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Abstract

Weighted knowledge bases for description logics with typicality have been recently considered
under a “concept-wise” multipreference semantics (in both the two-valued and fuzzy case), as the
basis of a logical semantics of multilayer perceptrons (MLPs). In this paper we consider weighted
conditional ALC knowledge bases with typicality in the finitely many-valued case, through three
different semantic constructions. For the boolean fragment LC of ALC we exploit answer set
programming and asprin for reasoning with the concept-wise multipreference entailment under
a ϕ-coherent semantics, suitable to characterize the stationary states of MLPs. As a proof of
concept, we experiment the proposed approach for checking properties of trained MLPs.
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1 Introduction

Preferential approaches to common sense reasoning by Kraus et al . (1990), Pearl (1990),

Lehmann and Magidor (1992), Benferhat et al . (1993), have been extended to descrip-

tion logics (DLs) to deal with inheritance with exceptions in ontologies, by allowing for

non-strict inclusions, called typicality or defeasible inclusions, with different preferential

semantics, for example, by Giordano et al . (2007) and Britz et al . (2008), and closure

constructions, for example, by Casini and Straccia (2010, 2013a) and Giordano et al .

(2015).

In recent work, a concept-wise multipreference semantics has been proposed by Gior-

dano and Theseider Dupré (2020) as a semantics for ranked DL knowledge bases (KBs),

that is KBs in which defeasible or typicality inclusions of the form T(C) � D (mean-

ing “the typical C’s are D’s” or “normally C’s are D’s”) are given a rank, a natural

number, representing their strength, where T is a typicality operator (Giordano et al .
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590 L. Giordano and D. Theseider Dupré

2007), that singles out the typical instances of concept C. The concept-wise multipref-

erence semantics takes into account preferences with respect to different concepts, and

integrates them into a single global preference relation, which is used in the evaluation

of defeasible inclusions. Answer set programming (ASP) and, in particular, the asprin

framework for answer set preferences, by Brewka et al . (2015), is exploited to achieve

defeasible reasoning under the multipreference approach for EL+
⊥ (Baader et al . 2005).

The multipreferential semantics has been extended by Giordano and Theseider Dupré

(2021b) to weighted KBs, in which typicality inclusions have a real (positive or negative)

weight, representing plausibility or implausibility. The multipreference semantics has

been exploited to provide a preferential interpretation to Multilayer Perceptrons (MLPs,

Haykin 1999), an approach previously considered by Giordano et al . (2020, 2022) for self-

organizing maps (SOMs, Kohonen et al . 2001). In both cases, considering the domain

of all input stimuli presented to the network during training (or in the generalization

phase), one can build a semantic interpretation describing the input–output behavior

of the network as a multipreference interpretation, where preferences are associated to

concepts. For MLPs, based on the fuzzy multipreference semantics for weighted KBs, a

deep neural network can actually be regarded as a weighted conditional KB (Giordano

and Theseider Dupré 2021b). This rises the issue of defining proof methods for reasoning

with weighted conditional KBs.

Undecidability results for fuzzy DLs with general inclusion axioms by Cerami and

Straccia (2011) and Borgwardt and Peñaloza (2012) motivate the investigation of many-

valued approximations of fuzzy multipreference entailment. We then restrict to the case of

finitely many-valued DLs, studied by Garćıa-Cerdaña et al . (2010), Bobillo and Straccia

(2011), Bobillo et al . (2012), Borgwardt and Peñaloza (2013), and reconsider the fuzzy

multipreference semantics based on the notions of coherent, faithful, and ϕ-coherent model

of a defeasible KB (Giordano and Theseider Dupré 2021b; Giordano 2021a,b). The last

notion is suitable to characterize the stationary states of MLPs and is related to the

previously introduced notions of multipreferential interpretation.

We consider the finitely many-valued Gödel DL GnALC, and the finitely many-valued

�Lukasiewicz DL, �LnALC, and develop their extension with typicality and a semantic

closure construction based on coherent, faithful, and ϕn-coherent interpretations to deal

with weighted KBs. For the boolean fragment LC of ALC, which neither contains roles,

nor universal and existential restrictions, we develop an ASP approach for deciding

ϕn-coherent entailment from weighted KBs in the finitely many-valued case. In par-

ticular, we develop an ASP encoding of a weighted KB and exploit asprin (see Brewka

et al . 2015) for defeasible reasoning, to prove typicality properties of a weighted con-

ditional KB. From the soundness and completeness of the encoding, we also get a Πp
2

complexity upper bound for ϕn-coherent entailment.

As a proof of concept, we experiment our approach over weighted KBs corresponding

to some of the trained multilayer feedforward networks considered by Thrun et al. (1991).

We exploit ASP to verify some properties of the network expressed as typicality properties

in the finite many-valued case. This is a step towards explainability of the black-box, in

view of a trustworthy, reliable, and explainable AI (Adadi and Berrada 2018; Guidotti

et al. 2019; Arrieta et al . 2020), and of an integrated use of symbolic reasoning and neural

models.
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2 Finitely many-valued ALC
Fuzzy DLs have been widely studied in the literature for representing vagueness in DLs,

for example, by Straccia (2005), Stoilos et al . (2005), Lukasiewicz and Straccia (2009),

Borgwardt and Peñaloza (2012), Bobillo and Straccia (2018), based on the idea that

concepts and roles can be interpreted as fuzzy sets and fuzzy relations.

In fuzzy logic formulas have a truth degree from a truth space S, usually [0, 1], as in

mathematical fuzzy logic (Cintula et al . 2011) or {0, 1
n , . . . ,

n−1
n , n

n}, for an integer n ≥ 1.

S may as well be a complete lattice or a bilattice.

