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1. Introduction. Let � = �n denote the unit ball in the complex vector space �n,
∂� = S its boundary, δ� = {z : |z| ≤ δ}, � = �1 the unit disk in the complex plane �,
H(�) the class of all analytic functions on �. Let z = (z1, . . . , zn) and w = (w1, . . . , wn)
be points in �n and 〈z, w〉 = ∑n

k=1 zkw̄k. For f ∈ H(�) with the Taylor expansion
f (z) = ∑

|β|≥0 aβzβ , let

	f (z) =
∑
|β|≥0

|β|aβzβ

be the radial derivative of f, where β = (β1, β2, . . . , βn) is a multi-index, |β| =
β1 + · · · + βn and zβ = zβ1

1 . . . zβn
n . It is well known (see, for example, [28]) that

	f (z) =
n∑

j=1

zj
∂f
∂zj

(z) = 〈∇f (z), z̄〉.

A positive continuous function φ on [0, 1) is called normal [30] if there is δ ∈ [0, 1)
and a and b, 0 < a < b such that

φ(r)
(1 − r)a

is decreasing on [δ, 1) and lim
r→1

φ(r)
(1 − r)a

= 0;

φ(r)
(1 − r)b

is increasing on [δ, 1) and lim
r→1

φ(r)
(1 − r)b

= ∞.

The Bloch-type space, denoted by Bμ = Bμ(�), consists of all f ∈ H(�) such that

Bμ(f ) = sup
z∈�

μ(z)|	f (z)| < ∞,

where μ(z) = μ(|z|) and μ is normal on [0, 1). With the norm

‖f ‖Bμ
= |f (0)| + Bμ(f )

the Bloch-type space becomes a Banach space.
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The little Bloch-type space Bμ,0 is a subspace of Bμ consisting of those f ∈ Bμ

such that

lim
|z|→1

μ(z)|	f (z)| = 0.

The α-Bloch space Bα is obtained for μ(z) = (1 − |z|2)α, α ∈ (0,∞) (see, e.g., [1, 14,
27, 31, 35, 43, 45]). For α = 1 the space B1 = B is the classical Bloch space.

Bloch-type spaces are usually defined by using the gradient of f instead of its radial
derivative. In [40] it is shown that Bμ consists of all f ∈ H(�) such that

sup
z∈�

μ(z)|∇f (z)| < ∞;

moreover, the following relationship holds

sup
z∈�

μ(z)|∇f (z)| � sup
z∈�

μ(z)|	f (z)|. (1)

For the case of μ(z) = (1 − |z|2), see, e.g., [4]. Also, it was proved that the little
Bloch-type space is equivalent with the subspace of Bμ consisting of all f ∈ H(�) such
that

lim
|z|→1

μ(z)|∇f (z)| = 0.

Depending on a specific situation sometimes it is more appropriate to use one of the
two definitions of the Bloch-type space. In this paper, we will use the first definition.

By Z, we denote the class of all f ∈ H(�)
⋂

C(�) such that

‖f ‖Z = sup
|f (ζ + h) + f (ζ − h) − 2f (ζ )|

|h| < ∞, (2)

where the supremum is taken over all ζ ∈ ∂� and ζ ± h ∈ ∂�. From a known theorem
(see [45, p. 261]), due to Zygmund for the case of the unit disk [6], and the Closed-Graph
Theorem we know that f ∈ Z if and only if

sup
z∈�

(1 − |z|2)|	2f (z)| < ∞;

moreover,

‖f ‖Z � sup
z∈�

(1 − |z|2)|	2f (z)|. (3)

Therefore, we call Z the Zygmund class. The quantities in (3) are semi-norms, it is
natural to add to them the quantity |f (0)| + |∇f (0)| (correspondingly |f (0)|), to obtain
two equivalent norms on the Zygmund class. The second norm will be again denoted
by ‖ · ‖Z . Zygmund class with this norm will be called the Zygmund space.

