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1. Introduction. Let f(x) be real valued, bounded and, integrable in the 
sense of Riemann on the interval X = (0 < x < 1), with the value of its integral 
over X equal to one. For brevity we call such a function admissible. The symbol 
Xl will always denote the interval (k — \)/n < x < k/n, x\ an arbitrarily 
chosen point of Xn

k} and 8 any specified set of intermediate points 

ixl) {k= 1 , 2 , . . . , n; n= 1 , 2 , 3 , . . . ) . 

If {a*} is a sequence of 0's and l's such that 

1 n 

lim - ] T ak = a, 

then it is known [2] that the "pattern integral," defined by 

(1.1) lim±Ê/(*ï)a*, 

exists for all choices of 5 and has the value a. 
It is clear that (1.1) may also be regarded as defining a method of summability, 

which we denote by (9î,/, ô), and in §2 we find the condition under which this 
method includes the method (C, 1) of arithmetic means. In §3, by reinterpreting 
certain results of Agnew and Rado, we call attention to the existence of two 
classes of functions for which (9Î,/, 8) is equivalent to (C, 1). We conclude with 
a pair of examples, the first of which shows that (9Î,/, 5), for certain / , may 
be definitely stronger than (C, 1) for bounded sequences. 

In terms of the pattern integral, the results exhibit conditions under which 
the existence of the pattern integral implies that the pattern {ak} has a density 
in the sense of (C, 1) ; and the first example shows that the pattern integral may 
exist without the pattern having a (C, 1)-density. 

2. Inclusion of (C, 1) by (9Î, / , d). In addition to the definitions in §1 we 
need the following facts from the theory of summability. A transformation of 
the form 

(T) Tn= t,anksk (n= 1 , 2 , 3 , . . . ) 
À>=I 

defines a method of summability by means of which a sequence {sk} is said to be 
sumrnable-T to s if Tn —> 5 as n —-> œ. If every convergent sequence is summable-2" 
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to its ordinary limit, then T is said to be regular. In order that T be regular the 
following conditions are necessary and sufficient : 

(2.1) lima»* = 0 (k = • 1, 2, 3, . . . ), 

(2.2) l ime a,* = L 
n-^co k—1 

n 

(2.3) sup 23 I a>n* I < °° • 
n k=l 

A method T\ is said to include a method 1^2 if every sequence summable-7^ is 
summable-7\ to the same value. If each of 7\ and JH2 includes the other, then 
they are equivalent. These definitions can be phrased to hold with respect to a 
specified class of sequences. For example, it will be necessary to employ the 
phrase, equivalent for bounded sequences, with its obvious meaning. A more 
restrictive concept than the latter is the following. The methods 7\ and T2 

are said to be absolutely equivalent for bounded sequences if for each bounded 
sequence {sk} the corresponding transforms are related by means of the 
condition 

lim [rw
(1) - T™] = 0. 

»~>oo 

As indicated above, we use the notation (9Î, / , <5) for the method of summability 
defined by the transformation 

(2.4) Tn = ~ Ê / ( * 2 ) sk (« = 1, 2, 3, . . . ), 

where / is admissible and b = (xl) is a given set of intermediate points. If 
f(x) = 1 on X we note that (2.4) reduces to the Cesàro method (C, 1). 

THEOREM 1. For arbitrary ô± and ô2 the methods (9î,/, 5i) and (9Î,/, 52) are 
absolutely equivalent for bounded sequences. 

Proof. Let the set of intermediate points ôi be denoted by (xn
kti) and the set 

82 by (x">2). By a theorem of Cooke [3, p. 105] we have only to show that 

Dn^lJl \f(xll)-f(xt>)\=0(l). 

But this is immediate. For let Ml = sup fix) on Xl, and ml = inf f(x) on Xn
k 

(k = 1, 2, . . . , n\ n = 1, 2, 3, . . .). Then 

Dn<-j: {Ml-ml) =o(l). 
n k=i 

THEOREM 2. Every method (9Î,/, 8) includes (C, 1) for bounded sequences. 