The finitely many-valued case is also well studied for DLs (Garćıa-Cerdaña et al . 2010;

Bobillo and Straccia 2011; Bobillo et al . 2012; Borgwardt and Peñaloza 2013), and, in

the following, we will consider a finitely many-valued extension of ALC with typicality.

The basic ALC syntax features a set NC of concept names, a set NR of role names

and a set NI of individual names. The set of ALC concepts can be defined inductively:

– A ∈ NC , � and ⊥ are concepts;

– if C and D are concepts, and r ∈ NR, then C�D, C	D, ¬C, ∀r.C, ∃r.C are concepts.

We assume the truth space to be Cn = {0, 1
n , . . . ,

n−1
n , n

n}, for an integer n ≥ 1. A

finitely many-valued interpretation for ALC is a pair I = 〈Δ, ·I〉 where: Δ is a non-empty

domain and ·I is an interpretation function that assigns to each a ∈ NI a value aI ∈ Δ,

to each A ∈ NC a function AI : Δ → Cn, to each r ∈ NR a function rI : Δ ×Δ → Cn.

A domain element x ∈ Δ belongs to the extension of concept name A to some degree

AI(x) in Cn. The interpretation function ·I is extended to complex concepts as follows:

�I(x) = 1, ⊥I(x) = 0, (¬C)I(x) = �CI(x),

(∃r.C)I(x) = supy∈Δ rI(x, y)⊗ CI(y), (C 	D)I(x) = CI(x)⊕DI(x)

(∀r.C)I(x) = infy∈Δ rI(x, y) � CI(y), (C �D)I(x) = CI(x)⊗DI(x),

where x ∈ Δ and ⊗, ⊕, �, and � are arbitrary but fixed t-norm, s-norm, implication

function, and negation function (Lukasiewicz and Straccia 2009). In particular, in this

paper we consider two finitely many-valued DLs based on ALC, the finitely many-valued

�Lukasiewicz DL ALC (�LnALC in the following) as well as the finitely many-valued Gödel

DL ALC, extended with a standard involutive negation �a = 1 − a (GnALC in the

following). Such logics are defined along the lines of the finitely many-valued DL SROIQ
by Bobillo and Straccia (2011), the logic GZ SROIQ by Bobillo et al . (2012), and the

logic ALC∗(S) by Garćıa-Cerdaña et al . (2010), where ∗ is a divisible finite t-norm over

a chain of n elements.

Specifically, in an �LnALC interpretation, we let: a ⊗ b = max{a + b − 1, 0}, a ⊕ b =

min{a + b, 1}, a � b = min{1 − a + b, 1}, and �a = 1 − a. In a GnALC interpretation,

we let: a ⊗ b = min{a, b}, a ⊕ b = max{a, b}, a � b = 1 if a ≤ b and b otherwise; and

�a = 1− a.

The interpretation function ·I is also extended to ALC concept inclusions of the form

C � D (where C and D are ALC concepts), and to ALC assertions of the form C(a) and

r(a, b) (where C is an ALC concept, r ∈ NR, a, b ∈ NI), as follows:

(C � D)I = infx∈ΔC
I(x) �DI(x), (C(a))I = CI(aI), (R(a, b))I = RI(aI , bI).
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A GnALC (�LnALC) knowledge base K is a pair (T ,A) where T is a TBox and A an

ABox. A TBox T is a set of GnALC (�LnALC) concept inclusions of the form C � D θ α,

where C � D is an ALC concept inclusion, θ ∈ {≥,≤, >,<} and α ∈ [0, 1]. An ABox

A is a set of GnALC (�LnALC) assertions of the form C(a) θα or r(a, b) θα, where C

is an ALC concept, r ∈ NR, a, b ∈ NI , θ ∈ {≥, ≤, >,<} and α ∈ [0, 1]. The notions of

satisfiability of a KB in a many-valued interpretation and of GnALC (�LnALC) entailment

are defined as follows:

Definition 1 (Satisfiability and entailment for GnALC and �LnALC)
A GnALC (�LnALC) interpretation I satisfies a GnALC (�LnALC) axiom E, as follows:

– I satisfies axiom C � D θ α if (C � D)Iθ α;

– I satisfies assertion C(a) θ α if CI(aI)θ α;

– I satisfies assertion r(a, b) θ α if rI(aI , bI)θ α.

Given a GnALC (�LnALC) knowledge base K = (T ,A), a GnALC (�LnALC) interpreta-

tion I satisfies T (resp. A) if I satisfies all inclusions in T (resp. all assertions in A). A

GnALC (�LnALC) interpretation I is a GnALC (�LnALC) model of K if I satisfies T and

A. A GnALC (�LnALC) axiom E is entailed by knowledge base K, written K |=GnALC E

(resp. K |=�LnALC E), if for all GnALC (�LnALC) models I =〈Δ, ·I〉 of K, I satisfies E.

3 Finitely many-valued ALC with typicality

In this section, we consider an extension of finitely many-valued ALC with typicality

concepts, based on a preferential semantics, first introduced by Giordano and Theseider

Dupré (2021b) for weighted EL⊥ knowledge bases (we adopt an equivalent slight reformu-

lation of the semantics by Giordano 2021b). The idea is similar to the extension of ALC
with typicality in the two-valued case by Giordano et al . (2007), but the degree of mem-

bership of domain individuals in a concept C is used to identify the typical elements of C.

The extension allows for the definition of typicality inclusions of the form T(C) � D θ α.

For instance, T(C) � D ≥ α means that typical C-elements are D-elements with degree

greater than α. In the two-valued case, a typicality inclusion T(C) � D corresponds to

a KLM conditional implication C |∼ D by Kraus et al . (1990), Lehmann and Magidor

(1992). As in the two-valued case, nesting of the typicality operator is not allowed.

