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Perturbation Analysis of Orthogonal Least
Squares

Pengbo Geng,Wengu Chen, andHuanmin Ge

Abstract. he Orthogonal Least Squares (OLS) algorithm is an eõcient sparse recovery algorithm
that has receivedmuch attention in recent years. On one hand, this paper considers that theOLS algo-
rithm recovers the supports of sparse signals in the noisy case. We show that theOLS algorithm exactly
recovers the support of K-sparse signal x from y = Φx + e in K iterations, provided that the sens-
ing matrix Φ satisûes the restricted isometry property (RIP) with restricted isometry constant (RIC)
δK+1 < 1/√K + 1, and theminimummagnitude of the nonzero elements of x satisûes some constraint.
On the other hand, this paper demonstrates that theOLS algorithm exactly recovers the support of the
bestK-term approximation of an almost sparse signal x in the general perturbations case,whichmeans
both y and Φ are perturbed. We show that the support of the best K-term approximation of x can be
recovered under reasonable conditions based on the restricted isometry property (RIP).

1 Introduction

As a new sampling theory, compressive sensing (CS) has a signiûcant impact in signal
processing and biomedical imagery [3, 4, 9]. A central aim of CS is to reconstruct a
high-dimensional signal x ∈ Rn from low-dimensional measurements

(1.1) y = Φx + e ,

where Φ ∈ Rm×n(m ≪ n) is called a measurement matrix, and e ∈ Rm is a vector of

measurement errors. In the noiseless case, e = 0. Without any prior assumption on x
in (1.1), this could not work as expected, but one can obtain the feasibility of such a
program when the signal x is sparse. To recover the K-sparse x (i.e., it has at most K
nonzero entries), a natural method is to solve the l0-minimization problem

(1.2) min
x∈Rn

∥x∥0 subject to Φx − y ∈B,

where ∥x∥0 = ∣{i ∶ x i ≠ 0}∣ (the number of non-zero entries of x), and the set B is
determined by the noise structure. Particularly, in the noiseless case,B = {0}. How-
ever, as a combinatorial optimization problem, the above l0-minimization problem is
NP-hard in general.
Fortunately,many alternative approaches have been proposed for (1.2). For exam-

ple, the nonconvex l0-norm in (1.2) can be replaced by its convex relaxation l1-norm.
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min
x∈Rn

∥x∥1 subject to Φx − y ∈B,

which is Basis Pursuit (BP) [6].
Compared to BP, greedy algorithms have the advantage of low computational cost

and simple geometric interpretation, including Orthogonal Least Square (OLS) [5, 11,
25], Orthogonal Matching Pursuit (OMP) [8, 21, 25, 26, 28], generalized Orthogonal
Matching Pursuit (gOMP) [7,22–24,27].

In practical applications, not only is the measurement vector y in (1.1) o�en con-
taminated by the noise vector e, but the measurement matrix Φ in (1.1) is also of-
ten perturbed. Such perturbations are called general perturbations. It is important to
consider these perturbations for y andΦ, since they can account for precision errors
when applications call for physically implementing thematrix Φ in a sensor [14].
According to diòerent perspective of views, the general perturbations can be clas-

siûed into two situations [8]. From a user’s point of view, whenΦ represents a system
model, the whole sensing process is

(1.3) ŷ = Φx + e , Φ̂ = Φ + E ,
where E is involved due tomismodeling of the actual systemΦ,which can be found in
source separation [1], remote sensing [10], radar [13], and countless other problems.
Both the contaminated sensing matrix Φ̂ and contaminated measurement vector ŷ
are available for recovery.

he other scenario is from the designer’s perspective; the system perturbation E is
introduced when the system is physically implemented. hus, the sensing process is

(1.4) ŷ = Φ̂x + e , Φ̂ = Φ + E .
Only the nominal sensing matrix Φ and contaminated measurement vector ŷ are
available for recovery.
And we are aware of quite a few researchers who studied the recovery of x under

general perturbations for the past few years. Herman et al. used BP [14] and CoSaMP
[12], respectively, to study the recoveryof the signals. [8] and [16], respectively, studied
the recovery of x from (1.3) and (1.4) via the OMP algorithm.

In this paper, we ûrst consider that the OLS algorithm recovers the support of x
in the noisy case, i.e., e ≠ 0 in (1.1). Second, we consider the recovery of x from
(1.3) and (1.4) via theOLS algorithm in Table 1, where P�● is an orthogonal projection
(see Section 2). In fact, the OLS algorithm is one of the most eòective algorithm
that is computationally similar to the OMP algorithm. he main diòerence between
OMP and OLS lies in the greedy rule of updating the support at each iteration. In
the selection procedure, while OMP seeks a column that is most strongly correlated
with the residual,OLS chooses a candidate that leads to theminimum residual error.
Compared with OMP, OLS has better convergence properties but is computationally
a littlemore complicated [20]. For (1.1) with e = 0, [5, 11, 15, 25] considered the exact
recovery of the support for the K-sparse signal x viaOLS in K iterations. Particularly,
Wen et al. [29] have shown nearly optimal suõcient condition based on RIC (see
Deûnition 1.1) for the exact recovery of the support of any K-sparse signal x via OLS
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Table 1: he OLS Algorithm

Input: Φ, y.
Initialize: k = 0, r0 = y, T0 = ∅.
Repeat until the stopping criterion is met
1: k = k + 1;
2: tk = argmin

i∈{1,⋅⋅⋅,n}
∥P�T k−1∪{i}y∥

2
2;

3: T k = T k−1 ∪ {tk};
4: xk = argmin

u∶supp(u)=T k
∥y −Φu∥2;

5: rk = y −Φxk .
Output: T k and xk .

in K iterations. hat is, if Φ with unit l2-norm columns satisûes the RIP with δK+1 <
1/
√

K + 1, which is nearly optimal, then OLS exactly recovers the support of any K-
sparse signal x from (1.1) with e = 0, in K iterations.