Proof. For sequences of 0's and l's this theorem is merely a restatement of 
the "principal theorem" in [2]. For arbitrary bounded sequences the proof 
remains the same. 
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In order to discuss the inclusion of (C, 1) by (9Î,/, d) in the general case, 
we denote by tn the (C, 1) transform, 

1 n 

n ? 5*' 
of an arbitrary sequence {sk}. Then 

$. = «A, ~ (n - l)/„-i (« = 1, 2, 3, . . . ; /«, = 0) 

and this expression for sn in (2.4) yields 

(2.5) Tn = ^ i WW) ~ f(xt+i)]tk (« = 1, 2, 3, . . . ), 

where /(#n+i) is understood to be zero. 

THEOREM 3. In order that (9î,/, 5) include (C, 1) /or a given b it is necessary 
and sufficient that 

(2.6)' sup t , \ I /(*") ~ /(**+i) I s * ( 8 ) • < » • 

Proof. In the notation above it is clear that the statements "{$*} is an 
arbitrary (C, l)-summable sequence" and u{tn) is an arbitrary convergent 
sequence" are equivalent. Consequently, convergence in (2.4) for every (C, 1)-
summable {sk) is equivalent to convergence in (2.5) for every convergent {tn}. 
In order that the latter be true it is necessary and sufficient that the matrix 

be regular, and the conditions (2.1), (2.2), (2.3) in this case reduce simply to 
(2.6). 

It seems reasonable to expect that the satisfaction of (2.6) for all b can be 
characterized by some simple property of the function f(x). That this is in fact 
the case is shown by the next theorem, the proof of which is facilitated by the 
following lemma. 

LEMMA 1. If (2.6) holds for all 5, then sup$ K(S) < °°. 

Proof. Suppose to the contrary that sups K(8) — + <». Then for each 
i — 1, 2, 3, . . . there exists a set of intermediate points 

5*= (xli) 

such that K(8i) > i. Hence there exists a sequence of indices {n{} such that 

: r E *!/(*!.'«)-/(*fti.«) I >*'• 
Mi *=1 

and it is easily seen that {n^ must contain a strictly increasing subsequence 
{ntj} = {nij}> Let a set of intermediate points be defined as follows: xl is 
arbitrary if n ^ ntj (k = 1, 2, . . . , n) ; and 

https://doi.org/10.4153/CJM-1953-032-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-032-0


292 J. D. HILL 

*?'=*?. '*, (* = 1,2, . . . , r o , ; i = l , 2 , 3 , . . . ) . 

Then (2.6) is evidently violated by this choice of 8. 

THEOREM 4. In order that (2.6) hold for all 8 it is necessary and sufficient that 
the function xf(x) be of bounded variation on X. 

Proof. We first observe that 

(2.7) é I \f{x\) - /WE+i) | < E | *#(*£) " **W(**+i) I + 0(1), 

(2.8) £ I *2/(*ï) - xl+lf{xn
k+1) I < Z ^ l/(**) - / ( 4 + i ) I + 0(1), 

where the quantities 0(1), entering here and below, are independent of 8. 
Then if xf(x) is of bounded variation on X, we find from (2.7) that 

Ê \ l/(*ï) -/(«w-i) I < rt[*/(*)] + o(i) = o(i), 

where K denotes total variation. This establishes the sufficiency. 
To prove the necessity, let 0 = xQ < x\ < . . . < xm = 1 be an arbitrary 

partition of the interval X. Fix an integer p so large that at most one of the 
points Xi lies in any sub-interval Xp

k, and let 

ô = (*2) 

be any set of intermediate points such that the set (x0, x\, . . . , xm) is contained 
in the set {x\y x\, . . . , Xp). Then using (2.8) and Lemma 1, we have 

m y 

]T I #<-l/(ffi-l) - *z/(#i) | < S I **/(**) — **+l/(*fc+l) I 

< E \ I/WE) - / ( * ? + i ) I + 0(1) < sup5i£(ô) + 0(1) = 0(1) 

This completes the proof. 

