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2.1 Introduction

Squamata, the group that encompasses snakes, lizards, and amphisbaenians, is the largest
(>10,500 sp.) and most disparate group of modern reptiles. Extant squamates are distrib-
uted over all but the coldest parts of the world; range in size (snout–vent length, SVL) from
millimetres to metres; and show a diversity of diets, shapes, locomotor patterns, and
reproductive strategies. Snakes (Serpentes) account for roughly 35 per cent of all extant
squamate species and their origin and relationships, which have long intrigued herpetolo-
gists, are the focus of this volume. This chapter aims to provide a foundation for subsequent
chapters, by reviewing what is currently known of the early stages of squamate evolution
and diversification.
Most researchers recognize eight extant major squamate clades (Fig. 2.1): Dibamidae;

Gekkota; Scincoidea (=Scinciformata [1]), encompassing Xantusiidae, Scincidae, and
Cordyliformes; Lacertoidea (=Laterata [1]), encompassing Lacertidae and Teiioidea;
Amphisbaenia; Iguania; Anguimorpha; and Serpentes. Although Camp [2] considered
Gekkota to be primitive squamates (part of his Ascalabota), the first comprehensive
cladistic analysis [3], based on morphological characters, placed Iguania as the sister group
of other squamates (Scleroglossa). Within Scleroglossa, Estes et al. [3] united Scincoidea +
Lacertoidea in Scincomorpha, and Scincomorpha + Anguimorpha as Autarchoglossa. The
position of three limb-reduced clades, Dibamidae, Amphisbaenia, and Serpentes, was
unresolved within Scleroglossa. The topology of Estes et al. [3] remained the working
hypothesis for most herpetologists until 2004 with the publication of phylogenies based
on molecular data [4, 5]. The molecular trees placed Gekkota rather than Iguania as the
sister group of other squamates (invalidating Scleroglossa), with Scincoidea, and then
Lacertoidea (including Amphisbaenia) as successive outgroups to a Toxicofera that
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Figure 2.1 Molecular time tree for Squamata, redrawn and simplified from Jones et al. [14], showing
putative early representatives of major clades discussed in the text. (1) Eichstaettisaurus
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encompassed Iguania, Anguimorpha, and Serpentes [1]. Although morphological data sets
(e.g., [6]) tend to replicate the Estes et al. [3] tree, subsequent molecular and combined
evidence analyses [7–13] agree with those of Townsend et al. [4] and Vidal and Hedges [5].
The molecular tree is therefore used as the phylogenetic framework herein (Fig. 2.1).

2.2 The Early Squamate Fossil Record

Within Lepidosauria, Squamata is the sister group of Rhynchocephalia. Rhynchocephalia is
represented today only by the genus Sphenodon (New Zealand), but the group has a
relatively good fossil record through much of the Mesozoic. The occurrence of a primitive
rhynchocephalian in the Middle Triassic of Germany [14] provides a latest possible age for
the division of the lepidosaurian stem, although that division, and thus the origin of
Squamata, probably occurred in the Early Triassic [12, 14]. However, although there are
many records of Triassic rhynchocephalians, there are currently no unequivocal records of
Triassic squamates. Those described last century have all been re-assigned to other reptile
groups or to the lepidosaurian stem [15, 16].
Tikiguana estesi, represented by a single jaw with an acrodont dentition collected from

Upper Triassic deposits in India [17], was shown to be a modern intrusion [18]. More
recently, Simões et al. [19] placed three monotypic genera, Sophineta cracoviensis (Lower
Triassic, Poland, [20]), Megachirella wachtleri (Upper Triassic, Italy [21]), and Marmoretta
oxoniensis (Middle Jurassic, UK [22]) into Squamata. However, re-analyses, based on new
data for Marmoretta [23], do not support a squamate attribution for either Marmoretta or
Sophineta, and leave the position of Megachirella as equivocal.
Paikasisaurus indicus is based on two jaw fragments from the Lower–Middle Jurassic