Deûnition 1.1 ([2]) For the given m × n matrix Φ and an integer K, the restricted
isometry constant (RIC) of order K can be deûned as the smallest constant δK ∈ [0, 1)
such that

(1.5) (1 − δK)∥x∥2
2 ≤ ∥Φx∥2

2 ≤ (1 + δK)∥x∥2
2

holds for all K-sparse signals x.

Denote xmax (K) ∈ Rn as the K-sparse signal that contains the K largest magnitude
entries of x, i.e., the best K-term approximation of x and T = supp(xmax (K)). In
order to delineate the compressibility of signals x in (1.3) and (1.4), let

(1.6) β = ∥xT c∥2

∥xT∥2
, γ = ∥xT c∥1√

K∥xT∥2
.

A vector x is almost sparse if β and γ are far less than 1. When xT c = 0, i.e., x is
K-sparse, then β = γ = 0.

he symbol ∥Φ∥2 denotes the spectral normof amatrixΦ, and ∥Φ∥(K)2 denotes the
largest spectral norm taken over all K-column submatrices of Φ. he measurement
noise e and system perturbation E can be quantiûed as

(1.7)
∥e∥2

∥Φx∥2
≤ єe ,

∥e∥2

∥Φ̂x∥2
≤ є̂e ,

∥E∥(K)2

∥Φ∥(K)2

≤ є,

where ∥Φx∥2 , ∥Φ̂x∥2 , ∥Φ∥(K)2 ≠ 0. In this paper, є, є̂e , and єe are assumed to be far
less than 1.

P. Geng,W. Chen, andH. Ge782

https://doi.org/10.4153/S0008439519000134 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000134


In this paper, our contributions can be stated as follows.
(i) For (1.1), let x be K-sparse and T = supp(x) with ∣T ∣ ≤ K. Suppose ∥e∥2 ≤ η

and Φ ∈ Rm×n with unit l2-norm columns satisûes the RIP with

δK+1 <
1√

K + 1
.

hen OLS with the stopping rule ∥rk∥2 ≤ η exactly recovers the support T from
(1.1) in K iterations, provided that

min
i∈T

∣x i ∣ >
2η√

1 − δK+1(1 −
√

K + 1δK+1)
.

(ii) Let t0 = mini∈T ∣x i ∣ and

є0 =
1.31
1 − є

(є + єe + (1 + єe)(β + γ))∥xT∥2 ,

where β, γ, є, єe are deûned in (1.6) and (1.7), and they are far less than 1. If Φ̂ in
(1.3) with unit l2-norm columns satisûes the RIP of order K + 1 with

δ̂K+1 <
1√

K + 1
− (

√
2є0√

K + 1t0
)

1
2
,

then OLS exactly recovers the support of xmax(K) from (1.3) in K iterations.
(iii) Let t0 = mini∈T ∣x i ∣ and

є0 = 1.31(є + є̂e + єє̂e + (1 + є̂e)(1 + є)(β + γ))∥xT∥2 .

If Φ in (1.4) with unit l2-norm columns satisûes the RIP of order K + 1 with

δK+1 <
1√

K + 1
− (

√
2є0√

K + 1t0
)

1
2
,

then OLS exactly recovers the support of xmax(K) from (1.4) in K iterations for
any almost sparse signal x.

2 Notation and Preliminaries

Before moving on to the main results of this paper, we need some preliminaries and
notations.

hroughout this paper, let Ω = {1, . . . , n}. For S ⊆ Ω, ∣S∣ is the cardinality of S,
ΦS denotes the submatrix of S that contains only the columns indexed by S, and xS
denotes the subvector of x that contains only the entries indexed by S.

Suppose Φ is normalized to have unit columns (i.e., ∥Φi∥2 = 1 for all i ∈ Ω),
and Φ†

S represents the pseudo-inverse of ΦS . When ΦS is full column rank, Φ†
S =

(Φ
′
SΦS)−1Φ

′
S ; span(ΦS) is the span of columns in ΦS . PS = ΦSΦ†

S is the projection
onto span(ΦS). hen P⊥S = I − PS is the projection onto the orthogonal complement
of span(ΦS), where I is the identity matrix.

We ûrst recall the following lemmas, which will be used in the proof of the main
results.
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Lemma 2.1 ([2]) If amatrix satisûes theRIP of both orders K1 and K2 where K1 ≤ K2,

then δK1 ≤ δK2 .

Lemma 2.2 ([18, Proposition 3.1]) Let S ⊂ Ω. If δ∣S∣ < 1, then for any vector y ∈ Rm ,

∥Φ
′
S y∥2 ≤

√
1 + δ∣S∣∥y∥2 .