Note that, in a many-valued ALC interpretation I = 〈Δ, ·I〉, the degree of membership

CI(x) of domain elements x in a concept C induces a preference relation <C on Δ:

x <C y iff CI(x) > CI(y). (1)

For a finitely many-valued ALC interpretation I = 〈Δ, ·I〉, each preference relation

<C has the properties of preference relations in KLM-style ranked interpretations by

Lehmann and Magidor (1992), that is, <C is a modular and well-founded strict par-

tial order. Let us recall that <C is well-founded if there is no infinite descending chain

of domain elements; <C is modular if, for all x, y, z ∈ Δ, x <C y implies (x <C z or

z <C y). Well-foundedness holds for the induced preference <C defined by condition (1)

as we have assumed the truth space to be Cn. We will denote �LnALCT and GnALCT
the extensions of �LnALC and GnALC with typicality.

Each relation <C has the properties of a preference relation in KLM rational interpreta-

tions, also called ranked interpretations. As many-valued interpretations induce multiple
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preferences, they can be regarded as multipreferential interpretations, which have also

been studied in the two-valued case, for example, by Giordano and Theseider Dupré

(2020), Delgrande and Rantsoudis (2020), Giordano and Gliozzi (2021), Casini et al .

(2021).

The preference relation <C captures the relative typicality of domain elements wrt

concept C and may then be used to identify the typical C-elements. We regard typical

C-elements as the domain elements x that are preferred with respect to <C among the

ones such that CI(x) �= 0. Let CI
>0 be the crisp set containing all domain elements x such

that CI(x) > 0, that is, CI
>0 = {x ∈ Δ | CI(x) > 0}. One can provide a (two-valued)

interpretation of typicality concepts T(C) with respect to an interpretation I as:

(T(C))I(x) =

{
1 if x ∈ min<C

(CI
>0)

0 otherwise,
(2)

where min<(S) = {u : u ∈ S and �z ∈ S s.t. z < u}. When (T(C))I(x) = 1, x is said to

be a typical C-element in I. Note that, if CI(x) > 0 for some x ∈ Δ, min<C
(CI

>0) �= ∅.
This generalizes the property that, in the crisp case, CI �= ∅ implies (T(C))I �= ∅.

Definition 2 (GnALCT (�LnALCT) interpretation)

A GnALCT (�LnALCT) interpretation I = 〈Δ, ·I〉 is a finitely many-valued GnALC
(�LnALCT) interpretation over Cn, extended by interpreting typicality concepts as in (2).

A many-valued interpretation I = 〈Δ, ·I〉 implicitly defines a multipreferential interpre-

tation, where any concept C is associated to a relation <C . The notions of satisfiability

in GnALCT (�LnALCT), model of a GnALCT (�LnALCT) knowledge base, and GnALCT
(�LnALCT) entailment are defined similarly as for �LnALC and GnALC in Section 2.

3.1 Weighted KBs and closure construction for finitely many values

In this section we introduce the notion of weighted GnALCT (�LnALCT) knowledge base

allowing for weighted defeasible inclusions, namely, typicality inclusions with a real-valued

weight, as introduced for EL by Giordano and Theseider Dupré (2021b).

A weighted GnALCT knowledge base K, over a set C = {C1, . . . , Ck} of distinguished

GnALC concepts, is a tuple 〈T , TC1
, . . . , TCk

,A〉, where T is a set of GnALC inclusion

axioms, A is a set of GnALC assertions, and TCi
= {(dih, wi

h)} is a set of all weighted

typicality inclusions dih = T(Ci) � Di,h for Ci, indexed by h, where each inclusion dih has

weight wi
h, a real number, and Ci and Di,h are GnALC concepts. The typicality operator

is assumed to occur only on the left hand side of a weighted typicality inclusion, and we

call distinguished concepts those concepts Ci occurring on the l.h.s. of some typicality

inclusion T(Ci) � D. The definition of a weighted �LnALCT knowledge base is similar.

Let us consider the following example.

Example 1

Consider the weighted GnALCT knowledge base K = 〈T , TBird, TPenguin, A〉, over the

set of distinguished concepts C = {Bird ,Penguin}, with T containing, for instance, the

inclusion Black � Red � ⊥ ≥ 1 .

The weighted TBox TBird contains the weighted defeasible inclusions:

(d1) T(Bird) � Fly , +20 (d2) T(Bird) � Has Wings, +50

(d3) T(Bird) � Has Feather , +50.
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and TPenguin contains the weighted defeasible inclusions:

(d4) T(Penguin) � Bird , +100 (d5) T(Penguin) � Fly , - 70

(d6) T(Penguin) � Black , +50.

That is, a bird normally has wings, has feathers and flies, but having wings and feather

(both with weight 50) for a bird is more plausible than flying (weight 20), although flying

is regarded as being plausible; and so on. Given Abox A in which Reddy is red, has wings,

has feather and flies (all with degree 1) and Opus has wings and feather (with degree 1),

is black with degree 0.8 and does not fly, considering the weights of defeasible inclusions,

we expect Reddy to be more typical than Opus as a bird, but less typical as a penguin.

In previous work, Giordano and Theseider Dupré (2021b) introduced a semantics of a

weighted EL knowledge bases through a semantic closure construction, similar in spirit

to the rational closure by Lehmann and Magidor (1992), to the lexicographic closure by

Lehmann (1995), and related to c-representations by Kern-Isberner (2001), but based on

multiple preferences. Here, the same construction is extended to weighted GnALCT
(�LnALCT) knowledge bases, by considering the notions of coherent, faithful, and

ϕ-coherent interpretations. The construction allows a subset of the GnALCT (�LnALCT)

interpretations to be selected, those in which the preference relations <Ci
coherently or

faithfully represent the defeasible part of the knowledge base K.