Kota Formation of India [24]. The designated holotype bears two teeth, neither of which is
obviously pleurodont, whereas the referred specimen bears a single tooth with little
resemblance to that of the holotype. Bharatagama rebbanensis, also from the Kota
Formation, is represented by multiple jaws bearing both pleurodont and acrodont teeth
[25]. It was described as a possible acrodont iguanian but could also be an aberrant
rhynchocephalian [18, 26].
The earliest unequivocal squamates are from the Middle Jurassic (Bathonian) of the

United Kingdom, Russia, Kyrgyzstan, and Morocco. One of the most productive Bathonian

Figure 2.1 (cont.) (Upper Jurassic, Germany); (2) Hoburogekko (Lower Cretaceous, Mongolia);
(3) Paramacellodidae and Saurillodon (Upper Jurassic, Portugal); (4) Asagaolacerta, Kuwajimalla,
Polyglyphanodontia (Lower Cretaceous, Japan); (5) Purbicella (Lower Cretaceous, UK); (6) Kaganaias
(Lower Cretaceous, Japan); (7) ‘Coniophis’ (Albian-Cenomanian, North America) and terrestrial +
aquatic snakes (Albian-Cenomanian, Algeria); (8) Dalinghosaurus (Lower Cretaceous, China);
(9) Dorsetisaurus (Upper Jurassic to Lower Cretaceous, Pan-Laurasia); (10) ?Xenostius (Early
Cretaceous, Mongolia); (11) Primaderma (Albian–Cenomanian, North America); (12) ?Hoyalacerta
(Early Cretaceous, Spain). See Supplementary Figure 2.S1 for terminal taxon labels in full. (A black
and white version of this figure will appear in some formats. For the colour version, please refer to the
plate section.)
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localities has been Kirtlington Quarry (UK, [27, 28]). In addition to the lepidosauromorph
Marmoretta, Kirtlington yielded five named squamate genera: Balnealacerta, Bellairsia, cf.
Saurillodon, Oxiella, and Parviraptor. Squamate bones were also reported from roughly
contemporaneous deposits on the Isle of Skye, Scotland [23], and new fieldwork on Skye
has yielded both isolated elements and associated material, including specimens referable
to the Kirtlington genera Balnealacerta, Bellairsia, and Parviraptor [29]. These specimens
both validate the original associations [27, 28], contra Caldwell et al. [30], and add new
morphological data for phylogenetic analysis. Work on this material is in progress, but it
highlights the clear morphological gap between lepidosaurian stem taxa, like Marmoretta,
and squamates from the Middle Jurassic onward that show derived features including
biradiate squamosals, loss of quadrate–pterygoid fixation, loss of quadratojugal, a synovial
epipterygoid–pterygoid joint, and subdivision of the metotic fissure in the braincase.
Among other Middle Jurassic records, Changetisaurus estesi (Bathonian, Kyrgyzstan [31])

is a partial skeleton attributed to Squamata, but it requires re-study. Squamate remains are
also recorded from the Bathonian Berezovsk Mine, western Siberia (a possible
paramacellodid, two ‘scincomorphs’: [32]) and from similar aged deposits in Morocco
(‘scincomorphs’, ‘Parviraptor-like’ taxon [33]). An osteoderm-covered lizard was briefly
described from Callovian–Oxfordian age deposits at Shishougou (Junggar Valley, China
[34]), but a detailed description and analysis has yet to be published. Roughly contempor-
aneous deposits at Daohugou, Chinese Inner Mongolia, have also yielded associated lizard
skeletons, one of general proportions and the other with elongate limbs [35, 36], but both
are immature and the preservation is poor. More recently, however, a complete lizard
skeleton was recovered from Daohugou equivalent deposits at Guancaishan, Liaoning
Province (Hongshanxi xiei, [37]).
Moving into the Upper Jurassic, squamate material is known from several additional