Lemma 2.3 ([19, Lemma 1]) For any x ∈ R∣S1∖S2 ∣, the following inequality holds:

(1 − δ∣S1∪S2 ∣)∥x∥2
2 ≤ ∥P⊥S2ΦS1∖S2x∥2

2 ≤ (1 + δ∣S1∪S2 ∣)∥x∥2
2 .

Lemma 2.4 ([29, Lemma 3]) Suppose that S ⊂ Ω and let Φ have unit l2-norm

columns and satisfy the RIP of order ∣S∣ + 1. hen for any i ∈ Ω ∖ S,

∥P⊥SΦi∥2 ≥
√

1 − δ2
∣S∣+1 .

Lemma 2.5 ([18, Proposition 3.5]) Suppose that Φ satisûes the RIP of K with δK .

hen for every signal x,

∥Φx∥2 ≤
√

1 + δK(∥x∥2 +
1√
K
∥x∥1) .

Lemma 2.6 Consider the systemmodel (1.1) in the noisy case and theOLS algorithm.

Let rk be the residual produced in the k-th (0 ≤ k < K) iteration of OLS. hen OLS

selects in the (k + 1)-th iteration the index

(2.1) t
k+1 = argmax

i∈Ω∖T k

∣⟨Φi , rk⟩∣
∥P�T kΦi∥2

.

Proof his lemma is an extension of [29, Proposition 1]. As shown in Table 1, at the
(k + 1)-th iteration (0 ≤ k < K) OLS selects an index that results in the maximum
reduction of the residual power, i.e.,

t
k+1 = argmin

i∈Ω
∥P�T k∪{i}y∥

2
2 .(2.2)

Notice that PT k∪{i}y and P�T k∪{i}y are orthogonal to each other, so we have

∥P�T k∪{i}y∥
2
2 = ∥y∥2

2 − ∥PT k∪{i}y∥2
2 ,

and it follows that (2.2) is equivalent to

t
k+1 = argmax

i∈Ω
∥PT k∪{i}y∥2

2 .(2.3)

Observe the fact that ∥PT k∪{i}y∥2
2 can be decomposed as follows (see [25]):

∥PT k∪{i}y∥2
2 = ∥PT k y∥2

2 + ( ∣⟨Φi , rk⟩∣
∥P�T kΦi∥2

)
2
.(2.4)

Combining (2.3) and (2.4), we obtain

(2.5) t
k+1 = argmax

i∈{1,⋅⋅⋅,n}

∣⟨Φi , rk⟩∣
∥P�T kΦi∥2

.
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Observe that

rk = y −Φxk = y −ΦT kΦ†
T k y(2.6)

= P⊥T k y = P⊥T k(Φx + e) = P⊥T k(ΦTxT + e)
= P⊥T k(ΦT k xT k +ΦT∖T k xT∖T k + e)
(a)= P⊥T kΦT∖T k xT∖T k + P⊥T k e ,

where (a) follows from

P⊥T kΦT k = 0.(2.7)

Hence, by (2.6) and (2.7), for i ∈ T k , we have

⟨rk ,Φi⟩ = Φ
′
ir

k = 0.

herefore, (2.5) is equivalent to (2.1). ∎

Next, we show themain lemma that will play a key role during our analysis.

Lemma 2.7 Suppose that S is any subset of T (S ⊆ T) andΦ satisûes the RIP of order

∣T ∣ + 1. hen for all µ > 0,
√

∣T ∣ − ∣S∣∥Φ
′
T∖SP

⊥
S ΦT∖SxT∖S∥∞ − µ∥Φ

′
T cP

⊥
S ΦT∖SxT∖S∥∞ ≥

( 1 −
√

µ2 + 1δ∣T ∣+1)∥xT∖S∥2 .

Proof he idea of the proof comes from [29, Lemma 4].
Obviously, it suõces to show for each j ∈ T c ,

(2.8)
√

∣T ∣ − ∣S∣∥Φ
′
T∖SP

⊥
SΦT∖SxT∖S∥∞ − µ∣Φ

′
jP
⊥
SΦT∖SxT∖S ∣ ≥

( 1 −
√

µ2 + 1δ∣T ∣+1)∥xT∖S∥2 .

We can apply the fact that P⊥S = (P⊥S)
′ = (P⊥S)2 to yield that

√
∣T ∣ − ∣S∣∥xT∖S∥2∥Φ

′
T∖SP

⊥
SΦT∖SxT∖S∥∞(2.9)

≥ ∥xT∖S∥1∥Φ
′
T∖SP

⊥
SΦT∖SxT∖S∥∞

= ( ∑
l∈T∖S

∣x l ∣)∥Φ
′
T∖SP

⊥
SΦT∖SxT∖S∥∞

≥ ∑
l∈T∖S

(x lΦ
′
lP
⊥
SΦT∖SxT∖S)

= ( ∑
l∈T∖S

x lΦl)
′

P⊥SΦT∖SxT∖S

= (ΦT∖SxT∖S)
′
P⊥SΦT∖SxT∖S

= (P⊥SΦT∖SxT∖S)
′
P⊥SΦT∖SxT∖S

= ∥P⊥SΦT∖SxT∖S∥2
2 .
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Let

α =
1 −

√
µ2 + 1
µ

.