The little Zygmund space on �, denoted by Z0, is the closed subspace of Z
consisting of functions f satisfying the following condition:

lim
|z|→1

(1 − |z|2)|	2f (z)| = 0.
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Let ϕ be a non-constant analytic self-map of the unit ball. Associated with ϕ is the
composition operator Cϕ defined by Cϕf = f ◦ ϕ for f ∈ H(�). If u ∈ H(�) then by
uCϕf (z) = u(z)f (ϕ(z)) the weighted composition operator is defined. The main subject
in the study of these operators is to describe operator theoretic properties of Cϕ and
uCϕ in terms of function theoretic properties of ϕ (corresp. in terms of ϕ and u). For
some classical results see, for example, [5]. For some recent results mostly in the unit
ball setting or Bloch-type spaces see, e.g., [4, 7, 15–17, 22–27, 29, 33, 36, 41, 44] and
the references therein.

In [19] (see also [38]) we introduced the following integral-type operator

Cg
ϕ(f )(z) =

∫ z

0
f ′(ϕ(ζ ))g(ζ ) dζ, f ∈ H(�), z ∈ � (4)

and investigated its boundedness and compactness on some spaces of holomorphic
functions on the unit disk. One of the reasons for introducing operator (4) relies on
the fact that similar operators naturally come from isometries of some function spaces
(see, e.g., [8]).

It is a natural problem to introduce closely related operators to operator (4) in
the unit ball settings and to study their function theoretic properties on spaces of
holomorphic functions on the unit ball in terms of their inducing functions.

Assume that g ∈ H(�) with g(0) = 0 and ϕ is a holomorphic self-map of �.
Motivated by (4) we define the following integral-type operator on the unit ball:

Ig
ϕ(f )(z) =

∫ 1

0
	f (ϕ(tz))g(tz)

dt
t

, f ∈ H(�), z ∈ �. (5)

Recall that a linear operator L : X → Y , where X and Y are Banach spaces, is
compact if for every bounded sequence (xk)k∈� in X, the sequence (L(xk))k∈� has a
convergent subsequence.

Some characterizations of the boundedness and compactness of closely related
integral-type operators in �n can be found, for example, in [3, 9–14, 18, 20, 21, 31, 32,
34, 37, 39, 40, 42] (see also the references therein).

Here, our aim is to study the boundedness and compactness of operator (5) from
the Zygmund space to the Bloch-type space and the little Bloch-type space on the unit
ball.

Throughout this paper, constants are denoted by C; they are positive and not
necessarily the same at different occurrences. If we say that a function μ : � → [0,∞)
is normal we will assume that it is also radial, i.e., μ(z) = μ(|z|), z ∈ �. The notation
a � b means that there is a positive constant C such that a ≤ Cb. We say that a � b if
both a � b and b � a hold.

2. Auxiliary results. In this section, we quote several auxiliary results which will
be used in the proofs of the main results in this paper.

The following lemma is fundamental in this paper. Closely related results can be
found in the proof of Theorem 1 in [9] and [14, Lemma 1]. We give a proof of it for the
completeness.

LEMMA 1. Suppose that f, g ∈ H(�), g(0) = 0. Then

	 Ig
ϕ(f )(z) = 	f (ϕ(z))g(z).
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Proof. Assume that the holomorphic function 	f (ϕ(z))g(z) has the expansion∑
α aαzα. Note that the condition g(0) = 0 implies α �= 0. Then

	[
Ig
ϕ(f )

]
(z) = 	

∫ 1

0

∑
α �=0

aα(tz)α
dt
t

= 	
⎛
⎝∑

α �=0

aα

|α|zα

⎞
⎠ =

∑
α

aαzα,

which is what we wanted to prove. �
The following lemma follows by standard arguments (see, for example, the proofs

of the corresponding results in [5, 14, 32–34].

LEMMA 2. Suppose μ is normal, g ∈ H(�), g(0) = 0 and ϕ is an analytic self-map of
�. Then Ig

ϕ : Z (orZ0) → Bμ is compact if and only if Ig
ϕ : Z (orZ0) → Bμ is bounded,

and for any bounded sequence (fk)k∈� in Z (orZ0) which converges to zero uniformly on
compacts of � as k → ∞, we have ‖Ig

ϕfk‖Bμ
→ 0 as k → ∞.