Laurasian localities, notably: Portugal (Oxfordian, Guimarota [38]), Kazakhstan (Oxfordian–
Kimmeridgian, Karabastau Formation [39]), North America (Kimmeridgian, Morrison
Formation [40–42]), Germany (Tithonian, Solnhofen and neighbouring localities [26, 43–48]
and France (Kimmeridgian, Cerin [49]). Unfortunately, the only contemporaneous
Gondwanan record is a ‘paramacellodid’ osteoderm from the Tendaguru Formation of
Tanzania [50], but this identification is unconfirmed.
The squamate fossil record improves substantially in the Early to Middle Cretaceous (i.e.,

Berriasian–Cenomanian), with specimens from Europe, Africa, the Middle East, Asia, and
the Americas. Concurrent with this apparent global expansion, Early Cretaceous
(Barremian) specimens include some of the first known occurrences of squamate gliding
[51], body elongation with limb reduction [52], viviparity [53], herbivory [54], and specialist
climbing [55, 56].

2.3 The First Records of Crown-Group Squamates

Most recent molecular divergence estimates date the first radiation of crown-group
squamate lineages to the Early–Middle Jurassic [12–14], with further splitting of major
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lineages in the Late Jurassic. As yet, however, none of the known Middle Jurassic taxa, and
relatively few of those from the Late Jurassic, can be placed unequivocally into crown
lineages (Fig. 2.1). There is some improvement in the Early Cretaceous, but many lizards
from this period are phylogenetically problematic and behave as wild cards in analyses.

2.3.1 Gekkota

Given that gekkotans are now considered to be one of the first of the major branches to
diverge from the ancestral crown squamate, they should be well represented in early
squamate assemblages. Their apparent absence could be due to preservational or
ecological constraints, or a failure of identification due to a lack of distinctive gekkotan
characters in their early history. Several Late Jurassic and Early Cretaceous genera (notably
Ardeosaurus, Bavarisaurus, Eichstaettisaurus, Palaeolacerta, Yabeinosaurus) were originally
attributed to Gekkota (e.g., [44]), but a majority of these have been re-assigned. One
exception is Eichstaettisaurus (Upper Jurassic, Germany [43]; Lower Cretaceous, Spain,
Italy [57, 58]) which is frequently placed on the gekkotan stem (e.g., [6, 12, 59]), albeit with
limited evidence. The first unequivocal stem gekkotan is Hoburogekko suchanovi (Aptian–
Albian, Höövor, Mongolia [60, 61]) although Norellius nyctisaurops (Aptian–Albian,
Mongolia [62, 63]) has also been assigned to Gekkota (e.g., [12], but see [9]), based primarily
on the combination of notochordal vertebrae and paired parietals. In recent years,
Cretaceous amber has offered an important window into gekkotan history because it is
able to preserve small, delicate skeletons, often with exquisite soft tissues (e.g.,
Cretaceogekko burmae [56]). The Albian–Cenomanian amber deposits of north-western
Myanmar are particularly rich in gekkotans and stem gekkotans from a rarely sampled
tropical forest ecosystem [64, 65].

2.3.2 Dibamidae

The phylogenetic position of this small, specialized, and biogeographically disparate clade
(Dibamus, South East Asia, New Guinea, Philippines; Anelytropsis, Mexico) has long been
problematic (e.g., [3, 66]). Molecular analyses have provided greater clarity but there
remains uncertainty as to whether dibamids are sister to all other squamates including
gekkotans [10, 11], to gekkotans alone [13], or to all squamates except gekkotans [12].
Unfortunately, the group has no Mesozoic record. The only putative fossil dibamid is
Hoeckosaurus mongoliensis from the Oligocene of Mongolia [67].