Combining Theorems 3 and 4 we obtain 

THEOREM 5. In order that (3Î,/, ô) include (C, 1) /or a// 5 ^ is necessary and 
sufficient that x f{x) be of bounded variation on X. 

3. Equivalence of (C, 1) and (9Î, / , 6). For the sake of completeness we 
now wish to point out that results of Agnew and Rado yield two classes of 
monotone functions for which (9î,/, 8) is equivalent to (C, 1). It is convenient, 
however, to begin with the following obvious lemma. 

LEMMA 2. In order that (9î,/, 8) be equivalent to (0, 1) for all 8 it is necessary 
and sufficient that x f(x) be of bounded variation on X, and that the matrix 
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(j[f(4)-/(4+i)]) 

in (2.5) define a method (SR*,/, 8) equivalent to convergence for all 8. 

The next lemma is a result of Rado [5, p. 274] adapted to the present situation. 
Essentially the same result was given earlier by Agnew [1, p. 245]. 

LEMMA 3. If ($*, / , 8) is regular for a given 8 and if there exists constants 
Bi (0 < 05 < 1) and Ni > 0, such that 

£ ~ 1/(4) - / W H - I ) ! < eB \f(xn
n) | (all n > Ns), 

*=i n 
then (dt*,f, 8) is equivalent to convergence. 

Using these lemmas we easily deduce the following theorems which are 
essentially contained in results of Agnew [1, p. 251]. 

THEOREM 6. If fipc) is non-decreasing then (5R,/, 8) is equivalent to (C, 1) 
for all 8. 

Proof. To show that the hypotheses of Lemma 2 are satisfied, we first observe 
that x f(x) is of bounded variation if f(x) is non-decreasing. This implies, by 
Theorem 4, that (9î*,/, 8) is regular for all 8. Turning now to Lemma 3, we have 
to show that there exist constants 6 (0 < 6 < 1) and N > 0, independent of ô, 
such that 

(3.1) f{xn
n) - I f ) / (*2) < 6 \f(xn

n) | (all n > N; all 6). 

To accomplish this we recall the assumption 

•(3.2) ff(pc)dx=l9 

which, together with the fact that /(x) is non-decreasing, implies that /(x) > 0 
throughout an interval XZ. Condition (3.2) also implies the existence of an 
integer N > m such that 

l è/(«î) > i 
for all n > N and all 8. Now fix 0 (0 < $ < 1) so that (1 - 0)/(l) < J. Then 
we have 

(i - e)f(xn) < (i - 0)/(D < i < ^è/feB), 

for all w > iV and all 5, and (3.1) follows at once. 

THEOREM 7. Iff(x) is non-increasing with f (I) > f, //zew (9Î, / , 8) is equivalent 
to (C, 1) for all Ô. 
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Proof, The proof parallels the preceding one except that (3.1) is now replaced 
by 

(3.3) ^EfW)-f(x:xdf(x:). 

In this case, since / ( l ) > | , we can fix 0 (0 < 0 < 1) so that a = (1 + 0) / ( l ) 
> 1. We can then choose N so large that 

èè/(*£)<« 
» ~ 1 

for all n ^ N and all 5. Then 

^ è/(*5) < (i + o)f(i) < (i + »)/(*:), 

and (3.3) follows. 
In terms of the pattern integral, Theorems 6 and 7 provide instances in 

which the existence of the pattern integral implies that the pattern {ak} has a 
(C, l)-density. Such examples were lacking in [2]. 

I t is of interest to ask if the restriction / ( l ) > \ in Theorem 7 is essential. 
In this connection we have the following example in which / ( l ) = §, and the 
theorem fails to hold. 

