
Accepted Manuscript 

This peer-reviewed article has been accepted for publication but not yet copyedited or 
typeset, and so may be subject to change during the production process. The article is 
considered published and may be cited using its DOI. 

10.1017/cft.2024.15 

This is an Open Access article, distributed under the terms of the Creative Commons 
Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-
nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any 
medium, provided the original work is unaltered and is properly cited. The written permission 
of Cambridge University Press must be obtained for commercial re-use or in order to create a 
derivative work. 

Perspective on Regional Sea-level Change and Coastal Impacts 1 
 2 
Kathleen L. McInnes1, Robert J. Nicholls2, Roderik van de Wal3,4, David Behar5, Ivan D. 3 
Haigh6, Benjamin D. Hamlington7, Jochen Hinkel8,9, Daniella Hirschfeld10, Benjamin P. 4 
Horton11,12, Angelique Melet13, Matthew D. Palmer14,15, Alexander A. Robel16, Detlef 5 
Stammer17, Abby Sullivan18 6 
 7 
1 Climate Science Centre, CSIRO Environment, Aspendale, 3195, Australia. 8 
2 Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, UK. 9 
3 Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, The 10 
Netherlands. 11 
4 Department of Physical Geography, Utrecht University, Utrecht, The Netherlands 12 
5 San Francisco Public Utilities Commission, San Francisco, CA, USA 13 
6 School of Ocean and Earth Science, University of Southampton, National Oceanography 14 
Centre, Southampton, UK 15 
7 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA. 16 
8 Global Climate Forum (GCF), Berlin, Germany. 17 
9 Division of Resource Economics, Albrecht Daniel Thaer‐Institute and Berlin Workshop in 18 
Institutional Analysis of Social‐Ecological Systems (WINS), Humboldt‐University, Berlin, 19 
Germany. 20 
10 Department of Landscape Architecture and Environmental Planning, Utah State University, 21 
4005 Old Main Hill, Logan, UT 84322‐4005, USA. 22 
11 Earth Observatory of Singapore, Nanyang Technological University, Singapore. 23 
12 Asian School of the Environment, Nanyang Technological University, Singapore. 24 
13 Mercator Ocean International, Ramonville‐Saint‐Agne, France. 25 
14 Met Office, FitzRoy Road, Exeter, EX1 3 PB, United Kingdom. 26 
15 University of Bristol, Bristol, BS8 1UH, United Kingdom. 27 
16 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 28 
30318, USA. 29 
17 Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, 30 
Germany. 31 
18 City of Philadelphia, Offices of Sustainability and Climate Resilience, 1515 Arch Street, 32 
Philadelphia, PA 19102, USA. 33 
 34 
Corresponding author: Kathleen McInnes (kathleen.mcinnes@csiro.au) 35 
To be submitted to ‘Cambridge Prisms: Coastal Futures’ describing the WCRP Grand 36 
Challenge on Regional Sea Level Change and its Impacts, including the Singapore Conference 37 
in 2022. 38 
The authors declare no competing interests in the preparation of this manuscript. 39 

https://doi.org/10.1017/cft.2024.15 Published online by Cambridge University Press

https://doi.org/10.1017/cft.2024.15


Accepted Manuscript 

2 
 

Abstract 40 
 41 
We synthesize sea‐level science developments, priorities and practitioner needs at the end of the 10‐42 
year World Climate Research Program Grand Challenge 'Regional Sea‐Level Change and Coastal 43 
Impacts'. Sea‐level science and associated climate services have progressed but are unevenly 44 
distributed. There remains deep uncertainty concerning high‐end and long‐term sea‐level 45 
projections due to indeterminate emissions, the ice sheet response and other climate tipping points. 46 
These are priorities for sea‐level science. At the same time practitioners need climate services that 47 
provide localized information including median and curated high‐end sea‐level projections for long‐48 
term planning, together with information to address near‐term pressures, including extreme sea 49 
level‐related hazards and land subsidence, which can greatly exceed current rates of climate‐induced 50 
sea‐level rise in some populous coastal settlements. To maximise the impact of scientific knowledge, 51 
ongoing co‐production between science and practitioner communities is essential. Here we report 52 
on recent progress and ways forward for the next decade. 53 

 54 

 55 
Impact Statement  56 
 57 
Rising sea levels are a major concern for low‐lying coastal communities and ecosystems across the 58 
globe, yet planning for future sea‐level rise is hampered by uncertainties in future greenhouse gas 59 
emissions, how ice sheets will respond and other potential climate tipping points that lead to a wide 60 
range of possible future projections. The World Climate Research Program Grand Challenge on 61 
'Regional Sea‐Level Change and Coastal Impacts’ was implemented to further advance understanding 62 
of natural and human contributions to sea‐level rise, promote advances in observations and foster 63 
the development of sea‐level information that assists coastal practitioners in planning for the future. 64 
Priority sea‐level information for coastal practitioners includes both mid‐range and high‐end sea‐65 
level projections for future planning as well as information to assist with near‐term planning. This 66 
includes information on extreme sea‐levels and associated hazards and land subsidence, which, in 67 
some coastal locations, greatly exceeds current rates of climate‐induced sea‐level rise. This article 68 
summarizes recent progress and ways forward for the next decade.   69 
  70 
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1.      Introduction       71 