2.3.3 Scincoidea

Estes et al. [3] grouped scincoids and lacertoids within Scincomorpha. Consequently, many
fossil lizard remains are classified simply as ‘scincomorphs’, making them difficult to
attribute to any clade. Scincoidea is probably represented by the Jurassic–Cretaceous
Paramacellodidae [68] with their body covering of rectangular osteoderms, and possibly
by short-jawed Jurassic–Cretaceous taxa like Saurillodon (Fig.2.1). Saurillodon
(S. proraformis, S. henkeli) was first described from Guimarota (Oxfordian, Portugal) based
on short robust dentaries with a few large conical teeth [38, 69], resembling the jaws of
limb-reduced modern scincids and amphisbaenians. Similar jaws were reported from
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Anoual (Lower Cretaceous, Morocco, Tarratosaurus anoualensis [70]) and from Kirtlington
(Middle Jurassic, UK [28]). The Kirtlington specimens were referred to Saurillodon, and
tentatively associated with unusual elongated vertebrae. If the association is correct, then
this Middle Jurassic taxon would be of considerable interest as an early long-bodied, and
presumably limb-reduced, squamate. Balnealacerta, also from Kirtlington [28] was attrib-
uted to Paramacellodidae based on similarities in jaw and tooth structure, as were dentaries
from contemporaneous localities on Skye [23]. However, no osteoderms were recovered
from among the many kilos of residue from Kirtlington sorted by the author, nor are they
known from Skye (e.g., in association with the new material of Balnealacerta [29]), and
therefore attribution of these Middle Jurassic remains to Paramacellodidae remains tenta-
tive. Nonetheless, paramacellodids (including osteoderms) are recorded from Upper
Jurassic deposits including those from Guimarota (Oxfordian [38, 71]), Kazakhstan
(Kimmeridgian, Sharovisaurus [39]), and the Morrison Formation, USA (Kimmeridgian
[40, 41]), as well as from the Lower Cretaceous of the United Kingdom [72], China [73],
Russia [74], Spain [75], Morocco [75], and North America [76]. Most recently, a partial lizard
skeleton, Neokotus sanfranciscanus (Valanginian, Brazil), was described as a possible
Gondwanan paramacellodid [77], but no osteoderms are associated with the skeleton and
the attribution is based mainly on dental morphology.
Other than paramacellodids, the well-preserved Tepexisaurus tepexii (Albian, Mexico

[78]) may also be a scincoid [6], but other attributions have less support. Talanda [48]
argued that Ardeosaurus (Upper Jurassic, Germany) was a scincid, but this was based on an
interpretation of cranial ornamentation as representing compound osteoderms. By con-
trast, Simões et al. [47] recovered Ardeosaurus as a gekkotan, whereas other researchers
(e.g., [12]) found Ardeosaurus to be a wild-card taxon in analyses. Finally, Calanguban
alamoi is known from a poorly preserved skeleton from Brazil (Aptian–Albian, Crato
Formation [79]). It was recovered within Cordyliformes in an analysis using the Conrad
[59] matrix, but unresolved using Gauthier et al.’s [6] matrix. Neither analysis attempted to
use a molecular constraint.

2.3.4 Lacertoidea

Lacertoidea encompasses lacertids, amphisbaenians, teiids and gymnophthalmids, and
may be represented by Purbicella ragei from the Lower Cretaceous of England
(Berriasian, Purbeck Limestone Group [80]). Meyasaurus spp. (Barremian, Spain) was
proposed to lie on the teiioid stem by Evans and Barbadillo [81], but within anguimorphs
by Richter [82] and Conrad [59]. Tijubina pontei (Aptian–Albian, Crato Formation, Brazil)
was originally attributed to Teiidae [83], but subsequent researchers either failed to place it
securely within the squamate crown [84, 85] or suggested that it and a second Brazilian
species (Olindalacerta brasiliensis [86]) might be polyglyphanodonts [79]. Until recently,
Polyglyphanodontia were classified as teiioids (e.g., [68, 87, 88]), a position also recovered
by Pyron [12] using a combined morphological [59] and molecular matrix. However,
Gauthier et al. [6] recovered polyglyphanodonts on the stem of ‘Scleroglossa’, whereas
Pyron [12], combining the Gauthier et al. [6] matrix with a molecular dataset, found
polyglyphanodonts to be the sister group of Iguania. The position of this large and
important fossil group therefore remains problematic, but it is attributed to Teiioidea in

