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When protogalaxies collapse, the cooling and infall of what will become the visible galactic com-
ponent affects the mass distribution of dissipationless dark matter particles which constitute the
halo. For spiral galaxies, the reaction of the dissipationless halo can have a striking effect on the
resulting rotation curves [1-5].

The adiabatic invariant § pdg, where g is a periodic coordinate and p is its conjugate mo-
mentum, provides a convenient analytical tool for studying this phenomenon [1-4,6] and has been
extensively checked numerically [1,5,7]. For particles in circular orbits (which have the most phase
space), the adiabatic invariant is M (r) provided that M(r), the mass inside the orbital radius r,
changes slowly in an orbital time.

Consider a spherically symmetric protogalaxy with a fraction F' < 1 of dissipational baryons
well mixed initially with a fraction 1 — F of dissipationless particles. Define a truncation radius R
beyond which no dissipation occurs. The initial angular momentum of the protogalaxy is assumed
to be small so that the dimensionless quantity A = J|E|Y/2/(GM?5/?) « 1, where M is the total
mass of a protogalaxy with total energy E. Numerical simulations show that tidal torques lead to
a mean (A) ~ 0.07 with a width for the distribution A\ = 0.03 [8]

As the baryons dissipatively cool, fall in, and form a disk, a dark matter particle initially at
radius r; will move in to radius r < r;. The adiabatic invariant then implies that r[Mais(r) +
Mhaio(r)] = ri Mi(r;), where M;(r;) is the initial total mass distribution, Mgisk () is the final mass
distribution of dissipational baryons, and Myaio(r) is the final distribution of dissipationless halo
particles. If the orbits of the halo particles do not cross, then Mpaio(r) = (1 — F)M;(r;), which can
be used to calculate the final radial distribution of the halo particles once M;(r;) and Mgisk(r) are
given. If the dissipational mass fraction F < 1, then the mass interior to a halo particle not too
near the center of the protogalaxy undergoes a small fractional change in one orbital period, and
the adiabatic invariant is expected to be a good approximation.

The initial protogalaxy is assumed to relax to an isothermal sphere. Large values of the core
radius, reore/ R ~ 0.4, are needed for baryonic infall to produce observed spiral rotation curves [1].
Indeed, recent N body simulations [9,10] show that reore/ R ~ 0.2—0.5 for cold dark matter spectra.
The final mass distribution of the disk is assumed to be that of a thin disk of mass Mgjsx Whose
surface density paisk(r) = Maisk exp(—r/b)/(27b?) decreases exponentially with scale length b.

The adiabatic approximation must break down near the center, where dissipating particles
dominate the mass. However, N-body simulations confirm that the total M(r), and therefore the
rotational velocity is quite well described by the adiabatic approximation for this case [7].
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Fall and Efstathiou [11] first calculated the relation between the disk scale length and the
initial angular momentum A of a protogalaxy containing both dissipational and dissipationless
material. They assumed no transfer of angular momentum between the disk and halo components
and no reaction of the halo to dissipative infall. We can relax the latter assumption [1,2]. If the
dissipational material settles to an exponential disk, then the angular momentum of the thin disk
is given by

oo
Jaisk = 27 / rdrpgisk (7)vrot(r),
0
where the rotation velocity vZ,(r) = r[gqisk(r) + ghaio(r)]. If there is no transfer of angular mo-

mentum between disk and halo particles, then Jyisk /Maisk = Jhalo/ Mhalo, Where Jhalo and Mhalo
are the halo angular momentum and mass out to the maximum radius of infall R.

b/R

Figure 1: Plot of b/ R versus A. The solid line has F = 0.1 and rcore/ R = 0.5. The other curves are
labelled with the one parameter which differs from these.

Figure 1 shows how the amount of dissipative infall b/R is related to the initial angular
momentum, A\. Smaller values of F lead to less infall for a given b/R therefore less disk angular
momentum per unit disk mass. When F' — 0 the curve is expected to approach a limiting relation.
Similarly, larger core radii produce less infall because there is less contribution of the halo to the
disk rotation velocity and angular momentum. As rcore becomes large, the initial protogalaxy
density is nearly constant for » < R, and the curves become indistinguishable. A stiff halo which
does not respond to the dissipative infall would lead to a larger value for the disk scale length b,
about 27% larger for A=0.07 and F=0.1 [2].

What circumstances will lead to flat rotation curves for spirals? One measure of flatness is
the relative slope between 3 and 4.5 disk scale lengths [vrot(4.50) — vrot(3b)]/vrot(4.5b). Figure 2
shows a plot of this relative slope as a function of A and of reore/R. Flat rotation curves arise for
Tcore/ R20.2 and for 0.03sA<0.1 [1-3], which is just the region of parameter space relevant for cold
dark matter [13]
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Figure 2: Relative slope between r = 3b and r = 4.5b. The slopes are normalized so that a vertical
line corresponds to the rotation curve of a pure disk. Observations suggest that real galaxies have
slopes <45 degrees [12].

The observed rotation curves of spiral galaxies have been separated into three different classes
which correlate much more strongly with environment than with Hubble type [15]. It is therefore
of interest to calculate theoretical rotation curves to set limits on the parameters consistent with
relatively flat rotation curves out to large distances and to determine which parameters may be
responsible for the various forms of rotation curves which are observed [2].

Figure 3 shows the rotation velocity versus radial distance measured in units of the scale
length, r/b. Again, flat rotation curves arise for .05 < F < 0.1, rcore/R2.2, and .04 < X < 0.1.
When these parameters are varied, both rising and falling rotation curves result beyond a few disk
scale lengths.

In Figure 3 no feature in the rotation profile separates the inner, disk-dominated region from
the outer, halo-dominated region [1-3]. The coupled motion of the two components, as the baryons
fall into the center, avoids any noticeable separation of the two components. This is a direct
consequence of the response of the halo to the infall of the visible matter. The absence of such a
separation into two components has been noted observationally [12,14-16].

What is responsible for the various forms of rotation curves seen in spiral galaxies? An obvious
candidate is the bulge-to-disk ratio, but no correlation is observed between the form of the rotation
curve and either Hubble type or bulge-to-disk ratio [15]. However, Figure 3 suggests that variations
in the initial angular momentum X or in the core radius reore/ R from galaxy to galaxy may lead to
various forms for the mass distribution, assuming that F is a universal constant. Figure 3 suggests
that galaxies with a higher value of A will show a more steadily rising rotation curve. If field spirals
have systematically lower initial angular momenta A than spirals in clusters, then one would expect
field spirals to show more steadily rising rotation curves than cluster spirals, as has been observed

(15].
Finally, earlier work [11] has suggested that the relation between A and b/R is indeed quite
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Figure 3: Rotation curves log veot /v versus log r/b. The solid line corresponds to A = .07, F = 0.1,
and rcore/ R = 0.5. The other curves are labelled with the one parameter which differs from these
values.
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Figure 4: Plot of ) versus b/ R for models with Umax (b/ Maisk)}/? between 0.65 and 1.8.

https://doi.org/10.1017/5S0074180900136319 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900136319

425

narrow for real galaxies. This is tested in Figure 4, which plots the relation for those models with
Ymax(b/Maisk)}/? between 0.65 and 1.8 and with |v(4.5b) — v(3b)| /v(3b) < 0.06. The first criterion
comes from [11], and the second from observed radio rotation curves. The result is a rather broad
relation spanning about a factor of 2 in A. This occurs because of the larger range of rotation curve
slope observed than is described by the parameterization of [11]. Hence, an observed scale length
predicts the original A to no better than a factor of two.
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