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Introduction 
There have been several excellent reviews of observational helioseismology in recent years. 

These include the reviews by Harvey (1988), Libbrecht (1988), and van der Raay (1988) 
presented at a recent conference in Tenerife. The present effort will concentrate on the progress 
made on solar rotation recently. 

Basic Helioseismology 
The Sun is a resonant cavity that supports many (- 107) modes of oscillation. The modes 

that are most easily observed are the acoustic or p-modes. The eigenfunctions for these modes 
are: 

E = / „ ( r )Ylm(9,®ei2KV*-' 

fnl (r) is the radial part of the separable eigenfunction where r is the radial coordinate measured 
from the center of the star, n is the number of radial nodes in the eigenfunction. yfa(8,<|>) is 
the spherical harmonic function, where 8 is the colatitude and <)> is the longitude. The spherical 
harmonic degree / is the number of nodes of the spherical harmonic measured along a great cir­
cle that makes an angle cos-1( ) with the equator. The azimuthal order m is the number 

of nodes around the equator. The frequency of the eigenmode, v„/m , depends on the mode. 
Much of our information derived about the solar interior from helioseismology comes from the 
measurement of these frequencies. 

Some examples of the spherical harmonics for /= 40 and different m values are shown in 
Fig. 1. The limiting of these functions in latitude is not obvious at the lowest degrees. There is 
a term in the spherical harmonic function that multiplies the overall function that is sinm(0) . 
This term causes the latitudinal falloflf at high m values. So for the sectoral modes (m= I ), we 
are observing equatorially concentrated quantities, while for zonal modes ( m- 0 ), we have an 
approximately equal weighting in latitude. This is true both in latitude and in radius: we 
observe integral quantities with the integral extending over different ranges of the independent 
variable. To learn about a solar parameter versus depth or latitude requires an equivalent 
differentiation of the data, a somewhat noisy process. If the eigenfunction of a mode does not 
extend into a certain region, we cannot learn anything directly about the region from this mode. 
This is why it is difficult to learn much about the deep interior from p-modes as not many of the 
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modes extend into that region. 
The p-modes satisfy a dispersion relation that is best seen as an observational power spec­

trum ( Fig. 2 ). The m variation of power has been suppressed. The dispersion relation, which 
shows the frequency vnl versus / would consist of closely spaced dots along the "ridges" of 
power in Fig. 2. Each ridge corresponds to a constant value of n or radial harmonic. 

Fig. 1. Some examples of the spherical harmonic functions for degree / = 40. The white 
and black areas would correspond to receding and approaching areas in velocity observations. 
Note the increasing equatorial concentration as the azimuthal order m approaches its maximum 
value at / = m. 
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Fig. 2. This is a portion of the space-time spectrum of intensity oscillations of 50 hours of 
images from Duvall et al. (1987). 

Global modes 
Our use of the frequencies to infer properties about the solar interior depends critically on 

the assumption that the waves are giving a true global average of solar properties. This may not 
be true for all the waves that we observe. Which waves are global modes? If waves can travel 
a circumference coherently to interfere with themselves, then they are global. So, the lifetime 
must be greater than the travel time for a circumference. The energy from a wave will travel at 

a velocity given by the group velocity: —--= 2KR0—- . So the time to travel a circumference 
dk dl 

/? 1 1 
is T=2K——Q—=——-. If the frequency width of a feature is <—, then it will be global. Or, 

da/dk dv/dl T 
dv dv 

equivalently width < ——. —— is the frequency spacing between modes of the same n and adja-
dl dl 

cent degree /. In our observational spectra, we always have the modes from several adjacent / 
values in a single frequency spectrum because of our inability to see the back side of the Sun. 
The spherical harmonic functions are a complete set over the whole sphere. An example of a 
well-separated set of modes is shown in Fig. 3a. So the condition for waves to be global 
reduces observationally to the condition of being able to separate the adjacent I "sidebands". 
There are areas of the k-w diagram in which the modes are global as e.g. Fig. 3a. In addition, 
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there are currently observed areas where this is not the case. An example is shown in Fig. 3b, 
where we see the normal phenomenon of the mode width increasing with frequency. At lower 
frequency we are separating the adjacent /-values while at higher frequencies we are not. 