To meet urgent societal needs for useful information on sea‐level rise (SLR), the World Climate 72 
Research Program (WCRP) implemented the theme 'Regional Sea‐Level Change and Coastal Impacts' 73 
as one of its cross‐cutting science questions, or Grand Challenges (GC). The GC objectives were to: (1) 74 
establish a quantitative understanding of the natural and anthropogenic mechanisms of regional to 75 
local sea‐level change and variability; (2) promote advances in observing systems required for 76 
integrated sea‐level monitoring; and (3) foster the development of sea level information to further 77 
benefit coastal zone managers, who are dealing with the consequences of rising mean and extreme 78 
sea levels (Figure 1). An interdisciplinary program was developed encompassing global to regional 79 
and local scales. In particular, the program aimed for close interaction with relevant coastal 80 
stakeholders to increase the utility of scientific research for coastal zone management, and impacts 81 
and adaptation efforts. The program entailed work on paleo‐timescale sea‐level estimates, land‐ice 82 
contributions to SLR, regional sea‐level variability and change including extremes, regional sea‐level 83 
predictability, sea‐level science for coastal zone management, sea‐level budget, and identification of 84 
practitioner needs from climate science through practitioner engagement.  85 

The GC facilitated many important publications. These include the identification of users’ needs for 86 
SLR information, including high‐end SLR projections, in decision making (Hinkel et al., 2019), a 87 
transparent framework for developing high‐end SLR projections (Stammer et al., 2019) subsequently 88 
applied to 2100 and 2300 for a low and high emission scenario in van de Wal et al., (2022). Sea‐level 89 
variability and change on various spatiotemporal scales were the topics of a workshop and journal 90 
special edition (Ponte et al., 2019b and references therein), including a paper highlighting the large 91 
uncertainties associated with projected Antarctic mass loss (van de Wal et al., 2019). A consistent 92 
terminology for the sea level community, including vertical reference frames, SLR components and 93 
extremes, was addressed in Gregory et al., (2019). An international collaboration to assemble and 94 
assess the data quality of SLR sources, allowed estimates of land‐based ice and thermal expansion 95 
over 1993‐2018 to be refined, but uncertainty in the land water storage component remains (WCRP 96 
Global Sea Level Budget Group 2018). 97 

Ponte et al., (2019a) reviewed observational platforms and modelling systems for simulating and 98 
predicting coastal sea level. A review of the status of coastal services to deliver sea level information 99 
in Le Cozannet et al., (2017), was followed by a dedicated workshop and a special journal edition on 100 
the topic (Le Cozannet et al., 2022 and references therein). Linked work evaluated the significance of 101 
subsidence in coastal cities and deltas, which demonstrated the prevalence of coastal residents in 102 
subsiding areas which, on average, experience relative SLR up to four times faster than that due to 103 
climate change alone (when weighted by population) highlighting the urgency of effective coastal 104 
adaptation (Nicholls et al., 2021).  The GC also undertook the first global survey of coastal 105 
practitioners to understand whether and how SLR projections were being used and to ascertain 106 
other information practitioners require for coastal adaptation decision making (Hirschfeld et al., 107 
2023). 108 

Three significant international sea‐level conferences and workshops were organised by GC members; 109 
an initial conference in New York in 2017, practitioner‐led workshops in 2022, and the final (sunset) 110 
conference in Singapore, later in 2022. The 2017 conference highlighted research priorities that 111 
shaped GC activities in subsequent years. The need for stronger engagement with the practitioner 112 
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community was identified as critical for providing salient information for future adaptation. The 113 
practitioner‐led workshops, in turn, included identification of gaps and needs in the production and 114 
translation of climate science to support coastal resilience planning (see section 4.1). The final GC 115 
conference in Singapore enabled assessment of progress since 2017 and had a more prominent 116 
practitioner focus. Both the workshops and the Singapore gathering contributed to the launch of a 117 
global community of practice focused on coastal resilience, the Practitioner Exchange for Effective 118 
Response to Sea Level Rise (PEERS, www.peerscoastal.org).      119 

In this article, which will serve as a legacy of the work of the GC, we take stock of the major 120 
advancements in sea level science over the past decade. We draw on presentations and discussions 121 
from the final Singapore conference to provide a perspective of the topics that continue to require 122 
urgent attention, particularly as we begin the Intergovernmental Panel for Climate Change (IPCC) 123 
seventh assessment cycle. In the remainder of this article, we address in more detail advances in 124 
data supporting sea level science (section 2), sea level science advances (section 3), practitioner 125 
perspectives and needs (section 4) and future priorities (section 5). 126 

 127 
2. Sea-level observations and evidence from past climates 128 
 129 
2.1. In-situ and satellite observations  130 

