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The stable derived category of a noetherian scheme
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Dedicated to Claus Michael Ringel on the occasion of his 60th birthday

Abstract

For a noetherian scheme, we introduce its unbounded stable derived category. This leads
to a recollement which reflects the passage from the bounded derived category of coherent
sheaves to the quotient modulo the subcategory of perfect complexes. Some applications
are included, for instance an analogue of maximal Cohen–Macaulay approximations, a
construction of Tate cohomology, and an extension of the classical Grothendieck duality.
In addition, the relevance of the stable derived category in modular representation theory
is indicated.

1. Introduction

Let X be a separated noetherian scheme and denote by Qcoh X the category of quasi-coherent
sheaves on X. We consider the derived category D(Qcoh X) and two full subcategories

Dperf(coh X) ⊆ Db(coh X) ⊆ D(Qcoh X)

which are of particular interest. Here, Db(coh X) denotes the bounded derived category of coherent
sheaves, and Dperf(coh X) denotes the subcategory of perfect complexes.

Now let InjX be the full subcategory of injective objects in Qcoh X, and denote by K(Inj X) its
homotopy category. The composite

Q : K(Inj X) inc �� K(Qcoh X) can �� D(Qcoh X)

gives rise to a localization sequence

S(Qcoh X) I �� K(InjX)
Q

�� D(Qcoh X)

where S(Qcoh X) denotes the full subcategory of all acyclic complexes in K(Inj X). Thus Q induces
an equivalence

K(Inj X)/S(Qcoh X) ∼−→ D(Qcoh X).

Next we recall that an object X in some category with coproducts is compact if every map
X →

∐
i Yi into an arbitrary coproduct factors through a finite coproduct. For instance, an object

in D(Qcoh X) is compact if and only if it is isomorphic to a perfect complex. It is well known that
the derived category D(Qcoh X) is compactly generated, that is, there is a set of compact objects
which generate D(Qcoh X) [Nee96]. To formulate our main result, let us denote by Kc(Inj X) and
Sc(Qcoh X) the full subcategories of compact objects in K(InjX) and S(Qcoh X), respectively.
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The stable derived category of a noetherian scheme

Theorem 1.1. Let X be a separated noetherian scheme.

(1) The functors I,Q have left adjoints Iλ, Qλ and right adjoints Iρ, Qρ respectively. We have
therefore a recollement

S(Qcoh X) �� K(Inj X) ��
��
�� D(Qcoh X).��

��

(2) The triangulated category K(Inj X) is compactly generated, and Q induces an equivalence
Kc(InjX) → Db(coh X).

(3) The sequence

D(Qcoh X)
Qλ �� K(InjX)

Iλ �� S(Qcoh X)

is a localization sequence. Therefore S(Qcoh X) is compactly generated, and Iλ ◦Qρ induces
(up to direct factors) an equivalence

Db(coh X)/Dperf(coh X) ∼−→ Sc(Qcoh X).

Note that this theorem is a special case of a general result about Grothendieck categories. All
we need is a locally noetherian Grothendieck category A, for instance A = Qcoh X, such that D(A)
is compactly generated. There is a surprising consequence which seems worth mentioning.

Corollary 1.2. Let X be a separated noetherian scheme. Then a product of acyclic complexes of
injective objects in Qcoh X is acyclic.

We call the category S(Qcoh X) the stable derived category of Qcoh X. A first systematic study
of the bounded stable derived category

Db(coh X)/Dperf(coh X)

can be found in work of Buchweitz [Buc87]. Unfortunately this beautiful paper has never been
published; however see [BEH87]. For a Gorenstein ring Λ he identifies the bounded derived category
of finitely generated Λ-modules modulo perfect complexes

Db(modΛ)/Dperf (modΛ)

with the stable category of maximal Cohen–Macaulay Λ-modules and with the category of acyclic
complexes of finitely generated projective Λ-modules. The same identification appears in [Ric89] for
selfinjective algebras and plays an important role in modular representation theory of finite groups;
see also [KV87]. The approach in the present paper differs from that of Buchweitz substantially
because we work in the unbounded setting and we use injective objects instead of projectives. This
has some advantages. For instance, in any Grothendieck category we always have enough injectives
but often not enough projectives. On the other hand, we obtain a recollement in the unbounded
setting which does not exist in the bounded setting. In fact, the celebrated theory of maximal Cohen–
Macaulay approximations [AB89] is described as ‘decomposition’ [AB89] or ‘glueing’ [Buc87], but
finds a natural interpretation as ‘recollement’ in the sense of [BBD82] if one passes to the unbounded
setting. To be precise, the recollement

S(Mod Λ) �� K(Inj Λ) ��

Iλ

��

Iρ
�� D(Mod Λ)

Qλ

��

Qρ
��

induces for any Gorenstein ring Λ the Gorenstein injective approximation functor

T : Mod Λ can−−→ D(Mod Λ)
Iλ ◦Qρ−−−−→ S(Mod Λ) Z0

−−→ Mod Λ

where Mod Λ denotes the stable category modulo injective objects. For any Λ-module A, the
Gorenstein injective approximation A → TA is the ‘dual’ of the maximal Cohen–Macaulay
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approximation which is based on projective resolutions. Let us stress again that this approach
generalizes to any locally noetherian Grothendieck category A provided that D(A) is compactly
generated.