It is easily veriûed that α2 < 1,

2α
1 − α2 = −µ,(2.10)

1 + α2

1 − α2 =
√

µ2 + 1.(2.11)

For simplicity of notation, given j ∈ T c , denote

A = P⊥S [ΦT∖SΦ j],

u = [x
′
T∖S0]

′
∈ R∣T∖S∣+1 ,

v = [0
′
αt∥xT∖S∥2]

′
∈ R∣T∖S∣+1 ,

where

t =
⎧⎪⎪⎨⎪⎪⎩

1 if Φ
′
jP
⊥
SΦT∖SxT∖S ≥ 0,

−1 if Φ
′
jP
⊥
SΦT∖SxT∖S < 0.

hen

P⊥SΦT∖SxT∖S = Au, P⊥Sαt∥xT∖S∥2 = Av ,(2.12)

and

∥u + v∥2
2 = (1 + α2)∥xT∖S∥2

2 ,(2.13)

∥α2u − v∥2
2 = α2(1 + α2)∥xT∖S∥2

2 .(2.14)

By the deûnition of t, we have

v
′
A
′
Au = αt∥xT∖S∥2Φ

′
j(P⊥S)

′
P⊥SΦT∖SxT∖S

= αt∥xT∖S∥2Φ
′
jP
⊥
SΦT∖SxT∖S

= α∥xT∖S∥2∣Φ
′
jP
⊥
SΦT∖SxT∖S ∣.

herefore, for j ∈ T c , we have

∥A(u + v)∥2
2 = ∥Au∥2

2 + ∥Av∥2
2 + 2v

′
A
′
Au

= ∥Au∥2
2 + ∥Av∥2

2 + 2α∥xT∖S∥2∣Φ
′
jP
⊥
SΦT∖SxT∖S ∣

and

∥A(α2u − v)∥2
2 = α4∥Au∥2

2 + ∥Av∥2
2 − 2α3∥xT∖S∥2∣Φ

′
jP
⊥
SΦT∖SxT∖S ∣.
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∥A(u + v)∥2
2 − ∥A(α2u − v)∥2

2(2.15)

= (1 − α4)∥Au∥2
2 + 2α(1 + α2)∥xT∖S∥2∣Φ

′
jP
⊥
SΦT∖SxT∖S ∣

= (1 − α4)(∥Au∥2
2 +

2α
1 − α2 ∥xT∖S∥2∣Φ

′
jP
⊥
SΦT∖SxT∖S ∣)

= (1 − α4)(∥P⊥SΦT∖SxT∖S∥2
2 − µ∥xT∖S∥2∣Φ

′
jP
⊥
SΦT∖SxT∖S ∣) ,

where the ûrst part of last equality follows from (2.12), and the second part follows
from (2.10).
From Lemma 2.3, (2.13), and (2.14), we can get

∥A(u + v)∥2
2 − ∥A(α2u − v)∥2

2(2.16)

≥ (1 − δ∣T ∣+1)∥u + v∥2
2 − (1 + δ∣T ∣+1)∥α2u − v∥2

2

= (1 − δ∣T ∣+1)(1 + α2)∥xT∖S∥2
2

− (1 + δ∣T ∣+1)α2(1 + α2)∥xT∖S∥2
2

= (1 + α2)∥xT∖S∥2
2((1 − δ∣T ∣+1) − (1 + δ∣T ∣+1)α2)

= (1 − α4)∥xT∖S∥2
2( 1 − 1 + α2

1 − α2 δ∣T ∣+1)

= (1 − α4)∥xT∖S∥2
2( 1 −

√
µ2 + 1δ∣T ∣+1) ,

where the last equality is due to (2.11).
By combining (2.15), (2.16), and the fact that 1 − α4 > 0, we obtain

(2.17) ∥P⊥SΦT∖SxT∖S∥2
2 − µ∥xT∖S∥2∣Φ

′
jP
⊥
SΦT∖SxT∖S ∣ ≥

∥xT∖S∥2
2( 1 −

√
µ2 + 1δ∣T ∣+1) .

Combining (2.17) with (2.9), we have

√
∣T ∣ − ∣S∣∥xT∖S∥2∥Φ

′
T∖SP

⊥
SΦT∖SxT∖S∥∞ − µ∥xT∖S∥2∣Φ

′
jP
⊥
SΦT∖SxT∖S ∣

≥ ∥xT∖S∥2
2(1 −

√
µ2 + 1δ∣T ∣+1) .

herefore, (2.8) holds, which completes the proof of the lemma. ∎

Remark 2.8 In [17], Mo established a key lemma (Lemma II.1). In Lemma 2.7,
α is deûned in the same way as in [17], in order to ensure that (2.15) holds. When
µ =

√
∣T ∣ − ∣S∣, Lemma 2.7 reduces to [29, Lemma 1].

3 Main Results

In this section, we study the recovery performance of OLS under the RIP condition.
We ûrst consider (1.1) in the noisy case, and the result is the following theorem.
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heorem 3.1 Let x be K-sparse with T = supp(x), ∣T ∣ ≤ K, and ∥e∥2 ≤ η. Suppose
that the measurement matrix Φ ∈ Rm×n with unit l2-norm columns satisûes the RIP

with

(3.1) δK+1 <
1√

K + 1
.

hen OLS with the stopping rule ∥rk∥2 ≤ η exactly recovers the support T from (1.1) in
K iterations, provided that

(3.2) min
i∈T

∣x i ∣ >
2η√

1 − δK+1(1 −
√

K + 1δK+1)
.