The proof of the next lemma is similar to the proof of Lemma 1 in [25], which
concerns the case of μ(z) = (1 − |z|2) on the unit disk, hence it is also omitted (for the
case of μ(z) = (1 − |z|2)α, z ∈ �, α ∈ (0,∞) see [27]).

LEMMA 3. Suppose μ is normal. A closed set K in Bμ,0 is compact if and only if it is
bounded and satisfies

lim
|z|→1

sup
f ∈K

μ(z)|	f (z)| = 0.

REMARK 1. If in the formulation of Lemma 3 we omit the assumption K is closed,
then compact should be replaced by relatively compact.

The following lemma was proved in Theorem 7.11 of ref. [45].

LEMMA 4. Suppose f ∈ H(�). Then f ∈ Z if and only if ∂f/∂zk ∈ B for each k ∈
{1, . . . , n}.

LEMMA 5. Suppose f ∈ Z. Then

Z1(f ) := sup
z∈�

(1 − |z|2)|	2f (z)| � |∇f (0)| + sup
z∈�

(1 − |z|2)|∇2f (z)| =: Z2(f ). (6)

Proof. First note that by Lemma 4 and the asymptotic relationship displayed in (1)
with μ(z) = (1 − |z|2), we have that Z1(f ) is finite if and only if Z2(f ) is finite. Hence,
the Zygmund class is equal with the class of all f ∈ H(�) such that Z2(f ) is finite.

It is easy to see that the quantities Z1(f ) and Z2(f ) are norms on the class Z/�.
With each of these norms Z/� becomes a Banach space. We show that these norms
are equivalent on the space, that is, there is a positive constant C such that

Z1(f )/C ≤ Z2(f ) ≤ CZ1(f ). (7)

To this end, by using the Closed-Graph Theorem to the identity operator (or its inverse)

I : (Z/�, Z1(f )) → (Z/�, Z2(f )),

it is enough to prove that at least one of the inequalities in (7) holds.
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It is easy to see that

	2f (z) = 	f (z) +
n∑

j=1

z2
j
∂2f
∂z2

j
(z) + 2

∑
j �=k

zjzk
∂2f

∂zj∂zk
(z),

which implies

|	2f (z)| ≤ |z||∇f (z)| + |∇2f (z)|. (8)

Further, for each j ∈ {1, . . . , n} we have

∣∣∣∣ ∂ f
∂ zj

(z) − ∂ f
∂ zj

(0)

∣∣∣∣ =
∣∣∣∣
∫ 1

0

〈
∇ ∂ f

∂ zj
(tz), z̄

〉
dt

∣∣∣∣
≤

∫ 1

0

∣∣∇2f (tz)
∣∣|z|dt ≤ Z2(f )

1
2

ln
1 + |z|
1 − |z| . (9)

From (9) and some elementary inequalities it follows that

|∇f (z)| ≤ C
(

|∇f (0)| + Z2(f ) ln
1 + |z|
1 − |z|

)
, (10)

for some positive constant C independent of f .
From (8) and (10) we obtain

|	2f (z)| ≤ C
(

|∇f (0)| + |∇2f (z)| + Z2(f ) ln
1 + |z|
1 − |z|

)
. (11)

Multiplying (11) by (1 − |z|2) and taking the supremum in such obtained inequality
over z ∈ � and using the fact that

sup
x∈[0,1)

(1 − x2) ln
1 + x
1 − x

< ∞

we easily obtain Z1(f ) ≤ CZ2(f ), as desired. �
LEMMA 6. Suppose that f ∈ Z. Then there is a positive constant C independent of f

such that

|∇f (z)| ≤ C‖f ‖Z ln
e

1 − |z|2 . (12)

Proof. In [31, Lemma 2.2], among others, we proved that there is a positive constant
C independent of f such that for every f ∈ B,

|f (z)| ≤ C‖f ‖B ln
e

1 − |z|2 . (13)

Applying (13) to the functions ∂f
∂zl

, l ∈ {1, . . . , n}, which belong toB in view of Lemma 4,
using the asymptotics (1) with μ(z) = (1 − |z|2) and some elementary inequalities we
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obtain

|∇f (z)| ≤ C
(
|∇f (0)| + sup

w∈�

(1 − |w|2)|∇2f (w)|
)

ln
e

1 − |z|2 .

