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Abstract
We introduce the generalized join the shortest queue model with retrials and two infinite capacity orbit queues.
Three independent Poisson streams of jobs, namely a smart, and two dedicated streams, flow into a single-server
system, which can hold at most one job. Arriving jobs that find the server occupied are routed to the orbits as
follows: Blocked jobs from the smart stream are routed to the shortest orbit queue, and in case of a tie, they choose
an orbit randomly. Blocked jobs from the dedicated streams are routed directly to their orbits. Orbiting jobs retry
to connect with the server at different retrial rates, i.e., heterogeneous orbit queues. Applications of such a system
are found in the modeling of wireless cooperative networks. We are interested in the asymptotic behavior of the
stationary distribution of this model, provided that the system is stable. More precisely, we investigate the conditions
under which the tail asymptotic of the minimum orbit queue length is exactly geometric. Moreover, we apply a
heuristic asymptotic approach to obtain approximations of the steady-state joint orbit queue-length distribution.
Useful numerical examples are presented and shown that the results obtained through the asymptotic analysis and
the heuristic approach are agreed.

1. Introduction

In this work, we focus on the asymptotic stationary behavior of the generalized join the shortest orbit
queue (GJSOQ) policy with retrials. This model is a natural generalization of the join the shortest orbit
queue system, recently introduced in [11], by considering both non-identical retrial rates, and additional
dedicated arrival streams that route jobs directly to the orbit queues if an arriving job finds the server
busy; for more information about developments on the analysis of retrial queues, see the seminal books
in [7,12].

We consider a single-server retrial system with two infinite capacity orbit queues accepting three
independent arrival streams. The service station can handle at most one job. Arriving jobs are directed
initially to the service station. An arriving job (of either stream) that finds the server idle starts service
immediately. In case the server is busy upon a job’s arrival, the blocked arriving job is routed to an
orbit queue as follows: two of the arrival streams are dedicated to each orbit queue, i.e., an arriving job
of stream 𝑚 that finds the server busy, it joins orbit queue 𝑚, 𝑚 = 1, 2. An arriving job of the third
stream, i.e., the smart stream, that finds the server busy, it joins the least loaded (i.e., the shorter) orbit
queue, and in case of a tie, the smart job joins either orbit queue with probability 1/2. Orbiting jobs
retry independently to connect with the service station after a random time period (and according to
the constant retrial policy) that depends on the type of the orbit queue. Note that the model at hand
is described by a non-homogeneous Markov modulated two-dimensional random walk; see Figure 1.
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Figure 1. Matrix transition diagram.

Our main concern is to investigate the asymptotic behavior of the GJSOQ system and to derive stationary
approximations of its joint orbit queue-length distribution.

1.1. Related work

The join-the-shortest-queue (JSQ) policy is widely used for load-balancing in stochastic networks. Yet
the analytic derivation of the stationary distribution is known to be far from trivial.

The stationary behavior of the standard (i.e., non-modulated, without retrials) two-dimensional JSQ
problem had initially studied in [18] and further investigated in [21], which was shown that the minimum
queue length has exactly geometric asymptotics using the generating function approach. In [9,14], the
authors presented a robust mathematical approach through generating functions and complex variables
arguments to study its stationary behavior. However, this approach does not provide explicit expressions
for the equilibrium distribution, and it is not so useful for numerical computations. The compensation
method (CM), introduced in [1–3], provides an elegant and direct method to obtain explicitly the
equilibrium joint queue-length distribution as an infinite series of product form terms, by solving
directly the equilibrium equations.

Numerical/approximation methods were also applied: see the power series algorithm (PSA), e.g.,
[8], and the matrix geometric method; see e.g., [17,37], for which connections with CM were recently
reported in [19]. PSA is numerically satisfactory for relatively lower-dimensional models, although,
the theoretical foundation of this method is still incomplete. By expressing the equilibrium distribution
as a power series in some variable based on the model parameters (usually the load), PSA transforms
the balance equations into a recursively solvable set of equations by adding one dimension to the state
space. For the (non-modulated) multidimensional JSQ model, the authors in [4] constructed upper and
lower bounds for any performance measure based on two related systems that were easier to analyze.
For a comparative analysis of the methods used for the analysis of multidimensional queueing models
(including JSQ), see [5].
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The stationary behavior of a two-queue system under the JSQ policy with Erlang arrivals was
investigated in [6] by using the CM. The queueing model in [6] is described by a multilayer random
walk in the quarter plane. Quite recently, in [11], the CM was applied to investigate the joint stationary
distribution for a Markov-modulated random walk in the quarter plane, which describes a standard (i.e.,
without dedicated traffic streams) symmetric join the shortest orbit queue system with retrials. For such
a model, it was also shown that the tail decay rate of the minimum orbit queue has an exactly geometric
asymptotic.

Since the exact solutions discussed above are extremely complicated, it is useful to evaluate these
expressions in certain limiting cases, in order to gain more insight into the qualitative structure of the
particular model. Asymptotic formulas often clearly show the dependence of the solutions on the various
variables/parameters in the problem, whereas the full exact expressions may be difficult to interpret in
terms of the underlying model. Clearly, an asymptotic formula can never contain as much quantitative
(numerical) information as an exact answer, but it provides reasonably accurate numerical results at a
greatly reduced computational cost.

The tail asymptotic behavior for the two-queue case has been extensively studied. For the standard
JSQ, i.e., without retrials, the problem for the case of homogeneous servers was answered in [21], while
for the case of heterogeneous servers in [40]. The behavior of the standard generalized JSQ (GJSQ)
problem was investigated by using a random walk structure in [15], and by using a quasi birth-death
(QBD) formulation in [26]; see also [25] which extends Malyshev’s approach [27] to the GJSQ paradigm.
However, those two papers have not completely solved the tail asymptotic problem, since they focus on
the so called strongly pooled condition. By using the Markov additive approach and the optimization
technique developed in [29], the author in [30] completely characterized the weak decay rates in terms of
the transition probabilities and provided a complete solution. The decay rate of stationary probabilities
was also analyzed in heavy traffic and via large deviations in [41] and [42], respectively; see also [36].
We further mention [22], where the authors obtain heuristics from the balance equations.

In [39], the authors studied the tail decay problem of JSQ system with two queues and PH-type
arrivals; see also in [38] for the case of more than two queues and threshold jockeying. These works
investigate the tail behavior of non-homogeneous multilayered random walks. We further mention the
recent work in [33], which focused on a thorough investigation of the tail behavior of space homogeneous
two-dimensional skip-free Markov modulated reflecting random walk; see also [31]. Using a QBD and a
reflecting random walk formulation, the authors in [23] showed that the tail asymptotic of the minimum
queue length in a Markovian system of 𝑘 ≥ 3 parallel queues is exactly geometric.

1.2. Contribution

This work considers for the first time the generalized join the shortest queue policy with retrials. We use
this model as a vehicle to investigate the asymptotic behavior of non-homogeneous Markov-modulated
two-dimensional random walks, and with a particular interest on a modulation that allows a completely
tractable analysis. We first investigate the stability conditions. Then, we focus on the tail asymptotic
behavior of the stationary distribution and show that under specific conditions, the tail asymptotic of the
minimum orbit queue length is exactly geometric. Finally, by using directly the equilibrium equations,
we provide an asymptotic approach to obtain approximations to the steady-state joint orbit queue-length
distribution for both states of the server. The approximation results agreed with the results obtained by
the asymptotic analysis.

1.2.1. Fundamental contribution
In [11], we provided exact expressions for the stationary distribution of the standard (i.e., with smart
arrival stream and no dedicated arrival streams), symmetric (i.e., identical retrial rates) JSOQ system
by using the CM. To our best knowledge, the work in [11] is the only work in the related literature that
provided analytic results regarding the stationary behavior of the JSQ policy with retrials. It is well
known from the related literature on the standard (i.e., without retrials) JSQ model with two queues that
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Figure 2. An instance of state transitions from states belonging to angle 𝑟1 (left), and ray 𝑑 (right),
given the state of the server.

under the presence of the dedicated streams, the CM collapses. This is because, under the presence of
dedicated traffic, the corresponding two-dimensional random walk allows transitions to the North, and
to the East. A similar situation arises also in our case, where in the corresponding Markov-modulated
two-dimensional random walk, we have a similar behavior; see Figures 1 and 7. Thus, this work provides
the only analytic results for the generalized JSQ problem with retrials available in the literature.

Note that our system is described by a non-homogeneous two-dimensional random walk modulated
by a two-state Markov process. In such a case, the phase process represents the state of the server and
affects the evolution of the level process, i.e., the orbit queue lengths in two ways: (i) The rates at which
certain transitions in the level process occur depend on the state of the phase process; see Figure 2.
Thus, a change in the phase might not immediately trigger a transition of the level process but changes
its dynamics (indirect interaction). (ii) A phase change does trigger an immediate transition of the level
process (direct interaction).

For such a queueing system, we show that the tail asymptotic of the minimum orbit queue length
for fixed values of their difference and server’s state is exactly geometric. To accomplish this task, we
transform the original process to a Markov-modulated random walk in the half plane. Then, we focused
on the censored Markov chain referring to the busy states, which is now a standard two-dimensional
random walk in the half plane and studied the tail asymptotic behavior. Using a relation among idle and
busy states, we also study the tail behavior for the idle states. To our best knowledge, there is no other
analytic study on the tail asymptotics properties of Markov-modulated random walks in the half plane.

Moreover, we provide a simple heuristic approach to approximate the stationary distribution, valid
when one of the orbit queue lengths is large, by distinguishing the analysis between the symmetric and
asymmetric cases (this is because the asymmetric case reveals additional technical difficulties compared
with the symmetric case; see subsections 5.2 and 5.3). Our derived theoretical results through the
heuristic approach agreed with those derived by the tail asymptotic analysis. Moreover, the advantage of
our approach is that we cope directly with the equilibrium equations, without using generating functions
or diffusion approximations.

Stability conditions are also investigated. In particular, having in mind that the orbit queues grow
only when the server is busy, we focused on the censored chain at busy states and provide necessary and
sufficient conditions for the ergodicity of the censored chain by using Foster–Lyapunov arguments. We
conjecture that these conditions are also necessary and sufficient for the original process. Simulation
experiments indicate that our conjecture is true but a more formal justification is needed. We postponed
the formal proof in a future work.
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1.2.2. Application-oriented contribution
Besides its theoretical interest, the queueing model at hand has interesting applications in the modeling
of wireless relay-assisted cooperative networks. Such systems operate as follows: There is a finite number
of source users that transmit packets (i.e., the arrival streams) to a common destination node (i.e., the
single service station), and a finite number of relay nodes (i.e., the orbit queues) that assist the source
users by retransmitting their blocked packets, i.e., the packets that cannot access upon arrival of the
destination node; see e.g., [10,35]. We may consider here a smart source user (possibly the use of the
highest importance that transmits priority packets) that employs the JSQ protocol (i.e., the cooperation
strategy among the smart source and the relays, under which, the smart user chooses to forward its
blocked packet to the least loaded relay node), and two dedicated source users (that transmit packets of
lower priority or packets that can only be handled by the specific relay). This work serves as a major
step towards the analysis of even general retrial models operating under the JSQ policy.

The rest of the paper is organized as follows. In Section 2, we present the mathematical model in
detail. Stability conditions are investigated in Section 3. The main results of this work are presented in
Section 4. More precisely, in subsection 4.1, we present the exact geometric behavior in the minimum
orbit queue-length direction under specific conditions (see Theorem 4.1 and Corollary 1), while in
subsection 4.2, we present explicit asymptotic expressions for approximating the stationary distribution
of the model; see Lemmas 2 and 3. The proofs of the main results are presented in Section 5. Our
theoretical findings are validated through detailed numerical results that are presented in Section 6.

2. System model

We consider a single-server retrial system with two infinite capacity orbit queues. Three independent
Poisson streams of jobs, say 𝑆𝑚,𝑚 = 0, 1, 2, flow into the single-server service system, namely the smart
stream 𝑆0, and the dedicated streams 𝑆𝑚, 𝑚 = 1, 2. The arrival rate of stream 𝑆𝑚 is 𝜆𝑚, 𝑚 = 0, 1, 2,,
and let 𝜆 := 𝜆0 + 𝜆1 + 𝜆2. The service system can hold at most one job. The required service time of
each job is independent of its type and is exponentially distributed with rate 𝜇. If an arriving type-𝑚,
𝑚 = 1, 2, job finds the (main) server busy, it is routed to a dedicated retrial (orbit) queue that operates
as an ·/𝑀/1/∞ queue. An arriving type-0 job (i.e., the smart job) that finds the server busy, it is routed
to the shortest orbit queue (i.e., the least loaded orbit), while in case of a tie, it is routed to either orbit
with probability 1/2. Orbiting jobs try to access the server according to a constant retrial policy (i.e.,
orbits behave as ·/𝑀/1/∞ queues). In particular, the orbit queue 𝑚 attempts to retransmit a job (if any)
to the main service system at a Poisson rate of 𝛼𝑚, 𝑚 = 1, 2.

Let𝑁𝑚 (𝑡) be the number of jobs in orbit queue𝑚,𝑚 = 1, 2, at time 𝑡, and𝐶 (𝑡) be the state of the server,
i.e., 𝐶 (𝑡) = 1, when the server is busy, and 𝐶 (𝑡) = 0 when it is idle at time 𝑡, respectively. Then, 𝑋 (𝑡) =
{(𝑁1(𝑡), 𝑁2 (𝑡), 𝐶 (𝑡)); 𝑡 ≥ 0} is an irreducible Markov process with state space 𝑆 = N0 × N0 × {0, 1},
where N0 = {0, 1, 2, . . .}. Let 𝑋 = {(𝑁1, 𝑁2, 𝐶)} the stationary version of {𝑋 (𝑡); 𝑡 ≥ 0}, and define the
stationary probabilities

𝑝𝑖, 𝑗 (𝑘) = lim
𝑡→∞
P((𝑁1 (𝑡), 𝑁2(𝑡), 𝐶 (𝑡)) = (𝑖, 𝑗 , 𝑘)) = P((𝑁1, 𝑁2, 𝐶) = (𝑖, 𝑗 , 𝑘)),

for (𝑖, 𝑗 , 𝑘) ∈ 𝑆. The equilibrium equations are

(𝜆 + 𝛼11{𝑖>0} + 𝛼21{ 𝑗>0})𝑝𝑖, 𝑗 (0) = 𝜇𝑝𝑖, 𝑗 (1), 𝑖, 𝑗 ≥ 0, (2.1)

(𝜆 + 𝜇)𝑝𝑖, 𝑗 (1) = [𝜆0𝐻 (𝑖 − 𝑗 + 1) + 𝜆2]𝑝𝑖, 𝑗−1 (1) + [𝜆0𝐻 ( 𝑗 − 𝑖 + 1) + 𝜆1]𝑝𝑖−1, 𝑗 (1)
+ 𝜆𝑝𝑖, 𝑗 (0) + 𝛼1𝑝𝑖+1, 𝑗 (0) + 𝛼2𝑝𝑖, 𝑗+1 (0), 𝑖, 𝑗 ≥ 1, (2.2)

(𝜆 + 𝜇)𝑝𝑖,0 (1) = 𝜆𝑝𝑖,0 (0) + 𝜆1𝑝𝑖−1,0 (1) + 𝛼1𝑝𝑖+1,0 (0) + 𝛼2𝑝𝑖,1 (0), 𝑖 ≥ 2, (2.3)
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(𝜆 + 𝜇)𝑝0, 𝑗 (1) = 𝜆𝑝0, 𝑗 (0) + 𝜆2𝑝0, 𝑗−1 (1) + 𝛼1𝑝1, 𝑗 (0) + 𝛼2𝑝0, 𝑗+1 (0), 𝑗 ≥ 2, (2.4)

(𝜆 + 𝜇)𝑝1,0 (1) = 𝜆𝑝1,0 (0) + 𝛼1𝑝2,0 (0) + 𝛼2𝑝1,1 (0) +
(
𝜆1 + 𝜆0

2

)
𝑝0,0 (1), (2.5)

(𝜆 + 𝜇)𝑝0,1 (1) = 𝜆𝑝0,1 (0) + 𝛼1𝑝1,1 (0) + 𝛼2𝑝0,2 (0) +
(
𝜆2 + 𝜆0

2

)
𝑝0,0 (1), (2.6)

(𝜆 + 𝜇)𝑝0,0 (1) = 𝜆𝑝0,0 (0) + 𝛼1𝑝1,0 (0) + 𝛼2𝑝0,1 (0), (2.7)

with the normalization condition
∑∞

𝑖=0
∑∞

𝑗=0(𝑝𝑖, 𝑗 (0) + 𝑝𝑖, 𝑗 (1)) = 1, and where

𝐻 (𝑛) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, 𝑛 ≥ 1,
1
2
, 𝑛 = 0,

0, 𝑛 ≤ −1.