Next we explain the connection between Gorenstein injective approximations and Tate coho-
mology. We fix a locally noetherian Grothendieck category A and pass from the stable derived
category S(A) to the full subcategory T(A) of totally acyclic complexes. An object in A is by def-
inition Gorenstein injective if it is of the form Ker(X0 → X1) for some X in T(A). The inclusion
G : T(A) → K(InjA) has a left adjoint Gλ. Given an object A in A with injective resolution iA,
we may think of GλiA as a complete injective resolution of A. This leads to the following definition
of Tate cohomology groups

Êxt
n

A(A,B) = Hn HomA(A,GλiB)

for any A,B in A and n ∈ Z. This cohomology theory is symmetric in the sense that for any A
in A, we have

Êxt
∗
A(A,−) = 0 ⇐⇒ Êxt

∗
A(−, A) = 0 ⇐⇒ Êxt

0

A(A,A) = 0.

Let X denote the class of all objects A such that Êxt
∗
A(A,−) vanishes, and let Y be the class of

Gorenstein injective objects in A.

Theorem 1.3. Let A be a locally noetherian Grothendieck category and suppose that D(A) is
compactly generated.

(1) X = {A ∈ A | Ext1A(A,B) = 0 for all B ∈ Y}.
(2) Y = {B ∈ A | Ext1A(A,B) = 0 for all A ∈ X}.
(3) Every object A in A fits into exact sequences

0 → YA → XA → A→ 0 and 0 → A→ Y A → XA → 0

in A with XA,X
A in X and YA, Y

A in Y.

(4) X ∩ Y = InjA.

After explaining some historical background, let us mention more recent work on stable derived
categories. For instance, Beligiannis developed a general theory of ‘stabilization’ in the framework
of relative homological algebra [Bel00], and Jørgensen studied the category of ‘spectra’ for a module
category [Jor01]. Also, Orlov discussed the category

Db(coh X)/Dperf(coh X)

under the name ‘triangulated category of singularities’ and pointed out some connection with the
Homological Mirror Symmetry Conjecture [Orl03]. In any case, our notation S(Qcoh X) reflects this
terminology.

Our main results suggests that the homotopy category K(InjX) deserves some more attention.
We may think of this category as the ‘compactly generated completion’ of the category Db(coh X). In
fact, the category coh X of coherent sheaves carries a natural differential graded (DG) structure and
its derived category Ddg(coh X) is equivalent to K(InjX). This follows from Keller’s work [Kel94]
and complements a recent result of Bondal and van den Bergh [BV03] which says that D(Qcoh X)
is equivalent to Ddg(A) for some DG algebra A.

As another application of our main result, let us mention that the adjoint pair of functors
Rf∗ and f ! which establish the Grothendieck duality for a morphism f : X → Y between schemes
[Har66, Nee96], can be extended to a pair of adjoint functors between K(InjX) and K(Inj Y).
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The stable derived category of a noetherian scheme

Theorem 1.4. Let f : X → Y be a morphism between separated noetherian schemes. Denote by
Rf∗ : D(Qcoh X) → D(Qcoh Y) the right derived direct image functor and by f ! its right adjoint.

Then there is an adjoint pair of functors R̂f∗ and f̂ ! making the following diagrams commutative.

D(Qcoh X)

Qλ

��

Rf∗
�� D(Qcoh Y) D(Qcoh Y)

Qρ

��

f !
�� D(Qcoh X)

K(Inj X)
R̂f∗

�� K(Inj Y)

Q

��

K(Inj Y)
̂f !

�� K(Inj X)

Q

��

Again, this theorem is really a lot more general. It is irrelevant that the functor f∗ comes from a
morphism f : X → Y. All we need is that f∗ and its right derived functor Rf∗ preserve coproducts.
On the other hand, there is a strengthened version of Theorem 1.4 which uses the special properties
of f∗. The author is grateful to Amnon Neeman for pointing out the following.

Theorem 1.5 (Neeman). Let f : X → Y be a morphism between separated noetherian schemes.
Then R̂f∗ sends acyclic complexes to acyclic complexes. Thus we have an adjoint pair of functors
between S(Qcoh X) and S(Qcoh Y), making the following diagrams commutative.

S(Qcoh X)

Sf∗
��

I ��

��

K(Inj X)
Q

��

R̂f∗
��

D(Qcoh X)

Rf∗
��

S(Qcoh Y) I �� K(Inj Y)
Q

�� D(Qcoh Y)

S(Qcoh Y)

��

Sf !

��

K(Inj Y)
Iρ

��

f̂ !

��

D(Qcoh Y)
Qρ

��

f !

��

S(Qcoh X) K(Inj X)
Iρ

�� D(Qcoh X)
Qρ

��

It seems an interesting project to study the functor Sf∗, for instance to find out when it is an
equivalence. The following result demonstrates the geometric content of this question; it generalizes
a result of Orlov for the bounded stable derived category [Orl03].