Since by Lemma 5

|∇f (0)| + sup
w∈�

(1 − |w|2)|∇2f (w)| � ‖f ‖Z

we obtain (12). �

3. The boundedness and compactness of Ig
ϕ : Z (orZ0) → Bμ (orBμ,0). In this

section, we prove the main results of this paper, namely, we characterize the
boundedness and compactness of the operator Ig

ϕ : Z (orZ0) → Bμ (orBμ,0).

THEOREM 1. Suppose μ is normal, g ∈ H(�), g(0) = 0 and ϕ is an analytic self-map
of �. Then Ig

ϕ : Z (orZ0) → Bμ is bounded if and only if

sup
z∈�

μ(z)|g(z)||ϕ(z)| < ∞ (14)

and

K := sup
z∈�

μ(z)|g(z)||ϕ(z)| ln
1

1 − |ϕ(z)|2 < ∞. (15)

Proof. First assume that Ig
ϕ : Z (orZ0) → Bμ is bounded.

By using the test functions given by

fl(z) = zl ∈ Z0, l ∈ {1, . . . , n}, (16)

we obtain Ig
ϕfl ∈ Bμ for l ∈ {1, . . . , n}, that is,

‖Ig
ϕfl‖Bμ

= sup
z∈�

μ(z)|g(z)||ϕl(z)| < ∞,

for each l ∈ {1, . . . , n}, and consequently

sup
z∈�

μ(z)|g(z)||ϕ(z)| ≤
n∑

l=1

sup
z∈�

μ(z)|g(z)||ϕl(z)| < ∞.

Hence, condition (14) holds.
Set

h(z) = (z − 1)

[(
1 + ln

1
1 − z

)2

+ 1

]
, z ∈ �

and

ha(z) = h(〈z, a〉)
|a|

(
ln

1
1 − |a|2

)−1

, z ∈ �, (17)

for a ∈ � such that |a| >
√

1 − 1/e.
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We have

	ha(z) = 〈z, a〉
|a|

(
ln

1
1 − 〈z, a〉

)2 (
ln

1
1 − |a|2

)−1

and

	2ha(z) = 	ha(z) + 2〈z, a〉2

|a|(1 − 〈z, a〉)
(

ln
1

1 − 〈z, a〉
) (

ln
1

1 − |a|2
)−1

.

Thus, for
√

1 − 1/e < |a| < 1, we obtain

M1 = sup√
1−1/e<|a|<1

‖ha‖Z < ∞.

Moreover, we have that ha ∈ Z0, for
√

1 − 1/e < |a| < 1.
Further, from the boundedness of Ig

ϕ : Z (orZ0) → Bμ we have

M1‖Ig
ϕ‖Z→Bμ

≥ ‖hϕ(a)‖Z‖Ig
ϕ‖Z→Bμ

≥ ‖Ig
ϕhϕ(a)‖Bμ

= sup
z∈�

μ(z)|g(z)	hϕ(a)(ϕ(z))|

≥ μ(a)|g(a)||〈∇hϕ(a)(ϕ(a)), ϕ(a)〉|

= μ(a)|g(a)||ϕ(a)| ln
1

1 − |ϕ(a)|2 . (18)

From (18) it follows that

sup√
1−1/e<|ϕ(z)|<1

μ(z)|g(z)||ϕ(z)| ln
1

1 − |ϕ(z)|2 < ∞. (19)

On the other hand (14) yields

sup
|ϕ(z)|≤

√
1−1/e

μ(z)|g(z)||ϕ(z)| ln
1

1 − |ϕ(z)|2 ≤ sup
z∈�

μ(z)|g(z)||ϕ(z)| < ∞. (20)

From (19) and (20), we obtain (15) as claimed.
Now assume that (14) and (15) hold. By Lemmas 1 and 6 and (12) it follows that