Let TCi
= {(dih, wi

h)} be the set of weighted typicality inclusions dih = T(Ci) � Di,h

associated to the distinguished concept Ci, and let I = 〈Δ, ·I〉 be a GnALCT (�LnALCT)

interpretation. In the two-valued case, we would associate to each domain element

x ∈ Δ and each distinguished concept Ci, a weight Wi(x) of x wrt Ci in I, by summing

the weights of the defeasible inclusions satisfied by x. However, as I is a many-valued

interpretation, we need to consider, for all inclusions T(Ci) � Di,h ∈ TCi
, the degree of

membership of x in Di,h. For each domain element x ∈ Δ and distinguished concept Ci,

the weight Wi(x) of x wrt Ci in a GnALCT (�LnALCT) interpretation I = 〈Δ, ·I〉 is:

Wi(x) =

{ ∑
h w

i
h DI

i,h(x) if CI
i (x) > 0

−∞ otherwise,
(3)

where −∞ is added at the bottom of R. The value of Wi(x) is −∞ when x is not a

C-element (i.e., CI
i (x) = 0). Otherwise, CI

i (x) > 0 and the higher is the sum Wi(x), the

more typical is the element x relative to the defeasible properties of Ci.

Example 2

Let us consider again Example 1. Let I be an GnALCT interpretation such that FlyI (red -

dy) = (Has Wings)I (reddy) = (Has Feather)I (reddy) = 1 and Red I (reddy) = 1 , and

Black I (reddy) = 0 . Suppose further that FlyI (opus) = 0 and (Has Wings)I (opus) =

= (Has Feather)I (opus) = 1 and Black I (opus) = 0 .8 . Considering the weights of typ-

icality inclusions for Bird , WBird(reddy) = 20 + 50 + 50 = 120 and WBird(opus) =

= 0 + 50 + 50 = 100 . This suggests that Reddy should be more typical as a bird than

Opus. On the other hand, if we suppose that Bird I (reddy) = 1 and Bird I (opus) = 0 .8 ,

then WPenguin (reddy) = 100 − 70 = 30 and WPenguin(opus) = 0 .8 × 100 + 0 .8 × 50

= 120 , and Reddy should be less typical as a penguin than Opus.

In previous work, a notion of coherence is introduced by Giordano and Theseider Dupré

(2021b) to force an agreement between the preference relations <Ci
induced by a fuzzy
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interpretation I, for distinguished concepts Ci, and the weights Wi(x) computed, for each

x ∈ Δ, from the knowledge base K, given the interpretation I. In the many-valued case,

this leads to the following definition of coherent multipreference model of a weighted

GnALCT (�LnALCT) knowledge base.

Definition 3 (Coherent multipreference model of a weighted GnALCT/�LnALCT KB)

Let K = 〈T , TC1
, . . . , TCk

,A〉 be a weighted GnALCT (�LnALCT) knowledge base over

C. A coherent multipreference model (cm-model) of K is a GnALCT (�LnALCT) inter-

pretation I = 〈Δ, ·I〉 s.t.:

• I satisfies the inclusions in T and the assertions in A;

• for all Ci ∈ C, the preference <Ci
is coherent to TCi

, that is, for all x, y ∈ Δ,

x <Ci
y ⇐⇒ Wi(x) > Wi(y). (4)

In a similar way, one can define a faithful multipreference model (fm-model) of K by

replacing the coherence condition (4) with a faithfulness condition: for all x, y ∈ Δ,

x <Ci
y ⇒Wi(x) > Wi(y). (5)

The weaker notion of faithfulness allows to define a larger class of multipreference models

of a weighted KB, compared to the class of coherent models. This allows a larger class

of monotone non-decreasing activation functions in neural network models to be cap-

tured, whose activation function is monotonically non-decreasing (we refer to the work

by Giordano and Theseider Dupré (2021b) and by Giordano (2021b).

4 ϕ-coherent models with finitely many values

In this section we consider another notion of coherence of a many-valued interpretation I

wrt a KB, that we call ϕ-coherence, where ϕ is a function from R to the interval [0, 1], that

is, ϕ : R → [0, 1]. ϕ-coherent models have been first introduced by Giordano (2021a) in

the definition of a gradual argumentation semantics. Let us consider ϕ-coherent GnALCT
(�LnALCT) interpretations.

Definition 4 (ϕ-coherence)

Let K = 〈T , TC1
, . . . , TCk

,A〉 be a weighted GnALCT (�LnALCT) knowledge base, and

ϕ : R→ [0, 1]. A GnALCT (�LnALCT) interpretation I = 〈Δ, ·I〉 is ϕ-coherent if, for all

concepts Ci ∈ C and x ∈ Δ,

CI
i (x) = ϕ

(∑
h

wi
h DI

i,h(x)

)
, (6)

where TCi
= {(T(Ci) � Di,h, w

i
h)} is the set of weighted conditionals for Ci. A ϕ-coherent

multipreference model (ϕ-coherent model) of a knowledge base K, is defined as a coherent

model in Definition 3, but replacing the notion of coherence in condition (4) with the

notion of ϕ-coherence (6).

The relationships between the three semantics (Giordano 2021a) extend to the finite

many-valued case as follows.
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Proposition 1

Let K be a weighted GnALCT (�LnALCT) knowledge base and ϕ : R→ [0, 1]. (1) if ϕ is

a monotonically non-decreasing function, a ϕ-coherent multipreference model I of K is

also a faithful model of K; (2) if ϕ is a monotonically increasing function, a ϕ-coherent

multipreference model I of K is also a coherent model of K.