Theorem 1.6. Let Y be a separated noetherian scheme of finite Krull dimension. If f : X → Y

denotes the inclusion of an open subscheme which contains all singular points of Y, then
Sf∗ : S(Qcoh X) → S(Qcoh Y) is an equivalence.

Despite the title of this paper and the algebraic geometric formulation of the main results,
there is another source of serious interest in stable categories. Take a finite group G and a field k.
A classical object in modular representation theory is the stable module category Mod kG of the
group algebra kG. We shall see that this stable category is equivalent to the stable derived category
of the full module category Mod kG. Using a slightly different setting, Hovey et al. studied the
functor

Iλ : K(Inj kG) −→ S(Mod kG) ∼= Mod kG
in their work on axiomatic stable homotopy theory [HPS97]. Note that K(InjkG) carries a commuta-
tive tensor product and the (graded) endomorphism ring of its unit is simply the group cohomology
ring H∗(G, k). Therefore, K(Inj kG) seems to be the right object for studying representations of G
via methods from commutative algebra. In fact, the composite

D(Mod kG)
Iλ ◦Qρ−−−−→ S(Mod kG) Z0

−−→ Mod kG

plays a crucial role in recent work of Benson and Greenlees [BG04].
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Having stated some of the main results, let us sketch the outline of this paper. The paper deals
with locally noetherian Grothendieck categories and covers therefore various applications, for in-
stance in algebraic geometry or representation theory. Thus we fix a locally noetherian Grothendieck
category A and study the recollement

S(A) �� K(InjA) ��
��
�� D(A).��

�� (1.1)

More specifically, we begin in § 2 with the basic properties of the homotopy category K(InjA). The
recollement (1.1) is established in §§ 3 and 4. In § 5, we discuss the essential properties of the stable
derived category S(A). Then we extend derived functors in § 6, and § 7 is devoted to studying
Gorenstein injective approximations and Tate cohomology. In § 8, we indicate the relevance of the
stable derived category in modular representation theory. Appendix A provides additional material
about DG categories, and Appendix B discusses homotopically minimal complexes.

2. The homotopy category of injectives

We fix a locally noetherian Grothendieck category A. Thus, A is an abelian Grothendieck category
and has a set A0 of noetherian objects which generate A; that is, every object in A is a quotient of
a coproduct of objects in A0. We denote by noethA the full subcategory formed by the noetherian
objects in A, and InjA denotes the full subcategory of injective objects. Note that InjA is closed
under taking coproducts.

We write K(A) for the homotopy category and D(A) for the derived category of unbounded
complexes in A; for their definitions and basic properties, we refer to [Ver96]. We do not distinguish
between an object in A and the corresponding complex concentrated in degree zero in the homotopy
category K(A). The inclusion noethA → A induces a fully faithful functor

Db(noethA) −→ D(A)

which identifies Db(noethA) with the full subcategory of objects X in D(A) such that HnX is
noetherian for all n and HnX = 0 for almost all n ∈ Z; see [Ver96, Proposition III.2.4.1].

In this section, we study the basic properties of the homotopy category K(InjA). We shall see
that this category solves a completion problem for the triangulated category Db(noethA). Let us
begin with some elementary observations.

Lemma 2.1. Let A be an object in A and denote by iA an injective resolution. Then the natural
map

HomK(A)(iA,X) −→ HomK(A)(A,X) (2.1)
is an isomorphism for all X in K(InjA). Therefore, iA is a compact object in K(InjA) if A is
noetherian.

Proof. Denote for any n ∈ Z by σ�nX the truncation satisfying

(σ�nX)p =

{
Xp if p � n,

0 if p < n.

We complete the map A→ iA to an exact triangle

aA −→ A −→ iA −→ Σ(aA)

and obtain
HomK(A)(aA,X) ∼= HomK(A)(aA, σ

�−1X) = 0
since aA is acyclic and concentrated in non-negative degrees. Thus,

HomK(A)(iA,X) ∼= HomK(A)(A,X).
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Now assume that A is noetherian. Clearly, A is a compact object in A and therefore a compact
object in K(A). The isomorphism (2.1) shows that iA is a compact object in K(InjA).

Lemma 2.2. Let X be a non-zero object in K(InjA). Then there exists a noetherian object A in A
such that HomK(A)(A,ΣnX) �= 0 for some n ∈ Z.

Proof. Suppose first that HnX �= 0 for some n. Choose a noetherian object A and a map A→ ZnX
inducing a non-zero map A → HnX. We obtain a chain map A → ΣnX which induces a non-zero
element in HomK(A)(A,ΣnX).

Now suppose HnX = 0 for all n. We can choose n such that ZnX is non-injective. Using Baer’s
criterion, there exists a noetherian object A in A such that Ext1A(A,ZnX) is non-zero. Now observe
that

HomK(A)(A,Σ
n+pX) ∼= ExtpA(A,ZnX)

for all p � 1. Thus HomK(A)(A,Σn+1X) �= 0. This completes the proof.