μ(z)|	(Ig
ϕf )(z)| = μ(z)|	f (ϕ(z))||g(z)|

≤ μ(z)|∇f (ϕ(z))||ϕ(z)||g(z)|
≤ C‖f ‖Zμ(z)|g(z)||ϕ(z)| ln

e
1 − |ϕ(z)|2 ,

for every z ∈ � and f ∈ Z.
From this, (14), (15) and since Ig

ϕf (0) = 0, it follows that Ig
ϕ : Z (orZ0) → Bμ is

bounded, completing the proof of the theorem. �
THEOREM 2. Suppose μ is normal, g ∈ H(�), g(0) = 0 and ϕ is an analytic self-map

of �. Then Ig
ϕ : Z (orZ0) → Bμ is compact if and only if Ig

ϕ : Z (orZ0) → Bμ is bounded
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and

lim
|ϕ(z)|→1

μ(z)|g(z)||ϕ(z)| ln
e

1 − |ϕ(z)|2 = 0. (21)

Proof. First suppose that Ig
ϕ : Z (orZ0) → Bμ is compact. Clearly Ig

ϕ : Z (orZ0) →
Bμ is bounded.

Now we prove that (21) holds. Let (zk)k∈� be a sequence in � such that |ϕ(zk)| → 1
as k → ∞ (if such a sequence does not exist (21) is vacuously satisfied). Set

ĥk(z) = hϕ(zk)(z), k ∈ �, (22)

where ha is defined in (17). From the proof of Theorem 1 we see that supk∈� ‖ĥk‖Z ≤ C.
Moreover, ĥk converges to zero uniformly on compacts of � as k → ∞. Also note that

	ha(a) = |a| ln
1

1 − |a|2 ,

for each a ∈ � \ {0}.
By using Lemma 2, it follows that ‖Ig

ϕ ĥk‖Bμ
→ 0 as k → ∞. Since

‖Ig
ϕ ĥk‖Bμ

= sup
z∈�

μ(z)|	(
Ig
ϕ ĥk

)
(z)|

≥ μ(zk)|g(zk)||	ĥk(ϕ(zk))|
= μ(zk)|g(zk)||ϕ(zk)| ln

1
1 − |ϕ(zk)|2 ,

we obtain

lim
k→∞

μ(zk)|g(zk)||ϕ(zk)| ln
1

1 − |ϕ(zk)|2 = 0,

which along with the assumption |ϕ(zk)| → 1 as k → ∞, obviously implies

lim
k→∞

μ(zk)|g(zk)||ϕ(zk)| = 0.

From the last two limits, (21) follows.
Now assume that Ig

ϕ : Z (orZ0) → Bμ is bounded and condition (21) holds. From
the boundedness of Ig

ϕ we know that condition (14) holds. Let (fk)k∈� be a sequence in
Z (orZ0) such that supk∈� ‖fk‖Z =: M < ∞ and fk → 0 uniformly on compacts of �

as k → ∞. By (21), we have that for every ε > 0, there is a δ ∈ (0, 1), such that

μ(z)|g(z)||ϕ(z)| ln
e

1 − |ϕ(z)|2 <
ε

M
, (23)

whenever δ < |ϕ(z)| < 1.
By using Lemmas 1 and 6 and estimates (12) and (23), we obtain

‖Ig
ϕfk‖Bμ

= sup
z∈�

μ(z)|g(z)	fk(ϕ(z))|
≤ sup

{z∈�: |ϕ(z)|≤δ}
μ(z)|g(z)||	fk(ϕ(z))| + sup

{z∈� : δ<|ϕ(z)|<1}
μ(z)|g(z)||	fk(ϕ(z))|
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≤ ‖gϕ‖H∞
μ

sup
w∈δ�

|∇fk(w)| + C‖fk‖Z sup
{z∈� : δ<|ϕ(z)|<1}

μ(z)|g(z)||ϕ(z)| ln
e

1 − |ϕ(z)|2
≤ ‖gϕ‖H∞

μ
sup
w∈δ�

|∇fk(w)| + Cε, (24)

where

‖gϕ‖H∞
μ

:= sup
z∈�

μ(z)|g(z)||ϕ(z)|,

which is finite in light of (14).
Since (fk)k∈� is a sequence converging to zero on compacts of � as k → ∞, then

by Cauchy’s estimate the sequence (|∇fk|)k∈� also converges to zero on compacts of �

as k → ∞. In particular, it follows that

lim
k→∞

sup
w∈δ�

|∇fk(w)| = 0. (25)

Letting k → ∞ in (24) and using (25) we obtain

lim sup
k→∞

‖Ig
ϕfk‖Bμ

≤ Cε.