To see that the set of equations defined by (6) allow to characterize the stationary states

of multilayer perceptrons (MLPs), let us consider (Haykin 1999) the model of a neuron

as an information-processing unit in an (artificial) neural network. The basic elements

are the following: (1) a set of synapses or connecting links, each one characterized by a

weight. We let xj be the signal at the input of synapse j connected to neuron i, and wij

the related synaptic weight; (2) the adder for summing the input signals to the neuron,

weighted by the respective synapses weights:
∑n

j=1 wijxj ; (3) an activation function for

limiting the amplitude of the output of the neuron (here, we assume, to the interval

[0, 1]). A neuron i can be described by the following pair of equations: ui =
∑n

j=1 wijxj

and yi = ϕ(ui + bi) where x1, . . . , xn are the input signals and wi1, . . . , win are the

weights of neuron i; bi is the bias, ϕ the activation function, and yi is the output signal

of neuron i. By adding a new synapse with input x0 = +1 and synaptic weight wi0 = bi,

one can write: ui =
∑n

j=0 wijxj , and yi = ϕ(ui), where ui is called the induced local field

of the neuron.

A neural network N can then be seen as “a directed graph consisting of nodes with

interconnecting synaptic and activation links” (Haykin 1999). Nodes in the graph are

the neurons (the processing units) and the weight wij on the edge from node j to node

i represents the strength of the connection between unit j and unit i.

A mapping of a neural network to a conditional KB can be defined in a simple way

(Giordano and Theseider Dupré 2021b), associating a concept name Ci with each unit

i in the network and by introducing, for each synaptic connection from neuron h to

neuron i with weight wih, a conditional T(Ci) � Ch with weight wi
h = wih. If we assume

that ϕ is the activation function of all units in the network N and we consider the

infinite-valued fuzzy logic with truth space S = [0, 1], then the solutions of equations (6)

characterize the stationary states of MLPs, where CI
i (x) corresponds to the activation

of neuron i for some input stimulus x, each DI
i,h(x) corresponds to the input signal xh,

and
∑

h w
i
h DI

i,h(x) corresponds to the induced local field of neuron i.

Notice that, when the truth space is the finite set Cn, for n ≥ 1, the notion of

ϕ-coherence may fail to characterize all the stationary states of a network, simply as

there may be stationary states such that the activity values of units fall outside Cn. In

the next section, we will consider an approximation ϕn of the function ϕ over Cn, with

the idea to capture an approximated behavior of the network based on the finite many-

valued semantics of a weighted conditional KB, and to construct a preferential model for

properties verification.

For a weighted GnALCT (�LnALCT) knowledge base K, a notion of coherent/faithful/

ϕ-coherent entailment can be defined in a natural way. As for concept-wise entailment

in the two-valued case (Giordano et al . 2015), we restrict our consideration to canon-

ical models, that is, models which are large enough to contain all the relevant domain

elements with their different valuations. Informally, a canonical ϕ-coherent model of K

is a ϕ-coherent model of K that contains a domain element for each possible valuation

of concepts which is present in any ϕ-coherent model of K. Similarly for coherent and

faithful models.
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Definition 5 (Canonical coherent/faithful/ϕ-coherent model of K)

Given a weighted GnLCT (�LnLCT) knowledge base K, I = (Δ, ·I) is a canonical

coherent/faithful/ϕ-coherent model of K if: (i) I is a coherent/faithful/ϕ-coherent model

of K and, (ii) for each coherent/faithful/ϕ-coherent model J = (ΔJ , ·J ) of K and each

y ∈ ΔJ , there is an element z ∈ Δ such that BI(z) = BJ(y), for all concept names B

occurring in K.

A result concerning the existence of canonical ϕ-coherent models, for weighted KBs

having at least a ϕ-coherent model, can be found in the supplementary material for the

paper, Appendix A. Let us define entailment.

Definition 6 (coherent/faithful/ϕ-coherent entailment)

Given a weighted GnALCT (�LnALCT) knowledge base K, a GnALCT (�LnALCT) axiom

E is coherently/faithfully/ϕ-coherently entailed from K if, for all canonical coherent/

faithful/ϕ-coherent models I = 〈Δ, ·I〉 of K, I satisfies E.

The properties of faithful entailment in the fuzzy case have been studied by Giordano

(2021b). Faithful entailment is well-behaved: it deals with specificity and irrelevance;

it is not subject to inheritance blocking; it satisfies most of the KLM properties of

a preferential consequence relation (Kraus et al . 1990; Lehmann and Magidor 1992),

depending on their fuzzy reformulation and on the chosen combination functions.

In the next section, we restrict our consideration to the boolean fragment LC of ALC
(with neither roles, nor universal nor existential restrictions), which is sufficient to encode

MLPs as weighted KBs and to formulate boolean properties of the network. We consider

the finitely many-valued logics GnLCT and �LnLCT, and exploit ASP and asprin for

defeasible reasoning in GnLCT and �LnLCT under an approximation ϕn of ϕ.

5 ASP and asprin for reasoning in GnLCT and �LnLCT: ϕn -coherence and

verification of MLPs

Given a monotonically non-decreasing function ϕ : R → [0, 1], and an integer n > 1, let

function ϕn : R→ Cn be defined as follows:

ϕn(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if ϕ(x) ≤ 1
2n

i
n if 2i−1

2n < ϕ(x) ≤ 2i+1
2n , for 0 < i < n

1 if 2n−1
2n < ϕ(x)

(7)

ϕn(x) approximates ϕ(x) to the nearest value in Cn. The notions of ϕn-coherence,

ϕn-coherent model, canonical ϕn-coherent model, ϕn-coherent entailment can be de-

fined as in Definitions 4 and 6, by replacing ϕ with ϕn. The above-mentioned result

concerning the existence of canonical models also extends to canonical ϕn-coherent

models of weighted KBs (see Proposition 4 in the supplementary material for the paper,

Appendix A).