Let T be a triangulated category with arbitrary coproducts. Recall that an object X in T is
compact if HomT (X,−) preserves all coproducts. The triangulated category is compactly generated
if there is a set T0 of compact objects such that HomT (X,ΣnY ) = 0 for all X ∈ T0 and n ∈ Z

implies Y = 0 for every object Y in T .

Proposition 2.3. Let A be a locally noetherian Grothendieck category, and let Kc(InjA) denote
the full subcategory of compact objects in K(InjA).

(1) The triangulated category K(InjA) is compactly generated.

(2) The canonical functor K(A) → D(A) induces an equivalence

Kc(InjA) ∼−→ Db(noethA).

Proof. It follows from Lemmas 2.1 and 2.2 that K(InjA) is compactly generated. A standard
argument shows that Kc(InjA) equals the thick subcategory of K(InjA) which is generated by
the injective resolutions of the noetherian objects in A; see [Nee92, Lemma 2.2]. The equivalence
K+(InjA) → D+(A) restricts to an equivalence K+,b(InjA) → Db(A) and identifies Kc(InjA)
with Db(noethA).

Note that we obtain a functor Db(noethA) → K(InjA) which identifies Db(noethA) with the
full subcategory of compact objects. Therefore, the formation of the category K(InjA) solves a
completion problem which we explain by an analogy. The category A is a completion of noethA in
the following sense.

• A is an additive category with filtered colimits.
• The inclusion noethA → A identifies noethA with the full subcategory of finitely presented

objects.
• A coincides with the smallest subcategory which contains all finitely presented objects and is

closed under forming filtered colimits.

Recall that an object X in A is finitely presented if the functor HomA(X,−) preserves filtered
colimits. Similarly, we have the following for T = K(InjA).

• T is a triangulated category with coproducts.
• The functor Db(noethA) → T identifies Db(noethA) with the full subcategory of compact

objects.
• T coincides with the smallest subcategory which contains all compact objects and is closed

under forming triangles and coproducts.
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The category A is, up to an equivalence, uniquely determined by noethA. It would be interesting
to know to what extent K(InjA) is uniquely determined by Db(noethA).

Example 2.4. Suppose there is a noetherian object A in A such that Db(noethA) is generated
by A, that is, there is no proper thick subcategory containing A. Take an injective resolution
iA and denote by EndA(A) the endomorphism DG algebra of iA. Then HomA(iA,−) induces an
equivalence between K(InjA) and the derived category Ddg(EndA(A)) of DG EndA(A)-modules;
see [Kel94]. If one replaces a single generator by a set of generating objects, then one obtains an
analogue which involves a DG category instead of a DG algebra. In particular, noethA carries
the structure of a DG category such that K(InjA) and Ddg(noethA) are equivalent. We refer to
Appendix A for details.

Example 2.5. Let G be a finite p-group and k be a field of characteristic p > 0. We consider the
category A = Mod kG of modules over the group algebra kG. Take an injective resolution ik of
the trivial representation k, and denote by EndkG(k) the endomorphism DG algebra of ik. Then its
derived category Ddg(EndkG(k)) is equivalent to K(InjA). The tensor product ⊗k on A restricts to a
product on InjA and therefore induces a (total) tensor product on K(InjA). On the other hand, the
E∞-structure of EndkG(k) induces a product on Ddg(EndkG(k)). We conjecture that these products
are naturally isomorphic.

Example 2.6. Let Λ be a finite-dimensional algebra over a field k. Then E = Homk(Λop, k) is an
injective cogenerator for A = Mod Λ, and HomΛ(E,−) induces an equivalence InjA → ProjA since
HomΛ(E,E) ∼= Λ. Thus, the homotopy category K(ProjA) is compactly generated. For more on
K(ProjA), see [Jor01, Jor05].

3. A localization sequence

Let A be a locally noetherian Grothendieck category and let

Kac(InjA) = K(InjA) ∩ Kac(A),

where Kac(A) denotes the full subcategory formed by all acyclic complexes in K(A). In this section,
we prove that the canonical functors

I : Kac(InjA) inc−−→ K(InjA) and Q : K(InjA) inc−−→ K(A) can−−→ D(A)

form a localization sequence

Kac(InjA) I �� K(InjA)
Q

�� D(A). (3.1)

Let us start with some preparations. In particular, we need to give the definition of a localization
sequence.

Definition 3.1. We say that a sequence

T ′ F �� T G �� T ′′

of exact functors between triangulated categories is a localization sequence if the following holds.

(L1) The functor F has a right adjoint Fρ : T → T ′ satisfying Fρ ◦F ∼= IdT ′ .
(L2) The functor G has a right adjoint Gρ : T ′′ → T satisfying G ◦Gρ

∼= IdT ′′ .
(L3) Let X be an object in T . Then GX = 0 if and only if X ∼= FX ′ for some X ′ ∈ T ′.

The sequence (F,G) of functors is called a colocalization sequence if the sequence (F op, Gop) of
opposite functors is a localization sequence.