For reasons that will become clear in the following sections, we consider the corresponding uni-
formized discrete time Markov chain through the uniformization technique. Since the total transition
rate from each state is bounded by 𝜆 + 𝜇 + 𝛼1 + 𝛼2, we can construct by uniformization a discrete
time Markov chain with the same stationary distribution as that of {𝑋 (𝑡); 𝑡 ≥ 0}. Without loss of
generality, let the uniformization parameter 𝜃 = 𝜆 + 𝜇 + 𝛼1 + 𝛼2 = 1. The uniformized Markov chain
𝑋 (𝑛) = {(𝑁1,𝑛, 𝑁2,𝑛, 𝐶𝑛)} of {𝑋 (𝑡); 𝑡 ≥ 0} has six regions of spatial homogeneity: two angles, say
𝑟1 = {𝑖 > 𝑗 > 0, 𝑘 = 0, 1} and 𝑟2 = { 𝑗 > 𝑖 > 0, 𝑘 = 0, 1}, three rays, say ℎ = { 𝑗 = 0, 𝑖 > 0, 𝑘 = 0, 1},
𝑣 = {𝑖 = 0, 𝑗 > 0, 𝑘 = 0, 1}, 𝑑 = {𝑖 = 𝑗 > 0, 𝑘 = 0, 1} and the points {(0, 0, 𝑘), 𝑘 = 0, 1}. Then, the
matrix transition diagram partitioned according to the state of the server, is depicted in Figure 1, where

𝐴(𝑟1)
1,0 =

(
0 0
0 𝜆1

)
= 𝐴(ℎ)

1,0 = 𝐴(0)
1,0 , 𝐴(𝑟2)

1,0 =

(
0 0
0 𝜆1 + 𝜆0

)
= 𝐴(𝑣)

1,0 , 𝐴(𝑑)
1,0 =

(
0 0
0 𝜆1 + 𝜆0/2

)
,

𝐴(𝑟2)
0,1 =

(
0 0
0 𝜆2

)
= 𝐴(𝑣)

0,1 = 𝐴(0)
0,1 , 𝐴(𝑟1)

0,1 =

(
0 0
0 𝜆0 + 𝜆2

)
= 𝐴(ℎ)

0,1 , 𝐴(𝑑)
0,1 =

(
0 0
0 𝜆0/2 + 𝜆2

)
,

𝐴(𝑟2)
0,−1 =

(
0 𝛼2
0 0

)
= 𝐴(𝑣)

0,−1 = 𝐴(𝑑)
0,−1 = 𝐴(𝑟1)

0,−1, 𝐴(𝑣)
0,0 =

(
𝜇 + 𝛼1 𝜆
𝜇 𝛼1 + 𝛼2

)
,

𝐴(𝑟1)
−1,0 =

(
0 𝛼1
0 0

)
= 𝐴(ℎ)

−1,0 = 𝐴(𝑑)
−1,0 = 𝐴(𝑟2)

−1,0, 𝐴(ℎ)
0,0 =

(
𝜇 + 𝛼2 𝜆
𝜇 𝛼1 + 𝛼2

)
,

𝐴(𝑟1)
0,0 =

(
𝜇 𝜆
𝜇 𝛼1 + 𝛼2

)
= 𝐴(𝑟2)

0,0 = 𝐴(𝑑)
0,0 , 𝐴(0)

0,0 =

(
𝜇 + 𝛼1 + 𝛼2 𝜆

𝜇 𝛼1 + 𝛼2

)
.

An illustration of the transitions from a state belonging to the angle 𝑟1 (e.g., from the state (4, 2, 𝑘),
𝑘 = 0, 1), and from a state belonging to the ray 𝑑 (e.g., from the state (3, 3, 𝑘), 𝑘 = 0, 1), is given in
Figure 2, left and right, respectively.

Lets say some more words regarding the derivation of 𝐴(𝑞)
𝑖, 𝑗 , −1 ≤ 𝑖, 𝑗 ≤ 1, 𝑞 = 𝑟1, 𝑟2, ℎ, 𝑣, 0. For

example, 𝐴(𝑟1)
1,0 contains the transition probabilities from a state that belongs to the angle 𝑟1 and results

in an increase by one at the orbit queue 1, i.e., from (𝑖, 𝑗 , 𝑘) to (𝑖 + 1, 𝑗 , 𝑙), where 𝑖 > 𝑗 , 𝑘, 𝑙 = 0, 1.
Clearly, such a transition occurs only when we have a dedicated arrival of type 1, and the server is busy.
Similarly, given a state in the ray 𝑑, 𝐴(𝑑)

1,0 contains transition probabilities that result in an increase by
one at orbit queue 1, given that both orbits have the same occupancy. Such a transition is done either
with the arrival of a dedicated job or with the arrival of a smart job who sees both orbits with the same
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number of jobs and is routed with probability 1/2 to orbit queue 1. The rest of 𝐴(𝑞)
𝑖, 𝑗 , −1 ≤ 𝑖, 𝑗 ≤ 1,

𝑞 = 𝑟1, 𝑟2, ℎ, 𝑣, 0, are constructed similarly.
In the following sections, we provide our main results that refer to the asymptotic behavior of

{𝑋 (𝑡); 𝑡 ≥ 0}. We first investigate the stability conditions. Then, our first main result refers to the
investigation of the decay rate of the tail probabilities for the shortest queue length in a steady state; see
Theorem 4.1. We cope with this task in a number of steps, after considering the corresponding discrete
time Markov chain {𝑋 (𝑛); 𝑛 ≥ 0} through the uniformization technique:

1. We transform the uniformized Markov chain to create the minimum and the difference of the queue
states process (i.e., the Markov modulated random walk in the half plane), and then consider the
censored process at busy states.

2. We investigate the stationary tail decay rate of the censored process at busy states.
3. Using a relation among busy and idle states, we show that the asymptotic properties of the shortest

queue for the idle states are the same with its asymptotic properties for the busy states.

Our second main result relies on a heuristic approach to construct approximations for the stationary
distribution of the original process. In particular, our aim (see Lemmas 2 and 3) is to solve (2.1)–(2.6)
as either 𝑖 or 𝑗 → ∞. This task is accomplished by constructing a solution of (2.1)–(2.6) separately in
each of the regions defined as follows: Region I: 𝑖 � 1, 𝑗 � 1, Region II: 𝑖 = 0 or 1, 𝑗 � 1, Region III:
𝑖 � 1, 𝑗 = 0 or 1.

3. On the stability condition

In this section, we investigate the stability condition of the model at hand. Stability condition for the
standard generalized join the shortest queue (GJSQ) model without retrials was recently investigated;
see e.g., [15,24]. Clearly, the presence of retrials along with the presence of the dedicated arrival flows
to each orbit when the server is busy, complicates the problem considerably. Note that our model is
described by a non-homogeneous Markov-modulated two-dimensional nearest-neighbor random walk,
and its stability condition, to our best knowledge, is still an open problem. We mention here that the
stability condition of a homogeneous Markov-modulated two-dimensional nearest-neighbor random
walk was recently investigated in [34] by using the concept of induced Markov chains.

Here on, by noting that the orbit queues grow only when the server is busy, we construct a new discrete
time Markov chain embedded at epochs in which the server is busy, i.e., the censored Markov chain at
busy states (censored Markov chains have been widely used for proving the uniqueness of the stationary
vector for a recurrent countable-state Markov chain [20,43]). Then, using standard Foster–Lyapunov
arguments, we provide its stability conditions and having in mind that orbits grow only when the server
is busy (it is natural to assume that the behavior of the original process at the busy states heavily affects
its convergence), we conjecture that the obtained stability conditions for the censored Markov chain
on the busy states coincide with those of the original one. Simulation experiments indicate that our
conjecture is true. The formal justification of our conjecture is an interesting open problem and we let
it be a future study.

We first consider the uniformized discrete time Markov chain, say 𝑋 (𝑛) = {(𝑁1,𝑛, 𝑁2,𝑛, 𝐶𝑛); 𝑛 ≥ 0},
of {𝑋 (𝑡); 𝑡 ≥ 0}with transition diagram given in (1) and state space 𝑆 = 𝐸∪𝐸𝑐 , where 𝐸 = N0×N0×{1},
𝐸𝑐 = N0 × N0 × {0}. Then, we partition the transition matrix 𝑃 of 𝑋 (𝑛) according to 𝐸 , 𝐸𝑐 into:

𝑃 =

( 𝐸𝑐 𝐸

𝐸𝑐 𝑃0,0 𝑃0,1
𝐸 𝑃1,0 𝑃1,1

)
,

where

𝑃0,0 = diag(𝐴0, 𝐴1, 𝐴1, . . .), 𝑃1,0 = diag(𝐿0, 𝐿0, 𝐿0, . . .),
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𝑃0,1 =

	



�
𝐵0
𝐵1 𝐵0

𝐵1 𝐵0
. . .

. . .

��
, 𝑃1,1 =

	



�
𝐷0,0 𝐷0,1

𝐷1,1 𝐷1,2
𝐷2,2 𝐷2,3

. . .
. . .

��
,

𝐴0 = diag(𝜇 + 𝛼1 + 𝛼2, 𝜇 + 𝛼1, 𝜇 + 𝛼1, . . .), 𝐴1 = diag(𝜇 + 𝛼2, 𝜇, 𝜇, . . .),
𝐿0 = 𝜇𝐼∞, 𝐵1 = 𝛼1𝐼∞,

𝐵0 =

	



�
𝜆
𝛼2 𝜆
𝛼2 𝜆

. . .
. . .

��
, 𝐷𝑖,𝑖 = (𝛼1 + 𝛼2)𝐼∞ +𝑄𝑖+1,𝑖+2, 𝑖 = 0, 1, . . . ,

where 𝐼∞ is the identity matrix of infinite dimension and𝑄𝑖+1,𝑖+2 is a infinite dimension matrix with only
non-zero entries at the superdiagonal and such that the (𝑘, 𝑘 + 1)−entry equal to 𝜆0 +𝜆2, 𝑘 = 1, 2, . . . , 𝑖,
the (𝑖 + 1, 𝑖 + 2)−entry equals 𝜆0/2 + 𝜆2, and the (𝑖 + 𝑘, 𝑖 + 𝑘 + 1)−entry equals 𝜆2, 𝑘 = 2, 3, . . .. Finally,
the matrix 𝐷𝑖,𝑖+1, 𝑖 = 0, 1, . . . is a diagonal matrix of infinite dimension with (𝑘, 𝑘)−entry equal to 𝜆1,
𝑘 = 1, 2, . . . , 𝑖, the (𝑖 + 1, 𝑖 + 1)−entry equals 𝜆0/2 + 𝜆1, and the (𝑖 + 𝑘, 𝑖 + 𝑘)−entry equals 𝜆0 + 𝜆1,
𝑘 = 2, 3, . . .. In what follows, denote �̂� := 𝜆(𝜆 + 𝛼1 + 𝛼2), �̂�𝑘 := 𝜆𝑘 (𝜆 + 𝛼1 + 𝛼2), 𝑘 = 0, 1, 2, and
�̂�𝑘 = 𝜇𝛼𝑘 , 𝑘 = 1, 2.

Since 𝑃0,0 is a diagonal matrix, its fundamental matrix, say �̃�0,0 has the form

�̃�0,0 =
∞∑
𝑛=0
𝑃𝑛

0,0 = diag( �̃�0, �̃�1, �̃�1, . . .),

�̃�0 = diag
(
1
𝜆
,

1
𝜆 + 𝛼2

,
1

𝜆 + 𝛼2
, . . .

)
�̃�1 = diag

(
1

𝜆 + 𝛼1
,

1
𝜆 + 𝛼1 + 𝛼2

,
1

𝜆 + 𝛼1 + 𝛼2
, . . .

)
.

The censored chain {�̃� (𝑛); 𝑛 ≥ 0} at busy states has six regions of spatial homogeneity: two angles,
say 𝑟1 = {𝑖 > 𝑗 > 0} and 𝑟2 = { 𝑗 > 𝑖 > 0}, three rays, say ℎ = { 𝑗 = 0, 𝑖 > 0}, 𝑣 = {𝑖 = 0, 𝑗 > 0},
𝑑 = {𝑖 = 𝑗 > 0} and the point (0, 0). Then, the one-step transition probability matrix of the censored
chain {�̃� (𝑛); 𝑛 ≥ 0}, given by 𝑃 (𝐸) = 𝑃1,1 + 𝑃1,0�̃�0,0𝑃0,1 is as follows:

• In region 𝑖 > 𝑗 > 0 (labeled as 𝑟1),

𝑝 (𝑟1)
1,0 = 𝜆1, 𝑝 (𝑟1)

0,1 = 𝜆0 + 𝜆2, 𝑝 (𝑟1)
−1,0 =

�̂�1

𝜆 + 𝛼1 + 𝛼2
,

𝑝 (𝑟1)
0,−1 =

�̂�2

𝜆 + 𝛼1 + 𝛼2
, 𝑝 (𝑟1)

0,0 = 𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2
,

• In region 𝑗 > 𝑖 > 0 (labeled as 𝑟2),

𝑝 (𝑟2)
1,0 = 𝜆0 + 𝜆1, 𝑝 (𝑟2)

0,1 = 𝜆2, 𝑝 (𝑟2)
−1,0 =

�̂�1

𝜆 + 𝛼1 + 𝛼2
,

𝑝 (𝑟2)
0,−1 =

�̂�2

𝜆 + 𝛼1 + 𝛼2
, 𝑝 (𝑟2)

0,0 = 𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2
,
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• In region 𝑖 = 𝑗 > 0 (labeled as 𝑑),

𝑝 (𝑑)1,0 =
𝜆0

2
+ 𝜆1, 𝑝 (𝑑)0,1 =

𝜆0

2
+ 𝜆2, 𝑝 (𝑑)−1,0 =

�̂�1

𝜆 + 𝛼1 + 𝛼2
,

𝑝 (𝑑)0,−1 =
�̂�2

𝜆 + 𝛼1 + 𝛼2
, 𝑝 (𝑑)0,0 = 𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2
,

• In region 𝑖 = 0, 𝑗 > 0 (labeled as 𝑣),

𝑝 (𝑣)1,0 = 𝜆0 + 𝜆1, 𝑝 (𝑣)0,1 = 𝜆2, 𝑝 (𝑣)0,−1 =
�̂�2

𝜆 + 𝛼2
, 𝑝 (𝑣)0,0 = 𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼2
,

• In region 𝑗 = 0, 𝑖 > 0 (labeled as ℎ),

𝑝 (ℎ)1,0 = 𝜆1, 𝑝 (ℎ)0,1 = 𝜆0 + 𝜆2, 𝑝 (ℎ)−1,0 =
�̂�1

𝜆 + 𝛼1
, 𝑝 (ℎ)0,0 = 𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1
,

• For 𝑖 = 𝑗 = 0 (labeled as 𝑂),

𝑝 (𝑂)
1,0 = 𝜆1 + 𝜆0

2
, 𝑝 (𝑂)

0,1 = +𝜆0

2
+ 𝜆2, 𝑝 (𝑂)

0,0 = 𝛼1 + 𝛼2 + 𝜇.

Remark 1. Note that the censored chain {�̃� (𝑛); 𝑛 ≥ 0} describes a new discrete time queueing system
consisting of two parallel coupled queues with three job arrival streams, where one of them joins the
shortest queue, and the other two are dedicated to each queue. The coupling feature of the two queues is
easily realized by noting that, e.g., 𝑝 (ℎ)−1,0 = �̂�2/(𝜆 + 𝛼1) > �̂�2/(𝜆 + 𝛼1 + 𝛼2) = 𝑝 (𝑟2)

−1,0. The combination
of the JSQ feature, along with the coupled processors feature considerably complicates the analysis.

Lemma 1. The censored chain {�̃� (𝑛); 𝑛 ≥ 0} is positive recurrent if and only if one of the following
conditions hold:

1. 𝜌1 := �̂�1/�̂�1 < 1, 𝜌2 := �̂�2/�̂�2 < 1, 𝜌 = �̂�/( �̂�1 + �̂�2) < 1,
2. 𝜌1 ≥ 1, 𝑓1 := 𝜆(𝜆1 + 𝛼1)/�̂�1 − 1 < 0,
3. 𝜌2 ≥ 1, 𝑓2 := 𝜆(𝜆2 + 𝛼2)/�̂�2 − 1 < 0.

Proof. The proof is given in Appendix A. �

We now study the dynamics of the orbits in the original process {𝑋 (𝑡); 𝑡 ≥ 0} based on the stability
criteria of the censored process {�̃� (𝑛); 𝑛 ≥ 0} given in Lemma 1.

Figure 3 refers to the stability criteria 1. In Figure 3 (left), we have 𝜌 = 0.78 > max{𝜌1 = 0.433, 𝜌2 =
0.325} and �̂�0 − |�̂�1 − �̂�2 + 𝜌2( �̂�2 − �̂�1) | = 19.084 > 0. It is seen that in such a case, the original process
is stable, and that both orbits are well balanced. This case corresponds to the strongly pooled case
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Figure 3. Orbit dynamics for case 1 > 𝜌 > max{𝜌1, 𝜌2}, �̂�0 − |�̂�1 − �̂�2 + 𝜌2( �̂�2 − �̂�1) | > 0 (left),
1 > 𝜌 > max{𝜌1, 𝜌2}, �̂�0 − |�̂�1 − �̂�2 + 𝜌2( �̂�2 − �̂�1) | < 0 (middle), and for the case 𝜌 > 1, 𝜌1 < 1, 𝜌2 < 1
(right).

Figure 4. Orbit dynamics for case 1 > 𝜌1 > max{𝜌, 𝜌2}, �̂�0 − |�̂�1 − �̂�2 + 𝜌2( �̂�2 − �̂�1) | < 0 (left),
1 > 𝜌1 > max{𝜌, 𝜌2}, �̂�0 − |�̂�1 − �̂�2 + 𝜌2( �̂�2 − �̂�1) | < 0 (right).

mentioned in [15] Theorem 2, i.e., the proportion of jobs that is routed to the least loaded orbit queue
in case the server is busy is large. In Figure 3 (middle), we have the case 1 > 𝜌 > max{𝜌1, 𝜌2}, with
𝜌1 > 𝜌2 but now �̂�0 − |�̂�1 − �̂�2 + 𝜌2( �̂�2 − �̂�1) | < 0. The original process is still stable but we can observe
that the orbit lengths are not so close any more. This means that the stream that joins the shortest orbit
failed to keep the orbit queue lengths close enough to each other. In case 𝜌 > 1, both orbits are unstable,
even though 𝜌1 < 1, 𝜌2 < 1 (Figure 3 (right)).

In Figure 4 (left), we have 𝜌1 = 0.428 > max{𝜌 = 0.4042, 𝜌2 = 0.2675}, and �̂�0 − |�̂�1 − �̂�2 + 𝜌2( �̂�2 −
�̂�1) | = −2.393 < 0. In such a case, the system is still stable, but the smart stream failed to keep the
orbit queue length very close. Similar observations can be also deduced from Figure 4 (right) for which
𝜌1 = 0.0944 > max{𝜌 = 0.061, 𝜌2 = 0.021}, and �̂�0 − |�̂�1 − �̂�2 + 𝜌2( �̂�2 − �̂�1) | = 0.7663 > 0.

In Figure 5 (left), although 𝜌1 > 1 (𝜌 < 1, 𝜌2 < 1), the fact that 𝑓1 < 0 keeps the network stable.
On the other hand when 𝑓1 > 0 (Figure 5, middle), orbit queue 1 becomes unstable, and so it is the
network. Note that in such a case orbit queue 2 remains stable. In Figure 5 (right), when 𝜌 > 1 both
orbits becomes unstable, even though 𝜌2 < 1. Similar observations can be deduced from Figure 6 that
refers to the stability criteria 3.