Proof We prove the result by induction. Suppose that OLS makes the correct selec-
tion in each of the previous k iterations with 0 ≤ k < K, i.e., T k ⊂ T . hen we need
to show that theOLS algorithm also selects a correct index at the (k + 1)-th iteration,
i.e., tk+1 ∈ T ∖ T k . hus, the proof of the ûrst selection corresponds to the case where
k = 0. Clearly the induction hypothesis T k ⊂ T holds for this case since T0 = ∅.

In order to show that tk+1 ∈ T ∖ T k , by Lemma 2.6, we need to prove that

(3.3) max
i∈T∖T k

∣⟨Φi , rk⟩∣
∥P⊥T kΦi∥2

> max
i∈T c

∣⟨Φi , rk⟩∣
∥P⊥T kΦi∥2

.

We now analyze (3.3). According to the fact that ∥P⊥T kΦi∥2 ≤ ∥Φi∥2 = 1, we have

max
i∈T∖T k

∣⟨Φi , rk⟩∣
∥P⊥T kΦi∥2

≥ max
i∈T∖T k

∣⟨Φi , rk⟩∣(3.4)

= ∥Φ
′
T∖T k(P⊥T kΦT∖T k xT∖T k + P⊥T k e)∥∞

≥ ∥Φ
′
T∖T kP⊥T kΦT∖T k xT∖T k∥∞ − ∥Φ

′
T∖T kP⊥T k e∥∞ ,

where the equality is from (2.6).
Let j0 ∶= argmaxi∈T c

∣⟨Φ i ,rk
⟩∣

∥P⊥
Tk Φ i∥2

; then

max
i∈T c

∣⟨Φi , rk⟩∣
∥P⊥T kΦi∥2

=
∣⟨Φ j0 , rk⟩∣
∥P⊥T kΦ j0∥2

≤ maxi∈T c ∣⟨Φi , rk⟩∣
∥P⊥T kΦ j0∥2

(3.5)

=
∥Φ

′
T c(P⊥T kΦT∖T k xT∖T k + P⊥T k e)∥∞

∥P⊥T kΦ j0∥2

≤
∥Φ

′
T cP

⊥

T kΦT∖T k xT∖T k∥∞ + ∥Φ
′
T cP

⊥

T k e∥∞
∥P⊥T kΦ j0∥2

.

herefore, combining (3.4) with (3.5), (3.3) is guaranteed if

(3.6) ∥Φ
′
T∖T kP⊥T kΦT∖T k xT∖T k∥∞ −

∥Φ
′
T cP

⊥

T kΦT∖T k xT∖T k∥∞
∥P⊥T kΦ j0∥2

> ∥Φ
′
T∖T kP⊥T k e∥∞ +

∥Φ
′
T cP

⊥

T k e∥∞
∥P⊥T kΦ j0∥2

.
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Next, we build a lower bound on the le�-hand side of (3.6). It follows from
Lemma 2.7 with

µ =
√

∣T ∣ − ∣T k ∣
∥P⊥T kΦ j0∥2

and S = T
k ,

we have
√

∣T ∣ − ∣T k ∣∥Φ
′
T∖T kP⊥T kΦT∖T k xT∖T k∥∞

−
√

∣T ∣ − ∣T k ∣
∥P⊥T kΦ j0∥2

∥Φ
′
T cP

⊥

T kΦT∖T k xT∖T k∥∞

≥ ( 1 −
¿
ÁÁÀ ∣T ∣ − ∣T k ∣

∥P⊥T kΦ j0∥2
2
+ 1δ∣T ∣+1)∥xT∖T k∥2

(a)
≥ ( 1 −

¿
ÁÁÀ ∣T ∣ − ∣T k ∣

∥P⊥T kΦ j0∥2
2
+ 1δ∣T ∣+1)

√
∣T ∣ − ∣T k ∣min

i∈T
∣x i ∣

(b)
≥ (1 −

√
K + 1δK+1)

√
∣T ∣ − ∣T k ∣min

i∈T
∣x i ∣;

i.e.,

(3.7) ∥Φ
′
T∖T kP⊥T kΦT∖T k xT∖T k∥∞ −

∥Φ
′
T cP

⊥

T kΦT∖T k xT∖T k∥∞
∥P⊥T kΦ j0∥2

≥

(1 −
√

K + 1δK+1)min
i∈T

∣x i ∣,

where (a) is due to

∥xT∖T k∥2 ≥
√

∣T ∣ − ∣T k ∣ min
i∈T∖T k

∣x i ∣ ≥
√

∣T ∣ − ∣T k ∣min
i∈T

∣x i ∣,

and (b) follows from (∣T ∣ − ∣T k ∣)/(∥P⊥T kΦ j0∥2
2) ≤ K (i.e., [29, (C.4)]) under δK+1 <

1
√

K+1
and Lemma 2.1 with ∣T ∣ ≤ K.