12 SUSAN E. EVANS

https://doi.org/10.1017/9781108938891.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108938891.004


Figure 2.1. The earliest attributed polyglyphanodonts are Kuwajimalla kagaensis [54] and
Asagaolacerta tricuspidens [89] from the Tetori Formation (Barremian–Aptian, Japan). An
unnamed lizard specimen preserved in amber (Albian–Cenomanian, Myanmar) was also
described as a crown lacertoid [64], but this attribution was based primarily on comparison
with polyglyphanodonts.
Molecular divergence estimates (e.g., [12]) date the separation of stem amphisbaenians

and lacertids to the Late Jurassic–Early Cretaceous, but the earliest unequivocal record of
amphisbaenians is from the Palaeocene [90]. Hodzhakulia magna (Albian, Uzbekistan [91];
Mongolia [92]) and Sineoamphisbaena hexatabularis (Santonian–Campanian, China [93])
were originally classified as stem amphisbaenians, but Hodzhakulia is fragmentary (‘scin-
comorph’ [92]) and Sineoamphisbaena may be related to polyglyphanodonts [12]. The
limb-reduced Slavoia darevskii has also been proposed as a candidate stem amphisbaenian
[94]. The type material is from the Campanian of Mongolia, but older ‘slavoiids’ were
reported from the Albian Mongolian locality of Höövor [95].

2.3.5 Anguimorpha

Parviraptorids (Middle Jurassic–Early Cretaceous, UK [27]) were originally attributed to
Anguimorpha, based on jaw and tooth morphology. This attribution will be tested by
new, in progress, analyses based on associated material from Skye (Middle Jurassic). The
Middle Jurassic Changetisaurus (Bathonian, Kyrgyzstan) was also attributed to
Anguimorpha [31], but this taxon needs re-examination. Currently, the earliest generally
accepted anguimorph is Dorsetisaurus purbeckensis. As its name suggests, this taxon was
first described from the Lower Cretaceous (Berriasian) Purbeck Limestone Group of
England [72], but dorsetisaurs have subsequently been reported from the Upper Jurassic
of Portugal (Guimarota, Oxfordian [38, 71] and the USA (Morrison Formation,
Kimmeridgian [40], as well as the Early Cretaceous of Mongolia (Aptian–Albian,
Paradorsetisaurus postumus [96] (Fig. 2.1). Additionally, a small lizard skeleton
(Indrasaurus wangi [97] found as gut contents within an Early Cretaceous Chinese
Microraptor has a dorsetisaur-like dentition and may be related to dorsetisaurs.
Further anguimorph taxa are recorded from the Lower Cretaceous of Mongolia (Aptian–

Albian, Xenostius futilis, crown xenosaur [95]); Uzbekistan (Albian, xenosaur [98]); Thailand
(Barremian, eggs with embryos [99]); China (Barremian, Dalinghosaurus longidigitus, stem
shinisaur [100]); North America (Albian–Cenomanian, Primaderma, stem monstersaur
[101, 102]); England (Wealden, indet. [103]); and Spain (Barremian–Aptian, Arcanosaurus
ibericus, ‘varanoid’ [104]), although many of these records are based on isolated elements.
The tiny attenuate Barlochersaurus winhtini from the mid-Cretaceous amber of Myanmar
was also tentatively attributed to Anguimorpha [105], but a more mature specimen is
needed to verify this because the skull is poorly preserved.
The relationships of mosasaurians, also frequently grouped within Anguimorpha, are

discussed separately (§ 2.3.7).