Over the past decade, sea level observations have been sustained and improved. The launch of 131 
Sentinel‐6A in 2020, sees the record of high precision, near‐global sea‐level measurements from 132 
conventional radar satellite altimetry now exceeding three decades (Donlon et al., 2021; Hamlington 133 
et al., 2023). The continuous record of this reference mission, supported by several satellites, has led 134 
not only to definitive estimates of rising regional and global sea levels, but also the increasing rate of 135 
global SLR (e.g., Nerem et al., 2018; Guérou et al., 2023). Overall accuracy has improved from one 136 
satellite to the next and improved technology and advanced processing approaches have led to 137 
better measurements of smaller scales of sea level variability, which now also extend closer to the 138 
coasts. The latter is particularly important for risk and adaptation assessments. During the GC, new 139 
missions in coastal altimetry (e.g., Cipollini et al., 2017, Birol et al., 2017, Vignudelli et al., 2019) 140 
and/or waveform retracking (e.g., Passaro et al., 2014, Birol et al., 2021) progressed substantially, 141 
enabling analysis of decadal coastal sea level trends (Cazenave et al. 2022).  The large regional 142 
variations in SLR trends are illustrated in Figure 2.  143 

In 2022, a breakthrough in satellite altimetry occurred with the launch of the Surface Water and 144 
Ocean Topography (SWOT) mission (Morrow et al., 2019). SWOT uses radar interferometry to 145 
measure ocean and surface water levels over a 120‐km wide swath with a roughly 20‐km gap along 146 
the nadir that is partially filled by a conventional radar altimeter. The orbit repeats every 21 days, 147 
but the swath measurements result in much of the globe having a revisit time that is significantly 148 
shorter while also filling in many of the gaps in the current observations of sea level. Initial analyses 149 
indicate a dramatic improvement in spatial resolution of sea‐level data, including observations up to 150 
and through the coastal interface. In addition, other satellites have contributed to an increasingly 151 
dense network of higher resolution, altimeter measurements in polar regions in the past decade, 152 
including Cryosat‐2, with a synthetic aperture interferometric radar altimeter (Wingham et al., 2006), 153 
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Sentinel‐3A, ‐3B (Clerc et al.,2020), Sentinel‐6A with synthetic aperture radars, and ICESat‐2 with a 154 
laser altimeter (Neumann et al., 2019).  155 

Observations of ocean temperature and salinity profiles have increased and improved through 156 
increased numbers of ARGO floats and corrections of instrumental biases (Boyer et al., 2016). 157 
Gravimetry for ocean mass changes ‐ barystatic sea‐level changes (GRACE and GRACE‐FO, Landerer 158 
et al., 2020) have also progressed. This has enabled improved understanding of SLR and the closure 159 
of the observed SLR budget at global (Fox‐Kemper et al., 2021) and regional scales (Dangendorf et 160 
al., 2021; Marcos et al., 2019;  Frederikse et al., 2020; Camargo et al., 2023), at least until 2016 161 
(Nerem et al. 2018; WCRP Global Sea Level Budget Group, 2018). 162 

For longer time scales, tide gauges are the major source of coastal SL observations monitoring most 163 
of the world coastlines (e.g., Marcos et al., 2019). The Permanent Service for Mean Sea Level 164 
(PSMSL), which was established in 1933, has been responsible for the collection of mean sea‐level 165 
data from global tide gauges (Holgate et al., 2012) and produces monthly and annual mean sea level 166 
datasets. These have been used, with altimeter records, in most past mean sea‐level trend and 167 
variability studies. The Global Extreme Sea Level Analysis (GESLA) provides high‐frequency (at least 168 
hourly) sea‐level information from tide gauge stations distributed worldwide. The first GESLA dataset 169 
was compiled in 2009, with a second update in 2015/16 (Woodworth et al., 2016) and a major third 170 
update in 2022/23, with the dataset currently comprising 91,021 years of data from 5,119 records 171 
(Haigh et al., 2023). The Joint Archive for Sea Level (Caldwell et al., 2015), established in 1987 and 172 
hosted by the University of Hawaii Sea Level Center (UHSLC), forms an important part of the GESLA 173 
dataset. For higher‐frequency monitoring required for studying oceanographic processes like 174 
seiches, meteotsunamis, infragravity, and coastal waves, a 1‐min SL dataset (Minute Sea‐Level 175 
Analysis, MISELA) was developed at 331 tide gauges worldwide (Zemunik et al., 2021).  176 
 177 
2.2. Synthesis Data Programmes  178 

Several data programmes have been developed over the last decade to synthesize sea‐level changes. 179 
The European Union’s Earth Observation Programme, Copernicus, provides information on sea‐level 180 
changes through in‐situ datasets, satellite observations (including from Sentinel missions), ocean 181 
reanalyses covering the past decades and near‐term forecasts. Copernicus also provides ancillary 182 
fields needed to assess SLR‐induced coastal risks (coastal land cover and land use, vertical land 183 
motion, digital elevation models, flood monitoring, etc.), to guide adaptation and support related 184 
policies and directives (see Melet et al., 2021). In addition to ongoing dataset improvements, 185 
Copernicus Services plan to improve their SLR products and services and associated risks through the 186 
addition of time‐evolving satellite‐derived coastal bathymetry and shoreline position, continuous 187 
monitoring of coastal floods, provision of longer‐term past sea‐level changes (i.e. extended 188 
reanalyses) and regionalized future climate projections (e.g., Chaigneau et al., 2022), attribution of 189 
extremes, and mapping of coastal defense structures across Europe’s coasts (Melet et al., 2021). A 190 
web platform, the Copernicus Coastal Hub, has been developed to provide the relevant core services 191 
of Copernicus to end‐users.       192 