The basic properties of a localization sequence are the following [Ver96, § II.2].
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(1) The functors F and Gρ are fully faithful.
(2) Identify T ′ = ImF and T ′′ = ImGρ. Given objects X,Y ∈ T , then

X ∈ T ′ ⇐⇒ HomT (X,T ′′) = 0,
Y ∈ T ′′ ⇐⇒ HomT (T ′, Y ) = 0.

(3) Identify T ′ = ImF . Then the functor G induces an equivalence T /T ′ → T ′′.
(4) Let X be an object in T . Then there is an exact triangle

(F ◦Fρ)X −→ X −→ (Gρ ◦G)X −→ Σ((F ◦Fρ)X)

which is functorial in X.
(5) The sequence

T ′′ Gρ
�� T

Fρ
�� T ′

is a colocalization sequence.

The next lemma is well known; it provides useful criteria for a sequence to be a localization
sequence. Recall that a full subcategory of a triangulated category is thick if it is a triangulated
subcategory which is closed under taking direct factors.

Lemma 3.2. Let T be a triangulated category and S be a thick subcategory. Then the following
are equivalent.

(1) The sequence S inc−−→ T can−−→ T /S is a localization sequence.

(2) The inclusion functor S → T has a right adjoint.

(3) The quotient functor T → T /S has a right adjoint.

Proof. Condition (1) implies (2) and (3). Also, (2) and (3) together imply (1). Thus we need to
show that (2) and (3) are equivalent. Let us write F : S → T and G : T → T /S for the functors
which are involved.

(2) ⇒ (3) We obtain a functor L : T → T by completing for each X in T the natural map
(F ◦Fρ)X → X to an exact triangle

(F ◦Fρ)X −→ X −→ LX −→ Σ((F ◦Fρ)X).

The functor L annihilates S and therefore factors through G via an exact functor Gρ : T /S → T .
This is a right adjoint of G. In fact, for each pair of objects X in T and Y in T /S, the natural map

HomT /S(GX,Y ) −→ HomT (LX,GρY ) −→ HomT (X,GρY )

is bijective.
(3) ⇒ (2) We obtain a right adjoint Fρ : T → S for the inclusion F by completing for each X in

T the natural map X → (Gρ ◦G)X to an exact triangle

FρX −→ X −→ (Gρ ◦G)X −→ Σ(FρX).

Note that FρX belongs to S since G(FρX) = 0.

We need to construct left and right adjoints for functors starting in a compactly generated
triangulated category. Our basic tool for this is the following result which is due to Neeman.

Proposition 3.3. Let F : S → T be an exact functor between triangulated categories, and suppose
S is compactly generated.

(1) There is a right adjoint T → S if and only if F preserves all coproducts.

(2) There is a left adjoint T → S if and only if F preserves all products.

1135

https://doi.org/10.1112/S0010437X05001375 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001375


H. Krause

Proof. For (1), see [Nee96, Theorem 4.1]. The proof of (2) is analogous and uses covariant Brown
representability [Nee01, Theorem 8.6.1]; see also [Kra02].

We record a similar result for later use.

Proposition 3.4. Let T be a compactly generated triangulated category and S0 be a set of objects
in T . Denote by U the full subcategory of objects Y in T such that HomT (ΣnX,Y ) = 0 for all
X ∈ S0 and n ∈ Z. Then the inclusion U → T has a left adjoint.

Proof. The localizing subcategory S generated by S0 is well generated and the inclusion S → T
therefore has a right adjoint; see [Nee01]. We obtain a localization sequence S inc−−→ T can−−→ T /S by
Lemma 3.2, and the right adjoint of the canonical functor T → T /S identifies T /S with U .

There is a useful criterion when a left adjoint preserves compactness.

Lemma 3.5. Let F : S → T be an exact functor between compactly generated triangulated cat-
egories which has a right adjoint G. Then F preserves compactness if and only if G preserves
coproducts.

Proof. See [Nee96, Theorem 5.1].

The following result establishes the localization sequence for the homotopy category of injective
objects.

Proposition 3.6. Let A be a locally noetherian Grothendieck category. Then the canonical functors
Kac(InjA) → K(InjA) and K(InjA) → D(A) form a localization sequence

Kac(InjA) I �� K(InjA)
Q

�� D(A).

Proof. We know from Proposition 2.3 that K(InjA) is compactly generated. In addition, we use
Lemma 3.2 and Proposition 3.3. The inclusion J : K(InjA) → K(A) preserves products and there-
fore has a left adjoint Jλ satisfying Jλ ◦ J ∼= IdK(InjA). We obtain a localization sequence

K inc �� K(A)
Jλ �� K(InjA)

where K denotes the kernel of Jλ. Thus

HomK(A)(X,Y ) = 0 for all X ∈ K and Y ∈ K(InjA).

This implies that K ⊆ Kac(A) and gives the following commutative diagram of exact functors.

K
inc

��

inc �� K(A)
Jλ �� K(InjA)

F
��

Kac(A) inc �� K(A) can �� D(A)

The functor F is induced by the canonical functor K(A) → D(A), and we have F ∼= Q since
Jλ ◦J ∼= IdK(InjA). Moreover, F preserves coproducts and has therefore a right adjoint Fρ. The
composite J ◦Fρ is a right adjoint for the canonical functor K(A) → D(A). This implies that
F ◦Fρ

∼= IdD(A). On the other hand, Kac(InjA) is the kernel of F . Thus we conclude that the
sequence (3.1) is a localization sequence.