Therefore, simulations experiments indicate that the stability criteria given in Lemma 1 constitute
stability criteria for the GJSOQ system. A formal justification of this result is postponed in a future work.
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Figure 5. Orbit dynamics for case 𝜌 < 1, 𝜌1 > 1, 𝜌2 < 1, 𝑓1 < 0 (left), for the case 𝜌 < 1, 𝜌1 > 1,
𝜌2 < 1, 𝑓1 > 0 (middle), and for the case 𝜌 > 1, 𝜌1 > 1, 𝜌2 < 1, 𝑓1 > 0 (right).

Figure 6. Orbit dynamics for case 𝜌 < 1, 𝜌1 < 1, 𝜌2 > 1, 𝑓2 < 0 (left), for the case 𝜌 < 1, 𝜌1 < 1,
𝜌2 > 1, 𝑓2 > 0 (right).

4. Main results

4.1. Geometric decay in the minimum direction

In the following, we investigated the tail asymptotic of the stationary distribution of our model provided
that 𝜌1 < 1, 𝜌2 < 1, 𝜌 < 1. We show that the tail asymptotic for the minimum orbit queue lengths for a
fixed value of their difference, and server’s state is exactly geometric. Moreover, we show that its decay
rate is the square of the decay rate, i.e., 𝜌2, of the corresponding modified single-orbit queue, say the
reference system, which is formally described at the end of this section.

Clearly, when 𝜆1 = 𝜆2 = 0, both orbit queues are well balanced by the smart stream, and we again
expect that the decay rate of the minimum of orbit queues equals 𝜌2. Note that this result is motivated
by the standard Markovian JSQ model (without retrials), in which the tail decay rate of the minimum of
queue lengths is the square of the tail decay rate of the M/M/2. Theorem 4.1 states that our model has a
similar behavior.

Tail asymptotic properties for random walks in the half plane are still very limited including a recent
paper by [30], in which the method developed in [29] was extended for studying the standard generalized
join the-shortest-queue model. Our goal here is to cope with the tail asymptotic properties of a Markov
modulated random walk in the half plane, with particular interest on a modulation that results in a
tractable analysis.
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Figure 7. The matrix transition diagram of {𝑍 (𝑛); 𝑛 ≥ 0}.

Our approach is summarized in the following steps:

Step 1: We focus on the uniformized discrete time Markov chain {𝑋 (𝑛); 𝑛 ≥ 0}, and perform the
transformation 𝑍1,𝑛 = min{𝑁1,𝑛, 𝑁2,𝑛}, 𝑍2,𝑛 = 𝑁2,𝑛 − 𝑁1,𝑛.
Step 2: The discrete time Markov chain 𝑍 (𝑛) = {(𝑍1,𝑛, 𝑍2,𝑛, 𝐶𝑛); 𝑛 ≥ 0} is a Markov modulated
random walk in the half plane with transition diagram as shown in Figure 7, where the matrices 𝐴(𝑚)

𝑖, 𝑗 ,
𝑖, 𝑗 = 0,±1, 𝑚 = 𝑟1, 𝑟2, 𝑑, 𝑣, ℎ, 0 are given in Section 2. Then, we consider the censored Markov chain
of {𝑍 (𝑛); 𝑛 ≥ 0} on the busy states, which can be expressed explicitly. This censored Markov chain is
a random walk in the half plane.
Step 3: We investigate the tail asymptotic behavior of this censored Markov chain at the busy states
following [26], and show that the minimum orbit queue length decays geometrically; see Theorem 4.1.
Step 4: By exploiting a relation between idle and busy states (see (4.5)), we further show that the
minimum orbit queue length at the idle states decays also geometrically; see Corollary 1.

Note that the presence of dedicated streams that are routed to the shortest orbit in case of a busy
server complicates considerably the problem of decay rates. We are also interested in when the two orbit
queues are balanced. Intuitively, the two orbit queues being balanced when the smart arrival stream,
which routes the job to the least loaded orbit queue, keeps the two orbit queue lengths close. Since
the difference of the two orbit queues is the background state, the balancing of the two orbit queues is
characterized by how the background process behaves as the level process (i.e., the shortest orbit queue)
goes up.

By applying a similar procedure as in Section 3, the censored Markov chain on the busy states
of {𝑍 (𝑛); 𝑛 ≥ 0} is a two-dimensional random walk on the half plane {(𝑚, 𝑙) ∈ Z2; 𝑙 ≥ 0}, say
𝑌 (𝑛) = {(𝑌1,𝑛, 𝑌2,𝑛, 1); 𝑛 ≥ 0}, where 𝑌1,𝑛 = 𝑁2,𝑛 − 𝑁1,𝑛, 𝑌2,𝑛 = min{𝑁1,𝑛, 𝑁2,𝑛}. Its transition rate
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Figure 8. Transition rate diagram of the censored chain {𝑌 (𝑛); 𝑛 ≥ 0}.

diagram is given in Figure 8, where its one-step transition probabilities are:

𝑞 (−)0,−1 = 𝜆1, 𝑞 (−)−1,−1 =
�̂�2

𝜆 + 𝛼1 + 𝛼2
, 𝑞 (−)0,1 =

�̂�1

𝜆 + 𝛼1 + 𝛼2
, 𝑞 (−)1,1 = 𝜆0 + 𝜆2,

𝑞 (−)0,0 = 𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2
, 𝑞 (+)0,1 = 𝜆2, 𝑞 (+)0,−1 =

�̂�2

𝜆 + 𝛼1 + 𝛼2
,

𝑞 (+)−1,1 =
�̂�1

𝜆 + 𝛼1 + 𝛼2
, 𝑞 (+)1,−1 = 𝜆0 + 𝜆1, 𝑞 (+)0,0 = 𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2
,

𝑞 (2)0,1 = 𝜆2 + 𝜆0

2
, 𝑞 (2)−1,−1 =

�̂�2

𝜆 + 𝛼1 + 𝛼2
, 𝑞 (2)−1,1 =

�̂�1

𝜆 + 𝛼1 + 𝛼2
,

𝑞 (2)0,−1 =
𝜆0

2
+ 𝜆1, 𝑞 (2)0,0 = 𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2
, 𝑞 (1−)0,−1 = 𝜆1,

𝑞 (1−)0,1 =
�̂�1

𝜆 + 𝛼1
, 𝑞 (1−)1,1 = 𝜆0 + 𝜆2, 𝑞 (1−)0,0 = 𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1
, 𝑞 (1+)0,1 = 𝜆2,

𝑞 (1+)0,−1 =
�̂�2

𝜆 + 𝛼2
, 𝑞 (1+)1,−1 = 𝜆0 + 𝜆1, 𝑞 (1+)0,0 = 𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼2
,

𝑞 (0)0,1 = 𝜆2 + 𝜆0

2
, 𝑞 (0)0,0 = 𝛼1 + 𝛼2 + 𝜇, 𝑞 (0)0,−1 = 𝜆1 + 𝜆0

2
.

(4.1)

Remark 2. Note that {𝑌 (𝑛); 𝑛 ≥ 0} can be also obtained by the censored Markov chain {�̃� (𝑛); 𝑛 ≥ 0}
(on the busy states of {𝑋 (𝑛); 𝑛 ≥ 0}), by applying the transformation 𝑌1,𝑛 = min{𝑁1,𝑛, 𝑁2,𝑛}, 𝑌2,𝑛 =
𝑁2,𝑛 − 𝑁1,𝑛.
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The main result is summarized in the following theorem. Let 𝝅 ≡ {𝝅𝑚, 𝑚 = 0, 1, . . .} be the stationary
joint distribution of min{𝑁1,𝑛, 𝑁2,𝑛} and 𝑁2,𝑛 − 𝑁1,𝑛 when the server is busy, where 𝝅𝑚 = {𝜋𝑚,𝑙 (1), 𝑙 =
0,±1,±2, . . .} is the subvector for level 𝑚, i.e.,

𝜋𝑚,𝑙 (1) = lim
𝑛→∞
P(min{𝑁1,𝑛, 𝑁2,𝑛} = 𝑚, 𝑁2,𝑛 − 𝑁1,𝑛 = 𝑙, 𝐶𝑛 = 1), 𝑚 ≥ 0, 𝑙 ∈ Z.

Theorem 1. For the generalized join the shortest orbit queue system satisfying max{𝜌1, 𝜌2} < 𝜌 < 1,
and �̂�0 > |�̂�2 − �̂�1 + 𝜌2( �̂�1 − �̂�2) |, the stationary probability vector 𝝅𝑚 decays geometrically as 𝑚 → ∞
with decay rate 𝜌2, i.e.,

lim
𝑚→∞

𝜌−2𝑚𝜋𝑚,𝑙 (1) = 𝑥𝑙 (𝜌−2), (4.2)

where

𝑥𝑙 (𝜌−2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛾2 + �̂�0/2
𝛾2

𝑥0

(
𝜌

𝛾2

𝛾1 + �̂�0

) |𝑙 |
, 𝑙 ≤ −1,

𝑥0, 𝑙 = 0,
𝛾1 + �̂�0/2

𝛾1
𝑥0

(
𝜌

𝛾1

𝛾2 + �̂�0

) 𝑙
, 𝑙 ≥ 1,

(4.3)

where 𝑥0 is a constant and 𝛾1 = �̂�1𝜌
2 + �̂�2, 𝛾2 = �̂�2𝜌

2 + �̂�1. Moreover, the two orbit queues are strongly
balanced if and only if 𝛾2 < 𝜌(𝛾1 + �̂�0), 𝛾1 < 𝜌(𝛾2 + �̂�0).

Proof. The proof is based on a series of results and is given in Section 5.1. �

Having known the exact tail asymptotic properties for 𝐶 (𝑡) = 1 (i.e., when the server is busy), we
can investigate the tail asymptotic properties for 𝐶 (𝑡) = 0 (i.e., when the server is idle) based on the
relationship given in (4.5) (which is similar to (2.1)).

Corollary 1. Based on the relationship given in (4.5),

𝜌−2𝑚𝜋𝑚,𝑙 (0) ∼ 𝜇

𝜆 + 𝛼1 + 𝛼2
𝑥𝑙 (𝜌−2), 𝑙 ∈ Z, (4.4)

where 𝑥𝑙 (𝜌−2), 𝑙 ∈ Z as given in Theorem 4.1.

Proof. We consider the Markov chain 𝑍 (𝑛) = {(𝑍1,𝑛, 𝑍2,𝑛, 𝐶𝑛); 𝑛 ≥ 0} where 𝑍1,𝑛 = min{𝑁1,𝑛, 𝑁2,𝑛},
𝑍2,𝑛 = 𝑁2,𝑛 − 𝑁1,𝑛; see Figure 7. Knowing the asymptotic properties of 𝜋𝑚,𝑙 (1), we will investigate
those of 𝜋𝑚,𝑙 (0) = lim𝑛→∞ P(min{𝑁1,𝑛, 𝑁2,𝑛 = 𝑚}, 𝑁2,𝑛 − 𝑁1,𝑛 = 𝑙, 𝐶𝑛 = 0). Note that the equilibrium
equations that deal with the idle states are for 𝑚 > 0,

𝜋𝑚,𝑙 (0)(𝜆 + 𝛼1 + 𝛼2) = 𝜇𝜋𝑚,𝑙 (1), 𝑙 ∈ Z, (4.5)

which obviously leads to (4.4). �

Therefore, we shown that under the conditions max{𝜌1, 𝜌2} < 𝜌 < 1, |𝛾1 − 𝛾2 | < �̂�0, the tail decay
rate for the shortest orbit queue in our GJSOQ system equals 𝜌2. It is easy to see that this is the square of
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the tail decay rate for the orbit queue length of the reference system mentioned at the beginning of this
section. The reference system operates as follows: Jobs arrive according to a Poisson process with rate
𝜆 = 𝜆0 +𝜆1 +𝜆2, and if they find the server available, they occupy it and get served after an exponentially
distributed time with rate 𝜇. Otherwise they enter an infinite capacity orbit queue. Orbiting jobs retry
to access the server according to the following rule: If there is only one job in orbit it retries after
exponentially distributed time with rate 𝛼1 (note that this is not a restriction and whatever the retrial rate
is, in this case, does not affect the final result). If there are more than one orbiting jobs, the first job in
orbit queue retries with rate 𝛼1 + 𝛼2 (This situation is similar to the case where there is a basic server in
orbit queue, which transmit jobs to the service station at a rate 𝛼1, and in case there are more than one
orbiting jobs, an additional server, which transmits jobs at a rate 𝛼2 helps the former one). Details on
the stationary orbit queue-length distribution of the reference system as well as its decay rate are given
in Appendix B.

Remark 3. Another point of interest refers to the determination of the decay rate of the marginal
distribution, since Theorem 4.1 refers to the decay rate of the stationary minimum orbit queue length
distribution for a fixed value of the orbit queue difference and server state. Clearly, the states of the
server can be aggregated, since they are finite. However, the aggregation on the difference of queue
sizes is not a trivial task and extra conditions maybe needed. One may expect that

lim
𝑚→∞

𝜌−2𝑚P(min{𝑁1, 𝑁2} = 𝑚) = 1
1 − 𝜇

∑
𝑙∈Z
𝑥𝑙 (𝜌−2), (4.6)

where {(𝑁1, 𝑁2)}, the stationary version of {(𝑁1,𝑛, 𝑁2,𝑛); 𝑛 ≥ 0}. This can be obtained using Theorem
4.1 and summing (4.2), (4.4) over the difference of the two orbit queues. Note here that the sum in
the right-hand side of (4.6) definitely converges under the strongly balanced condition (see Theorem
4.1), since in such a case 𝜌𝛾2/(�̂�0 + 𝛾1) < 𝜌2 < 1, 𝜌𝛾1/(�̂�0 + 𝛾2) < 𝜌2 < 1. More importantly, under
the conditions of Theorem 4.1, we always have 𝜌𝛾1/(𝛾2 + �̂�0) < 1, 𝜌𝛾1/(𝛾2 + �̂�0) < 1. Indeed, under
conditions of Theorem 1, 𝜌 < 1, and −�̂�0 < 𝛾1 − 𝛾2 < �̂�0. Thus, 𝜌𝛾1/(𝛾2 + �̂�0) < 1 ⇔ 𝜌𝛾1 − 𝛾2 < �̂�0,
which is true since 𝜌𝛾1 − 𝛾2 < 𝛾1 − 𝛾2 < �̂�0. Similarly, 𝜌𝛾2/(𝛾1 + �̂�0) < 1 ⇔ 𝜌𝛾2 − 𝛾1 < �̂�0, which is
true since 𝜌𝛾2 − 𝛾1 < 𝛾2 − 𝛾1 < �̂�0. The major problem to be resolved comes from the fact that since the
difference of the two orbit queues is unbounded, in order to obtain the left-hand side of (4.6), it requires
to verify the exchange of the summation and the limit. It seems that following the lines in [30] Theorem
1.5 by using a different framework based on [29], and focusing on the weak decay rates, we can show
that the marginal distribution of the min{𝑁1, 𝑁2}, under the same assumptions as given in Theorem
4.1, also decays with rate 𝜌2. Moreover, for the standard GJSQ, the authors in [26] also focused on the
decay rate for the marginal probabilities of the min{𝑄1, 𝑄2}; see Corollary 3.2.1, Theorem 2.2.1 and
Corollary 2.2.1 in [26]. Following their lines, under the conditions of Theorem 4.1, let

lim
𝑙→∞

𝜋0,𝑙,1

𝑥𝑙 (𝜌−2) = 𝑠,

where 𝜋0,𝑙,1, 𝑙 ≥ 0 is the stationary probability of an empty orbit queue for the censored Markov chain
{𝑌 (𝑛); 𝑛 ≥ 0}, and 𝑥𝑙 (𝜌−2) as given in (4.3). Following [26] Corollary 2.2.1, if 0 < 𝑠 < ∞, the marginal
distribution of min{𝑄1, 𝑄2} for the busy states decays geometrically with rate 𝜌2. Now, using the relation
in (4.5), the marginal distribution of min{𝑄1, 𝑄2} for the idle states decays also geometrically with the
same rate. Thus, (4.6) has been proved. Therefore, the boundedness of 𝜋0,𝑙,1/𝑥𝑙 (𝜌−2) is very crucial in
proving that the marginal probabilities of min{𝑄1, 𝑄2} decay geometrically with rate 𝜌2. We postpone
this verification in a future work.

Remark 4. In [39], the authors proved that the tail decay rate of the stationary minimum queue length
in the standard symmetric JSQ system fed by PH arrivals (no dedicated traffic) is the square of the decay
rate for the queue length in the standard PH/M/2. Such a system was described by a Markov-modulated
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two-dimensional random walk in the quarter plane. They proved this result based on matrix analytic
approach and standard results on the decay rates. We believe that it is possible to extend their approach
to cope with Markov-modulated two-dimensional random walk in the half plane, and get the same result
as in Theorem 4.1.

4.2. A heuristic approach for stationary approximations

Our aim here is to develop a scheme to obtain approximations for the joint orbit queue-length distribution
for each server state, valid when one of the queue lengths is large. The main results are summarized
in Lemmas 2 and 3, where we distinguish the analysis to the symmetric and the asymmetric case,
respectively. With the term symmetric, we mean that 𝜆1 = 𝜆2 ≡ 𝜆+, 𝛼1 = 𝛼2 ≡ 𝛼.

We have to note that although the proofs of Lemmas 2 and 3 (see subsections 5.2 and 5.3, respectively)
are similar, the asymmetric case reveals additional difficulties in the sense that we need further conditions
to ensure that the approximated probabilities are well defined.

The main result for the symmetric case is the following.