Separately, the NASA Sea‐Level Change Team has worked to both improve the understanding of sea‐193 
level change in the past and future through interdisciplinary research and to strengthening the 194 
connection to practitioners and end‐users with the goal of advancing access to global sea‐level data 195 
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and information. This includes, for example, establishing partnerships with the IPCC to deliver the 196 
updated sea‐level projections from the recent 6th Assessment Report (AR6; Fox‐Kemper et al., 2021; 197 
https://sealevel.nasa.gov/ipcc‐ar6‐sea‐level‐projection‐tool). Dedicated efforts to engage and 198 
support practitioners are ongoing, as are efforts to synthesize and integrate disparate Earth 199 
observations into improved information on sea‐level change.  200 
 201 
2.3 On the use of paleodata  202 

The ice sheets, oceans and the solid Earth are the Earth system components that change most slowly 203 
under climate change. Consequently, the rapid changes since pre‐industrial times are not in 204 
equilibrium with the current forcing of the climate system. One of the major challenges in ice sheet 205 
modelling is therefore to capture this imbalance. One option is to use observations of sea‐level rates 206 
and high‐stands in the warmer past (e.g. Eemian).  A full understanding of Eemian high‐stands is still 207 
missing as the contribution from Antarctica is poorly constrained for slightly warmer conditions than 208 
present‐day, mainly due to a lack of understanding of the ice‐ocean interaction, but also because the 209 
magnitude of the high‐stand is also strongly dependent on the assumptions made to estimate the 210 
Glacial Isostatic Adjustment (Dyer et al., 2021). The physics behind basal melt is also important for 211 
explaining current rates of mass loss in West‐Antarctica. The aim is that the physical processes 212 
constrained by modern and geological observations can be captured adequately. However, few 213 
studies have attempted to use paleo sea‐level information to project SLR in future. Notable is the 214 
work by DeConto et al., (2021) where geological observations constrain model parameters, 215 
especially those controlling marine ice‐cliff instability. 216 

A further application of paleo data, important for stakeholders, is whether and when sea level 217 
started to accelerate. Sea‐level reconstructions of the Common Era (last 2000 years) have been used 218 
to estimate the timing of the acceleration or inception of modern rates of SLR, since they extend the 219 
instrumental record back before the 20th century and have improved attribution of sea‐level change 220 
(e.g. Kemp et al., 2011). Walker et al., (2022) used a global database of proxy sea‐level records of the 221 
Common Era to show that globally, it is very likely that rates of SLR emerged above pre‐industrial 222 
rates by 1863 CE (P = 0.9; range of 1825 [P = 0.66] to 1873 CE [P = 0.95]), which is similar in timing to 223 
evidence for early ocean warming and glacier melt, which caused most SLR over the 20th century. 224 

    225 
3. Modelling and projections of sea-level change  226 
 227 
3.1: State of the Art Sea Level Projections  228 

Sea‐level projections based on process models involve combining the contributions of ocean 229 
dynamic sea level from the Coupled Model Intercomparison Project (CMIP) climate models, run to 230 
support the IPCC process, with other components of sea‐level change. These include terrestrial 231 
water storage changes, Glacial Isostatic Adjustment (GIA), spatial redistribution of sea level due to 232 
gravitational, rotational and deformational changes in the Earth in response to ice‐sheet mass 233 
changes (sometimes referred to as sea‐level fingerprints) and the SLR from dynamical processes that 234 
contribute to ice sheet and glacier mass loss, which are obtained from separate off‐line models 235 
usually forced by output from CMIP climate models, thereby implicitly ignoring feedbacks between 236 
climate and ice sheet models.     237 
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State‐of‐the‐art sea‐level projections presented in the IPCC Sixth Assessment Report of Working 238 
Group I (AR6; Fox‐Kemper et al., 2021) incorporated several methodological advancements relative 239 
to IPCC AR5 (Church et al., 2013) and the IPCC Special Report on Oceans and Climate Change (SROCC; 240 
Oppenheimer et al., 2019. These included: (i) use of physically‐based emulators, which allowed for 241 
sea‐level projections that were consistent with the AR6 assessment of climate sensitivity (Forster et 242 
al., 2021) and also consistent inclusion of ice sheet modelling from previous assessments (Slangen et 243 
al., 2023); and (ii) use of  coordinated community process‐modelling efforts for the ice sheets 244 
(Goelzer et al., 2020, Levermann et al., 2020;  Seroussi et al., 2020) and glacier response under 245 
climate change (Marzeion et al., 2020). Despite these advances, the ‘likely range’ projections, which 246 
characterize the central two‐thirds of the probability distribution, remain broadly similar across AR5, 247 
SROCC and AR6 (Slangen et al., 2023). However, high‐end sea‐level change, caused by poorly 248 
understood physical processes inducing ice‐mass loss of the Antarctic ice sheet, is uncertain. There is 249 
a low confidence, high‐impact storyline based on expert elicitation and exploratory modeling 250 
presented in AR6 that could exceed 2 m of GMSL rise by 2100 and 15 m by 2300. More recently, an 251 
analysis emerging from the GC based on physical storylines arrived at lower values for both 2100 252 
(1.27‐1.55 m) and 2300 (up to 10 m) (Van de Wal et al., 2022). Figure 3 presents the estimated 253 
regional high‐end values following the approach by Van de Wal et al., (2022). 254 