We next give an upper bound on the right-hand side of (3.6). Obviously, there exist
i0 ∈ T ∖ T k and k0 ∈ T c such that

∥Φ
′
T∖T kP⊥T k e∥∞ = ∣Φ

′
i0P
⊥

T k e∣, ∥Φ
′
T cP

⊥

T k e∥∞ = ∣Φ
′
k0P
⊥

T k e∣.
hus, by ∥P⊥T kΦ j0∥2 ≤ ∥Φ j0∥2 = 1, we have

∥Φ
′
T∖T kP⊥T k e∥∞ +

∥Φ
′
T cP

⊥

T k e∥∞
∥P⊥T kΦ j0∥2

(3.8)

≤
∥Φ

′
T∖T kP⊥T k e∥∞ + ∥Φ

′
T cP

⊥

T k e∥∞
∥P⊥T kΦ j0∥2

=
∣Φ

′
i0P
⊥

T k e∣ + ∣Φ
′
k0P
⊥

T k e∣
∥P⊥T kΦ j0∥2

=
∥Φ

′
i0∪k0P

⊥

T k e∥1

∥P⊥T kΦ j0∥2

≤
√

2∥Φ
′
i0∪k0P

⊥

T k e∥2

∥P⊥T kΦ j0∥2
≤

√
2(1 + δK+1)
∥P⊥T kΦ j0∥2

∥P⊥T k e∥2 ≤
2η√

1 − δK+1
,
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where the last inequality is from Lemma 2.4 and the assumed l2-bound of the
perturbation e.
By combining (3.7) and (3.8), (3.3) is guaranteed by

(1 −
√

K + 1δK+1)min
i∈T

∣x i ∣ >
2η√

1 − δK+1
,

i.e.,

min
i∈T

∣x i ∣ >
2η√

1 − δK+1(1 −
√

K + 1δK+1)
.

hus, if (3.2) holds, then theOLS algorithm selects a correct index in each iteration.
What remains to show is that the OLS algorithm performs exact ∣T ∣ iterations,

which is equivalent to showing that ∥rk∥2 > η for 1 ≤ k < ∣T ∣ and ∥r∣T ∣∥2 ≤ η.
Since OLS selects a correct index in each iteration under (3.2), for 1 ≤ k < ∣T ∣,

according to Lemma 2.3 and (3.2), we have

∥rk∥2 = ∥P⊥T kΦT∖T k xT∖T k + P⊥T k e∥2

≥ ∥P⊥T kΦT∖T k xT∖T k∥2 − ∥P⊥T k e∥2

≥ ∥P⊥T kΦT∖T k xT∖T k∥2 − η

≥
√

1 − δ∣T ∣∥xT∖T k∥2 − η

≥
√

1 − δK+1
√

∣T ∣ − kmin
i∈T

∣x i ∣ − η

≥
√

1 − δK+1 min
i∈T

∣x i ∣ − η > η.

herefore, if (3.2) holds, ∥rk∥2 > η for 1 ≤ k < ∣T ∣, i.e., the OLS algorithm does not
terminate before the ∣T ∣-th iteration.

Owing to T ∣T ∣ = T , we can get

∥r∣T ∣∥2 = ∥P⊥T ∣T∣ΦT∖T ∣T∣xT∖T ∣T∣ + P⊥T ∣T∣ e∥2 = ∥P⊥T ∣T∣ e∥2 ≤ η.
Consequently, by the stopping rule, the OLS algorithm terminates a�er the ∣T ∣-

th iteration. Hence, the OLS algorithm performs ∣T ∣ iterations. he proof is now
completed. ∎

Remark 3.2 In heorem 3.1, we provide a suõcient condition for the support re-
covery of sparse signals viaOLS. In the noiseless case (i.e., e = 0), the condition (3.1) is
nearly optimal for the recovery of K-sparse signal x (see [29]). Recently, Kim,Wang,
and Shim, in an unpublishedmanuscript, provided a sharp RIP bound for OLS:

δK+1 <
1√

K + 1
4

.

It is an interesting question to consider the support recovery of sparse signals in the
noisy case on this RIP bound. We will deal with this problem in our future work.

Taking a completely perturbedmodel (1.3) into account, we show that the support
of the best K-term approximation xmax(K) of x can be exactly recovered under the
RIP-based condition, if x is assumed to be almost sparse. See the following theorem.

P. Geng,W. Chen, andH. Ge790

https://doi.org/10.4153/S0008439519000134 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000134


є0 =
1.31
1 − є

(є + єe + (1 + єe)(β + γ))∥xT∥2 ,

where β, γ, є, єe are deûned in (1.6) and (1.7), and they are far less than 1. If Φ̂ in (1.3)
has unit l2-norm columns and satisûes the RIP of order K + 1 with

δ̂K+1 <
1√

K + 1
− (

√
2є0√

K + 1t0
)

1
2
,(3.9)

then OLS will exactly recover the support T = supp(xmax(K)) of xT from (1.3) in K

iterations.

Proof From (1.3) and x = xT + xT c , it follows that

ŷ = Φx + e = (Φ̂ − E)(xT + xT c) + e(3.10)

= Φ̂xT + (Φ̂xT c − Ex + e) = Φ̂xT + ê ,

where ê = Φ̂xT c − Ex + e.
We will give an upper bound of ∥ê∥2. According to (1.7), we have

∥E∥(K)2 ≤ є∥Φ∥(K)2 = є∥Φ̂ − E∥(K)2 ≤ є∥Φ̂∥(K)2 + є∥E∥(K)2 .