Lemma 2. For �̂� < 2�̂�,

𝑝𝑖, 𝑗 (1) ∼ 𝑐

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
�̂�(�̂�2 + 4�̂�(�̂�0 + �̂�+))

2�̂�(�̂�2 + 4�̂��̂�+)

) 𝑖 (
�̂�(�̂�2 + 4�̂�+ �̂�)

2�̂�(�̂�2 + 4(�̂�0 + �̂�+) �̂�)

) 𝑗

×
[
1 + 𝐴−

(
4�̂�(�̂�0 + �̂�+)(�̂�2 + 4�̂��̂�+)2

�̂�2(�̂�2 + 4�̂�(�̂�0 + �̂�+))2

) 𝑖]
, 𝑖 < 𝑗 , 𝑗 � 1,(

�̂�

2�̂�

) 𝑖+ 𝑗 (
�̂�2 + 4�̂�+ �̂�
�̂�(�̂� + 2�̂�)

)
, 𝑖 = 𝑗 � 1,(

�̂�(�̂�2 + 4�̂�(�̂�0 + �̂�+))
2�̂�(�̂�2 + 4�̂��̂�+)

) 𝑗 (
�̂�(�̂�2 + 4�̂�+ �̂�)

2�̂�(�̂�2 + 4(�̂�0 + �̂�+) �̂�

) 𝑖
×

[
1 + 𝐴−

(
4�̂�(�̂�0 + �̂�+)(�̂�2 + 4�̂��̂�+)2

�̂�2(�̂�2 + 4�̂�(�̂�0 + �̂�+))2

) 𝑗
]
, 𝑗 < 𝑖, 𝑖 � 1,

𝑝𝑖, 𝑗 (0) = 𝜇

𝜆 + 𝛼(1{𝑖≥1} + 1{ 𝑗≥1})
𝑝𝑖, 𝑗 (1),

(4.7)

where 𝑐 be the normalization constant, and

𝐴− =
𝜆(𝜆 + 𝛼) + �̂�(1 − 𝑥−(1 + 𝜆+𝛼

𝜆+2𝛼 )) + 𝜆+ (𝜆+𝛼)
𝑥+

�̂�( 𝜆+𝛼
𝜆+2𝛼𝑥− + 𝑥+ − 1) − 𝜆(𝜆 + 𝛼) − 𝜆+ (𝜆+𝛼)

𝑥+

,

𝑥+ =
�̂�(�̂�2 + 4�̂�(�̂�0 + �̂�+))

2�̂�(�̂�2 + 4�̂��̂�+)
, 𝑥− =

�̂�0 + �̂�+
�̂�𝑥+

.

Proof. The proof is given in Section 5.2. �

The main result for the asymmetric case is the following.
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Lemma 3. When, 𝜌 < 1, and �̂�0 > |𝜌2( �̂�2 − �̂�1) + �̂�1 − �̂�2 |,

𝑝𝑖, 𝑗 (1) ∼ 𝑐

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
𝜖−
𝜖+

(
𝜌(�̂�2 + 𝜌2 �̂�1)
�̂�0 + �̂�1 + 𝜌2 �̂�2

) 𝑖 (
𝜌(�̂�0 + �̂�1 + 𝜌2 �̂�2)

�̂�2 + 𝜌2 �̂�1

) 𝑗

×
[
1 + 𝐴−

(
𝑥−
𝑥+

) 𝑖]
, 𝑗 > 𝑖, 𝑗 � 1,

𝜌𝑖+ 𝑗
[
�̂�1 + 𝜌2 �̂�2

�̂�(1 + 𝜌)

√
𝜖+
𝜖−

+ �̂�2 + 𝜌2 �̂�1

�̂�(1 + 𝜌)

√
𝜖−
𝜖+

]
, 𝑖 = 𝑗 � 1,√

𝜖+
𝜖−

(
𝜌(�̂�1 + 𝜌2 �̂�2)
�̂�0 + �̂�2 + 𝜌2 �̂�1

) 𝑖 (
𝜌(�̂�0 + �̂�2 + 𝜌2 �̂�1)

�̂�1 + 𝜌2 �̂�2

) 𝑗

×
[
1 + 𝐵−

(
𝑦−
𝑦+

) 𝑗
]
, 𝑖 > 𝑗 , 𝑖 � 1,

𝑝𝑖, 𝑗 (0) = 𝜇

𝜆 + 𝛼11{𝑖>0} + 𝛼21 𝑗>0
𝑝𝑖, 𝑗 (1),

(4.8)

where 𝑐 be the normalization constant, 𝜖± are given in (5.38), and

𝑥+ =
𝜌(�̂�0 + �̂�1 + 𝜌2 �̂�2)

�̂�2 + 𝜌2 �̂�1
, 𝑥− =

(�̂�0 + �̂�1)(�̂�2 + 𝜌2 �̂�1)
�̂�1𝜌(�̂�0 + �̂�1 + 𝜌2 �̂�2)

,

𝑦− =
(�̂�0 + �̂�2)(�̂�1 + 𝜌2 �̂�2)
�̂�2𝜌(�̂�0 + �̂�2 + 𝜌2 �̂�1)

, 𝑦+ =
𝜌(�̂�0 + �̂�2 + 𝜌2 �̂�1)

�̂�1 + 𝜌2 �̂�2

𝐴− =
𝑥2
+( �̂�1

𝜆+𝛼2
𝜆+𝛼1+𝛼2

+ 𝜆2 (𝜆+𝛼2)
𝜌2 ) − 𝑥+(𝜆(𝜆 + 𝛼2) + �̂�2) + 𝜌2 �̂�2

𝑥+(𝜆(𝜆 + 𝛼2) + �̂�2) − [(𝜆0 + 𝜆1)(𝜆 + 𝛼2) + 𝜌2 �̂�2] − 𝜆2 (𝜆+𝛼2)
𝜌2 𝑥2+

,

𝐵− =
𝑦2
+( �̂�2

𝜆+𝛼1
𝜆+𝛼1+𝛼2

+ 𝜆1 (𝜆+𝛼1)
𝜌2 ) − 𝑦+(𝜆(𝜆 + 𝛼1) + �̂�1) + 𝜌2 �̂�1

𝑦+(𝜆(𝜆 + 𝛼1) + �̂�1) − [(𝜆0 + 𝜆2)(𝜆 + 𝛼1) + 𝜌2 �̂�1] − 𝜆1 (𝜆+𝛼1)
𝜌2 𝑦2+

.

Proof. The proof is given in Section 5.3. �

Remark 5. Note that in proving Lemma 3, we need to have the condition �̂�0 > |𝜌2( �̂�2 − �̂�1) + �̂�1 − �̂�2 |.
This condition was also needed in Theorem 4.1 and corresponds to the so called strongly pooled case
in [15]. This condition refers to the case where the proportion of smart jobs is large compared with
the dedicated traffic and results in balancing the orbit queue lengths. In such a case, the orbit queues
overload in tandem; see Figure 9 (left). More importantly, by technical point of view, this condition is
crucial in proving that the approximated join orbit queue-length probabilities are well defined as given
in Lemma 3; see subsection 5.3.

In case �̂�0 ≤ |𝜌2( �̂�2 − �̂�1) + �̂�1 − �̂�2 |, i.e., the weakly pooled case, there is a spectrum of possible drift
directions, depending on how large is the proportion of the dedicated traffic. Moreover, the approximated
joint orbit queue-length distribution cannot any more be written in such an elegant form and is not well
defined. An illustration of both scenarios is given in Figure 9, where we performed some simulations.
Note that in the strongly pooled case, orbit queue lengths grow in tandem as expected; Figure 9(left).
In Figure 9(right), �̂�0 < |𝜌2( �̂�2 − �̂�1) + �̂�1 − �̂�2 |, and 𝜆1 > 𝜆0 > 𝜆2, 𝛼1 > 𝛼2, we observe that 𝑁2(𝑡)
lags behind 𝑁1 (𝑡).
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Figure 9. Orbit dynamics when 𝜌 < 1, 𝛼1 > 𝛼2, and �̂�0 > |𝜌2( �̂�2 − �̂�1) + �̂�1 − �̂�2 | (left), and when
�̂�0 < |𝜌2 ( �̂�2 − �̂�1) + �̂�1 − �̂�2 |, and 𝜆1 > 𝜆0 > 𝜆2 (right).

5. Proofs of main results

To improve the readability of the paper we group in this section the proofs of the main results presented
in section 4.

5.1. Proof of Theorem 4.1

The proof follows the lines in [26], and a series of results are needed to be proven. Note that {𝑌 (𝑛); 𝑛 ≥ 0}
is a discrete time QBD process with the following block structured transition matrix

𝑃𝑌 =

	





�

𝐿0 𝐴1
𝐴−1 𝐴0 𝐴1

𝐴−1 𝐴0 𝐴1
𝐴−1 𝐴0 𝐴1

. . .
. . .

. . .

��
,

where the infinite dimensional matrices 𝐿, 𝐴𝑖 , 𝑖 = 0,±1 are

(𝐿)𝑙,𝑙′ = P(𝑌 (𝑛 + 1) = (0, 𝑙 ′, 1) |𝑌 (𝑛) = (0, 𝑙, 1)), 𝑙, 𝑙 ′ ∈ Z,
(𝐴𝑖)𝑙,𝑙′ = P(𝑌 (𝑛 + 1) = (𝑚 + 𝑖, 𝑙 ′, 1) |𝑌 (𝑛) = (𝑚, 𝑙, 1)), 𝑙, 𝑙 ′ ∈ Z, 𝑚 ≥ 1,

with their elements (i.e., the one-step transition probabilities) are given in (4.1). Under the stability
condition, the stationary distribution exists. Denote it by the row vector 𝝅 = (𝝅0, 𝝅1, . . .). It is well
known that the stationary distribution has the following matrix geometric form:

𝝅𝒎 = 𝝅0𝑅
𝑚, 𝑚 ≥ 1, (5.1)

where 𝑅 is the minimal nonnegative solution of the equation

𝑅 = 𝐴1 + 𝑅𝐴0 + 𝑅2𝐴−1.

Since the size of 𝑅 is infinite, conditions for geometric tail decay rate of (5.1) are given in [26]:

Proposition 1 (Theorem 2.1 in [26]). Let 𝐴 ≡ 𝐴−1 + 𝐴0 + 𝐴1 is irreducible and aperiodic, and assume
that the Markov additive process generated by {𝐴𝑖 , 𝑖 = 0,±1} is 1-arithmetic. If there exists 𝑧 > 1 and
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positive vectors x, y such that

x = x𝐴∗ (𝑧), y = 𝐴∗(𝑧)y, (5.2)

xy < ∞, (5.3)

where 𝐴∗ (𝑤) = 𝑤−1𝐴−1 + 𝐴0 + 𝑤𝐴1, 𝑤 ≠ 0. Then 𝑅 has left and right eigenvectors x and r ≡
(𝐼 − 𝐴0 − 𝑅𝐴−1 − 𝑧−1𝐴−1)y, respectively, with eigenvalue 𝑧−1. Moreover, if

𝝅0y < ∞, (5.4)

then

lim
𝑚→∞

𝑧𝑛𝝅𝑚 =
𝝅0r
xr x. (5.5)

Remark 6. It is easy to see that for our queueing model, both the aperiodicity and the irreducibility of
𝐴 are easily verified. Moreover, the 1-arithmetic property of the Markov additive process generated by
{𝐴𝑖; 𝑖 = 0,±1} is readily satisfied by its transition structure.

For our case, the matrix 𝐴∗ (𝑧) is given by

𝐴∗ (𝑧) =

	









�

. . . −3 −2 −1 0 1 2 3 . . .
...

. . .
. . .

. . .

−2 𝑎−1 𝑎0 𝑎1
−1 𝑎−1 𝑎0 𝑎1
0 𝑐−1 𝑐0 𝑐1
1 𝑏−1 𝑏0 𝑏1
2 𝑏−1 𝑏0 𝑏1
...

. . .
. . .

. . .

��
,

where

𝑎−1 =
�̂�2

𝜆 + 𝛼1 + 𝛼2
𝑧−1 + 𝜆1, 𝑎0 = 𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2
, 𝑎1 =

�̂�1

𝜆 + 𝛼1 + 𝛼2
+ (𝜆0 + 𝜆2)𝑧,

𝑐−1 =
�̂�2

𝜆 + 𝛼1 + 𝛼2
𝑧−1 + 𝜆1 + 𝜆0

2
, 𝑐0 = 𝑎0, 𝑐1 =

�̂�1

𝜆 + 𝛼1 + 𝛼2
𝑧−1 + 𝜆0

2
+ 𝜆2,

𝑏−1 =
�̂�2

𝜆 + 𝛼1 + 𝛼2
+ (𝜆0 + 𝜆1)𝑧, 𝑏0 = 𝑎0, 𝑏1 =

�̂�1

𝜆 + 𝛼1 + 𝛼2
𝑧−1 + 𝜆2.

Denote the left and the right invariant vectors of 𝐴∗ (𝑧), 𝑧 > 1 by

x(𝑧) = (. . . , 𝑥−1(𝑧), 𝑥0, 𝑥1 (𝑧), . . .), y(𝑧) = (. . . , 𝑦−1(𝑧), 𝑦0, 𝑦1 (𝑧), . . .)T.

We are left to examine conditions (5.2), (5.3), (5.4). To this end, let

𝛽𝑖, 𝑗 (𝑧) = (�̂� + �̂�1 + �̂�2)2 − 4( �̂�𝑖 + (�̂�0 + �̂� 𝑗)𝑧)( �̂� 𝑗 𝑧
−1 + �̂�𝑖), 𝑖, 𝑗 = 1, 2,

𝑓 (𝑧) = �̂�2𝑧
−1 + �̂�1 + �̂�0

2

2( �̂�2𝑧−1 + �̂�1)

(
1 −

√
𝛽1,2 (𝑧)

�̂� + �̂�1 + �̂�2

)
+ �̂�1𝑧

−1 + �̂�2 + �̂�0
2

2( �̂�1𝑧−1 + �̂�2)

(
1 −

√
𝛽2,1 (𝑧)

�̂� + �̂�1 + �̂�2

)
.
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Lemma 4. For the censored chain {𝑌 (𝑛); 𝑛 ≥ 0} on the busy states of our GJSOQ, the conditions (5.2)
and (5.3) hold if and only if there exists a 𝑧 > 1 such that

𝛽1,2 (𝑧) > 0, 𝛽2,1 (𝑧) > 0, (5.6)

and 𝑓 (𝑧) = 1. In such a case, the left and right invariant vectors x(𝑧) and y(𝑧) of 𝐴∗ (𝑧) satisfying
x(𝑧)y(𝑧) < ∞ have the following forms:

𝑥𝑙 (𝑧) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
1 + �̂�0

2( �̂�2𝑧−1 + �̂�1)

)
𝑥0𝜂

|𝑙 |
min, 𝑙 ≤ −1,(

1 + �̂�0

2( �̂�1𝑧−1 + �̂�2)

)
𝑥0𝜃

𝑙
min, 𝑙 ≥ 1,

,

𝑦𝑙 (𝑧) =
{
𝑦0𝜂

−|𝑙 |
max, 𝑙 ≤ −1,

𝑦0𝜃
−𝑙
max, 𝑙 ≥ 1,

(5.7)

where 𝜂min < 𝜂max are the roots of the equation:

𝜙−(𝜂) := 𝜂2( �̂�1 + (�̂�0 + �̂�2)𝑧) − 𝜂(�̂� + �̂�1 + �̂�2) + �̂�2𝑧
−1 + �̂�1 = 0, (5.8)

and 𝜃min < 𝜃max are the roots of the equation:

𝜙+(𝜃) := 𝜃2( �̂�2 + (�̂�0 + �̂�1)𝑧) − 𝜃 (�̂� + �̂�1 + �̂�2) + �̂�1𝑧
−1 + �̂�2 = 0. (5.9)

Proof. See Appendix C. �

Remark 7. Note that from (5.8), (5.9),

𝜂min =
�̂� + �̂�1 + �̂�2 −

√
𝛽1,2 (𝑧)

2( �̂�1 + (�̂�2 + �̂�0)𝑧)
, 𝜂max =

�̂� + �̂�1 + �̂�2 +
√
𝛽1,2 (𝑧)

2( �̂�1 + (�̂�2 + �̂�0)𝑧)
,

𝜃min =
�̂� + �̂�1 + �̂�2 −

√
𝛽2,1 (𝑧)

2( �̂�2 + (�̂�1 + �̂�0)𝑧)
, 𝜃max =

�̂� + �̂�1 + �̂�2 +
√
𝛽2,1 (𝑧)

2( �̂�2 + (�̂�1 + �̂�0)𝑧)
.

We now turn our attention in the solution of the equation 𝑓 (𝑧) = 1. To improve the readability, set
𝛾1 = �̂�1𝜌

2 + �̂�2, 𝛾2 = �̂�2𝜌
2 + �̂�1. Note that 𝛾1 + 𝛾2 + �̂�0 = 𝜌(�̂� + �̂�1 + �̂�2).

Lemma 5. 𝑧 = 𝜌−2 is the only solution of 𝑓 (𝑧) = 1, 𝑧 > 1, and

(𝜂min, 𝜂max) =
(
𝜌

𝛾2

𝛾1 + �̂�0
, 𝜌

)
or

(
𝜌, 𝜌

𝛾2

𝛾1 + �̂�0

)
, (5.10)

(𝜃min, 𝜃max) =
(
𝜌

𝛾1

𝛾2 + �̂�0
, 𝜌

)
or

(
𝜌, 𝜌

𝛾1

𝛾2 + �̂�0

)
. (5.11)

Proof. See Appendix D. �

The results given in Lemmas 4 and 5 provide the basic ingredients for the proof of Theorem 4.1.
Note that based on Lemma 5, there are four cases for the expression of x(𝜌−2) based on the possible
values of 𝜂min, 𝜃min. In particular,(

𝜂min
𝜃min

)
=

(
𝜌 𝛾2
𝛾1+�̂�0

𝜌 𝛾1
𝛾2+�̂�0

)
or

(
𝜌

𝜌 𝛾1
𝛾2+�̂�0

)
or

(
𝜌 𝛾2
𝛾1+�̂�0

𝜌

)
or

(
𝜌
𝜌

)
.
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The last one is rejected since corresponds to the case 𝛾1 + �̂�0 ≤ 𝛾2, 𝛾2 + �̂�0 ≤ 𝛾1, which is impossible
since 𝜆0 > 0. It is easily seen that only the first pair satisfies x(𝜌−2) = x(𝜌−2)𝐴∗(𝜌−2), which means
that 𝐴∗ (𝜌−2) is 1-positive. Note that in such a case 𝜌(𝛾2/(𝛾1 + �̂�0)) < 𝜌 ⇒ 𝛾2 − 𝛾1 < �̂�0, and
𝜌(𝛾1/(𝛾2 + �̂�0)) < 𝜌 ⇒ 𝛾1−𝛾2 < �̂�0, which is equivalent to |𝛾1−𝛾2 | < �̂�0 or to |�̂�2−�̂�1+𝜌2(𝜇1−𝜇2) | <
�̂�0 (note that this case is equivalent to the so-called strongly pooled case in [15]).