We add some useful remarks which are immediate consequences.

Remark 3.7. Let Jλ : K(A) → K(InjA) be the left adjoint of the inclusion K(InjA) → K(A).
Then the composite Q ◦Jλ is naturally isomorphic to the canonical functor K(A) → D(A).

1136

https://doi.org/10.1112/S0010437X05001375 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001375


The stable derived category of a noetherian scheme

Remark 3.8. The right adjoint Qρ of Q induces an equivalence

Db(noethA) ∼−→ Kc(InjA)

which is a quasi-inverse for the equivalence Kc(InjA) → Db(noethA) induced by Q.

Let us denote by Kinj(A) the full subcategory of complexes Y in K(InjA) such that
HomK(A)(X,Y ) = 0 for all acyclic complexes X in K(A). Following Spaltenstein’s terminology
[Spa88], the objects in Kinj(A) are precisely the K-injective complexes having injective compo-
nents. There are various results about K-injective resolutions in the literature; see for instance
[Spa88, BN93]. The following is certainly not the most general; however, it is sufficient in our
context.

Corollary 3.9. The inclusion Kinj(A) → K(A) has a left adjoint i : K(A) → Kinj(A) which has
the following properties.

(1) Every object X in K(A) fits into an exact triangle

aX −→ X −→ iX −→ Σ(aX)

such that aX is an acyclic complex.

(2) The functor i : K(A) → Kinj(A) induces an equivalence

D(A) = K(A)/Kac(A) ∼−→ Kinj(A).

(3) We have for all X,Y in K(A)

HomD(A)(X,Y ) ∼= HomK(A)(X, iY ).

Proof. Put iX = QρX for each X in K(A), where Qρ denotes the right adjoint of Q : K(InjA) →
D(A). The properties of the functor i follow from the fact that J ◦Qρ is a right adjoint of the
canonical functor K(A) → D(A). In particular, we see that iX is a K-injective complex.

The functor
R : D(A) = K(A)/Kac(A) ∼−→ Kinj(A) inc−→ K(A)

provides a right adjoint for the canonical functor K(A) → D(A). Let us mention as an application
that the right derived functor of any additive functor F : A → B is obtained as composite

RF : D(A) R−→ K(A)
K(F )−→ K(B) can−→ D(B).

Example 3.10. Suppose that every object in A has finite injective dimension. Then the functor
K(InjA) → D(A) is an equivalence since Kac(InjA) = 0. In particular, the compact objects in
D(A) are precisely those from Db(noethA).

Example 3.11. Suppose that products in A are exact. For instance, let A be a module category.
Then one can show that Kinj(A) is the smallest triangulated subcategory of K(A) which is closed
under taking products and contains the injective objects of A (viewed as complexes concentrated
in degree zero).

4. A recollement

In this section, we provide a criterion for A such that the sequence

Kac(InjA) I �� K(InjA)
Q

�� D(A)

induces a recollement
Kac(InjA) �� K(InjA) ��

��
�� D(A)��

��
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in the sense of [BBD82]. It is important to note that one cannot expect a recollement

Kac(A) �� K(A) ��
��
�� D(A)��

�� (4.1)

without severe restrictions on A; see Example 4.9. In fact, a recollement (4.1) implies that a product
of exact sequences in A remains exact.

We begin with a lemma.

Lemma 4.1. Let A be a locally noetherian Grothendieck category. Then a compact object in D(A)
belongs to Db(noethA).

Proof. Suppose that X is compact in D(A). We need to show that HnX is noetherian for all n, and
that HnX vanishes for almost all n in Z. We have for any injective object E in A an isomorphism

HomD(A)(X,E) ∼= HomA(H0X,E).

Therefore, HomA(H0X,−) preserves coproducts in InjA. This implies that each HnX is noetherian;
see [Ren69]. Now fix for each n an injective envelope HnX → E(HnX) and consider the induced
map

α : X −→
∏
n∈Z

Σ−nE(HnX)

in D(A). The canonical map ∐
n∈Z

Σ−nE(HnX) −→
∏
n∈Z

Σ−nE(HnX)

is an isomorphism in D(A), and therefore α factors though a finite number of factors in∏
n∈Z

Σ−nE(HnX).

Thus, HnX vanishes for almost all n in Z, and the proof is complete.

We denote by Dc(A) the full subcategory of D(A) which is formed by all compact objects.

Theorem 4.2. Let A be a locally noetherian Grothendieck category and suppose D(A) is compactly
generated. Then the canonical functor Q : K(InjA) → D(A) has a left adjoint and therefore the
sequence

Kac(InjA) I �� K(InjA)
Q

�� D(A)

is a colocalization sequence.