200 r—i—i—i—i—|—i—i i i | i i i i | i i i i |—i—i—i—r 

| 100-

2.75 2.8 

1987 South PoU spectrin 
301 i i i i i i i i i | i i i i i i i i i | i i i i i i i i i | i i i i i i i i i 

QI i i i _I_ . I . I i i i i i i i i i i i i i I i i i i i 11 i 
4.25 4.75 4.5 

frequency, ahz 

Fig. 3. Some examples of high resolution spectra at degree 50 from the data described by 
Jefferies et al. (1988). In a) we see a low frequency sprectral area where the spatial sidebands 
are well resolved. In b) we see the transition from resolving the spatial sidebands to not 
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resolving them as frequency increases. Both spectra have been averaged over the azimuthal 
order with rotation removed. In addition, the high frequency spectrum has been smoothed by 
convolution with a Gaussian of full width at half maximum of 5\iHz. 

Some care needs to be exercised in using results derived from such an area of the spec­
trum. The waves are not really a global average of solar properties but more of a local average 
over the observing aperture. Also for frequency estimation if the system response to adjacent 
degree modes is asymmetric ( which it often is ), then frequency estimates will be biased by the 
unequal weighting of the unresolved waves. This is a serious source of systematic error at high 
degrees, where the frequency separation of adjacent degree modes is small and unresolved in 
short observation sequences. 

To how high in degree are any waves global? This is a question for which we do not 
currently have a good answer, with a lower limit of /= 150 for the Antarctic data of 1987. This 
question is currently under active investigation by several observational groups. It is an impor­
tant question to answer for designing analysis techniques. If waves are not global, we may not 
need to go to the expense of computing a spherical harmonic decomposition at these degrees. 

Frequency estimation 
A problem that has not received enough attention from solar oscillation observers is the 

estimation of mode frequencies from the spectra that we observe. The problem has some subtle 
difficulties that are not always appreciated. The most important of these is probably that the 
statistics of the spectrum are not Gaussian. The standard deviation of the power at a certain fre­
quency is equal to the power at that frequency. This means that points with high signal should 
not have a very high weight as they are sometimes given. This problem of the statistics is 
sometimes ignored and a standard unweighted nonlinear leastsquares fit is made to a region of 
the spectrum to a line profile ( e.g. Libbrecht (1986), Lazrek et al. (1988)). There should not be 
any systematic errors associated with this procedure as long as lines are symmetric ( which is 
generally assumed anyway). The incorrect weighting will lead to random frequency errors that 
are larger than those given by an optimum technique. Also, some fitting algorithms will tend to 
settle on one sharp spike as being the profile in question as reported by Sorensen (1988). 

An advance was made in our understanding of the properties of the spectrum with the doc­
toral thesis of Woodard (1984). He showed that for the case of a harmonic oscillator excited by 
random noise that the power spectrum will be distributed as chi-square with two degrees of free­
dom, or that the distribution function at a given frequency of the power as measured in a large 
number of independent trials would be given by 

7<Po)=— e'""". 
Po 

p 0 is the mean or expectation value of the power that one would obtain from doing a large 
number of experiments and averaging the power spectra, p is the power in a given realization. 
He then showed that the observed spectra were consistent with this distribution. One conse­
quence of this is the innate uncertainty of mode frequencies. Even if there is no instrumental 
noise and no solar background at the frequency of the mode in question, there is still an uncer­
tainty in measuring the mode frequency because of the stochastic nature of the excitation pro­
cess. An approximate expression for this uncertainty is 
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where w is the fwhm of the mode and T is the length of the observing sequence. This leads to 
nonnegligible errors. As a concrete example, consider w = l\iHz,T = 90days. The result is 
o = 0.1\JJJZ. For long observing sequences, this noise source, which we might call realization 
noise, dominates in many situations according to the simulations of Duvall and Harvey (1986). 
p0 is a function of frequency in our spectra with Lorentzian profiles representing the modes on 
top of an underlying smooth background. 