Example 1. Let/*(x) be defined as J for 0 < x < | , and as \ for \ < x < 1. 
Then f*(x) is admissible and non-increasing but (9t,/*, 5), which includes 
(C, 1) for all 8 by Theorem 5, is definitely stronger than (C, 1). To prove this 
we consider the sequence 

{at} s (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, . . . ), 

composed of groups of 0's and l's, where each group beyond the second contains 
twice as many elements as the preceding group. Let {/*} be the (C, 1)-transform 
of {at} and use the notation t*(n) as alternative to /*• Then it is easy to see that 
t*(2u) -+ i while <*(2**+1) -> f, so that {at} is not summable-(C, 1). 

On the other hand, we can show that {at} is summable-(9?,/*, ô) to the value 
\. For let n be given and determine the unique integer i = i(n) such that either 
(a) 22*-1 < n < 22<, or (b) 22i < n < 22i+\ Then in case (a) we find that 

n = litnxï)aî 
tt*Ti 

= —y 
2nH 

*t + 2n 
* 

a* +
 2M 

i f a| 

= 
Q i -2 

2w^i 2 « u in]- 22 i- : 
; ^ 2n 

(22*-1 - [ 

= n 
2 
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The choise of ô is obviously immaterial here except in one interval, and this 
interval yields a term o(l) for either functional value. A similar calculation in 
case (b) shows that T* = \ — (2/w). Consequently, the sequence {at} is 
summable-(9Î,/*, 5) to the value J. 

In so far as the pattern integral is concerned, this example shows that the 
latter may exist without the pattern {ak} having a (C, 1)-density. This question 
was left open in [2]. 

In connection with Theorem 7 and the fact that the condition / ( l ) > \ 
cannot be weakened, the following example is of interest. 

Example 2. For any a > 1 the function fa(x) = a ( l — x)a~l is admissible 
and strictly decreasing, with/«(l) = 0. Moreover, it can be shown that (9î,/«, 5) 
is equivalent to (C, 1) for bounded sequences. In view of Theorem 1 we can make 
any convenient choice of 5, and we select b~ defined by 

* ; = ( * - 1)/» (k = 1, 2, . . . , n; n = 1, 2, 3, . . .) 

Then the matrix of (9t,/«, à~) reduces to (a(n — k + l ) " - 1 / ^ ) , which is equiva­
lent to the Norlund matrix corresponding to the defining sequence {ka~1}. 
Therefore, any bounded sequence summable-(9î,/a, ô~), say to s, is summable to 
5 by the classical Abel method [7, p. 426], and hence summable-(C, 1) to 5 
[4, p. 37]. 

4. Some further remarks. One observes that (9i, /2, Sr) of the preceding 
Example 2 is equivalent to (C, 2), and this raises the question of the relationship 
between (9Î,/, 5) and (C, a) in general. In this regard we state without proof 
the following facts. 

(4.1) If there exists a Riemann integrable function f%(x) and a set of sub­
division points ôa such that (9î,/«, ôa) coincides with (C, a) for a > 1, then f*{x) 
is equal tofa(x) — a(l — x)a_1 almost everywhere. 

(4.2) In order that there exist a set of subdivision points ôa such that (9Î, fai 8a) 
coincides with (C, a), it is necessary and sufficient that 1 < a < 2. 

(4.3) The sequence {(— l)* - 1 kz], which is not summable-(C, 3), is summable-
(9t,/s,fr~) to zero. 

A connection between general triangular methods (ank) and the methods 
(9Î»/» 5) may be established as follows. 

(4.4) Let (ank) be triangular and regular and let <j>n{x) = nank for (k — l)/n 
< x < k/n (k = 1, 2, . . . , n; n = 1, 2, 3, . . . ). Suppose that |0»(#)| < <j>{x) 
a.e. for all n > N, where <}> (x) is positive and Lebesgue integrable; and that there 
exists a Riemann integrable function f(x) such that <j)n(x) —»/(#) a.e. Then, for all 
ô, (9Î,/, 8) is absolutely equivalent to (ank) for bounded sequences. 
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The conclusion in (4.4) cannot in general be strengthened to equivalence. 
To see this we choose for (ank) the matrix of (C, 3), so that / (x) in (4.4) can be 
taken as/3(#) in (4.1). The assertion then follows from (4.3). 
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