Now it remains to verify the boundary condition (5.4). From Lemma 5, we know that 𝜂max = 𝜃max = 𝜌.
Thus, 𝝅0y < ∞ implies

∞∑
𝑙=0
𝜌−𝑙 (P(𝑁1 = 𝑙, 𝑁2 = 0, 𝐶 = 1) + P(𝑁1 = 0, 𝑁2 = 𝑙, 𝐶 = 1)) < ∞,

where {(𝑁1, 𝑁2, 𝐶)} is the stationary version of {𝑋 (𝑛); 𝑛 ≥ 0}. The last inequality is the same as
condition C.10 in [15], which was proved under the corresponding conditions max{𝜌1, 𝜌2} < 𝜌 < 1,
and |�̂�2 − �̂�1 + 𝜌2(𝜇1 − 𝜇2) | < �̂�0 in [15] Proposition 1, following [28] Theorem 14.3.7, so further details
are omitted.

Following [26] Definition 2.2, the two orbit queue are strongly balanced, if the difference between
orbit queue lengths (i.e., the background process) is dominated by the level process, i.e., min{𝑁1,𝑛, 𝑁2,𝑛}.
Intuitively, it means that the level process has more influence when the same scaling is applied to the
level and background process. This is equivalent with the condition

lim
𝑙→+∞

𝜌−2𝑙𝑥𝑙 (𝜌−2) = lim
𝑙→−∞

𝜌2𝑙𝑥𝑙 (𝜌−2) = 0.

Noting (4.3), it is easily realized that this is the case if and only if 𝛾2 < 𝜌(𝛾1 + �̂�0), 𝛾1 < 𝜌(𝛾2 + �̂�0).

5.2. Proof of Lemma 2

Starting with region I (𝑖 � 1, 𝑗 � 1), Eqs. (2.1) and (2.2) are the only relevant. By introducing the new
variables 𝑚 = 𝑖 + 𝑗 , 𝑛 = 𝑗 − 𝑖, and setting 𝑝𝑖, 𝑗 (𝑘) ≡ 𝑅𝑚,𝑛 (𝑘), (2.1) and (2.2) become

𝑅𝑚,𝑛 (0) = 𝜇

𝜆 + 2𝛼
𝑅𝑚,𝑛 (1), (5.12)

(𝜆 + 2𝛼)𝑅𝑚,𝑛 (1) = [𝜆0𝐻 (1 − 𝑛) + 𝜆+]𝑅𝑚−1,𝑛−1 (1)
+ [𝜆0𝐻 (𝑛 + 1) + 𝜆+]𝑅𝑚−1,𝑛+1 (1) + 𝜆𝑅𝑚,𝑛 (0)
+ 𝛼[𝑅𝑚+1,𝑛−1 (0) + 𝑅𝑚+1,𝑛+1 (0)], (5.13)

Substituting (5.12) to (5.13) yields

(�̂� + 2�̂�)𝑅𝑚,𝑛 (1) = [�̂�0𝐻 (1 − 𝑛) + �̂�+]𝑅𝑚−1,𝑛−1 (1)
+ [�̂�0𝐻 (𝑛 + 1) + �̂�+]𝑅𝑚−1,𝑛+1 (1) + �̂�[𝑅𝑚+1,𝑛−1 (1) + 𝑅𝑚,𝑛 (1)], (5.14)

where �̂� = 𝜆(𝜆 + 2𝛼), 𝜆 = 𝜆0 + 2𝜆+, �̂�𝑙 = 𝜆𝑙 (𝜆 + 2𝛼), 𝑙 = 0, +, �̂� = 𝛼𝜇. Note that regarding variable
𝑚, (5.14) is second-order difference equation with constant coefficients, which admits solutions of the
form 𝑅(𝑚, 𝑛, 1) = 𝛾𝑚𝑄(𝑛), where 𝛾 a constant to be determined. Substituting in (5.14), we realize that
𝑄(𝑛) satisfies

(�̂� + 2�̂�)𝑄(𝑛) =
[
�̂�0𝐻 (1 − 𝑛) + �̂�+

𝛾
+ �̂�𝛾

]
𝑄(𝑛 − 1) +

[
�̂�0𝐻 (1 + 𝑛) + �̂�+

𝛾
+ �̂�𝛾

]
𝑄(𝑛 + 1). (5.15)
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Note that symmetry implies that 𝑄(𝑛) = 𝑄(−𝑛), and thus, it is sufficient to only consider 𝑛 ≥ 0. Then,
for 𝑛 = 0, (5.14) gives

(�̂� + 2�̂�)𝑄(0) = 2
[
�̂�0 + �̂�+
𝛾

+ �̂�𝛾
]
𝑄(1). (5.16)

Setting 𝑛 = 1 in (5.15), and using (5.16) we obtain,[
�̂�0 + �̂�+
𝛾

+ �̂�𝛾
]
𝑄(2) =

[
�̂� + 2�̂� − 2

�̂� + 2�̂�

[
�̂�0 + �̂�+
𝛾

+ �̂�𝛾
] [

�̂�

2𝛾
+ �̂�𝛾

] ]
𝑄(1), (5.17)

while, for 𝑛 ≥ 2,

(�̂� + 2�̂�)𝑄(𝑛) =
[
�̂�+
𝛾

+ �̂�𝛾
]
𝑄(𝑛 − 1) +

[
�̂�0 + �̂�+
𝛾

+ �̂�𝛾
]
𝑄(𝑛 + 1). (5.18)

The form of (5.18) implies that 𝑄(𝑛) = 𝑐𝛿𝑛, 𝑛 ≥ 1. Thus, by substituting in (5.17), (5.18) we obtain

�̂� + 2�̂� =

[
�̂�0 + �̂�+
𝛾

+ �̂�𝛾
]
𝛿 + 2

�̂� + 2�̂�

[
�̂�0 + �̂�+
𝛾

+ �̂�𝛾
] [

�̂�

2𝛾
+ �̂�𝛾

]
, (5.19)

�̂� + 2�̂� =

[
�̂�+
𝛾

+ �̂�𝛾
]

1
𝛿
+

[
�̂�0 + �̂�+
𝛾

+ �̂�𝛾
]
𝛿. (5.20)

Eqs. (5.19) and (5.20) constitute a pair of algebraic curves in (𝛾, 𝛿) − 𝑝𝑙𝑎𝑛𝑒 with four inter-
section points. From these points, the only possible candidates are: (1, (�̂�+ + �̂�)/(�̂�0 + �̂�+ + �̂�)),
(�̂�/2�̂�, (�̂�2 + 4�̂�+ �̂�)/(�̂�2 + 4(�̂�0 + �̂�+) �̂�)). Note that 𝛾 = 1 yields

∑
𝑖, 𝑗≥0 𝑝𝑖, 𝑗 (1) = ∞, i.e., corresponds

to an un-normalizable solution for 𝑝𝑖, 𝑗 (1), thus the pair (�̂�/2�̂�, (�̂�2 + 4�̂�+ �̂�)/(�̂�2 + 4(�̂�0 + �̂�+) �̂�)), with
�̂� < 2�̂� corresponds to the feasible pair. Note that �̂� < 2�̂� corresponds to the stability condition for our
system. Finally, from (5.16) by substituting (𝛾, 𝛿) = (�̂�/2�̂�, (�̂�2 + 4�̂�+ �̂�)/(�̂�2 + 4(�̂�0 + �̂�+) �̂�)) yields

𝑄(0) = 𝑐 �̂�
2 + 4�̂�+ �̂�
�̂�(�̂� + 2�̂�) .

To summarize, the asymptotic expansions of 𝑝𝑖, 𝑗 (𝑘), in region I (𝑖 � 1, 𝑗 � 1) are

𝑝𝑖, 𝑗 (1) ∼ 𝑐

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(
�̂�

2�̂�

) 𝑖+ 𝑗 (
�̂�2 + 4�̂�+ �̂�

�̂�2 + 4(�̂�0 + �̂�+) �̂�
)
) |𝑖− 𝑗 |

, 𝑖 ≠ 𝑗 ,(
�̂�

2�̂�

) 𝑖+ 𝑗 (
�̂�2 + 4�̂�+ �̂�
�̂�(�̂� + 2�̂�)

)
, 𝑖 = 𝑗 .

𝑝𝑖, 𝑗 (0) = 𝜇

𝜆 + 2𝛼
𝑝𝑖, 𝑗 (1),

(5.21)

where the multiplicative constant 𝑐 is the normalization constant.
We proceed with region II for 𝑖 = 0 or 1, and 𝑗 � 1. Eqs. (2.1) and (2.2) for 𝑗 > 𝑖 + 1, and (2.3) are

the only relevant. Using these equations, we have to solve

(𝜆 + 𝛼1{𝑖>0} + 𝛼)𝑝𝑖, 𝑗 (0) = 𝜇𝑝𝑖, 𝑗 (1), (5.22)

(�̂� + 2�̂�)𝑝𝑖, 𝑗 (1) = �̂�+𝑝𝑖, 𝑗−1 (1) + [�̂�0 + �̂�+]𝑝𝑖−1, 𝑗 (1) + �̂�[𝑝𝑖+1, 𝑗 (1) + 𝑝𝑖, 𝑗+1 (1)], (5.23)
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(𝜆(𝜆 + 𝛼) + �̂�)𝑝0, 𝑗 (1) = �̂�(𝜆 + 𝛼)
𝜆 + 2𝛼

𝑝1, 𝑗 (1) + �̂�𝑝0, 𝑗+1 (1) + 𝜆+(𝜆 + 𝛼)𝑝0, 𝑗−1 (1). (5.24)

Clearly, the solution of (5.22)–(5.24) should agree with the expansion (5.21) for 𝑖 � 1. Thus, we should
add the condition

𝑝𝑖, 𝑗 (1) ∼ 𝑐
(
�̂�

2�̂�

) 𝑖+ 𝑗 (
�̂�2 + 4�̂�+ �̂�

�̂�2 + 4(�̂�0 + �̂�+) �̂�

) 𝑗−𝑖
, 𝑖 � 1.

This condition implies that we seek for solutions of (5.22)–(5.24) of the form

𝑝𝑖, 𝑗 (1) = 𝑐
(
�̂�

2�̂�
× �̂�

2 + 4(�̂�0 + �̂�+) �̂�
�̂�2 + 4�̂�+ �̂�

) 𝑗

𝐹 (𝑖), (5.25)

where 𝐹 (𝑖) ∼ [�̂�(�̂�2 + 4�̂�+ �̂�)/(2�̂�(�̂�2 + 4(�̂�0 + �̂�+) �̂�))]𝑖 , 𝑖 � 1. Substitute (5.25) in (5.23)and (5.24),
we obtain the following set of equations that 𝐹 (𝑖) should satisfy:

(𝜆(𝜆 + 𝛼) + �̂�)𝐹 (0) = �̂�
[
𝜆 + 𝛼
𝜆 + 2𝛼

𝐹 (1) + �̂�(�̂�2 + 4�̂�+ �̂�)
2�̂�(�̂�2 + 4(�̂�0 + �̂�+) �̂�)

𝐹 (0)
]

+ 𝜆+(𝜆 + 𝛼) 2�̂�(�̂�2 + 4�̂�(�̂�0 + �̂�+))
�̂�(�̂�2 + 4�̂��̂�+)

𝐹 (0), (5.26)

(�̂� + 2�̂�)𝐹 (𝑖) = (�̂�0 + �̂�+)𝐹 (𝑖 − 1) + �̂�+ 2�̂�(�̂�2 + 4�̂�(�̂�0 + �̂�+))
�̂�(�̂�2 + 4�̂��̂�+)

𝐹 (𝑖)

+ �̂�𝐹 (𝑖 + 1) + �̂�(�̂�2 + 4�̂��̂�+)
2(�̂�2 + 4�̂�(�̂�0 + �̂�+))

𝐹 (𝑖), 𝑖 ≥ 1. (5.27)

The form of (5.27) implies that 𝐹 (𝑖) = 𝐴+𝑥𝑖+ + 𝐴−𝑥𝑖−, where

𝑥+ =
�̂�(�̂�2 + 4�̂�(�̂�0 + �̂�+))

2�̂�(�̂�2 + 4�̂��̂�+
, 𝑥− =

�̂�0 + �̂�+
�̂�𝑥+

,

𝐴− =
𝜆(𝜆 + 𝛼) + �̂�(1 − 𝑥−(1 + 𝜆+𝛼

𝜆+2𝛼 )) + 𝜆+ (𝜆+𝛼)
𝑥+

�̂�( 𝜆+𝛼
𝜆+2𝛼𝑥− + 𝑥+ − 1) − 𝜆(𝜆 + 𝛼) − 𝜆+ (𝜆+𝛼)

𝑥+

.

Moreover, 𝐴+ = 1 (due to the asymptotic form of 𝐹 (𝑖) given below (5.25)), while 𝐴− is derived by the
boundary condition (5.26). The obtained expansion for region II coincides with the expression (5.21)
for 𝑖 � 1. Thus, (5.25) is uniformly valid for all 𝑖 < 𝑗 with 𝑗 � 1. Due to the symmetry of the model,
the expansion for 𝑖 > 𝑗 , 𝑗 � 1 is obtained by replacing in the derived expressions (𝑖, 𝑗) with ( 𝑗 , 𝑖).

5.3. Proof of Lemma 3

The proof is similar to the one presented in Section 5.2, although we need an additional condition to
ensure that the approximated joint orbit queue-length distribution is well defined. We start with region
I (𝑖 � 1, 𝑗 � 1), where Eqs. (2.1) and (2.2) become

𝑅𝑚,𝑛 (0) = 𝜇

𝜆 + 𝛼1 + 𝛼2
𝑅𝑚,𝑛 (1), (5.28)
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(𝜆 + 𝛼1 + 𝛼2)𝑅𝑚,𝑛 (1) = [𝜆0𝐻 (1 − 𝑛) + 𝜆2]𝑅𝑚−1,𝑛−1 (1)
+ [𝜆0𝐻 (𝑛 + 1) + 𝜆1]𝑅𝑚−1,𝑛+1 (1) + 𝜆𝑅𝑚,𝑛 (0)
+ 𝛼1𝑅𝑚+1,𝑛−1 (0) + 𝛼2𝑅𝑚+1,𝑛+1 (0)], (5.29)

which give

(�̂� + �̂�1 + �̂�2)𝑅𝑚,𝑛 (1) = [�̂�0𝐻 (1 − 𝑛) + �̂�2]𝑅𝑚−1,𝑛−1 (1)
+ [�̂�0𝐻 (𝑛 + 1) + �̂�2]𝑅𝑚−1,𝑛+1 (1)
+ �̂�1𝑅𝑚+1,𝑛−1 (1) + �̂�2𝑅𝑚,𝑛 (1), (5.30)

where �̂� = 𝜆(𝜆 +𝛼1 +𝛼2), �̂�𝑙 = 𝜆𝑙 (𝜆 +𝛼1 +𝛼2), 𝑙 = 0, 1, 2, �̂�𝑙 = 𝛼𝑙𝜇, 𝑙 = 1, 2. Contrary to the symmetric
case, we are now seeking for solutions of (5.30) of the form

𝑅𝑚,𝑛 (1) = 𝛾𝑚
⎧⎪⎪⎨⎪⎪⎩
𝑐+𝛿𝑛+ , 𝑛 ≥ 1,
𝑐0, 𝑛 = 0,
𝑐−𝛿−𝑛− , 𝑛 ≤ −1.

(5.31)

Substitution of (5.31) to (5.30) yields five equations, corresponding to the cases 𝑛 = 0, 𝑛 = ±1, 𝑛 ≥ 2,
𝑛 ≤ −2:

(�̂� + �̂�1 + �̂�2)𝑐0 =

(
�̂�0 + �̂�2

𝛾
+ �̂�1𝛾

)
𝑐−𝛿− +

(
�̂�0 + �̂�1

𝛾
+ �̂�2𝛾

)
𝑐+𝛿+, (5.32)

(�̂� + �̂�1 + �̂�2)𝑐+𝛿+ =

(
�̂�0 + 2�̂�2

2𝛾
+ �̂�1𝛾

)
𝑐0 +

(
�̂�0 + �̂�1

𝛾
+ �̂�2𝛾

)
𝑐+𝛿2

+, (5.33)

(�̂� + �̂�1 + �̂�2)𝑐−𝛿− =

(
�̂�0 + 2�̂�1

2𝛾
+ �̂�2𝛾

)
𝑐0 +

(
�̂�0 + �̂�2

𝛾
+ �̂�1𝛾

)
𝑐−𝛿2

−, (5.34)

�̂� + �̂�1 + �̂�2 =

(
�̂�2

𝛾
+ �̂�1𝛾

)
1
𝛿+

+
(
�̂�0 + �̂�1

𝛾
+ �̂�2𝛾

)
𝛿+, (5.35)

�̂� + �̂�1 + �̂�2 =

(
�̂�1

𝛾
+ �̂�2𝛾

)
1
𝛿−

+
(
�̂�0 + �̂�2

𝛾
+ �̂�1𝛾

)
𝛿−. (5.36)

The system (5.32)–(5.36) is a set of five equations for the five unknowns 𝛾, 𝛿+, 𝛿−, 𝑐+/𝑐0, 𝑐−/𝑐0. Using
(5.35) in (5.33) and (5.36) in (5.34), we easily realize that

𝑐− =
𝜖+
𝜖−
𝑐+. (5.37)

where

𝜖+ =

(
�̂�2

𝛾
+ �̂�1𝛾

) (
�̂�0 + 2�̂�1

2𝛾
+ �̂�2𝛾

)
, 𝜖− =

(
�̂�1

𝛾
+ �̂�2𝛾

) (
�̂�0 + 2�̂�2

2𝛾
+ �̂�1𝛾

)
. (5.38)

Thus, a natural choice is 𝑐− :=
√
𝜖+/𝜖−, and 𝑐+ :=

√
𝜖−/𝜖+. Note that in the symmetric case, 𝑐+ = 𝑐−.