Since ε is an arbitrary positive number, it follows that the last limit is equal to zero.
Employing Lemma 2, the implication follows. �

THEOREM 3. Suppose μ is normal, g ∈ H(�), g(0) = 0 and ϕ is an analytic self-map
of �. Then Ig

ϕ : Z (orZ0) → Bμ,0 is bounded if and only if

lim
|z|→1

μ(z)|g(z)||ϕ(z)| = 0 (26)

and

lim
|ϕ(z)|→1

μ(z)|g(z)||ϕ(z)| ln
1

1 − |ϕ(z)|2 = 0. (27)

Proof. Assume that (26) and (27) hold. By (27) we have that for every ε > 0 there
exists an r ∈ (0, 1) such that

μ(z)|g(z)||ϕ(z)| ln
1

1 − |ϕ(z)|2 < ε, (28)

when r < |ϕ(z)| < 1.
On the other hand, from (26), there exists a ρ ∈ (0, 1) such that

μ(z)|g(z)||ϕ(z)| < ε/ ln
1

1 − r2
, (29)

when ρ < |z| < 1.
Therefore, when ρ < |z| < 1 and r < |ϕ(z)| < 1, from (28) we have

μ(z)|g(z)||ϕ(z)| ln
1

1 − |ϕ(z)|2 < ε. (30)
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If ρ < |z| < 1 and |ϕ(z)| ≤ r, from (29) we obtain

μ(z)|g(z)||ϕ(z)| ln
1

1 − |ϕ(z)|2 < μ(z)|g(z)||ϕ(z)| ln
1

1 − r2
< ε. (31)

Combining (30) and (31), we obtain

lim
|z|→1

μ(z)|g(z)||ϕ(z)| ln
1

1 − |ϕ(z)|2 = 0. (32)

From (26) and (32), by using the Maximum Modulus Theorem and Theorem 1 the
boundedness of Ig

ϕ : Z (orZ0) → Bμ follows.
By Lemma 1 and the estimate in (12), we have

μ(z)|	(
Ig
ϕf

)
(z)| ≤ C‖f ‖Zμ(z)|g(z)||ϕ(z)|

(
1 + ln

1
1 − |ϕ(z)|2

)
, (33)

for every f ∈ Z (orZ0).
By using (26) and (32) in inequality (33), it follows that for each f ∈ Z (orZ0),

Ig
ϕf ∈ Bμ,0, that is, Ig

ϕ(Z) ⊆ Bμ,0 (or Ig
ϕ(Z0) ⊆ Bμ,0). Since Bμ,0 is a closed subset of Bμ

the boundedness of Ig
ϕ : Z (orZ0) → Bμ,0 follows.

Conversely, suppose that Ig
ϕ : Z (orZ0) → Bμ,0 is bounded.

Employing the test functions in (16) we obtain Ig
ϕfl ∈ Bμ,0, l ∈ {1, . . . , n}, that is,

μ(z)|Ig
ϕfl(z)| = μ(z)|g(z)||ϕl(z)| → 0, as |z| → 1

for each l ∈ {1, . . . , n} and consequently

lim
|z|→1

μ(z)|g(z)||ϕ(z)| = 0.

Hence, condition (26) holds.
If ‖ϕ‖∞ < 1, then condition (27) is vacuously satisfied. Hence, assume ‖ϕ‖∞ = 1,

and assume that condition (27) does not hold. If it would, then ε0 > 0 and a sequence
(zk)k∈� ∈ � would exist, such that limk→∞ |ϕ(zk)| = 1 and

μ(zk)|g(zk)||ϕ(zk)| ln
1

1 − |ϕ(zk)|2 ≥ ε0 > 0

for sufficiently large k.
We may also assume that ϕ(zk) → (1, 0, . . . , 0) as k → ∞ and

1 − |ϕ1(zk−1)|
2

> 1 − |ϕ1(zk)|, k ∈ �.