In the following, we formulate the problem of ϕn-coherent entailment from a weighted

GnLCT (�LnLCT) knowledge base as a problem of computing preferred answer sets of an

ASP program. Verifying ϕn-coherent entailment of a typicality inclusion T(C) � D θ α

from a weighted knowledge base K (a subsumption problem), would require considering

all typical C-elements in all possible canonical ϕn-coherent models of K, and checking

whether they are all instances of D with a degree d such that dθα. We reformulate this

https://doi.org/10.1017/S1471068422000163 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000163


598 L. Giordano and D. Theseider Dupré

problem as a problem of generating answer sets representing ϕn-coherent models of the

KB, and then selecting preferred answer sets, where a distinguished domain element

auxC is intended to represent a typical C-element. For the selection of preferred answer

sets, the ones maximizing the degree of membership of auxC in concept C, we use asprin

by Brewka et al . (2015). Our proof method is sound and complete for the computation

of ϕn-coherent entailment.

Given a weighted GnLCT (�LnLCT) knowledge base K = 〈T , TC1
, . . . , TCk

,A〉, we

let ΠK,n be the representation of K in Datalog, where: val(v) holds for each value v in

{0, 1, . . . , n}, which is intended to represent the value v
n in Cn; nom(a), cls(A)1, are used

for a ∈ NI , A ∈ NC . We also have nom(auxc)2.

Boolean concepts C�D, C	D, ¬C are represented as and(C ′, D′), or(C ′, D′), neg(C ′),
where C ′ and D′ are terms representing concepts C and D; subTyp(C ′,D ′,w ′) represents

a defeasible inclusion (T (C ) � D ,w), where w′ is an integer corresponding to w×10k, for

w approximated to k decimal places. The concepts of interest, to be considered for limiting

grounding in the rules introduced later, are represented (1) with assertions concept(C ′),
where C ′ is the term for boolean concepts C occurring in K or in the formula to be

verified (see later); (2) with rules implying that subconcepts are also of interest, for

example:

concept(A)← concept(and(A,B)).

ΠK,n also contains the set of rules for generating ϕn-coherent models of K. The valu-

ation is encoded by a set of atoms of the form inst(x ,A, v), meaning that v
n ∈ Cn is the

degree of membership of x in A. The rule:

1{inst(X ,A,V ) : val(V )}1 ← cls(A),nom(X ).

generates alternative answer sets, corresponding to interpretations of each constant x

(either a named individual or auxC), with different values v corresponding to a member-

ship degree v
n ∈ Cn in each atomic concept A.

The valuation of complex boolean concepts D is encoded by introducing a predicate

eval(D ,X ,V ) to determine the membership degree V of element X in D. A rule is

introduced for each boolean operator to encode its semantics. For GnLCT, the eval

predicate encodes the semantics of �, 	 and ¬, based on Gödel logic t-norm, s-norm and

on involutive negation as follows:

eval(A,X ,V )← cls(A), inst(X ,A,V ).

eval(and(A,B),X ,V )← concept(and(A,B)), eval(A,X ,V1 ), eval(B ,X ,V1 ),

min(V1 ,V2 ,V ).

eval(or(A,B),X ,V )← concept(or(A,B)), eval(A,X ,V1 ), eval(B ,X ,V1 ),

max (V1 ,V2 ,V ).

eval(neg(A),X ,V )← concept(neg(A)), eval(A,X ,V1 ),V = n − V1 ,

where the predicates min and max are suitably defined. A similar evaluation function

eval can be defined for �Lukasiewicz combination functions.

1 Uppercase is used here for concept names, to keep a DL-like notation, even though such names are
ASP constants.

2 Observe that the addition of further auxiliary constants to represent other domain elements in a
model, used in the Datalog materialization calculus by Krötzsch (2010), is not needed here as neither
existential nor universal restrictions are allowed.
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To guarantee the satisfiability of GnLCT axioms (assertions and inclusions) a set of

constraints is added. For instance, for the assertion C(a) ≥ α we add the constraint

⊥ ← eval(C ′, a,V ),V < nα,

where C ′ is the term representing concept C, while for a strict GnLCT inclusion E �
D ≥ α we add the constraint

⊥ ← eval(E ′,X ,V1 ), eval(D ′,X ,V2 ),V1 > V2 ,V2 < α,

and similarly for other axioms and for the �LnLCT case. An answer set represents a

ϕn-coherent interpretation if the following constraint is satisfied:

⊥ ← nom(X ), dcls(Ci), eval(Ci ,X ,V ),weight(X ,Ci ,W ), valphi(n,W ,V1 ),V ! = V1 ,

where dcls(Ci) is included in ΠK,n for each distinguished class Ci ∈ C. Given that the

weights wi
h are approximated to k decimal places, argument W for weight corresponds

to the integer n×Wi(x)×10k, and valphi(n,W, V 1) is defined (see below) to correspond

to V 1 = n×ϕn(Wi(x))) = n×ϕn(W/(n×10k)) again representing Cn with {0, 1, . . . , n}.
Predicate weight (for the weighted sum) could, in principle, be defined as follows:

weight(X ,C ,W )← dcls(C ),nom(X ),

W = #sum{Wi ∗V ,D : cls(D), eval(D ,X ,V ), subTyp(C ,D ,Wi)}.
but, for grounding reasons, it can be better defined with a rule for each distinguished class;

such rules can be generated, for each distinguished concept Ci, from the set of weighted

typicality inclusions TCi
. In particular, given TCi

= {(T(Ci) � Di,h, w
i
h), h = 1, . . . , k},

the following rule is introduced:

weight(X ,Ci ′,W )← nom(X ),W = Wi1 ∗Vi1 + . . . + Wik ∗Vik ,

subTyp(Ci ′,Di1 ′,Wi1 ), eval(Di1 ′,X ,Vi1 ), . . . ,

subTyp(Ci ′,Dik ′,Wik), eval(Dik ′,X ,Vik),

where Ci ′, Di1 ′, . . ., Dik ′ are the terms representing concepts Ci , Di,1 , . . ., Di,k .