On even longer time scales, Turner et al., (2023) developed SLR projections to 2500 that help to 255 
illustrate the multi‐century commitment and long‐term benefits of mitigation action. Similarly, 256 
Palmer et al., (2024) developed multi‐century SLR projections in a flexible storyline framework that 257 
can be tailored to stakeholder needs or specific decision‐making contexts.  258 
 259 
3.2: Advances in ice sheet modelling  260 

To constrain the low likelihood probabilities of SLR it is critical to develop ice models further. Most 261 
ice sheet models used for SLR projections still compare poorly to observations of ice sheet change 262 
over the last 20 years (Aschwanden et al., 2021) and during past warm periods (Dutton et al., 2015). 263 
However, through advances in model representation of processes occurring at the boundaries of ice 264 
sheets and model architecture, some individual models have greatly improved their fidelity to past 265 
observed changes (Nias et al., 2016, DeConto et al., 2021, Golledge et al., 2019, Gilford et al., 2020). 266 

Surface mass balance models have improved in modeling firn compaction and water retention within 267 
snow (e.g. Lundin et al. 2017), and Earth System Models (ESMs) are performing better for Greenland. 268 
Similarly, simulated ocean melting of ice sheets has improved in contemporary models (Cowton et al. 269 
2019, Lambert et al. 2023), but still disagrees with observations, particularly where ocean circulation 270 
interacts with subglacial discharge (Ciraci et al., 2023). Models which include ocean intrusion and 271 
melting underneath grounded ice sheets predict nearly twice the rate of future SLR (Seroussi et. al. 272 
2019, Robel et al., 2022). Other models of rapid iceberg calving at tall ice cliffs (Bassis and Walker 273 
2012; Crawford et al., 2021) have suggested the possibility of even higher future SLR (DeConto et al., 274 
2021), though other calving models suggest such rapid calving states may be ephemeral (Clerc et al., 275 
2019, Bassis et al., 2021). At the ice sheet base, models of glacial isostatic adjustment, gravitationally 276 
self‐consistent sea level (Gomez et al., 2018, van Calcar et al., 2023) and subglacial hydrology (Schoof 277 
et al., 2010) have also raised the possibility of new negative feedbacks on future ice loss from both 278 
Antarctica and Greenland. 279 

https://doi.org/10.1017/cft.2024.15 Published online by Cambridge University Press

https://doi.org/10.1017/cft.2024.15


Accepted Manuscript 

8 
 

Several modeling centers have focused efforts on coupling ice sheet models with oceanic and 280 
atmospheric models or incorporating them fully into ESMs (Smith et al., 2021). Decades of progress 281 
in transient data assimilation in the weather and climate modeling communities are now translating 282 
to rapid improvements in the way ice sheet models are being initialized and calibrated (e.g., 283 
Goldberg et al., 2022, Van den Akker et al., 2024). Additionally, many ice sheet models now 284 
incorporate stochastic and neural‐network parameterizations (Jouvet et al., 2022, Verjans et al., 285 
2022, Ultee et al., 2023) to improve their speed and ensemble capabilities for better uncertainty 286 
quantification. All these ice‐sheet model improvements will facilitate coupling in ESMs and better 287 
calibration with present‐day observed environmental conditions, improving SLR projections mostly 288 
for the near future. 289 

3.3: From Regional SLR to local projections of coastal hazards   290 

Coastal adaptation requires SLR projections that are tailored to local conditions together with 291 
additional information on extreme coastal sea levels from which coastal hazards (e.g. flooding and 292 
erosion) may be calculated. While CMIP models provide information on local SLR changes due to 293 
ocean density and circulation, the typical 1° spatial resolution of the ocean models means they are 294 
unable to resolve complex circulations along continental shelves (Zhang et al., 2016; Van Westen and 295 
Dijkstra, 2021). The application of higher resolution global (Zhang et al., 2017; Jin et al., 2024) or 296 
regional ocean models (e.g. Toste et al., 2018; Hermans et al., 2021; Jin et al., 2021; Shin and 297 
Alexander, 2020; Chaigneau et al., 2022) is enabling improved representation of ocean circulation 298 
and better resolved dynamic SLR projections closer to the coast. 299 

Coastal hazard assessments require information on sea‐level extremes that consider astronomical 300 
tides, weather‐induced storm surges and wind‐waves (infragravity waves, wave setup, wave runup), 301 
their associated uncertainties expressed as probabilities of occurrence over different time periods 302 
and accurate digital elevation models (Hinkel et al., 2021). Advances have been made with global‐303 
scale hydrodynamic models of tides and storm surge (e.g. Muis et al., 2016, 2020), and tide‐surge‐304 
waves (e.g., Mentaschi et al., 2023), with forcing provided by meteorological reanalysis (e.g. Dullaart 305 
et al., 2020) and tropical cyclones (Bloemendaal et al., 2019). Coordinated efforts are underway to 306 
progress global modelling efforts (Bernier et al., 2024). The combination of data from storm surges 307 
and tide models with wave setup derived from wave model reanalyses has enabled the derivation of 308 
extreme sea‐level statistics for use in global coastal flood assessments (e.g. Rueda et al., 2017; 309 
Vousdoukas et al., 2018; Kirezci et al., 2020).  310 