Then, for every non-negative integer s there is at most one zk such that 1 − 1
2s ≤

|ϕ1(zk)| < 1 − 1
2(s+1) . Hence, there is an m0 ∈ � such that for any Carleson window

Q = {reiθ | 0 < 1 − r < l(Q), |θ − θ0| < l(Q)}
and s ∈ �, there are at most m0 elements in{

ϕ1(zk) ∈ Q | 2−(s+1)l(Q) < 1 − |ϕ1(zk)| < 2−sl(Q)
}
.
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Therefore, (ϕ1(zk))k∈� is an interpolating sequence for B(�) in sense of [2].
By [2], there is a p ∈ B(�) such that

p(ϕ1(zk)) = ln
1

1 − |ϕ1(zk)|2 , k ∈ �.

Let

F(z) = F(z1) =
∫ 1

0

p(tz1) − p(0)
t

dt.

Then from definitions of Bloch and Zygmund functions, we see that F ∈ Z.
By Lemma 1, some simple calculation and (26), we obtain

μ(zk)|	(
Ig
ϕF

)
(zk)| = μ(zk)|g(zk)||	F(ϕ(zk))|

= μ(zk)|g(zk)||ϕ1(zk)||p(ϕ1(zk)) − p(0)|
� μ(zk)|g(zk)||ϕ1(zk)| ln

1
1 − |ϕ1(zk)|2

≥ Cμ(zk)|g(zk)||ϕ(zk)| ln
1

1 − |ϕ(zk)|2
≥ Cε0 > 0,

for sufficiently large k.

Since limk→∞ |ϕ(zk)| = 1 implies that limk→∞ |zk| = 1, from the above inequality
we obtain that Ig

ϕf /∈ Bμ,0, which is a contradiction. �
THEOREM 4. Suppose μ is normal, g ∈ H(�), g(0) = 0 and ϕ is an analytic self-map

of �. Then Ig
ϕ : Z (orZ0) → Bμ,0 is compact if and only if

lim
|z|→1

μ(z)|g(z)||ϕ(z)| ln
e

1 − |ϕ(z)|2 = 0. (34)

Proof. Assume that (34) holds. Then (14) and (15) hold. By Lemma 1 and (12) we
have

μ(z)|	(
Ig
ϕf

)
(z)| ≤ C‖f ‖Zμ(z)|g(z)||ϕ(z)| ln

e
1 − |ϕ(z)|2 . (35)

From this, (14) and (15) it follows that Ig
ϕ({f : ‖f ‖Z ≤ 1}) (or Ig

ϕ({f ∈ Z0 : ‖f ‖Z ≤ 1}))
is a bounded set in Bμ. Moreover, since (34) holds it is bounded in Bμ,0. Taking the
supremum in (35) over the unit ball of the space Z (or Z0) then letting |z| → 1, we
obtain

lim
|z|→1

sup
‖f ‖Z (orZ0)≤1

μ(z)|	(
Ig
ϕf

)
(z)| = 0. (36)

From (36) and by using Lemma 3 the compactness of the operator Ig
ϕ : Z (orZ0) →

Bμ,0 follows.
Now assume that Ig

ϕ : Z (orZ0) → Bμ,0 is compact. Then Ig
ϕ : Z (orZ0) → Bμ,0 is

bounded, hence by Theorem 3 conditions (26) and (27) hold. By the proof of Theorem
3 we have that (32) holds and consequently (34), as desired. �
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10. Z. Hu, Extended Cesàro operators on the Bloch space in the unit ball of �n, Acta Math.

Sci. Ser. B Engl. Ed. 23(4) (2003), 561–566.
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20. S. Li and S. Stević, Riemann–Stieltjes operators between mixed norm spaces, Indian J.

Math. 50(1) (2008), 177–188.
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