Proof. Let K be the localizing subcategory of K(InjA) which is generated by all compact objects
X in K(InjA) such that QX is compact in D(A). We claim that Q|K : K → D(A) is an equivalence.
First note that K and D(A) are both compactly generated. We have seen in Lemma 4.1 that

Dc(A) ⊆ Db(noethA),

and Q induces an equivalence

Kc(InjA) ∼−→ Db(noethA),

by Proposition 2.3. Thus, Q induces an equivalence between the subcategories of compact objects
in K and D(A). Then a standard argument shows that Q|K is an equivalence since Q preserves all
coproducts. Now fix a left adjoint L : D(A) → K. We claim that the composite

D(A) L−→ K inc−→ K(InjA)
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is a left adjoint for Q. To see this, consider for objects X in D(A) and Y in K(InjA) the natural
map

αX,Y : HomK(InjA)(LX,Y ) −→ HomD(A)(QLX,QY ) ∼−→ HomD(A)(X,QY )

which is induced by Q. If X and Y are compact, then αX,Y is bijective by Proposition 2.3. We use a
standard argument to show that αX,Y is bijective for arbitrary X and Y . Fix a compact object X.
Then the objects Y such that αX,Y is bijective form a triangulated subcategory which is closed
under taking coproducts and contains all compact objects. Thus, αX,Y is bijective for all Y because
K(InjA) is compactly generated. Now fix any object Y . The same argument shows that αX,Y is
bijective for all X because D(A) is compactly generated. We conclude that Q has a left adjoint.
Moreover, Lemma 3.2 implies that I and Q form a colocalization sequence.

Following Beilinson et al. [BBD82], we say that a sequence

T ′ �� T �� T ′′ (4.2)

of exact functors between triangulated categories induces a recollement

T ′ �� T ��
��
�� T ′′��

��

if the sequence (4.2) is a localization sequence and a colocalization sequence in the sense of
Definition 3.1.

Corollary 4.3. Let A be a locally noetherian Grothendieck category and suppose that D(A) is
compactly generated. Then the sequence

Kac(InjA) I �� K(InjA)
Q

�� D(A)

induces a recollement

Kac(InjA) �� K(InjA) ��
��
�� D(A).��

��

Corollary 4.4. Let A be a locally noetherian Grothendieck category and suppose that D(A) is
compactly generated. Then a product of acyclic complexes of injective objects in A is acyclic.

Let us give a criterion for A such that the derived category D(A) is compactly generated.

Lemma 4.5. Let A be a locally noetherian Grothendieck category. Suppose that there is a set A0

of objects in A which are compact when viewed as objects in D(A). If A0 generates A, then D(A)
is compactly generated by A0.

The lemma is an immediate consequence of the following statement.

Lemma 4.6. Let A be a locally noetherian Grothendieck category and fix a set A0 of generating
objects. Let X be a complex in A such that H0X �= 0. Then there exists some object A in A0 such
that

HomK(A)(A,X) �= 0 and HomD(A)(A,X) �= 0.

Proof. Choose A in A0 and a map A → Z0X such that the composite with Z0X → H0X is
non-zero. This induces a non-zero element in

H0(HomA(A,X)) ∼= HomK(A)(A,X).

The second assertion follows from the first since for any object A in A we have

HomD(A)(A,X) ∼= HomK(A)(A, iX)

and H0(iX) ∼= H0X.
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We give examples of Grothendieck categories such that objects in A become compact objects
in D(A).

Example 4.7. Let Λ be an associative ring. Denote by A = Mod Λ the category of (right) Λ-modules
and by projΛ the full subcategory of finitely generated projective Λ-modules. Then every object
in proj Λ is compact when viewed as object in D(A). Thus, the inclusion Db(proj Λ) → D(A)
identifies Db(proj Λ) with the full subcategory of compact objects in D(A). Suppose now that Λ
is right noetherian. Then the fully faithful functor Qλ : D(A) → K(InjA) identifies D(A) with the
localizing subcategory of K(InjA) which is generated by the injective resolution iΛ of Λ.

Let us return to the completion problem for triangulated categories which has been addressed
in Section 2. Keeping the analogy between the completion with respect to filtered colimits and the
completion with respect to triangles and coproducts, we obtain the following diagram for a right
noetherian ring Λ. The vertical arrows denote completions and the horizontal arrows denote the
appropriate inclusions.

proj Λ

��

�� mod Λ

��

Db(proj Λ)

��

�� Db(mod Λ)

��

Flat Λ �� Mod Λ D(Mod Λ)
Qλ �� K(Inj Λ)

Here, Flat Λ denotes the full subcategory of flat Λ-modules, which is the closure of projΛ under
forming filtered colimits.

Example 4.8. Let X be a quasi-compact and separated scheme, and let L be a locally free sheaf of
finite rank. Then

HomD(QcohX)(L,−) ∼= HomD(QcohX)(OX, L∨ ⊗OX −) ∼= H0(L∨ ⊗OX −),

where L∨ = HomOX(L,OX). Thus L is a compact object in D(Qcoh X); see [Nee96]. If X has an
ample family of line bundles, then the locally free sheaves of finite rank generate Qcoh X.