Although there have been advances in large scale assessments of coastal hazards, stakeholders often 311 
need localized information that may be limited or unavailable, such as elevation, bathymetry, 312 
vertical land movement (e.g. Nicholls et al., 2021) and river flows. Furthermore, the coincidence of 313 
high river flows and/or intense precipitation events with extreme coastal sea levels can cause 314 
compound flooding (e.g. Wahl et al., 2015, Bevacqua et al., 2019, Collins et al., 2019, Bevacqua et al., 315 
2020, Couasnon et al., 2020, Hermans et al., 2024). Green et al., (2024) recently provided a 316 
comprehensive review of compound flooding in coastal regions. Establishing the probabilities of 317 
extreme sea levels from all contributing factors under present and future climate conditions is a 318 
major computational undertaking. To address this complexity, hybrid statistical‐dynamical 319 
approaches akin to machine learning methods are being developed to estimate nearshore coastal 320 
hazards (e.g. Camus et al., 2014; Cagigal et al., 2020, Ayyad et al., 2023).  321 
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 322 
4.      Engaging with the practitioner perspective       323 

The GC considered practitioner and decision‐making perspectives to facilitate use of the science 324 
results summarized in Sections 2 and 3. The main focus here is on risk assessment and adaptation 325 
decisions up to a century in the future, reflecting the practitioner needs that were expressed in the 326 
GC around practical action.         327 

     4.1: Challenges practitioners are facing       328 

Preparing for SLR requires practitioners to understand the magnitude and rate of change, associated 329 
uncertainties, their local implications, and the societal context in which decisions are made. 330 
Practitioners bring relevant expertise, including local regulations and permitting processes, funding 331 
options, stakeholder perspectives including local politics, but generally lack time to follow evolving 332 
climate science. Therefore, no global standard in the uptake of SLR projections into planning exists 333 
and practitioner approaches vary widely (Hirschfeld et al., 2023). The myriad coastal hazards 334 
associated with SLR (erosion, flooding, salinisation, etc.) further complicate practitioners’ analysis. To 335 
better understand these issues, two global workshops were convened to share knowledge among 336 
practitioners on how SLR science is incorporated into decision‐making, understand the state of 337 
coastal adaptation planning and action, and address communicating the case for action (Boyle et al., 338 
2022; Hirschfeld et al., 2024). Lessons were shared at the WCRP GC SLR conference in Singapore 339 
(2022) and are summarized below. 340 

4.1.1: Challenges working with observations and projections  341 

Many practitioners lack access to relevant local observations or downscaled SLR projections with the 342 
Southern hemisphere and developing countries most deficient. The scientific literature requires 343 
translation by climate service providers or boundary workers (also referred to as knowledge brokers; 344 
Lomas, 2007; Harvey et al., 2012) working with practitioners to characterize knowledge and 345 
uncertainty into actionable information. This is particularly true for long‐term high‐end SLR 346 
projections, which are important for risk management (Hinkel et al., 2015; 2019) and attract strong 347 
practitioner attention. Recent high‐end projections have caused confusion among practitioners 348 
(Boyle et al 2022), as authoritative sources published over the last 11 years have fluctuated by a 349 
meter or more at the high end, while median SLR projections remained relatively constant (Figure 4). 350 
A compounding issue is that the speed of planning/implementation ‐ approximately two or three 351 
decades for major capital projects – is much slower than the release and adoption of new high‐end 352 
projections in influential forums (Figure 4; Boyle et al., 2022; Lipscomb et al., 2024).  This emphasizes 353 
the need for actionable science as discussed below. 354 

4.1.2: Barriers to understanding and communicating impacts  355 

Beyond mean and high‐end SLR projections, practitioners need to assess other related coastal 356 
information and hazards (Section 3.3), such as subsidence, sea‐level extremes, erosion, saltwater 357 
intrusion and more. Compound threats are costly and difficult to assess and there is a gap between 358 
the science discussed earlier and the availability of localized compound information. Many 359 
practitioners lack access to high‐resolution inundation models, which are a valuable visualization tool 360 
to communicate risk (Boyle et al., 2022). This widens the gap between places that are adapting and 361 
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those that cannot. Despite facing existential risk, many small islands appear in the latter category.  362 
One partnership addressing this gap is a PEERS/NASA effort to coproduce inundation maps 363 
(https://peerscoastal.org/get‐involved/inundation‐mapping). 364 

4.2: Elements for addressing practitioner challenges 365 

The following needs were identified over the course of the GC: 366 
●        Co-Production, robust climate services and boundary support ‐ Increased collaboration 367 

between practitioners, boundary workers and climate scientists to co‐produce 368 
knowledge was affirmed as essential to advancing global adaptation (Figure 5). Boundary 369 
workers play a critical role in the translation between practitioners and scientists, but 370 
climate services are poorly developed for coasts (Le Cozannet et al., 2017; 2022), 371 
hindering progress.  372 