Predicate valphi can be defined with rules such as:

valphi(n,W , 0 )← num(W ),W < k1 .

valphi(n,W , 1 )← num(W ),W >= k1 ,W < k2 .

. . .

valphi(n,W ,n)← num(W ),W > kn−1 ,

where:

num(W )← nom(X ),weight(X ,C ,W ), dcls(C )

is used for limiting grounding of the previous rules, and k1, . . . , kn−1 can be precomputed

to be:

k1 = �w� where w is such that ϕ(w/(n× 10k)) = 1/2n,

k2 = �w� where w is such that ϕ(w/(n× 10k)) = 3/2n,

. . .

kn−1 = �w� where w is such that ϕ(w/(n× 10k)) = (2n− 1)/2n.

The program Π(K,n,C,D, θ, α) associated to the GnLCT (�LnLCT) knowledge base K

and a typicality subsumption T(C) � D θ α is composed of two parts, Π(K,n,C,D,

θ, α) = ΠK,n ∪ ΠC,D,θα. We have already introduced the first one. ΠC,D,n,θ,α contains

the facts nom(auxC ) and auxtc(auxC ,C ′) and the rules:

ok ← eval(D ′, auxC ,V ),V θαn. notok ← not ok ,
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where ok is intended to represent that auxC satisfies the property that its membership

degree V in concept D is such that V θα holds.

Given a query T(C) � D θα, we have to verify that, in all canonical ϕn-coherent

models of the GnLCT (�LnLCT) knowledge base, all typical C-elements are D-elements

with a certain degree v (representing v/n ∈ Cn) such that vθαn. This verification is

accomplished by generating answer sets corresponding to the ϕn-coherent models of

the KB, and by selecting the preferred ones, in which the distinguished element auxC

represents a typical C-element.

Given two answer sets S and S′ of Π(K,n,C,D, θ, α), S is preferred to S′ if the mem-

bership degree of auxC in concept C is higher in S than in S′, that is: if eval(C ′, auxC , v1 )

holds in S and eval(C ′, auxC , v2 ) holds in S′, then v1 > v2.

This condition is encoded directly into a preference program for asprin as follows. One

such program requires defining when an answer set S is preferred to S′ according to

a preference P (optimal solutions wrt such a preference can then be required with an

#optimize directive). This is done by defining a predicate better(P ) for the case where

P is of the type being defined, using predicates holds and holds′ to check whether atoms

hold in S and S′, respectively. In this case the preference program, defining a “concept

wise” preference, is simply as follows:

#program preference(cwise).

better(P)← preference(P , cwise), holds(auxtc(auxc,C )), betterwrt(C ).

betterwrt(C )← holds(eval(C , auxc,V1 )), holds ′(eval(C , auxc,V2 )),V1 > V2 .

The query T(C) � D θ α is entailed from the knowledge base K if, in all (maximally)

preferred answer sets, auxC is an instance of concept D with a membership degree v

(representing v/n ∈ Cn) such that vθαn holds; that is, if ok holds in all preferred answer

sets, or, equivalently, notok does not hold in any of them. In fact, we can prove that this

corresponds to verifying that D is satisfied in all <C-minimal C-elements in all canonical

ϕn-coherent models of the KB:

Proposition 2

Given a GnLCT (�LnLCT) knowledge base K, the query T(C) � D θ α is falsified in

some canonical ϕn-coherent model of K if and only if there is a preferred answer set S

of the program Π(K,C,D, n, θ, α) containing eval(D′, auxC , v) such that vθαn does not

hold (and then containing notok).

The proof can be found in the supplementary material for the paper, Appendix B. It

exploits the existence of ϕn-coherent canonical models, for KBs having a ϕn-coherent

model (Proposition 4 in Appendix A). Appendix B also contains a proof of the following

upper bound on the complexity of ϕn-coherent entailment.

Proposition 3

ϕn-coherent entailment from a weighted GnLCT (�LnLCT) knowledge base is in Πp
2.

As a proof of concept, the approach has been experimented for the weighted GnLCT
KBs corresponding to two of the trained multilayer feedforward network for the MONK’s

problems (Thrun et al. 1991), namely, the network for problem 1 and the second network

for problem 3. The networks have 17 non-independent binary inputs, corresponding to

values of 6 inputs having 2 to 4 possible values; such inputs are features of a robot, for
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Fig. 1. The network for MONK’s problem 1, with some of the weights after training (using 3
decimal digits), two of the corresponding typicality inclusions and their ASP representation.

example, head shape and body shape being round, square or octagon, and jacket color

being red, yellow, green or blue. The network for problem 1 (Figure 1) has 3 hidden units

(h1, h2, h3) and an output unit (o); the one for problem 3 has 2 hidden units.

In the two problems, the trained networks learned to classify inputs satisfying two

formulae, respectively, F1 and F3, which are boolean combinations of the inputs. In

particular, F1 is jacket color red or head shape = body shape and, in terms of the classes

i1 , . . . , i17 corresponding to the binary inputs, it is:

F1 ≡ i12 	 (i1 � i4 ) 	 (i2 � i5 ) 	 (i3 � i6 )

(i12 is jacket color red , i1 is head shape round , i4 is body shape round , etc.).

The approach described above has been applied, using values 0 and 1 as possible values

for classes associated with input nodes, rather than all values in Cn. The networks are

feedforward, then for a choice of values for input nodes, there is only one choice of values

in Cn for non-input nodes satisfying the constraint for ϕn-coherent interpretations (then

the number of answer sets of Π(K,C,D, n, θ, α) is given by the possible combinations of

input values and does not depend on n).

