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A ring K is a radical extension of a subring B if for each x e K there is
an integer n = n(x) > 0 such that xn e B. In [2] and [3], C. Faith considered
radical extensions in connection with commutativity questions, as well as
the generation of rings. In this paper additional commutativity theorems
are established, and rings with right minimum condition are examined.
The main tool is Theorem 1.1 which relates the Jacobson radical of K to
that of B, and is of independent interest in itself. The author is indebted
to the referee for his helpful suggestions, in particular for the strengthening
of Theorem 2.1.

In [3] it was established that if the primitive ring if is a radical exten-
sion of the subring B then B is primitive. In what follows J(R) denotes the
Jacobson radical of the ring R. Recall that J(R) can be characterized as the
intersection of all primitive ideals of R (if any). Also J(R) = {x e R: xR is a
right quasi-regular right ideal of R} [5].

THEOREM 1.1. / / K is a radical extension of a subring B then
J(B) = J(K) n B.

PROOF. Let x eJ(K) n B and consider xB Q B. Since xB CxK and
x e J(K), every element of xB has a right quasi-inverse in K. It will be shown
that this quasi-inverse is actually in B and hence xeJ(B). Thus let
y exB and a e K such that

(*) y-\-&—ya = 0 and an e B for some integer n ^ 1.

From (*) yan~x = yan—an e B. In (*) left multiply by y and right multiply
by a"~2 to get y2an~2 = y2an~x—yan-x e B. Again, left multiply by y2 and
right multiply by a"~3 in (*) to get y^a"^3 e B. Repetition of this procedure
yields yn~1a e B. Then from (*), a = ya—y = y{ya—y)—y = • • •, and so
a = yn-1a—y"-1 yeB, as was to be shown. Thus J(K) n BQ J{B).

For the opposite inclusion, let 0> denote the set of primitive ideals of
K and J( denote the set of primitive ideals of B. If J(K) =K then
J(B)QKnB = J(K) n B. If J(K)^K then as in [3, page 281]
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j(B) = r w Q c (n,e, i) n B = j(K) n 5.
COROLLARY. If K is semisimple and a radical extension of a subring B

then B is semisimple; if K is a radical extension of a semisimple ring B then
J(K) is a nil ideal.

It was shown in [3] that a semisimple radical extension of a commuta-
tive subring is commutative; the question was raised as to whether or not
semisimplicity could be replaced by the weaker condition of having no
non-zero nil ideals, with the possibility of the subring being semisimple.

THEOREM 1.2. Let K be a ring with no nil ideals ^ (0) such that K is
a radical extension of a commutative subring B.

(i) / / J(B) = (0), then K is commutative.
(ii) If B is a left (right) ideal of K, then K is commutative.

PROOF, (i) Since J(B) = (0), J(K) is a nil ideal by the corollary,
hence J(K) = (0) so that K is commutative.

(ii) We first show that in any ring without nilpotent ideals ^ (0)
any commutative one-sided ideal is contained in the center. Let
a(B) = {x eK : xB — (0)}. Since B is a left ideal a(B) is an ideal and
B* = a{B) n B is & left ideal of K. Now B*2 Qa{B)B = (0) so B* gives
rise to a nilpotent ideal of K containing B*. Hence B* = (0). Let x e B,
r eK; for any yeB, (xr-rx)y = x(ry) —r{xy) = 0. Thus xr—rx s B* = (0)
and so B is contained in the center of K. If K is a radical extension of B
having no nil ideals ^ (0), then K is a radical extension of its center, so
from [4] K is commutative.

In this section the structure of rings which are radical extensions of
rings with right minimum condition, subject to the condition that the
overring has no nil ideals # (0), is determined. Note that something similar
to having no nil ideals is necessary since radical extensions of arbitrary
rings can be obtained by forming direct sums with nil rings.

THEOREM 2.1. Let K be a ring with no nil ideals # (0) which is a radical
extension of a subring B and assume B satisfies the right minimum condition.
Then B is semisimple, B = M-^® • • • ®Mr, where M{ is a full ring of ni x nt

matrices over a division ring Dt, i= 1, •••,r, and K is semisimple,
K = K-L® • • • ®Kr, where K{ is a simple ring with identity radical over
Mt, i = 1, • • •, r. Moreover, if char K( ^ 2, then either Kt = Mt or else
nt = 1 and Kt is a (commutative) field radical over Dt.

PROOF. From the right minimum condition on B we infer that J(B)
is a nilpotent ideal of B. By Theorem 1.1, J(B) = J(K) n B and this
implies J(K) is a nil ideal of K. Hence J(K) = (0) and so J(B) = (0). By
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the Wedderburn-Artin Theorem, B = Mx@ • • • ®MT, where each Mt is
a complete matrix ring over a division ring, i = 1, • • •, r.

If P is a primitive ideal of K, then P n B is a primitive ideal of B.
If P n B = (0) then P is a nil ideal of K and hence P = (0). Thus if is
a primitive ring and so B is primitive. Now a primitive ring is a prime
ring, hence can have no proper ideal direct summands and so B = M( for
some i. Then S is a simple ring with identity and therefore K is a simple
ring with identity by [2; Corollary, Thm. 3.1]. Now suppose P r\B ^ (0)
for all primitive ideals P of K. Let

Tt = Mx® • • • ©M.^SMj+i© • • • @Mr for i = 1, • • •, r.

Then Tt is a maximal ideal of B for i = 1, • • •, r and it is easy to see
that these are the only ones since B has an identity and each Mt is
simple. Now P n B is a direct sum of some non-null subset of the
Mf's, say P n B = Mu© • • • ®Mit. Then B/(P n B) is isomorphic to
Mit+1® • • • ®Mir and the primeness of Bj(P n B) implies that there is
only one summand, which is a simple ring. Hence P n B is a maximal
ideal of B so that P n B = Tt for some /. If for some j , P n B ^ Tj for
all primitive ideals of K, then M; £ 7\ for all t ^ / and consequently
M\Q n ( P n 5) C n P = / ( i f) = (0). We have shown that for each Ts

there is a primitive ideal P3 of 2? such that Pt n B = 7^, / = 1, • • •, r.
Suppose a; e f)^i -P*; then for some integer n ^ 1, xn e Pt n B for

/ = l, • • -, r so that *" e f]UiTi = (°)- T ^ s DJ-i-P* = (°). b e i n g a n i l

ideal of K. Consequently K is isomorphic to a subdirect sum of the primitive
rings K, = KfPj, j = 1, • • •, r, each of which is a radical extension of a
corresponding simple subring with identity which is isomorphic to Mjt

and hence each Kt is itself a simple ring with identity, / = 1, • • •, r. Finally,
if any Pt is omitted from f l ^ i ^ t n e resulting intersection contains Mit

hence is non-zero. By [5; p. 59] K is then a direct sum of the K/s. If char
Ki =£ 2 and Kt ^ B{ then [1, Corollary 5] implies that nt = 1. But then by
[2, Theorem A], Kt is a field.

COROLLARY. / / K and B are as in Theorem 2.1 and B is commutative,
then K is commutative and each Kt is a field.
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