●        Development of actionable science ‐ That is, science that is widely agreed upon in the 373 
scientific community (Bamzai‐Dodson et al., 2021; Lipscomb et al., 2024). While IPCC 374 
reports in recent years have expanded the type of SLR projections to assist with risk 375 
assessment (e.g. SROCC, AR6), an unintended consequence has been to raise the profile 376 
of uncertain, experimental outputs not yet replicated by the broader scientific 377 
community without providing sufficient guidance for practitioner uptake. GC initiatives 378 
led to Stammer et al., (2019) and Van de Wal et al., (2022), which directly addressed 379 
practitioner needs by accentuating high‐end SLR projections supported by multiple lines 380 
of evidence, transparency, and scientific confidence. Building on this work, an actionable 381 
science definition has been proposed: “A scientific claim is sufficiently accepted to justify 382 
adaptation action (i.e., near-term physical measures and financial investments) when it is 383 
supported by multiple, consistent independent lines of high-quality evidence leading to 384 
high or medium confidence, as determined by a diverse group of experts in an open, 385 
transparent process”. (Lipscomb et al, 2024).  Efforts to develop consistent, clear 386 
approaches for translating SLR science into actionable information to underpin 387 
adaptation investment are needed, ideally featuring coproduction partnerships between 388 
practitioners and scientists.  389 

●        Development of a community of practice - Needed to support practitioners developing 390 
leading practices in adaptation. PEERS was established in 2023 by participants of the 391 
global workshop and Singapore conference and at this writing has over 500 members in 392 
59 countries with strong global North and global South participation.  393 

4.2.1: Co-production and boundary support 394 

The GC developed a framework to facilitate the production of SLR information to meet practitioner 395 
needs (Hinkel et al., 2019). This starts with the practitioner's decisions and associated context. These 396 
differ from case to case and require diverse decision‐making frameworks and types of SLR 397 
information. The decision context includes: (1) the uncertainty tolerance; a low uncertainty tolerance 398 
equating to the preparation for unlikely but extreme outcomes; (2) the decision or time horizon, for 399 
planning, implementation and operation of the adaptation measures ‐‐ ranging from years (e.g., 400 
beach nourishment), to decades (e.g., protection infrastructure such as dikes, land reclamation in 401 
small islands), to a century or more (e.g., critical infrastructure such as nuclear power, long‐term 402 
land‐use planning) (Burcharth et al., 2014; Rigo et al., 2006; Hino et al., 2017; Wilby et al., 2011; 403 
Hinkel et al., 2023); and (3) the ability to adaptively manage the response, which is most relevant for 404 
long‐term adaptation.  405 
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Three additional contextual aspects emerged in the practitioner workshops:  culture, resources, and 406 
place (Hirschfeld et. al., 2024). Culture shapes how practitioners think and thus influences their 407 
needs (e.g., attitudes towards protection versus the environment), their uncertainty tolerance and 408 
decision horizons. Human, natural, and financial resources, or lack of resources, all influence a 409 
practitioner's requirements from boundary scientists (Aylett, 2015). Practitioners also consider 410 
different physical attributes of places (e.g., topography, tidal range, etc.) and people (i.e., high 411 
density, medium density, etc.) influencing exposure and vulnerability and the information required.       412 

The practitioner workshops identified that co‐production between SLR scientists, practitioners and 413 
boundary workers is essential (see also Hewitt et al., 2017; Vincent et al., 2018). Initially, 414 
practitioner’s needs and decision requirements may be ill‐defined, but become refined through an 415 
iterative process. Furthermore, coastal decisions are often characterized by conflicting stakeholder 416 
interests (Hinkel et al., 2018), which require the elaboration of joint perceptions, objectives, etc. 417 
Finally, users also require methods for applying information, including learning opportunities and 418 
technical assistance to address coastal resilience challenges (Tribbia and Moser, 2008; Hirschfeld and 419 
Hill, 2022). 420 

The different participants in Figure 5 have different roles to play within the co‐production process. 421 
Physical scientists need to place confidence judgments on the various SLR products available 422 
(Mastrandrea et al., 2011). Not all of these are equally plausible and practitioners need to choose 423 
actionable products that are well supported in the science community (van de Wal et al., 2022; 424 
Lipscomb et al., 2024) and match their approaches to risk management (Hinkel et al., 2019). The role 425 
of the practitioners and decision‐makers is to express their context and needs, to assess their risk 426 
management approach, and to consider what adaptation options are feasible. The boundary 427 
worker’s role is to act as a bridge and ensure that decision analysis methods and available SLR 428 
products are integrated in a meaningful way to address the practitioner's needs.       429 

4.2.2: Adaptive decision making       430 

Adaptive Decision Making (ADM) has been highlighted in coastal and more widely in climate 431 
adaptation (Hewitt et al., 2017; Vincent et al., 2018; Lawrence et al., 2019). ADM divides decisions 432 
into stages, implements flexible measures today and then progressively implements upgrades while 433 
learning how SLR unfolds (Ranger et al., 2013). Dynamic Adaptive Policy Pathways is a widely 434 
established framework for developing sequences of adaptation actions ‐‐ adaptation pathways ‐‐ and 435 
ranking them via multi‐criteria analysis (Haasnoot et al., 2013). Additional ADM methods, including 436 
real‐option analysis or optimal control are available, which find optimal economic trade‐offs 437 
between adaptation investment today, including the cost of flexible design, versus delayed 438 
implementation while more is learned about SLR (Völz and Hinkel, 2023a). This approach is especially 439 
suitable for costly and long‐lasting coastal adaptation decisions (e.g., dikes, surge barriers, land‐use 440 
planning) (e.g., Woodward et al., 2014).  Importantly, these approaches provide a framework for 441 
building adaptation measures iteratively, reducing the risk of maladaptation.   442 

