the observational results from ground
based instruments, balloon flights and satellite instruments seem to be inconsistent. An
explanation has already put forward by Rozelot et al. (2009) by considering the temporal
variation caused by a change in the relative importance of the hexadecapolar and dipolar
terms. At the time of high activity, only the dipolar moment ¢y has a significant effect, but
at the time of low activity, ¢4 is predominant; this results in a decrease of the total value
of the oblateness. Contribution of the cg term is less important due its low magnitude,
but can be considered in a more detailed approach. Irbah et al. (2019) revisiting past
solar oblateness measurements concluded that the solar oblateness “variations are in
phase during odd cycles and anti-phase during even cycles”, but the situation seems to
be more complex.

Clearly, we are very close to having the required data and boundary conditions to
investigate deeper the solar shape structural coefficients and their changes during the
two solar cycle that are significantly different in the level of magnetic activity. Should
the solar oblateness be determined accurately from space, this could help to disentangle
the various contributions to the asphericity splittings of solar oscillation frequencies, and
get insight into the physical processes that may be at play in the leptocline.

The work was partially supported by the NASA grants NNX14AB7CG and
NNX17AET6A.
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Discussion

KRysTOF HELMINIA: About the radius variations -do we expect such variations in stars
with stronger magnetic fields, like late type dwarfs? Could such variations be stronger
and measurable?

JEAN PIERRE ROZELOT: Within the Sun, stronger magnetic fields lead to more important
radius variability, particularly just below the surface. We do expect the same for stars.
Measurements are still difficult as we don’t have yet accurate measurements devices.
That’s must be done in a next future.
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