Following a procedure similar to the one used in [22], after heavy algebraic manipulations (similar to
those given in the proof of Lemma 5) we realize that 𝛾 := 𝜌 = �̂�/( �̂�1 + �̂�2), which is crucial for the
stability condition, thus, asking �̂� < �̂�1 + �̂�2.
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For 𝛾 = 𝜌, (5.35), (5.36) have each one from two roots, namely 𝛿+ = 1 or
𝛿+ = (�̂�2 + 𝜌2 �̂�1)/(�̂�0 + �̂�1 + 𝜌2 �̂�2), and 𝛿− = 1 or 𝛿− = (�̂�1 + 𝜌2 �̂�2)/(�̂�0 + �̂�2 + 𝜌2 �̂�1),
respectively. Therefore, the feasible candidates are 𝛿+ = (�̂�2 + 𝜌2 �̂�1)/(�̂�0 + �̂�1 + 𝜌2 �̂�2), 𝛿− =
(�̂�1 + 𝜌2 �̂�2)/(�̂�0 + �̂�2 + 𝜌2 �̂�1). Note, that when �̂�0 > |𝜌2( �̂�2 − �̂�1) + �̂�1 − �̂�2 |, both 0 < 𝛿+ < 1, and
0 < 𝛿− < 1. Note that this case along with the assumption that 𝜌 > max{𝜌1, 𝜌2}, where 𝜌 𝑗 = �̂� 𝑗/�̂� 𝑗 ,
𝑗 = 1, 2, corresponds to the so called strongly pooled case mentioned in [15] Theorem 2 for the standard
join the shortest queue model without retrials. Substituting 𝛾, 𝛿+, 𝛿− in (5.37) and (5.32), we obtain after
some algebra

𝑐0 =
�̂�1 + 𝜌2 �̂�2

�̂�(1 + 𝜌)

√
𝜖+
𝜖−

+ �̂�2 + 𝜌2 �̂�1

�̂�(1 + 𝜌)

√
𝜖−
𝜖+
,

𝜖− =
(�̂�1 + �̂�2𝜌

2)(�̂�0 + 2�̂�2 + 2�̂�1𝜌
2)

2𝜌2 , 𝜖+ =
(�̂�2 + �̂�1𝜌

2)(�̂�0 + 2�̂�1 + 2�̂�2𝜌
2)

2𝜌2 .

Thus, for region I (𝑖 � 1, 𝑗 � 1), our results are summarized in

𝑝𝑖, 𝑗 (1) ∼ 𝑐𝜌𝑖+ 𝑗

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
𝜖−
𝜖+

(
�̂�2 + 𝜌2 �̂�1

�̂�0 + �̂�1 + 𝜌2 �̂�2

) 𝑗−𝑖
, 𝑗 > 𝑖,

�̂�1 + 𝜌2 �̂�2

�̂�(1 + 𝜌)

√
𝜖+
𝜖−

+ �̂�2 + 𝜌2 �̂�1

�̂�(1 + 𝜌)

√
𝜖−
𝜖+
, 𝑖 = 𝑗 ,√

𝜖−
𝜖+

(
�̂�1 + 𝜌2 �̂�2

�̂�0 + �̂�1 + 𝜌2 �̂�1

) 𝑖− 𝑗

, 𝑗 < 𝑖.

𝑝𝑖, 𝑗 (0) = 𝜇

𝜆 + 𝛼1 + 𝛼2
𝑝𝑖, 𝑗 (1),

(5.39)

where 𝑐 is a multiplicative constant.
Next, we consider region II for 𝑖 = 0 or 1, and 𝑗 � 1. We should solve

(𝜆 + 𝛼11{𝑖>0} + 𝛼2)𝑝𝑖, 𝑗 (0) = 𝜇𝑝𝑖, 𝑗 (1), (5.40)

(�̂� + �̂�1 + �̂�2)𝑝𝑖, 𝑗 (1) = �̂�2𝑝𝑖, 𝑗−1 (1) + [�̂�0 + �̂�1]𝑝𝑖−1, 𝑗 (1) + �̂�1𝑝𝑖+1, 𝑗 (1) + �̂�2𝑝𝑖, 𝑗+1 (1), (5.41)

(𝜆(𝜆 + 𝛼2) + �̂�2)𝑝0, 𝑗 (1) = �̂�1(𝜆 + 𝛼2)
𝜆 + 𝛼1 + 𝛼2

𝑝1, 𝑗 (1) + �̂�2𝑝0, 𝑗+1 (1) + 𝜆2(𝜆 + 𝛼2)𝑝0. 𝑗−1 (1), (5.42)

and

𝑝𝑖, 𝑗 (1) ∼ 𝑐
√
𝜖−
𝜖+

(
𝜌

�̂�2 + 𝜌2 �̂�1

�̂�0 + �̂�1 + 𝜌2 �̂�2

) 𝑗 (
𝜌
�̂�0 + �̂�1 + 𝜌2 �̂�2

�̂�2 + 𝜌2 �̂�1

) 𝑖
, 𝑖 � 1.

Thus, we seek solutions of (5.41)–(5.42) of the form

𝑝𝑖, 𝑗 (1) ∼ 𝑐
√
𝜖−
𝜖+

(
𝜌

�̂�2 + 𝜌2 �̂�1

�̂�0 + �̂�1 + 𝜌2 �̂�2

) 𝑗

𝐹 (𝑖),

and obtain the following set of equations for 𝐹 (𝑖):

(�̂� + �̂�1 + �̂�2)𝐹 (𝑖) = (�̂�0 + �̂�1)𝐹 (𝑖 − 1) +
(
�̂�2(�̂�0 + �̂�1 + 𝜌2 �̂�2)
𝜌(�̂�2 + 𝜌2 �̂�1)

+ �̂�2𝜌(�̂�2 + 𝜌2 �̂�1)
�̂�0 + �̂�1 + 𝜌2 �̂�2

)
𝐹 (𝑖)

+ �̂�1𝐹 (𝑖 + 1), (5.43)
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(𝜆(𝜆 + 𝛼2) + �̂�2)𝐹 (0) = �̂�1
𝜆 + 𝛼2

𝜆 + 𝛼1 + 𝛼2
𝐹 (1) + �̂�2𝜌(�̂�2 + 𝜌2 �̂�1)

�̂�0 + �̂�1 + 𝜌2 �̂�2
𝐹 (0)

+ 𝜆2(𝜆 + 𝛼2) �̂�0 + �̂�1 + 𝜌2 �̂�2

𝜌(�̂�2 + 𝜌2 �̂�1)
𝐹 (0), (5.44)

with 𝐹 (𝑖) ∼ (𝜌(�̂�0 + �̂�1 + 𝜌2 �̂�2)/(�̂�2 + 𝜌2 �̂�1))𝑖 , 𝑖 � 1. The solution to (5.43), (5.44) is 𝐹 (𝑖) = 𝑥𝑖++𝐴−𝑥𝑖−,
where

𝑥+ =
𝜌(�̂�0 + �̂�1 + 𝜌2 �̂�2)

�̂�2 + 𝜌2 �̂�1
, 𝑥− =

(�̂�0 + �̂�1)(�̂�2 + 𝜌2 �̂�1)
�̂�1𝜌(�̂�0 + �̂�1 + 𝜌2 �̂�2)

,

𝐴− =
𝑥2
+( �̂�1

𝜆+𝛼2
𝜆+𝛼1+𝛼2

+ 𝜆2 (𝜆+𝛼2)
𝜌2 ) − 𝑥+(𝜆(𝜆 + 𝛼2) + �̂�2) + 𝜌2 �̂�2

𝑥+(𝜆(𝜆 + 𝛼2) + �̂�2) − [(𝜆0 + 𝜆1)(𝜆 + 𝛼2) + 𝜌2 �̂�2] − 𝜆2 (𝜆+𝛼2)
𝜌2 𝑥2+

,

where 𝐴− is obtained using (5.44). Moreover, 𝑥+ > 1 when �̂�2 + �̂�1𝜌
2 < 𝜌(�̂�0 + �̂�1 + �̂�2𝜌

2) (note that this
corresponds to the strongly balanced condition mentioned in Theorem 4.1). Furthermore, 𝑥−/𝑥+ < 1

when (�̂�2 + �̂�1𝜌
2)

√
(�̂�0 + �̂�1)/�̂�1 < 𝜌(�̂�0 + �̂�1 + �̂�2𝜌

2). Thus, for 𝑖 < 𝑗 , 𝑗 � 1,

𝑝𝑖, 𝑗 (1) ∼ 𝑐
√
𝜖−
𝜖+

(
𝜌(�̂�2 + 𝜌2 �̂�1)
�̂�0 + �̂�1 + 𝜌2 �̂�2

) 𝑖 (
𝜌(�̂�0 + �̂�1 + 𝜌2 �̂�2)

�̂�2 + 𝜌2 �̂�1

) 𝑗
[
1 + 𝐴−

(
𝑥−
𝑥+

) 𝑖]
,

𝑝𝑖, 𝑗 (0) = 𝜇

𝜆 + 𝛼11{𝑖>0} + 𝛼2
𝑝𝑖, 𝑗 (1).

(5.45)

An analogous analysis can be performed for region III (𝑖 � 1, 𝑗 = 0, 1), and results in

𝑝𝑖, 𝑗 (1) ∼ 𝑐
√
𝜖+
𝜖−

(
𝜌(�̂�1 + 𝜌2 �̂�2)
�̂�0 + �̂�2 + 𝜌2 �̂�1

) 𝑖 (
𝜌(�̂�0 + �̂�2 + 𝜌2 �̂�1)

�̂�1 + 𝜌2 �̂�2

) 𝑗

×
[
1 + 𝐵−

(
𝑦−
𝑦+

) 𝑗
]
, 𝑖 > 𝑗 , 𝑖 � 1,

𝑝𝑖, 𝑗 (0) = 𝜇

𝜆 + 𝛼21{ 𝑗>0} + 𝛼1
𝑝𝑖, 𝑗 (1),

(5.46)

where,

𝑦− =
(�̂�0 + �̂�2)(�̂�1 + 𝜌2 �̂�2)
�̂�2𝜌(�̂�0 + �̂�2 + 𝜌2 �̂�1)

, 𝑦+ =
𝜌(�̂�0 + �̂�2 + 𝜌2 �̂�1)

�̂�1 + 𝜌2 �̂�2

𝐵− =
𝑦2
+( �̂�2

𝜆+𝛼1
𝜆+𝛼1+𝛼2

+ 𝜆1 (𝜆+𝛼1)
𝜌2 ) − 𝑦+(𝜆(𝜆 + 𝛼1) + �̂�1) + 𝜌2 �̂�1

𝑦+(𝜆(𝜆 + 𝛼1) + �̂�1) − [(𝜆0 + 𝜆2)(𝜆 + 𝛼1) + 𝜌2 �̂�1] − 𝜆1 (𝜆+𝛼1)
𝜌2 𝑦2+

.

Moreover, 𝑦+ > 1 when �̂�1 + �̂�2𝜌
2 < 𝜌(�̂�0 + �̂�2 + �̂�1𝜌

2) (note that this corresponds to the strongly

balanced condition mentioned in Theorem 4.1), and 𝑦−/𝑦+ < 1 when (�̂�1 + �̂�2𝜌
2)

√
(�̂�0 + �̂�2)/�̂�2 <

𝜌(�̂�0 + �̂�2 + �̂�1𝜌
2).
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Table 1. Validation of the asymptotic stationary approximations.

Indicated values (𝑖, 𝑗) Difference

(10, 100) 4.0667 × 10−40

(10, 200) 2.3404 × 10−81

(10, 300) 1.3469 × 10−122

(10, 400) 7.7516 × 10−164

(100, 10) 1.2203 × 10−54

(200, 10) 4.555 × 10−112

(300, 10) 1.7003 × 10−169

(400, 10) 6.3466 × 10−227

Figure 10. The ratio 𝑃𝑟 (𝑘 + 1)/𝑃𝑟 (𝑘) for increasing values of 𝑘 = 𝑁1 + 𝑁2.

6. Numerical results

In the following, we numerically validate and compare the theoretical results obtained based on asymp-
totic analysis in subsection 4.1, with those obtained by the heuristic approach in 4.2. We will see that as
𝑚 → ∞, i.e., min{𝑁1,𝑛, 𝑁2,𝑛} → ∞ the expressions derived from the tail asymptotic analysis coincide
with the heuristic approximation expressions. Moreover, we notice that even when 𝑚 takes small values,
the difference of the derived expressions is negligible.

Set 𝜆0 = 0.15, 𝜆1 = 0.05, 𝜆2 = 0.01, 𝜇 = 0.44. Then, for 𝛼1 = 0.25, 𝛼2 = 0.1 we investigate whether
the results obtained by the asymptotic analysis presented in subsection 5.1 agreed with those obtained
in subsection 4.2 through our heuristic approach. In this direction, we focus on the absolute difference
|P(𝑁1 = 𝑖, 𝑁2 = 𝑗) − P(min{𝑖, 𝑗}, 𝑗 − 𝑖) |, where P(𝑁1 = 𝑖, 𝑁2 = 𝑗) = 𝑝𝑖, 𝑗 (0) + 𝑝𝑖, 𝑗 (1) obtained with
the aid of Lemma 3 in subsection 4.2, and P(min{𝑖, 𝑗} = 𝑚, 𝑗 − 𝑖 = 𝑙) = 𝜋𝑚,𝑙 (0) + 𝜋𝑚,𝑙 (1) with the aid
of Theorem 4.1 in subsection 4.1. Note that under such a setting, 𝜌 = 0.7636 > max{𝜌1 = 0.2545, 𝜌2 =
0.1273}, and �̂�0 − |𝜌2( �̂�2 − �̂�1) + �̂�1 − �̂�2 | = 0.0679 > 0, and 𝜌(𝛾2 + �̂�0) > 𝛾1, 𝜌(𝛾1 + �̂�0) > 𝛾2 (i.e., the
orbit queues are strongly balanced); see Table 1. Our results show that the stationary approximations
through the heuristic approach agreed with the results obtained by the asymptotic analysis.

We now focus on the stationary approximations derived through the heuristic approach in subsection
4.2. In Figure 10, we observe the ratio 𝑃𝑟 (𝑘 + 1)/𝑃𝑟 (𝑘) for increasing values of the total number of jobs
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Figure 11. The ratio 𝑃𝑟 (𝑘 + 1)/𝑃𝑟 (𝑘) for increasing values of 𝑘 = 𝑁1 + 𝑁2.

Table 2. Effect of dedicated traffic.
𝑃𝑟 (𝑘+1)
𝑃𝑟 (𝑘) for (𝛼1, 𝛼2) = (0.15, 0.35) (𝜆0, 𝜆1, 𝜆2) = (0.06, 0, 0) (𝜆0, 𝜆1, 𝜆2) = (0.04, 0.01, 0.01)

𝑘 = 5 0.1526 0.2446
𝑘 = 15 0.1527 0.1948
𝑘 = 35 0.1527 0.1683
𝑘 = 55 0.1527 0.1596
𝑃𝑟 (𝑘+1)
𝑃𝑟 (𝑘) for (𝛼1, 𝛼2) = (0.25, 0.25) (𝜆0, 𝜆1, 𝜆2) = (0.06, 0, 0) (𝜆0, 𝜆1, 𝜆2) = (0.04, 0.01, 0.01)

𝑘 = 5 0.1527 0.225
𝑘 = 15 0.1527 0.1669
𝑘 = 35 0.1527 0.1538
𝑘 = 55 0.1527 0.1527

in orbits, i.e., 𝑘 = 𝑁1+𝑁2, where 𝑃𝑟 (𝑘) = 𝑝𝑖, 𝑗 (1)+𝑝𝑖, 𝑗 (0) with 𝑘 = 𝑖+ 𝑗 , and 𝜆0 = 0.04, 𝜆1 = 𝜆2 = 0.01,
𝜇 = 0.44. It is readily seen that lim𝑘→∞ 𝑃𝑟 (𝑘 + 1)/𝑃𝑟 (𝑘) = 𝜌 = �̂�/( �̂�1 + �̂�2). Moreover, we can observe
that the more the difference 𝛼1 − 𝛼2 get smaller, the faster this ratio tends to 𝜌. In other words, the
asymmetry of the retrial rates affects the asymptotic behavior.

Moreover, we can also observe that the presence of the dedicated traffic also heavily affects the way
the ratio 𝑃𝑟 (𝑘 + 1)/𝑃𝑟 (𝑘) tends to 𝜌. In the following table, we can observe this trend for 𝜆1 = 0 = 𝜆2,
𝜆0 = 0.06, 𝜇 = 0.44, compared with the case where 𝜆1 = 0.01 = 𝜆2, 𝜆0 = 0.04, 𝜇 = 0.44; see Table 2.
We observe that in case of no dedicated traffic, the convergence of the ratio 𝑃𝑟 (𝑘 + 1)/𝑃𝑟 (𝑘) to 𝜌 is
really faster compared with the case where we assumed dedicated traffic. Note that in these scenarios,
we have assumed that the total arrival rate is fixed and equal to 𝜆 = 0.06, so that 𝜌 = 0.1527 is fixed in
both cases. Moreover, we note when 𝜌 increases, the ratio 𝑃𝑟 (𝑘 + 1)/𝑃𝑟 (𝑘) tends to 𝜌 very fast (from
𝑘 ≥ 10 the ratio is very close to 𝜌), as shown in Figure 11, where 𝜆0 = 0.19, 𝜆1 = 𝜆1 = 0.01 𝜇 = 0.44
(in the case of no dedicated traffic, we assumed 𝜆1 = 𝜆2 = 0, 𝜆0 = 0.21).
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Figure 12. Orbit dynamics for 𝜌 → 1 when 𝜆0 < |𝜆1 − 𝜆2 | (left), and when 𝜆0 > |𝜆1 − 𝜆2 | (right).

7. Conclusion and future work

In this work, we introduced the generalized join the shortest queue system with retrials and two infinite
capacity orbit queues. Three independent streams of jobs, namely a smart, and two dedicated streams,
flow into a single-server service system, which can hold at most one job. Blocked smart jobs join the
shortest orbit queue, while blocked jobs from the dedicated streams join their corresponding orbit queue.
We remind that the system is described as a Markov modulated two-dimensional random walk, but this
kind of modulation allowed for a completely tractable analysis.

We establish the geometric tail asymptotics along the minimum direction for a fixed value of the
difference among orbit queue lengths. Moreover, we apply a heuristic approach to obtain stationary
approximations of the number of the joint orbit queue-length distribution, which are accurate when one
of the orbit queue lengths is large, and thus agreed with the asymptotic analysis. We have shown that
even though the exact solution to the problem may be quite complicated, the asymptotic expansions of
𝑝𝑖, 𝑗 (𝑘) are relatively simple and clearly indicate the dependence of the stationary distribution on the
parameters of the model.