The Lorentz profile is the one expected for a harmonic oscillator excited by random noise. 
To date there has not been a good observational demonstration that this is the correct profile to 
use. A logical consequence of the random oscillator model is that the power and phase are ran­
dom from point to point in the observed spectrum (Jenkins and Watts, 1968) at frequencies 
separated by at least VT where T is the length of the time series. This will not be exactly true 
for gapped data sets. A way to simulate an observed power spectrum is then to assume a mean 
or expected spectrum and then at each "observed" frequency to pick a random number con­
sistent with the above distribution. An example of a simulated realization and its associated 
expectation value are shown in Fig. 4 from Woodard (1984). 

8 

4 8 
v (uHz) 

Fig. 4. A simulated mode ( the histogram ) along with its limit spectrum (the smooth 
curve). The power is independent from point to point with only a statistical relation to the limit 
spectrum. If one did a large number of realizations and averaged the power spectra, the limit 
spectrum would result. 

The problem we would normally like to solve is to estimate the parameters of the 
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underlying mean spectrum given a realization. The maximum likelihood technique described by 
Duvall and Harvey (1986) is a good way to do this. If we consider the mean spectrum as a 
function of frequency Po(v) to be a sum of Lorenztians plus background of unknown parame­
ters, we can then construct the joint probability density that we would observe the spectrum that 
we did as the product of individual probabilities of the form shown above: 

p(V.) 

-Zi-^-rT+topoCv.)] 

The method then consists of maximizing this probability distribution or likelihood function as a 
function of the parameters describing the spectrum. Maximizing the likelihood function is 
equivalent to minimizing the negative of the argument of the exponential: 

P(v.) 

,• Po\vi) 

The above function is minimized using standard techniques. 

Solar Rotation 
If the sun were spherically symmetric and nonrotating, its mode frequencies would be 

independent of the azimuthal order m. Fortunately for helioseismologists this is not the case as 
it permits some of the most interesting inferences about the solar interior. The solar rotation is 
the largest departure from sphericity in its effect on the mode frequencies. The largest part of 
the frequency shift is due to the advection of the mode. That is, the mode is fixed to the rotating 
sun and the observer sees the pattern moving. This causes a Doppler shift of the mode's fre­
quency which varies linearly with the azimuthal order m. The mode is advected at a rate which 
depends on the rotation rate in the region in which it is concentrated. By examining modes 
with different radial and latitudinal regions of concentration, we can leam about the rotation 
versus depth and latitude in the solar interior. 

Observationally we express the variation of frequency in a multiplet ( fixed n,/, varying m 
) as a Legendre polynomial series: 

vnIm-vnl=V^piPi(-m/L), 

where /»,- is the Legendre polynomial and L = V/(/+l). Some observers use / instead of L in 
this relation with the result being small differences in the at's. The odd terms in this sum yield 
the direct effect of solar rotation while the even terms contain information about latitudinal vari­
ation of the mean structure and about internal magnetic fields. 

The coefficient of the first term, a lt is by far the largest coefficient, being about a factor of 
20 larger than the next largest, a3. It signifies roughly a latitudinal average of the rotation. If 
the rotation were only a function of depth, it would be the only nonzero coefficient. The next 
odd coefficient, a3, is a measure of latitudinal differential rotation. a5 is similarly a measure of 
latitudinal differential rotation but is somewhat smaller than a3 and is not well determined as 
yet. 