2.3.6 Iguania

This major squamate clade, comprising both pleurodont and acrodont jawed taxa, is first
recorded with certainty from the Late Cretaceous (e.g., Mongolia, North America [68]. Some
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analyses (e.g., [59]) recovered Hoyalacerta sanzi, a short-limbed lizard from the Lower
Cretaceous of Spain (Barremian, Las Hoyas [106]) on the iguanian stem but further
specimens are needed to test this attribution. Conrad [59] also recovered the enigmatic
Huehuecuetzpalli mixtecus (Albian, Mexico [107]) as a stem iguanian, although other
researchers (e.g., [6, 107]) inferred that it lies on the squamate stem. Huehuecuetzpalli
combines primitive characters (e.g., notochordal vertebrae, trunk intercentra, retained
second distal tarsal) with derived ones (e.g., retracted nares, anterior parietal foramen).
A stem-iguanian position was also recovered by Pyron [12], evaluating both the Conrad [59]
and the Gauthier et al. [6] matrices using time calibration and combined evidence. Such
major inconsistencies in tree position are, unfortunately, rather common for Jurassic–Early
Cretaceous taxa.
Xianglong zhaoi, a gliding lizard from the Lower Cretaceous (Barremian) of China was

described as an acrodontan [51], but this was based on the misinterpretation of the jagged
broken edge of the crushed juvenile skull as an acrodont jaw (pers. obs.). Its affinities
remain unknown. The Albian–Cenomanian amber of Myanmar has also yielded possible
acrodontans [64], but this attribution is based on postcranial material and needs to be
confirmed from well-preserved skulls. A stem chameleon described from the same deposits
[64] is actually an albanerpetontid amphibian [108]. Jeddaherdan aleadonta, a partial
dentary from the Cenomanian of Kem Kem, in Morocco, is possibly an early acrodontan
[109], but Gueragama sudamerica (Turonian–Campanian, Brazil [79]) is a partial dentary
with teeth like those of scincoids or teiids, and is unlikely to be an acrodontan as proposed.

2.3.7 Mosasauria

This group encompasses the Mosasauroidea (Late Cretaceous mosasaurs and aigialosaurs),
and several smaller, long-necked, long-bodied taxa (‘dolichosaurs’) from the Early–Late
Cretaceous. Mosasaurians are included briefly in this review chapter for completeness (see
the relevant chapters in this volume for a more detailed discussion).
Generally considered close relatives of varanids and/or lanthanotids within

Anguimorpha (e.g., [110, 111; Chapter 9]), several subsequent cladistic analyses distanced
mosasaurians from varanids, albeit to varying degrees (e.g., [6, 112–114]). The proposal that
mosasaurians were closely related to snakes (e.g., [113, 115, 116] and subsequent papers by
the same authors and their collaborators) led Lee and Caldwell [117] to resurrect Cope’s
[118] name Pythonomorpha for their mosasaurian + snake clade, and generated the
associated, and more controversial, suggestion of a marine origin for snakes [117, 119]
(see also Chapter 7).
There is general agreement as to the monophyly of Mosasauroidea, but not of

Aigialosauridae ([113] versus [115, 120, 121; Chapter 8]). Both groups have their earliest
representatives in the Cenomanian [122]. ‘Dolichosaurs’ are more problematic, mainly
because their skulls are poorly known. Recent papers, often with overlapping groups of
authors, disagree as to whether ‘dolichosaurs’ are monophyletic (e.g., [123; Chapter 9]) or
paraphyletic (e.g., [122, 124]), how they are defined and diagnosed (contrast [125] with [123,
124]), and whether they are closer to snakes (forming the Ophidiomorpha of [122, 125]) or
to mosasauroids [123]. Most ‘dolichosaur’ genera were recovered from shallow marine
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deposits associated with either the remnant Tethys seaway (Slovenia, Croatia, Kazakhstan,
Lebanon, Palestine, United Kingdom, Germany, France, Spain) or the Western Interior
Seaway (North America) [122]. However, the earliest accepted ‘dolichosaurs’ are from
freshwater deposits: in Spain (Barremian, vertebrae originally identified as snake [126]),
Japan (Barremian–Albian Kaganaias [52]); and Australia (Albian [127]). The enigmatic
snake-like Tetrapodophis amplectus (Albian, Brazil [128]), also from a freshwater deposit,
was recovered by Paparella et al. [123] on the stem of a Mosasauroidea + Dolichosauridae
clade that is proposed to be the sister group of snakes (see also Chapter 8).