Since є is assumed to be far less than 1,

∥E∥(K)2 ≤ є

1 − є
∥Φ̂∥(K)2 .(3.11)

Using Lemma 2.5, it follows that

∥Φ̂xT c∥2 ≤
√

1 + δ̂K(∥xT c∥2 +
∥xT c∥1√

K
)(3.12)

(a)=
√

1 + δ̂K(β + γ)∥xT∥2

and

∥Ex∥2 ≤ ∥ExT∥2 + ∥ExT c∥2(3.13)

≤ ∥E∥(K)2 ∥xT∥2 + ∥E∥(K)2 (∥xT c∥2 +
∥xT c∥1√

K
)

= ∥E∥(K)2 (∥xT∥2 + ∥xT c∥2 +
∥xT c∥1√

K
)

(b)
≤ є

1 − є

√
1 + δ̂K(1 + β + γ)∥xT∥2 ,

where (a) is from (1.6), and (b) is from (1.6), (3.11), and ∥Φ̂∥(K)2 ≤
√

1 + δ̂K .
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Furthermore, by the triangle inequality and ê = Φ̂xT c − Ex + e, we obtain
∥ê∥2 ≤ ∥Φ̂xT c∥2 + ∥Ex∥2 + ∥e∥2

(a)
≤ ∥Φ̂xT c∥2 + ∥Ex∥2 + єe∥Φx∥2

(b)
≤ ∥Φ̂xT c∥2 + ∥Ex∥2 + єe∥Φ̂x∥2 + єe∥Ex∥2

(c)
≤ (1 + єe)(∥Φ̂xT c∥2 + ∥Ex∥2) + єe∥Φ̂xT∥2

(d)
≤

√
1 + δ̂K+1

1 − є
(є + єe + (1 + єe)(β + γ))∥xT∥2 ,

where (a) and (b) follow from (1.7) and Φ̂ = Φ + E in (1.3), respectively; (c) is due to
x = xT + xT c and the triangle inequality; (d) is from (1.5), (3.12), (3.13) and ∣T ∣ ≤ K.
Noticing that δ̂K+1 < 1

√
K+1

≤ 1
√

2
, one has ∥ê∥2 < є0.

Similar to heorem 3.1, to guarantee that OLS chooses a correct index in every
iteration, i.e., tk+1 ∈ T with 0 ≤ k < K, we only need to show that

(3.14) max
i∈T∖T k

∣⟨Φ̂i , rk⟩∣
∥P⊥T k Φ̂i∥2

> max
i∈T c

∣⟨Φ̂i , rk⟩∣
∥P⊥T k Φ̂i∥2

,

where rk = P⊥T k Φ̂T∖T k xT∖T k + P⊥T k ê .
We ûnd (3.14) is guaranteed by

(3.15) ∥Φ̂
′

T∖T kP⊥T k Φ̂T∖T k xT∖T k∥∞ −
∥Φ̂

′

T cP
⊥

T k Φ̂T∖T k xT∖T k∥∞
∥P⊥T k Φ̂ j0∥2

> ∥Φ̂
′

T∖T kP⊥T k ê∥∞ +
∥Φ̂

′

T cP
⊥

T k ê∥∞
∥P⊥T k Φ̂ j0∥2

.

he le�-hand side of (3.15) satisûes

(3.16) ∥Φ̂
′

T∖T kP⊥T k Φ̂T∖T k xT∖T k∥∞ −
∥Φ̂

′

T cP
⊥

T k Φ̂T∖T k xT∖T k∥∞
∥P⊥T k Φ̂ j0∥2

≥

(1 −
√

K + 1δ̂K+1)min
i∈T

∣x i ∣,

and the right-hand side of (3.15) satisûes

(3.17) ∥Φ̂
′

T∖T kP⊥T k ê∥∞ +
∥Φ̂

′

T cP
⊥

T k ê∥∞
∥P⊥T k Φ̂ j0∥2

≤
√

2∥ê∥2√
1 − δ̂K+1

≤
√

2∥ê∥2

1 − δ̂K+1
.

By (3.16) and (3.17), we can show that (3.15) holds true if

(3.18) δ̂K+1 <
1√

K + 1
− (

√
2∥ê∥2√
K + 1t0

)
1
2
.

Consequently, under (3.18), a correct index is chosen at the every iteration ofOLS.
Combining (3.18) and the fact that ∥ê∥2 < є0, (3.9) ensures the selecting of all

support indices with OLS in K iterations. ∎
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Figure 1: he cures of the RIC bounds in (3.9) and (3.19) as functions of sparsity.

Remark 3.4 In [8], theOMP algorithmwas studied under the general perturbation
setting, in which the authors obtained the condition

δ̂K+1 <
1√

K + 1
− 3є0

(
√

K + 1)t0
.(3.19)

Since OMP and OLS share many aspects in common and diòer only in the identi-
ûcation principle, we provide some comparison between condition (3.9) and (3.19).
When є0 = 0, (3.9) is less restrictive than the condition (3.19). For the same є0 > 0, t0
and K, when є0

t0
= 0.001, we plot the cures of (3.9) and (3.19) as a function of sparsity

in Figure 1.

For the model (1.3), if E = 0, then (1.3) turns to (1.1). Based on heorem 3.3, we
present the recovery condition of OLS for (1.1) from the other perspective.