ADM frameworks are facilitated by a new class of SLR information which Hinkel et al (2019) termed 443 
learning scenarios. These estimate what additional information will be known at any given moment 444 
in the future about SLR beyond this moment (e.g., 2050 to 2100). They can be seen as a 445 
generalization of “normal” scenarios which provide information about future climate seen from a 446 
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base year (i.e., today) and future moments in time. Within the GC, SLR learning scenarios based on 447 
IPCC AR6 scenarios were developed for the first time (Völz and Hinkel, 2023a) and applied to an 448 
economic assessment of adaptation pathways (Völz and Hinkel, 2024).  Further practical research 449 
and implementation is required to fully explore the potential of ADM in coastal adaptation. 450 

 451 
5. Future priorities  452 

This article has highlighted progress on SL science and its use in adaptation over the past decade 453 
including activities fostered by the WCRP’s GC. These are summarised and research priorities are 454 
identified as the IPCC AR7 cycle gets underway.   455 

Regarding observations, global sea‐level data derived from satellite altimeters are now of sufficient 456 
length to provide evidence of accelerating SLR. New radar altimeter instruments are providing higher 457 
resolution sea‐level observations in the coastal zone. Together with measurements of ocean volume 458 
change (temperature and salinity) and mass change (changes in earth gravity), the SLR budget has 459 
been closed, including at regional scale. Sustainment of satellite‐based ocean observations into the 460 
future will be crucial to the ongoing monitoring of sea‐level change including at the coastline, where 461 
additional forcing factors (local sea levels, waves, river flows and vertical land movement) interact 462 
with SLR to drive extremes. Ongoing curation of global tide datasets will enable monitoring and 463 
attribution of extreme sea‐level change. The development of reliable global vertical land movement 464 
data from analysis of tide gauges, GNSS and In‐SAR satellite data is a key future priority at the coast, 465 
particularly in urban areas where the rate of subsidence may be many times the rate of climate‐466 
induced SLR. 467 

Methodological advances in the development of SLR projections occurred within the IPCC AR6 cycle, 468 
including the use of physical emulators to derive SLR projections consistent with the AR6 assessment 469 
of climate sensitivity, which could be extended on the component level. Ice sheet and glacier models 470 
for estimating the mass contribution to SLR have been improved by the advent of model 471 
intercomparison projects. These more comprehensive approaches yield likely ranges of SLR that are 472 
broadly similar to previous assessments, but low‐likelihood, high‐end projections differ widely. Ice 473 
sheet and surface mass balance models that contribute to SLR projections have improved with more 474 
dynamic processes associated with ice sheet disintegration being developed. Work must continue 475 
however, to improve the agreement of ice sheet models to recent observations and to include other 476 
feedbacks between the ice and the rest of the climate system. Sea‐level information on paleo time 477 
scales remains an important data source to constrain these models and future advances will help 478 
narrow uncertainties in long term and high‐end projections. 479 

Modelling the processes that contribute to extreme sea levels, including regional SLR, waves, tides 480 
and storm surges at global scales has advanced considerably over the past decade. Ongoing work is 481 
required to better represent small scale and relatively low frequency phenomena such as tropical 482 
cyclones in historical and future climate contexts. At the local coastal scale, model‐based coastal 483 
assessments that integrate multiple oceanic and terrestrial (e.g. river runoff) factors and capture 484 
non‐linear interactions and compound hazards remain a challenge, which will require further 485 
development and adoption of machine learning methods to increase the tractability of the problem. 486 
It is also vital to consider compound flooding when assessing and designing flood management.  487 
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The GC provided a forum to establish collaborative networks within the practitioner community to 488 
provide sustained peer support and learning. This was achieved through a first‐ever global survey on 489 
sea‐level information used by practitioners and their needs, a series of regional workshops which 490 
deepened understanding of practitioners needs in different regional contexts, and a SL conference 491 
that provided a dialogue between practitioners and researchers. These activities have highlighted 492 
various ongoing needs. Coastal climate services that enable the co‐production of SLR projections 493 
with practitioners that build upon IPCC reports is essential. This includes the interpretation of global 494 
scale (IPCC) projections, particularly at the high end, and operational services in underrepresented 495 
areas such as the global south, small islands and deltas. Informational needs include localized sea‐496 
level and related hazard products, including decadal variability in near term projections and SLR 497 
projections across the full range of plausible emissions beyond 2100. Crucial to bridging between the 498 
science and practitioner communities is the role of boundary scientists working between both 499 
communities to translate and contextualise sea‐level science using clearly defined criteria to support 500 
adaptation action. More effort to refine these criteria and activities to co‐produce successful 501 
outcomes remains a priority.      502 
  503 
Understanding and projecting SLR and its associated hazards is a multidisciplinary science spanning 504 
many physical and social science topics. To ensure that progress on the key challenges raised in this 505 
perspective continues in a timely and efficient manner, it will be critical to build functional, durable 506 
partnerships bridging science and society to ensure strong coordination of global SLR activities 507 
through the WCRP and other institutions. 508 
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