For the trained network for problem 1, the formula T(o) � F1 ≥ 1 can be verified, for

example, for n = 5; o is the concept name associated with the output unit. That is, the

G5LCT knowledge base entails that the typical o-elements satisfy F1. The formula can

also be verified for n = 1, 3, 9 with minor variations on the running times (all below 10

s). This result is explainable (also for n=1), as an input was classified by the network

as class member if the output was ≥ 0.5 and, for problem 1, the network learned the

concept with 100% accuracy.

Stronger variants of F1 have also been considered, to check that the network learned

F1 but not such variants. For the following variants with one less disjunct:

F1 ′ ≡ i12 	 (i1 � i4 ) 	 (i2 � i5 ) F1 ′′ ≡ (i1 � i4 ) 	 (i2 � i5 ) 	 (i3 � i6 )

the formulae T(o) � F1′ ≥ 1 and T(o) � F1′′ ≥ 1 are indeed not entailed for n =

1, 3, 5, 9.

An important issue in analyzing a trained network is also associating a meaning to

hidden nodes. The following formulae have been verified for n = 1, 3, 5, 9 for hidden nodes

h1 , h2 , h3 :

T(h1) � i12 	 (¬i1 � ¬i4) ≥ 1

T(h2) � i12 	 (¬i3 � ¬i6) ≥ 1

T(h3) � ¬i12 	 (i2 	 i5) ≥ 1.
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In problem 3, there was noise (some misclassifications) in the training set. Then the

accuracy of the trained network is not 100%. However, the trained network produces no

false positives. Therefore, the formula T(o) � F3 ≥ 1 can be verified for n = 1, 3, 5, 9,

where F3 is (jacket color red and holding sword) or (not jacket color blue and not

body shape octagon). Since there are false negatives, the formula T(¬o) � ¬F3 ≥ 1

is not entailed for n = 1 but, for instance, it is for n = 5.

6 Conclusions

The “concept-wise” multipreference semantics (both in the two-valued and in the fuzzy

case) has recently been proposed as a logical semantics of MLPs by Giordano and The-

seider Dupré (2021b). In this paper we consider weighted conditional ALC knowledge

bases in the finitely many-valued case, under a coherent, a faithful, and a ϕ-coherent

semantics, the last one being suitable to characterize the stationary states of MLPs. For

the boolean fragment LC of ALC we exploit ASP and asprin, see Brewka et al . (2015), for

reasoning under ϕ-coherent entailment, by restricting to canonical models of the KB. We

have proven soundness and completeness of ASP encoding for the finitely many-valued

case and provided an upper complexity bound. As a proof of concept, we have experi-

mented the proposed approach for checking properties of some trained neural networks

for the MONK’s problems, see Thrun et al. (1991).

Undecidability results for fuzzy DLs with general inclusion axioms (Cerami and Strac-

cia 2011; Borgwardt and Peñaloza 2012), motivate the investigation of many-valued ap-

proximations of fuzzy multipreference entailment. The choice of LC is motivated by the

fact it is sufficient to encode a neural network as a weighted KB as well as to formulate

boolean properties of the network. This work is a first step towards the definition of proof

methods for reasoning from weighted KBs under a finitely many-valued preferential se-

mantics in more expressive or lightweight DLs. For EL⊥, the two-valued case has been

studied in previous work by Giordano and Theseider Dupré (2021a).

The encoding of a neural network as a conditional KB opens the possibility of combin-

ing empirical knowledge with elicited knowledge, for example, in the form of strict inclu-

sions and definitions. Much work has been devoted, in recent years, to the combination

of neural networks and symbolic reasoning (see the survey by Lamb et al . 2020), leading

to the definition of new computational models and to extensions of logic programming

languages with neural predicates. The relationships between normal logic programs and

connectionist network have been investigated by d’Avila Garcez and Zaverucha (1999)

and by Hitzler et al. (2004). A correspondence between neural networks and gradual ar-

gumentation semantics has been recently investigated by Potyka (2021) by studying the

semantic properties and the convergence conditions of a MLP-based bipolar semantics.

The correspondence between neural network models and fuzzy systems has been first

investigated by Kosko (1992) in his seminal work. A fuzzy extension of preferential logics

has been studied by Casini and Straccia (2013b) based on rational closure.

While using preferential logic for the verification of properties of neural networks is a

general (model agnostic) approach, first proposed for SOMs by Giordano et al . (2020,

2022), whether it is possible to extend the logical encoding of MLPs as weighted condi-

tional KBs to other network models is a subject for future investigation. The development
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of a temporal extension of weighted conditional KBs to capture the transient behavior

of MLPs is also an interesting direction to extend this work.

Supplementary material

To view supplementary material for this article, please visit http://doi.org/10.1017/

S1471068422000163.

References

Adadi, A. and Berrada, M. 2018. Peeking inside the black-box: A survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160.

Arrieta, A. B., Rodŕıguez, N. D., Ser, J. D., Bennetot, A., Tabik, S., Barbado, A.,
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Garćıa-Cerdaña, A., Armengol, E. and Esteva, F. 2010. Fuzzy description logics and
t-norm based fuzzy logics. International Journal of Approximate Reasoning 51, 6, 632–655.

Giordano, L. 2021a. From weighted conditionals of multilayer perceptrons to gradual argumen-
tation. Presented in 5th Workshop on Advances In Argumentation In Artificial Intelligence
(AI3@ AIxIA 2021), November 29, 2021, https://arxiv.org/abs/2110.03643.

Giordano, L. 2021b. On the KLM properties of a fuzzy DL with Typicality. In Proceedings
of the ECSQARU 2021, Prague, Czech Republic, 21–24 September 2021. LNCS, vol. 12897.
Springer, 557–571.

Giordano, L. and Gliozzi, V. 2021. A reconstruction of multipreference closure. Artificial
Intelligence 290, 1–34.

Giordano, L., Gliozzi, V. and Theseider Dupré, D. 2022. A conditional, a fuzzy and a
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