We also cope with the stability condition, and based on the stability of the censored chain on the
busy states along with extensive simulation experiments, we conjecture that the ergodicity conditions
of the censored chain coincide with those of the original model. We postpone the formal proof of this
conjecture in a future work. We also leave as a future work the complete investigation of the tail decay
rate problem. More precisely, we proved the exact geometric decay under specific conditions given in
Theorem 4.1 (which are similar to those given in [15]), but it is still an open problem for the investigation
of the decay rates when these conditions collapse.

Finally, simulation experiments indicate that in heavy traffic (i.e., 𝜌 → 1) and when 𝜆0 > |𝜆1 − 𝜆2 |,
𝛼1 = 𝛼2, our system exhibits a state-space collapse behavior; see Figure 12 (right). It seems that when
the first condition fails, our model does not retain this behavior; see Figure 12 (left), where 𝜆1 > 𝜆0 > 𝜆2,
and 𝜆0 < |𝜆1 − 𝜆2 | (i.e., the impact of dedicated traffic for orbit queue 1 is very crucial). Moreover, it
also seems that the condition 𝛼1 = 𝛼2 is not crucial (see Figure 9 (left)).

This means that in heavy-traffic and under these conditions, our load-balancing scheme collapses to
a one-dimensional line where all the orbit queue lengths are equal. A similar result was proven for the
GJSQ system without retrials in the seminal paper [16]. State-space collapse occurs because the smart
traffic flow dominates over the dedicated traffic flows and “forces” the two orbit queues to be equal.
Thus, it seems that in the heavy-traffic regime, the sum of the orbit queue lengths can be approximated
by the reference system described at the end of subsection 4.1. The reference system behaves as if there is
only a single-orbit queue with all the “servers” (i.e., the retrial servers) pooled together as an aggregated
“server” (in standard JSQ systems this is called complete resource pooling). This result implies that
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under specific conditions, GJSOQ is asymptotically optimal, i.e., heavy-traffic delay optimal, since the
response time in the pooled single-orbit system is stochastically less than that of a typical load-balancing
system, i.e. the reference system seems to serve as a lower bound (in the stochastic sense) on the total
orbit queue length of the original model. In a future study, we plan to prove formally this justification.
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Appendix A Proof of Lemma 1

Denote by (𝑀 (𝑟𝑘 )
𝑖 , 𝑀 (𝑟𝑘 )

𝑗 ) the mean jump vectors in angle 𝑟𝑘 , 𝑘 = 1, 2, and by (𝑀 (ℎ)
𝑖 , 𝑀 (ℎ)

𝑗 ), (𝑀 (𝑣)
𝑖 , 𝑀 (𝑣)

𝑗 )
the mean jump vectors in rays ℎ and 𝑣, respectively. Then,

𝑀 (𝑟1)
𝑖 = 𝜆1 − �̂�1

𝜆 + 𝛼1 + 𝛼2
, 𝑀 (𝑟1)

𝑗 = 𝜆0 + 𝜆2 − �̂�2

𝜆 + 𝛼1 + 𝛼2
,

𝑀 (𝑟2)
𝑖 = 𝜆0 + 𝜆1 − �̂�1

𝜆 + 𝛼1 + 𝛼2
, 𝑀 (𝑟2)

𝑗 = 𝜆2 − �̂�2

𝜆 + 𝛼1 + 𝛼2
,

𝑀 (ℎ)
𝑖 = 𝜆1 − �̂�1

𝜆 + 𝛼1
, 𝑀 (ℎ)

𝑗 = 𝜆0 + 𝜆2,

𝑀 (𝑣)
𝑖 = 𝜆0 + 𝜆1, 𝑀 (ℎ)

𝑗 = 𝜆2 − �̂�2

𝜆 + 𝛼2
.

The mean jump vector from ray 𝑑 equals 1
2 (𝑀

(𝑟1)
𝑖 + 𝑀 (𝑟2)

𝑖 , 𝑀 (𝑟1)
𝑗 + 𝑀 (𝑟2)

𝑗 ), while 𝑀 (𝑟1)
𝑖 + 𝑀 (𝑟1)

𝑗 =

𝑀 (𝑟2)
𝑖 + 𝑀 (𝑟2)

𝑗 = 𝜆 − ( �̂�1 + �̂�2)/(𝜆 + 𝛼1 + 𝛼2) = (�̂� − �̂�1 − �̂�2)/(𝜆 + 𝛼1 + 𝛼2).
Let us first focus on the sufficient part. We use the well-known Foster’s criterion [14] Theorem 2.3.3,

i.e., the Markov chain {𝑋 (𝑛); 𝑛 ≥ 0} is ergodic iff there exists a positive function 𝑓 (𝑖, 𝑗) on Z2
+, 𝜖 > 0

and a finite set 𝐴 ∈ Z2
+ such that

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗)) − 𝑓 (𝑖, 𝑗) < −𝜖, (𝑥, 𝑦) ∈ Z2
+/𝐴, (A.1)

where (𝜃𝑖 , 𝜃 𝑗) is a random vector distributed as a one-step jump of the chain 𝑋 (𝑛) from the state (𝑖, 𝑗).
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We first assume that assertion 1 in Theorem 1 holds, i.e., �̂�1 < �̂�1, �̂�2 < �̂�2, �̂� < �̂�1 + �̂�2. Consider
the function 𝑓 (𝑖, 𝑗) =

√
𝑖2 + 𝑗2. Then, simple manipulation yields

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗)) − 𝑓 (𝑖, 𝑗) = 𝑥𝐸 (𝜃𝑖) + 𝑦𝐸 (𝜃 𝑗 )
𝑓 (𝑖, 𝑗) + 𝑜(1), as 𝑖2 + 𝑗2 → ∞.

Then, in angle 𝑟1, we have 𝐸 (𝜃𝑖) = 𝑀 (𝑟1)
𝑖 = (�̂�1 − �̂�1)/(𝜆 + 𝛼1 + 𝛼2) < 0, and 𝐸 (𝜃𝑖) + 𝐸 (𝜃 𝑗 ) =

𝑀 (𝑟1)
𝑖 + 𝑀 (𝑟1)

𝑗 = (�̂� − �̂�1 − �̂�2)/(𝜆 + 𝛼1 + 𝛼2) < 0. Moreover, in 𝑟1

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗 )) − 𝑓 (𝑖, 𝑗) ≤ 𝑗 (𝐸 (𝜃𝑖) + 𝐸 (𝜃 𝑗 ))
𝑗
√

2
+ 𝑜(1) < −𝜖1

for 𝜖1 > 0 as 𝑖2 + 𝑗2 → ∞.
For (𝑖, 𝑗) in ray ℎ, the condition �̂�1 < �̂�1, i.e., 𝑀 (𝑟1)

𝑖 < 0, implies 𝑀 (ℎ)
𝑖 < 0, since

𝑀 (ℎ)
𝑖 = 𝑀 (𝑟1)

𝑖 + �̂�1

(
1

𝜆 + 𝛼1 + 𝛼2
− 1
𝜆 + 𝛼1

)
= 𝑀 (𝑟1)

𝑖 − 𝛼2 �̂�1

(𝜆 + 𝛼1)(𝜆 + 𝛼1 + 𝛼2)
< 0.

Therefore,

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗)) − 𝑓 (𝑖, 𝑗) ≤ 𝑖𝑀 (ℎ)
𝑖

𝑖
+ 𝑜(1) < −𝜖2

for 𝜖2 > 0 as 𝑖2 → ∞. The case for angle 𝑟2 and ray 𝑣 are symmetric to those for 𝑟1 and ℎ, respectively,
thus, (A.1) is verified similarly. The case for the ray 𝑑, i.e., 𝑖 = 𝑗 is treated similarly. Indeed, having in
mind that (𝐸 (𝜃𝑖), 𝐸 (𝜃 𝑗 )) = 1

2 (𝑀
(𝑟1)
𝑖 + 𝑀 (𝑟2)

𝑖 , 𝑀 (𝑟1)
𝑗 + 𝑀 (𝑟2)

𝑗 ), (A.1) reads

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗)) − 𝑓 (𝑖, 𝑗) = 𝑖2𝐸 (𝜃𝑖)
𝑖
√

2
+ 𝑜(1) =

𝑀 (𝑟1)
𝑖 + 𝑀 (𝑟1)

𝑗√
2

+ 𝑜(1) < −𝜖3, as 𝑖 → ∞.

Assume now that assertion 2 in Theorem 1 holds: �̂�1 ≥ �̂�1, �̂�2 < �̂�2, and 𝑀 (𝑟1)
𝑖 𝑀 (ℎ)

𝑗 − 𝑀 (ℎ)
𝑖 𝑀 (𝑟1)

𝑗 <
0 ⇔ 𝑓1 < 0. In such a case, the following hold:

𝑀 (𝑟2)
𝑖 > 𝑀 (𝑟1)

𝑖 ≥ 0,

𝑀 (𝑟2)
𝑗 < 𝑀 (𝑟1)

𝑗 < 0,

𝑀 (𝑟1)
𝑖 𝑀 (ℎ)

𝑗 < 𝑀 (ℎ)
𝑖 𝑀 (𝑟1)

𝑗 ⇒ 𝑀 (ℎ)
𝑖 <

𝑀 (𝑟1)
𝑖

𝑀 (𝑟1)
𝑗

𝑀 (ℎ)
𝑗 < 0 (since 𝑀 (𝑟1)

𝑗 < 0),

𝑀 (𝑣)
𝑗 = 𝑀 (𝑟2)

𝑗 − 𝛼1 �̂�2

(𝜆 + 𝛼1)(𝜆 + 𝛼1 + 𝛼2)
< 0.

Note also that 𝑀 (𝑟1)
𝑖 𝑀 (ℎ)

𝑗 − 𝑀 (ℎ)
𝑖 𝑀 (𝑟1)

𝑗 < 0 is equivalent to 𝜆1 < 𝜇
∗
1 − ((𝜆0 + 𝜆2)/�̃�2)(𝜇∗1 − �̃�1), where

�̃�𝑖 = �̂�𝑖/(𝜆 + 𝛼1 + 𝛼2), 𝑖 = 1, 2, and 𝜇∗1 = �̂�1/(𝜆 + 𝛼1). Then,

𝑀 (𝑟1)
𝑖 + 𝑀 (𝑟2)

𝑗 = 𝜆 − �̃�1 − �̃�2 < 𝜆1 − 𝜇∗1 +
𝜆0 + 𝜆2

�̃�2
(𝜇∗1 − �̃�1) < 0.

Indeed,

𝜆 − �̃�1 − �̃�2 < 𝜆1 − 𝜇∗1 +
𝜆0 + 𝜆2

�̃�2
(𝜇∗1 − �̃�1) ⇔

(
𝜆0 + 𝜆2

�̃�2
− 1

)
( �̃�2 + �̃�1 − 𝜇∗1) < 0.
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Since 𝑀 (𝑟1)
𝑗 = 𝜆0 + 𝜆2 − �̃�2 < 0, it suffices to show that �̃�2 + �̃�1 − 𝜇∗1 > 0. Indeed, simple calculations

yields �̃�2 + �̃�1 − 𝜇∗1 = 𝜆�̃�2/(𝜆 + 𝛼1) > 0. Thus, 𝑀 (𝑟1)
𝑖 + 𝑀 (𝑟1)

𝑗 = 𝑀 (𝑟2)
𝑖 + 𝑀 (𝑟2)

𝑗 < 0.
We construct the function 𝑓 (𝑖, 𝑗) =

√
𝑘𝑖2 + 𝑙 𝑗2 + 𝑤𝑖 𝑗 with 𝑘, 𝑙 > 0, 𝑘𝑙 > 𝑤2/4, satisfying (A.1). We

first choose 𝑘, 𝑤 > 0 such that

2𝑘𝑀 (𝑟1)
𝑖 + 𝑙𝑀 (𝑟1)

𝑗 < 0,

2𝑘𝑀 (ℎ)
𝑖 + 𝑙𝑀 (ℎ)

𝑗 < 0,

or equivalently

𝑀 (𝑟1)
𝑗

𝑀 (𝑟1)
𝑖

< −2𝑘
𝑙
<
𝑀 (ℎ)

𝑗

𝑀 (ℎ)
𝑖

,

which is possible under the assumption 𝑀 (𝑟1)
𝑖 𝑀 (ℎ)

𝑗 −𝑀 (ℎ)
𝑖 𝑀 (𝑟1)

𝑗 < 0. Next, take 𝑙 > 𝑤2/(4𝑙) sufficiently
large. Then due to the inequalities we derived above, we ensure that

2𝑘𝑀 (𝑟1)
𝑖 + 𝑤(𝑀 (𝑟1)

𝑖 + 𝑀 (𝑟1)
𝑗 ) + 2𝑙𝑀 (𝑟1)

𝑗 < 0,

𝑤𝑀 (𝑟2)
𝑖 + 2𝑘𝑀 (𝑟2)

𝑗 < 0,

2𝑘𝑀 (𝑟2)
𝑖 + 𝑤(𝑀 (𝑟2)

𝑖 + 𝑀 (𝑟2)
𝑗 ) + 2𝑙𝑀 (𝑟2)

𝑗 < 0,

𝑤𝑀 (𝑣)
𝑖 + 2𝑘𝑀 (𝑣)

𝑗 < 0.

Thus, the function 𝑓 (𝑖, 𝑗) satisfies (A.1), and using [14] Lemma 2.3.3.3, as 𝑖2 + 𝑗2 → ∞,

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗 )) − 𝑓 (𝑖, 𝑗) = 𝑖(2𝑘𝐸 (𝜃𝑖) + 𝑤𝐸 (𝜃 𝑗 )) + 𝑗 (𝑤𝐸 (𝜃𝑖) + 2𝑙𝐸 (𝜃 𝑗 ))
2 𝑓 (𝑖, 𝑗) + 𝑜(1).

For 𝑖 > 𝑗 > 0, (𝐸 (𝜃𝑖), 𝐸 (𝜃 𝑗 )) = (𝑀 (𝑟1)
𝑖 , 𝑀 (𝑟1)

𝑗 ) and

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗)) − 𝑓 (𝑖, 𝑗) ≤
𝑗 (2𝑘𝑀 (𝑟1)

𝑖 + 𝑤(𝑀 (𝑟1)
𝑖 + 𝑀 (𝑟1)

𝑗 ) + 2𝑙𝑀 (𝑟1)
𝑗 )

𝑗
√
𝑘 + 𝑙 + 𝑤

+ 𝑜(1) < −𝜖1,

for some 𝜖1 > 0, as 𝑖2 + 𝑗2 → ∞. Similar argumentation proves the validity of assertion 2 of Theorem
1 for the rest of the cases. The proof of assertion 3 is symmetric to the proof of assertion 2 and further
details are omitted.

We now turn our attention in the necessary part and show that the chain {�̃� (𝑛); 𝑛 ≥ 0} is non-ergodic
if none of the assertions 1, 2, 3 hold. To cope with this task, we apply [14] Theorem 2.2.6, which states
that for Markov chain 𝐿 to be non-ergodic, it is sufficient that there exist a function 𝑓 (𝑖, 𝑗) on Z2

+ and a
constant 𝐶 > 0 such that

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗)) − 𝑓 (𝑖, 𝑗) ≥ 0, (A.2)

for all (𝑖, 𝑗) ∈ {(𝑖, 𝑗)Z2
+ : 𝑓 (𝑖, 𝑗) > 𝐶}, where the sets {(𝑖, 𝑗) ∈ Z2

+ : 𝑓 (𝑖, 𝑗) > 𝐶} and {(𝑖, 𝑗)Z2
+ :

𝑓 (𝑖, 𝑗) < 𝐶} are not empty.
Assume first that assertion 1 does not hold, i.e., 𝑀 (𝑟1)

𝑖 + 𝑀 (𝑟1)
𝑗 = 𝑀 (𝑟2)

𝑖 + 𝑀 (𝑟2)
𝑗 ≥ 0, and set

𝑓 (𝑖, 𝑗) = 𝑖 + 𝑗 . If 𝑖, 𝑗 > 0,

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗)) − 𝑓 (𝑖, 𝑗) = 𝑀 (𝑟1)
𝑖 + 𝑀 (𝑟1)

𝑗 = 𝑀 (𝑟2)
𝑖 + 𝑀 (𝑟2)

𝑗 ≥ 0.
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If 𝑖 > 0, 𝑗 = 0,

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗 )) − 𝑓 (𝑖, 𝑗) = 𝑀 (ℎ)
𝑖 + 𝑀 (ℎ)

𝑗 = 𝑀 (𝑟1)
𝑖 + 𝑀 (𝑟1)

𝑗 + 𝜆�̃�2

𝜆 + 𝛼1
> 0.

If 𝑖 = 0, 𝑗 > 0,

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗)) − 𝑓 (𝑖, 𝑗) = 𝑀 (𝑣)
𝑖 + 𝑀 (𝑣)

𝑗 = 𝑀 (𝑟1)
𝑖 + 𝑀 (𝑟1)

𝑗 + 𝜆�̃�1

𝜆 + 𝛼2
> 0.