2.3.8 Pan-Serpentes

The morphological specializations of the snake skeleton and the lack of early fossil repre-
sentatives have hampered attempts to resolve the relationships of snakes to extant lizards.
McDowell and Bogert [110] argued that snakes were related to anguimorphs, particularly
varanids and/or lanthanotids, and several cladistic analyses (e.g., [115, 116, 123, 124, 129])
supported this (snake–mosasaurian relationships notwithstanding). However, convergence
between snakes and other limbless squamates (e.g., amphisbaenians, dibamids, limbless
scincids, and anguids) tends to confound analyses based solely on phenotypic data (e.g., [6,
59, 116, 130]), leading to artificial groupings. Molecular and combined evidence analyses
avoid this problem, and unite Serpentes, Anguimorpha, and Iguania within Toxicofera (e.g.,
[1]). Most analyses find Serpentes + [Iguania + Anguimorpha] (e.g., [1, 8, 10, 11, 13, 131])
but the sister-group relationship between Iguania and Anguimorpha is not strongly sup-
ported. Furthermore, this does not resolve the position of mosasaurians with respect to
snakes, because their common placement within an extended Anguimorpha (e.g., [115,
116, 123, 124, 132]) is incompatible with the molecular results. Pyron [12] ran combined
evidence analyses using either the matrix of Conrad [59] or that of Gauthier et al. [6] for the
morphological component. Predictably, he obtained very different results. His optimal tree
for the Conrad matrix placed mosasaurians as sister to varanids (i.e., within Anguimorpha)
and only distantly related to snakes, whereas the equivalent tree for the Gauthier et al. [6]
matrix placed mosasaurians as the sister group of snakes, as did Reeder et al. [9] (see
Augusta et al. and Zaher et al., this volume, for further discussion of snake and mosasaurian
relationships).
The first unequivocal snake fossils are isolated vertebrae from the Lower Cretaceous of

Algeria (Albian–Cenomanian [133, 134]), reportedly from both terrestrial (Lapparentophis
sp.) and aquatic taxa [135], and isolated vertebrae referred to ‘Coniophis’ sp. from North
America (terrestrial, Aptian–Cenomanian [136]). A much more extensive suite of snake
fossils is recorded from the Cenomanian. This Cenomanian record is dominated (and
biased) by aquatic taxa from the widespread shallow marine deposits of this period, notably
the simoliophiids (or pachyophiids; see Zaher et al., this volume): Simoliophis spp. (France,
Portugal, Egypt, Morocco, western Europe and North Africa [135, 137]), Pachyophis
woodwardi (Bosnia-Herzegovina [138]), Pachyrhachis problematicus (Palestine [139–142]);
Eupodophis descouensi (Lebanon [143]), and Haasiophis terrasanctus (Palestine [144]), as
well as the enigmatic aquatic Lunaophis aquaticus (Venezuela [145]). The current
Cenomanian record of terrestrial snakes is more limited, but this is likely to be a gross
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underestimate considering the global distribution of these taxa: Pouitella pervetus (France
[146]), Xiaophis myanmarensis (Myanmar [147]), Najash rionegrina (Argentina [148, 149]),
Seismophis septentrionalis (Brazil [150]), and Norisophis begaa (Morocco [151]).
Snakes had clearly diversified, both ecologically and geographically, by the mid-