The a; coefficients have been measured by a number of observers in the intermediate 
degree range of / = 10-60 ( e.g. Libbrecht (1988) and Brown and Morrow (1987)). The results 
have led to a consistent picture of the internal rotation versus depth and latitude for the outer 
half by radius of the sun. In this picture, the rotation is constant with depth and latitude 
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throughout the convection zone and the decrease of rotation rate between equator and pole of 
20% that we see at the surface persists throughout the convection zone. Below the convection 
zone is a transition zone of depth at most 0.1/? 0 ( i t has not been resolved yet; Christensen-
Dalsgaard and Schou (1988)). Below this depth the sun rotates as a solid body: no differential 
rotation in latitude or depth. 

To see how well ( or not) this model compares to the results, it is useful to consider the 
"forward" problem. That is, given a model of the interior rotation, what values of the a,- will 
we observe? Morrow (1988) has considered several interesting cases which I will show here. 
In all of these figures the calculations are compared with the data of Brown and Morrow (1987). 
The variation of the a,- is shown versus the degree / of the mode which is a proxy for depth, 
lower / corresponding to larger depths. 

A model of the rotation in the solar interior that has received much attention is the fluid 
dynamic calculation of Gilman (1977), Gilman and Miller (1986), and Glatzmaier (1987). This 
model suggests that the rotation of the convection zone should be constant on cylinders. In Fig. 
5, we show (following Morrow (1988)) a comparison of the ava3anda5 coefficients for a model 
with constant rotation on cylinders (the bottom curve). The top curve in this figure is a model 
with rotation constant with depth in the convection zone but having the surface latitudinal 
differential rotation. The model with rotation constant with depth but with normal surface lati­
tudinal differential rotation obviously fits the data pretty well while the rotation constant on 
cylinders model is inadequate. It is on the basis of this figure that rotation constant on cylinders 
is considered to be excluded by the helioseismic data. 
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Fig. 5. The odd rotation coefficients a,- for models with rotation constant on cylinders ( 
bottom curve for a x), rotation constant with radius throughout the convection zone (top curve 
for a j ) , and intermediate models from Morrow (1988). 

https://doi.org/10.1017/S0252921100067981 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100067981


261 

The approximate constancy with the degree of the mode / of the a j coefficient suggests 
that the rotation averaged over latitude is approximately constant. This point is brought home 
clearly in Fig. 6 from Morrow (1988) which shows several models compared that all have 
differential rotation only in latitude in the convection zone and rotation constant in latitude and 
depth below this level but at a rate that varies from model to model. The center rate is near the 
value derived for the correct latitudinal averaging to get a constant a j . 
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Fig. 6. The odd rotation coefficients a, for models in which the rotation in the convection 
zone is independent of radius and has the same latitudinal structure as the surface but the inte­
rior constant rotation rate is varied for the different models. The rate is varied by 11% of the 
mean value between the bottom and top curves for a t. 

The depth at which the rotation switches from surface latitudinal differential rotation to 
constant rotation in latitude is investigated in Fig. 7 again from Morrow (1988). a3 is seen to 
be the sensitive parameter in this case. As the depth of the rotation transition is varied over a 
total range of 0.25 R0, a3 varies by an amount that is distinguishable by the data. The top 
curve corresponds to a deeper region of latitudinal differential rotation. 

https://doi.org/10.1017/S0252921100067981 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100067981


262 

480 

460 

440 

420 

al 

!&&%*&" ^*&k W* w 

25 50 75 100 
ANGULAR DEGREE OF SPHERICAL HARMONIC L 

Fig. 7. Rotation coefficients for models in which the depth of the convection zone is 
varied. The bottom curve for a3 is for the shallowest convection zone. 

These curves show that we can make some pretty strong statements about the solar interior 
rotation, at least over the outer half of the sun by radius. The convection zone does not have 
rotation constant on cylinders but the rotation looks much as it is at the surface. The rotation 
immediately below the differentially rotating layer is constant with latitude at a rate that 
corresponds to about 30 degrees latitude. The actual depth at which the transition occurs 
between differential and rigid rotation is somewhat uncertain because of slight differences in the 
results of different observers. The current results should provide significant input to workers 
studying the solar dynamo. 
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