Corollary 3.5 For (1.3), let E = 0 and x be K-sparse with supp(x) = T and ∣T ∣ ≤ K.

Let є0 = 1.31єe∥xT∥2 . If Φ with unit l2-norm columns satisûes the RIP of order K + 1
with

δK+1 <
1√

K + 1
− (

√
2є0√

K + 1t0
)

1
2
,

then OLS will exactly recover the support T from (1.3) in K iterations.

When neither themeasurement vector nor the sampling matrix is perturbed (i.e.,
e = 0, E = 0 in (1.3),we have the following corollary byheorem 3.3,which shows that
the support of the best K-term approximation xmax (K) for the almost sparse signal x
can be exactly recovered.
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Corollary 3.6 For the model (1.3), let e = 0, E = 0, and let x be almost sparse with

supp(xmax (K)) = T . Let

є0 = 1.31(β + γ)∥xT∥2 .

If Φ with unit l2-norm columns satisûes the RIP of order K + 1 with

δK+1 <
1√

K + 1
− (

√
2є0√

K + 1t0
)

1
2
,

then OLS will exactly recover the support T from (1.3) in K iterations.

Similarly, we consider the perturbedmodel (1.4).

heorem 3.7 Let t0 = mini∈T ∣x i ∣ and

є0 = 1.31(є + є̂e + єє̂e + (1 + є̂e)(1 + є)(β + γ))∥xT∥2 ,

where β and γ are deûned in (1.6), є and є̂e are deûned in (1.7), and they are far less

than 1. If Φ in (1.4) with unit l2-norm columns satisûes the RIP of order K + 1 with

δK+1 <
1√

K + 1
− (

√
2є0√

K + 1t0
)

1
2
,

then OLS exactly recovers the support of xmax(K) from (1.4) in K iterations.

Proof he idea of the proof is similar to that ofheorem 3.3, so we only present the
outline of the proof. By (1.4), one has that

ŷ = Φ̂x + e = (Φ + E)x + e
= ΦxT +ΦxT c + Ex + e = ΦxT + ē .

where ē = ΦxT c +Ex + e . Clearly,Φ and ē in the above equality correspond to Φ̂ and
ê in (3.10), respectively. hus, we only need to give an upper bound of ∥ē∥2.
According to Lemma 2.5, we have

∥ΦxT c∥2 ≤
√

1 + δK(∥xT c∥2 +
∥xT c∥1√

K
)(3.20)

=
√

1 + δK(β + γ)∥xT∥2 ,

and

∥Ex∥2 ≤ ∥ExT∥2 + ∥ExT c∥2(3.21)

≤ ∥E∥(K)2 ∥xT∥2 + ∥E∥(K)2 (∥xT c∥2 +
∥xT c∥1√

K
)

= ∥E∥(K)2 (∥xT∥2 + ∥xT c∥2 +
∥xT c∥1√

K
)

≤ є

√
1 + δK(1 + β + γ)∥xT∥2 .
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Figure 2: Comparison of success rates of OMP and OLS. (a) Noise-free case. (b) Noisy case.

herefore, by the triangle inequality and ē = ΦxT c + Ex + e, we get
∥ē∥2 ≤ ∥ΦxT c∥2 + ∥Ex∥2 + ∥e∥2

(a)
≤ ∥ΦxT c∥2 + ∥Ex∥2 + є̂e∥Φ̂x∥2

(b)
≤ ∥ΦxT c∥2 + ∥Ex∥2 + є̂e∥Φx∥2 + є̂e∥Ex∥2

(c)
≤ (1 + є̂e)(∥ΦxT c∥2 + ∥Ex∥2) + є̂e∥ΦxT∥2

(d)
≤

√
1 + δK+1(є + є̂e + єє̂e + (1 + є̂e)(1 + є)(β + γ))∥xT∥2

< є0 ,

where (a) and (b) follow from (1.7) and Φ̂ = Φ+E in (1.4), respectively; (c) isdue to x =
xT + xT c and the triangle inequality; (d) is from (1.5), (3.20), (3.21) and
∣T ∣ ≤ K. ∎

Remark 3.8 While this paper focuses exclusively on recovering real sparse signals,
we can extend the obtained results to the complex setting by using methods similar
to those in [8].

4 Numerical Experiments

his section presents some numerical experiments to demonstrate our theorems. he
experiments compare the performance of OMP and OLS under the noise-free and
noisy cases. In each trial, we construct Gauss matrix Φ of size m × n (where m = 128
and n = 256). he perturbation matrix E is a random Gaussian matrix. For each
value of K varying from 2 to 64 with step size 2, we generate a K-sparse signal of size
n × 1, whose support is chosen uniformly at random and drawn independently from
a standard Gaussian distribution, and the simulation is repeated for 1000 trails. As
shown in Figure 2 (a), we plot the success rate as a function of the sparsity. It can be
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seen that sparse signals can be exactly recovered via OMP and OLS under the noise-
free case; Figure 2 (b) presents the SNR versus sparsity K under Gaussian noise, from
which one can see that sparse signals can be still stably recovered. he SNR of the
recovered signals is given by

SNR = 10 log10 (
∥x0∥2

∥x̃ − x0∥2
) ,

where x̃ and x0 denote the recovered signal and the true signal, respectively.

Acknowledgments he authors thank the referees for their valuable suggestion and
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