Thus, 𝑓 (𝑖, 𝑗) satisfies (A.2) and the chain is non-ergodic when assertion 1 does not hold.
Assume now that

𝑀 (𝑟1)
𝑖 ≥ 0, (A.3)

𝑓1 ≥ 0 ⇔ 𝑀 (𝑟1)
𝑖 𝑀 (ℎ)

𝑗 − 𝑀 (ℎ)
𝑖 𝑀 (𝑟1)

𝑗 ≥ 0. (A.4)

We further focus only to the case where 𝑀 (𝑟1)
𝑖 + 𝑀 (𝑟1)

𝑗 < 0 (since the case 𝑀 (𝑟1)
𝑖 + 𝑀 (𝑟1)

𝑗 ≥ 0 has been
already considered). Moreover, 𝑀 (𝑟1)

𝑗 < 0 and assume 𝑀 (𝑟1)
𝑖 > 0 (we omit the case 𝑀 (𝑟1)

𝑖 = 0, since it
implies that 𝑀 (ℎ)

𝑖 = −𝛼1 �̃�2/(𝜆 + 𝛼1) < 0. With that in mind and by taking into account (A.4), we have
that 𝑀 (𝑟1)

𝑗 ≥ 0, so that 𝑀 (𝑟1)
𝑖 + 𝑀 (𝑟1)

𝑗 ≥ 0 and the chain is non-ergodic).
The assumptions 𝑀 (𝑟1)

𝑖 > 0, 𝑀 (𝑟2)
𝑗 < 0, implies

𝑀 (𝑟2)
𝑖 > 𝑀 (𝑟1)

𝑖 > 0, (A.5)

𝑀 (𝑟2)
𝑗 < 𝑀 (𝑟1)

𝑗 < 0. (A.6)

Let 𝑓 (𝑖, 𝑗) = −𝑀 (𝑟1)
𝑗 𝑖 + 𝑀 (𝑟1)

𝑖 𝑗 . Then, for 𝑖 > 𝑗 > 0,

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗 )) − 𝑓 (𝑖, 𝑗) = 𝑓 (𝑀 (𝑟1)
𝑖 , 𝑀 (𝑟1)

𝑗 ) = 0. (A.7)

If 𝑖 > 0, 𝑗 = 0,
𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗 )) − 𝑓 (𝑖, 𝑗) = 𝑓 (𝑀 (ℎ)

𝑖 , 𝑀 (ℎ)
𝑗 ) ≥ 0, (A.8)

due to (A.4). If 𝑗 > 𝑖 > 0, we know that since 𝑀 (𝑟1)
𝑖 + 𝑀 (𝑟2)

𝑗 < 0, and 𝑀 (𝑟2)
𝑖 > 𝑀 (𝑟1)

𝑖 we have

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗)) − 𝑓 (𝑖, 𝑗) = 𝑓 (𝑀 (𝑟2)
𝑖 , 𝑀 (𝑟2)

𝑗 ) = −𝑀 (𝑟2)
𝑖 𝑀 (𝑟1)

𝑗 + 𝑀 (𝑟1)
𝑖 𝑀 (𝑟2)

𝑗

= −𝑀 (𝑟2)
𝑖 𝑀 (𝑟1)

𝑗 + 𝑀 (𝑟1)
𝑖 (𝑀 (𝑟2)

𝑗 + 𝑀 (𝑟2)
𝑖 − 𝑀 (𝑟2)

𝑖 )
= −𝑀 (𝑟2)

𝑖 𝑀 (𝑟1)
𝑗 + 𝑀 (𝑟1)

𝑖 (𝑀 (𝑟1)
𝑗 + 𝑀 (𝑟1)

𝑖 − 𝑀 (𝑟2)
𝑖 )

= −(𝑀 (𝑟1)
𝑗 + 𝑀 (𝑟1)

𝑖 )(𝑀 (𝑟2)
𝑖 − 𝑀 (𝑟1)

𝑖 ) > 0.

Finally, for 𝑖 = 0, 𝑗 > 0,

𝐸 ( 𝑓 (𝑖 + 𝜃𝑖 , 𝑗 + 𝜃 𝑗 )) − 𝑓 (𝑖, 𝑗) = 𝑓 (𝑀 (𝑣)
𝑖 , 𝑀 (𝑣)

𝑗 ) = −𝑀 (𝑣)
𝑖 𝑀 (𝑟1)

𝑗 + 𝑀 (𝑟1)
𝑖 𝑀 (𝑣)

𝑗

= −𝑀 (𝑟1)
𝑗 (𝑀 (𝑣)

𝑖 − 𝑀 (𝑟2)
𝑖 ) + 𝑀 (𝑟1)

𝑖 (𝑀 (𝑣)
𝑗 − 𝑀 (𝑟2)

𝑗 ) + 𝑓 (𝑀 (𝑟2)
𝑖 , 𝑀 (𝑟2)

𝑗 )

= 𝑓 (𝑀 (𝑟2)
𝑖 , 𝑀 (𝑟2)

𝑗 ) − �̃�1

(
𝑀 (𝑟1)

𝑗 + 𝑀 (𝑟1)
𝑖

𝛼2

𝜆 + 𝛼2

)
> 𝑓 (𝑀 (𝑟2)

𝑖 , 𝑀 (𝑟2)
𝑗 ) − �̃�1 (𝑀 (𝑟1)

𝑗 + 𝑀 (𝑟1)
𝑖 ) > 0.
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Therefore, in case assertion 2 does not hold, the chain is non-ergodic. The investigation of the case
𝑀 (𝑟2)

𝑗 ≥ 0, 𝑓2 ≥ 0 ⇔ 𝑀 (𝑟2)
𝑗 𝑀 (𝑣)

𝑖 − 𝑀 (𝑣)
𝑖 𝑀 (𝑟2)

𝑗 ≥ 0, i.e., the violation of assertion 3 is symmetric to the
previous one, and further details are omitted.

Appendix B On the decay rate of the reference system

We consider the reference system described at the end of subsection 4.1 and show that the tail decay rate
of the stationary orbit queue-length distribution equals 𝜌. Let 𝑁 (𝑡) be the number of orbiting jobs at
time 𝑡 in this reference system. Then, 𝐿(𝑡) = {(𝑁 (𝑡), 𝐶 (𝑡)); 𝑡 ≥ 0} is the continuous Markov chain with
state space N0 × {0, 1}. The process {𝐿(𝑡); 𝑡 ≥ 0} is a homogeneous QBD process with transition rate

Q =

	





�

Λ(0)
0 Λ1

Λ(0)
−1 Λ(1)

0 Λ1
Λ−1 Λ0 Λ1

Λ−1 Λ0 Λ1
. . .

. . .
. . .

��
,

where

Λ(0)
0 =

(−𝜆 𝜆
𝜇 −(𝜆 + 𝜇)

)
, Λ1 =

(
0 0
0 𝜆

)
, Λ(0)

−1 =

(
0 𝛼1
0 0

)
, Λ−1 =

(
0 𝛼1 + 𝛼2
0 0

)
Λ(1)

0 =

(−(𝜆 + 𝛼1) 𝜆
𝜇 −(𝜆 + 𝜇)

)
, Λ0 =

(−(𝜆 + 𝛼1 + 𝛼2) 𝜆
𝜇 −(𝜆 + 𝜇)

)
.

Under usual assumptions, the transition rate matrix Q has a single communicating class. Let

Λ = Λ−1 + Λ0 + Λ1 :=
(−(𝜆 + 𝛼1 + 𝛼2) 𝜆 + 𝛼1 + 𝛼2

𝜇 −𝜇
)
,

and u := (𝑢0, 𝑢1) its stationary vector. Then, uΛ = 0, u1 = 1, yields 𝑢0 = 𝜇, 𝑢1 = 𝜆 + 𝛼1 + 𝛼2 (remind
that we have assumed 𝜆 + 𝛼1 + 𝛼2 + 𝜇 = 1). Then, following [32], {𝐿(𝑡); 𝑡 ≥ 0} is stable if and only
if uΛ11 < uΛ−11. Straightforward calculations indicate that the stability condition for the reference
system is �̂� < �̂�1 + �̂�2 ⇒ 𝜌 < 1.

Note that Λ1 = a.z, where a = (0, 𝜆)T, z = (0, 1). Thus, by applying the matrix geometric method
[32], we are able to derive the equilibrium distribution of {𝐿(𝑡); 𝑡 ≥ 0}, for which the rate matrix is
obtained explicitly. Moreover, the Perron–Frobenius eigenvalue of the rate matrix, i.e., the tail decay
rate 𝜁 , is given as the unique root in (0, 1) of the determinant equation

det(Λ1 + Λ0𝜁 + Λ−1𝜁
2) = 0.

In our case 𝑑𝑒𝑡 (Λ1 + Λ0𝜁 + Λ−1𝜁
2) = 0 ⇒ 𝜁 (1 − 𝜁)(𝜁 ( �̂�1 + �̂�2) − �̂�) = 0. Therefore, 𝜁 = 𝜌.

Appendix C Proof of Lemma 4

Condition (5.2) reads as follows

𝑥𝑙 (𝑧) = 𝑥𝑙−1 (𝑧)
(

�̂�1

𝜆 + 𝛼1 + 𝛼2
+ (𝜆0 + 𝜆2)𝑧

)
+ 𝑥𝑙 (𝑧)

(
𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2

)
+ 𝑥𝑙+1 (𝑧)

(
�̂�2

𝜆 + 𝛼1 + 𝛼2
𝑧−1 + 𝜆1

)
, 𝑙 ≤ −2, (C.1)
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𝑥−1(𝑧) = 𝑥−2(𝑧)
(

�̂�1

𝜆 + 𝛼1 + 𝛼2
+ (𝜆0 + 𝜆2)𝑧

)
+ 𝑥−1(𝑧)

(
𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2

)
+ 𝑥0(𝑧)

(
�̂�2

𝜆 + 𝛼1 + 𝛼2
𝑧−1 + 𝜆1 + 𝜆0

2

)
, (C.2)

𝑥0 = 𝑥−1(𝑧)
(

�̂�1

𝜆 + 𝛼1 + 𝛼2
+ (𝜆0 + 𝜆2)𝑧

)
+ 𝑥0

(
𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2

)
+ 𝑥1(𝑧)

(
�̂�2

𝜆 + 𝛼1 + 𝛼2
+ (𝜆0 + 𝜆1)𝑧

)
, (C.3)

𝑥1 (𝑧) = 𝑥0(𝑧)
(

�̂�1

𝜆 + 𝛼1 + 𝛼2
𝑧−1 + 𝜆0

2
+ 𝜆2

)
+ 𝑥1 (𝑧)

(
𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2

)
+ 𝑥2(𝑧)

(
�̂�2

𝜆 + 𝛼1 + 𝛼2
+ (𝜆1 + 𝜆0)𝑧

)
, (C.4)

𝑥𝑙 (𝑧) = 𝑥𝑙−1 (𝑧)
(

�̂�1

𝜆 + 𝛼1 + 𝛼2
𝑧−1 + 𝜆2

)
+ 𝑥𝑙 (𝑧)

(
𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2

)
+ 𝑥𝑙+1 (𝑧)

(
�̂�2

𝜆 + 𝛼1 + 𝛼2
+ (𝜆0 + 𝜆1)𝑧

)
, 𝑙 ≥ 2, (C.5)

and

𝑦𝑙 (𝑧) = 𝑦𝑙−1 (𝑧)
(

�̂�2

𝜆 + 𝛼1 + 𝛼2
𝑧−1 + 𝜆1

)
+ 𝑦𝑙 (𝑧)

(
𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2

)
+ 𝑦𝑙+1 (𝑧)

(
�̂�1

𝜆 + 𝛼1 + 𝛼2
𝑧−1 + (𝜆0 + 𝜆2)𝑧

)
, 𝑙 ≤ −1, (C.6)

𝑦0 (𝑧) = 𝑦−1(𝑧)
(

�̂�2

𝜆 + 𝛼1 + 𝛼2
𝑧−1 + 𝜆0

2
+ 𝜆1

)
+ 𝑦0

(
𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2

)
+ 𝑦1 (𝑧)

(
�̂�1

𝜆 + 𝛼1 + 𝛼2
𝑧−1 + 𝜆0

2
+ 𝜆2

)
, (C.7)

𝑦𝑙 (𝑧) = 𝑦𝑙−1 (𝑧)
(

�̂�2

𝜆 + 𝛼1 + 𝛼2
+ (𝜆0 + 𝜆1)𝑧

)
+ 𝑦𝑙 (𝑧)

(
𝛼1 + 𝛼2 + 𝜆𝜇

𝜆 + 𝛼1 + 𝛼2

)
(C 1)

+ 𝑦𝑙+1 (𝑧)
(

�̂�1

𝜆 + 𝛼1 + 𝛼2
𝑧−1 + 𝜆2

)
, 𝑙 ≥ 1. (C.8)

Then, for 𝜂min < 𝜂max, 𝜃min < 𝜃max, a general solution for x is given by,

𝑥𝑙 (𝑧) =
{
𝑘1𝜂

−𝑙
max + 𝑘2𝜂

−𝑙
min, 𝑙 ≤ −2,

𝑘3𝜃
𝑙
min + 𝑘4𝜃

𝑙
max, 𝑙 ≥ 2, (C.9)

where 𝑘1, 𝑘2, 𝑘3, 𝑘4, are constants to be determined by (C.2)–(C.4). Similarly,

𝑦𝑙 (𝑧) =
{
𝑠1𝜂

𝑙
min + 𝑠2𝜂𝑙max, 𝑙 ≤ −1,

𝑠3𝜃
−𝑙
max + 𝑠4𝜃−𝑙min, 𝑙 ≥ 1, (C.10)
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where 𝑠1, 𝑠2, 𝑠3, 𝑠4 are constants, and 𝜂min, 𝜂max, 𝜃min, 𝜃max are obtained in the way of solving the
difference equations (C.1)–(C.4), which result in (5.8), (5.9).

Following [26], the condition (5.3) requires (5.6), x(𝑧) to be constructed using 𝜂min, 𝜃min, and y(𝑧)
to be constructed using 𝜂−1

max, 𝜃−1
max, so that 𝑘1 = 𝑘4 = 𝑠1 = 𝑠4 = 0. Next, we focus on (C.3), (C.4) and

substitute (C.6) to realize that 𝑠2 = 𝑠3 = 𝑦0, so that

𝑦−1(𝑧) = 𝑦0𝜂
−1
max, 𝑦1(𝑧) = 𝑦0𝜃

−1
max.

Then by substituting in (C.7), the resulting equation is 𝑓 (𝑧) = 1. Using a similar argumentation and
(C.1), (C.2) yield 𝑥−1(𝑧) = 𝑐2𝜂min, with

𝑐2 =
�̂�2𝑧

−1 + �̂�1 + �̂�0
2

�̂�2𝑧−1 + �̂�1
𝑥0.

Similarly, by using (C.4), (C.5), 𝑥1(𝑧) = 𝑐3𝜃min, where now,

𝑐3 =
�̂�1𝑧

−1 + �̂�2 + �̂�0
2

�̂�1𝑧−1 + �̂�2
𝑥0.

Then, substituting back in (C.3) yields again 𝑓 (𝑧) = 1, and the conditions are necessary and sufficient.
Eq. (5.7) is obtained straightforwardly from the above results.

Appendix D Proof of Lemma 5

We show that 𝑧 = 𝜌−2 is the unique solution of 𝑓 (𝑧) = 1, 𝑧 > 1. For convenience, let

�̃�𝑖 =
�̂�𝑖

�̂� + �̂�1 + �̂�2
, 𝑖 = 1, 2, �̃�𝑖 =

�̂�𝑖

�̂� + �̂�1 + �̂�2
, 𝑖 = 0, 1, 2,

𝜉1 = 2( �̃�1𝑧
−1 + �̃�2) + �̃�0, 𝜉2 = 2( �̃�2𝑧

−1 + �̃�1) + �̃�0.

Under such a setting, the following identities are derived straightforwardly:

�̃�1𝑧
−1 + �̃�2 =

1
2
(𝜉1 − �̃�0), �̃�2𝑧

−1 + �̃�1 =
1
2
(𝜉2 − �̃�0),

�̃�1 + (�̃�2 + �̃�0)𝑧 = 1
2
(𝜉1 + �̃�0)𝑧, �̃�2 + (�̃�1 + �̃�0)𝑧 = 1

2
(𝜉2 + �̃�0)𝑧.

Then, 𝑓 (𝑧) = 1 is rewritten as

�̃�0(𝜉1 + 𝜉2 − 2�̃�0) = 𝜉2(𝜉1 − �̃�0)
√

1 − (𝜉1 + �̃�0)(𝜉2 − �̃�0)𝑧

+ 𝜉1(𝜉2 − �̃�0)
√

1 − (𝜉2 + �̃�0)(𝜉1 − �̃�0)𝑧.

Taking squares at both sides and rearrange terms yields

�̃�2
0(𝜉1 + 𝜉2 − 2�̃�0)2 − 𝜉2

1 (𝜉2 − �̃�0)2 − 𝜉2
2 (𝜉1 − �̃�0)2

= −𝜉2
1 (𝜉2 − �̃�0)2(𝜉1 − �̃�0)(𝜉2 + �̃�0)𝑧 − 𝜉2

2 (𝜉1 − �̃�0)2(𝜉2 − �̃�0)(𝜉1 + �̃�0)𝑧

+ 2𝜉1𝜉2(𝜉1 − �̃�0)(𝜉2 − �̃�0)
√

1 − (𝜉1 − �̃�0)(𝜉2 + �̃�0)𝑧
√

1 − (𝜉2 − �̃�0)(𝜉1 + �̃�0)𝑧. (D.1)
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Having in mind that 𝜉1 − �̃�0 > 0, 𝜉2 − �̃�0 > 0, (D.1) is rewritten after manipulations as

2(2�̃�2
0 − 𝜉1𝜉2) + (𝜉2

1 (𝜉2
2 − �̃�2

0) + 𝜉2
2 (𝜉2

1 − �̃�2
0))𝑧 = 2𝜉1𝜉2

√
1 + 2(�̃�2

0 − 𝜉1𝜉2)𝑧 + (�̃�2
0 − 𝜉2

1)(�̃�2
0 − 𝜉2

2)𝑧2.

Taking again squares at both sides, we obtain after lengthy but straightforward manipulations the
following equation

((𝜉1 + 𝜉2)2𝑧 − 4)((𝜉1 − 𝜉2)2�̃�2
0𝑧 + 4(𝜉1𝜉2 − �̃�2)) = 0.

Note that 𝜉1𝜉2 − �̃�2 = 2[2( �̃�1𝑧
−1 + �̃�2)( �̃�2𝑧

−1 + �̃�1) + �̃�0(( �̃�1 + �̃�1)𝑧−1 + �̃�2 + �̃�1)] > 0, and thus, 𝑓 (𝑧) = 1
if and only if

(𝜉1 + 𝜉2)2𝑧 = 4.

It is easily seen that this quadratic equation with respect to 𝑧 has two solutions, i.e., 𝑧 = 1 and 𝑧 = 𝜌−2.
Thus, the only possible solution of 𝑓 (𝑧) = 1 such that 𝑧 > 1 is 𝜌−2. For 𝑧 = 𝜌−2 , we can easily derive
the zeros of (5.8), (5.9), as given in (5.10), (5.11), respectively.
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