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Partial differential equations have a long and rich history of application in physical
problems. Most of the partial differential equations arising from real life applications
cannot be solved analytically. For these equations, one has to apply a numerical
approximation technique. The finite-element method is a very popular technique to
approximate solutions of partial differential equations. The finite-element method is
based on rigorous mathematical foundations and convergence analysis, proving that it
is a reliable approximation technique.

This thesis focuses on multi-field formulations for the Poisson problem, elasticity
problem and sixth-order problem, where we use mixed formulations to get a better
approximation of gradient, stress, pressure, vorticity, etc. In contrast to earlier
approaches, we adopt a biorthogonal approach to obtain an efficient numerical scheme.
We use a three-field and five-field formulation for the Poisson and elasticity problem,
respectively, which allow us to use a biorthogonal system for efficient finite-element
methods. The use of biorthogonal systems leads to a diagonal coupling matrix and,
thus, all the auxiliary variables can be statically condensed out from the system. The
auxiliary variables are gradient and Lagrange multipliers for the Poisson problem,
whereas pressure, stress and strain are auxiliary variables for the elasticity problem.
Hence we get a reduced system with only primal solution variables to solve. The sixth-
order problem is also written as a three-field mixed formulation. However, we cannot
use a biorthogonal system in this case. We also utilise the finite-element method to
solve the vibration of the ice shelf and show that our approach works better than the
traditional method. In this case, the finite-element method has the advantage in a water
cavity with arbitrary shape, which enables us to solve more realistic models.
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For the Poisson problem, we develop three new approaches based on an abstract
mixed formulation. The first formulation is the modification of a primal mixed
formulation, in which we introduce a stabilisation term to satisfy well-posedness
conditions. We formulate a new parametrised stabilisation term and show the optimal
parameter can be found using the extended Céa lemma. On the second approach,
we extend the parameterised mixed formulation with the Nitsche penalty method to
weakly define the essential (Dirichlet) boundary conditions. The Nitsche formulation,
combined with a biorthogonal system, allows us to preserve the optimal convergence
and have efficient numerical computation. The third approach is the modification of a
dual mixed formulation, where we use the Raviart-Thomas element to discretise the
gradient. We construct a biorthogonal system locally on each element and condense
out degrees of freedom related to the gradient and the Lagrange multiplier, to arrive
at the system with only the primal solution variables. Some numerical examples are
presented to evaluate and compare the three formulations. All three Poisson problem
formulations are numerically efficient compared to the standard mixed formulation,
due to the use of the biorthogonal system.

In the next part of the thesis, we are interested in the application of the boundary
modification technique, which is widely used in the context of the mortar finite-
element method, to the gradient recovery approach. In this case, we construct a new
gradient recovery method utilising both the biorthogonal system and the boundary
modification technique. The key to the new formulation is the boundary modification
technique, which preserves the convergence rates on the boundary patch shown by
some numerical examples. The boundary modification technique is also used in the
clamped boundary condition for the sixth-order problem to modify the Lagrange
multiplier space so that it satisfies the required approximation property. We then use
the constrained minimisation to cast our problems in a three-field mixed formulation as
in the case of the biharmonic equation. Some numerical examples, utilising the linear
and quadratic finite elements, are shown to agree with our theoretical convergence
rates.

The elasticity problem is also one of the applications of the biorthogonal approach
developed in this thesis. The combination of the standard Hu—Washizu and the
displacement-pressure approach leads us to the five-field formulation. As in the case
of the Poisson problem, we use a biorthogonal system to get an efficient numerical
method. Using such a biorthogonal system for the strain and stress, pressure and its
Lagrange multiplier, the stress, strain, pressure and its Lagrange multiplier can be
statically condensed out from the system just by inverting diagonal matrices.

The last problem considered in this thesis is the application of the finite-element
method in the ice-shelf vibration problem. The problem can be seen as an elastic
fluid—solid body interaction in a simplified setting. In this case, rather than elastic
coupling, we use the Bernoulli-Euler beam assumption for the ice shelf and solve the
fourth-order partial differential equation for the coupling problem. We show that our
approach works well by using a few benchmark examples.

Some of this research has been published in [1-5].
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