Cretaceous. This is consistent with molecular divergence estimates that place the separ-
ation of stem snakes from other toxicoferans during the Jurassic (e.g., [10, 12]).
Nonetheless, there remains a significant gap in the fossil record. Filling this gap, Caldwell
et al. [30] re-interpreted specimens referred to the Middle Jurassic–Early Cretaceous lizard
Parviraptor [27] as stem snakes. Based only on jaw fragments, Caldwell et al. [30] named
Eophis underwoodi (Middle Jurassic, UK, dentary symphysis), Diablophis gilmorei (Upper
Jurassic, Morrison Formation, USA, maxilla), and Portugalophis lignites (Upper Jurassic,
Portugal, maxilla). However, this revision excluded most of the non-dental elements
originally attributed to Parviraptor [27], based on the claim that Parviraptor as originally
described was a chimaera of several different lizard taxa. New associated parviraptorid
material from the Middle Jurassic of Skye confirms the original attribution of elements, both
the preserved association on the Lower Cretaceous holotype block and the inferred associ-
ation from Kirtlington (Middle Jurassic). These elements include paired frontals and
parietals, the latter enclosing a parietal foramen, short palatines, and vertebrae that are
notochordal and amphicoelous in immature individuals, becoming procoelous with matur-
ity [27]. Work on the new Skye material and other parviraptorids is ongoing but Parviraptor
as originally diagnosed is not a chimaera, and phylogenetic analyses must therefore include
all of the attributed skeletal elements, rather than selecting only those (maxillae, dentaries)
consistent with a particular hypothesis. Preliminary analyses (work in progress) do not
support the inclusion of parviraptorids within Pan-Serpentes, and the Middle Jurassic age
of the first recorded parviraptorid should therefore not be used to date snake origins in
molecular divergence estimates (e.g. [152]).

2.4 Discussion and Conclusion

Although the squamate stem probably extended back into the Early Triassic, morphologic-
ally diagnosable squamates are currently unknown prior to the Middle Jurassic of Eurasia
and North Africa. Molecular divergence estimates predict that major squamate clades had
arisen by this time but, as yet, none of the currently known Middle Jurassic squamates can
be placed confidently into the crown. A few Late Jurassic taxa, notably the dorsetisaurs
(Anguimorpha), the paramacellodids (Scincoidea), and perhaps Eichstaettisaurus
(Gekkota), may lie on the stems of crown clades, but the first unequivocal snake fossils
currently date from the mid Cretaceous. The near global distribution of both terrestrial
(France, USA, Gondwana) and aquatic (mostly Tethyan) snakes by the Cenomanian pro-
vides strong evidence of an earlier origin, but recent reports of Jurassic snake fossils [30] are
based on misconception (see above). Given the close relationship between iguanians,
anguimorphs and snakes, as strongly supported by molecular data, stem iguanians and
stem anguimorphs have the potential to shed light on the expected morphology of the
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earliest stem snakes – given that stem toxicoferans presumably resembled one another
morphologically until they diverged. Taxa like the dorsetisaurs, Huehuecuetzpalli,
Hoyalacerta, and perhaps Parviraptor may therefore provide insights into early toxicoferan
morphology, and may help to refine ideas on ancestral traits (e.g., [153]). Moreover, if
mosasaurians (in total or in part) are genuinely the sister group of snakes (but see Augusta
et al. and Zaher et al., this volume), then stem members of that clade also need to be
identified, probably from terrestrial and/or freshwater deposits.
Further progress in unravelling the early history of squamates generally, and snakes in

particular, will therefore require a combination of new fossil material; accurate (and
objective) re-description of existing material using CT scan technology where possible;
and a concerted effort to recover early squamate material from biogeographically and
ecologically diverse deposits. Unfortunately, most Jurassic and Early Cretaceous squamate
taxa are phylogenetically unstable when analysed in matrices combining living and extinct
taxa. The topographic position of Mesozoic squamates is sensitive to analysis variables like
data input (character choice and definition, ingroup and outgroup taxa sampled, incorpor-
ation of temporal data), and the use of ordering, weighting, or molecular constraints.
Moreover, apomorphic skeletal features that characterize individuals of modern clades
may be absent in early or stem representatives of those clades, further complicating their
phylogenetic placement, especially when incomplete. Improving tree resolution is not
simply a question of adding more phenotypic characters. We need to develop a greater
understanding of those characters, and of the developmental and functional relationships
between them.
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