It would be interesting to know in which generality products of acyclic complexes of injectives
are acyclic. In fact, the author knows of no examples where this property fails. However, it is
important to restrict to complexes of injectives. In order to illustrate this point, let us include an
example which shows that products in Qcoh X need not to be exact. This example was learned from
Bernhard Keller.

Example 4.9. Let k be a field and X = P
1
k the projective line with homogeneous coordinate ring

S = k[x0, x1]. For each n � 0, we have a canonical map

πn : O(−n) ⊗k HomX(O(−n),O) −→ O

which is an epimorphism in Qcoh X. We claim that the product

π :
∏
n�0

(
O(−n) ⊗k HomX(O(−n),O)

)
−→

∏
n�0

O

is not an epimorphism. Taking graded global sections gives for each n � 0 the multiplication map

Γ∗(X, πn) : S(−n) ⊗k Sn −→ S

which is a map of graded S-modules with cokernel of finite length. However, the cokernel of

Γ∗(X, π) =
∏
n�0

Γ∗(X, πn)
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is not a torsion module. The left adjoint of Γ∗(X,−) is exact and takes Γ∗(X, π) to π. It follows
that the cokernel of π is non-zero, because the left adjoint of Γ∗(X,−) annihilates exactly those
S-modules which are torsion modules.

5. The stable derived category

Let A be a locally noetherian Grothendieck category. We suppose that D(A) is compactly generated.

Definition 5.1. The stable derived category S(A) of A is by definition the full subcategory of K(A)
which is formed by all acyclic complexes of injective objects in A. The full subcategory of compact
objects is denoted by Sc(A).

In this section, we show that the stable derived category is compactly generated, and the descrip-
tion of the category of compact objects justifies our terminology. Our basic tool is the (co)localization
sequence

S(A) I �� K(InjA)
Q

�� D(A) .

Thus we use the fact that I andQ have left adjoints Iλ,Qλ and right adjoints Iρ,Qρ. The stabilization
functor is by definition the composite

S : D(A)
Iλ ◦Qρ−−−−→ S(A).

We begin with the following lemma.

Lemma 5.2. Let A be a locally noetherian Grothendieck category and suppose D(A) is compactly
generated. The functors Qλ, Qρ : D(A) → K(InjA) admit a natural transformation η : Qλ → Qρ,
and η is an isomorphism when restricted to the subcategory of compact objects in D(A).

Proof. We have a natural isomorphism µ : IdD(A)
∼→ Q ◦Qλ. The natural transformation

Qλ ◦Q −→ IdK(InjA) −→ Qρ ◦Q

induces for each X in D(A) a natural map

ηX : QλX
Qλ(µX )−−−−−→ (Qλ ◦Q)QλX −→ (Qρ ◦Q)QλX

Qρ(µ−1
X )

−−−−−→ QρX.

Note that Q(η) induces an isomorphism

Q ◦Qλ
∼−→ Q ◦Qρ.

We know from Proposition 2.3 that Q induces an equivalence

Kc(InjA) ∼−→ Db(noethA).

On the other hand,

Qλ(Dc(A)) ⊆ Kc(InjA)

since a left adjoint preserves compactness if the right adjoint preserves coproducts; see Lemma 3.5.
Also,

Qρ(Dc(A)) ⊆ Kc(InjA),

since Dc(A) ⊆ Db(noethA) by Lemma 4.1, and

Qρ(Db(noethA)) = Kc(InjA)

by Remark 3.8. We conclude that η|Dc(A) is an isomorphism.
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Proposition 5.3. Let A be a locally noetherian Grothendieck category, and suppose D(A) is
compactly generated. Then we have a localization sequence

D(A)
Qλ �� K(InjA)

Iλ �� S(A) (5.1)

which induces the following commutative diagram.

Dc(A) inc �� Db(noethA)

� Qρ|Db(noethA)

��

can �� Db(noethA)/Dc(A)

F
��

Dc(A)

inc
��

�� Kc(InjA)

inc
��

�� Sc(A)

inc
��

D(A)
Qλ �� K(InjA)

Iλ �� S(A)

Proof. It follows from Theorem 4.2 that the sequence (5.1) is a localization sequence. Let us explain
the commutativity of the diagram. First observe that a left adjoint preserves compactness if the
right adjoint preserves coproducts; see Lemma 3.5. Therefore, Iλ and Qλ preserve compactness, and
this explains the commutativity of the lower squares. Now observe that

Dc(A) ⊆ Db(noethA),

by Lemma 4.1, and that Qρ|Db(noethA) is a quasi-inverse for Q|Kc(InjA). It follows from Lemma 5.2
that the upper left-hand square commutes. The functor F is by definition the unique functor making
the upper right-hand square commutative. It exists because Iλ ◦Qλ = 0.

We have seen that the stable derived category S(A) is a localization of the homotopy category
K(InjA). This has some interesting consequences.

Corollary 5.4. The stable derived category S(A) is compactly generated, and the functor
Iλ ◦Qρ : D(A) → S(A) induces (up to direct factors) an equivalence

F : Db(noethA)/Dc(A) ∼−→ Sc(A).

Proof. We know from Proposition 2.3 that K(InjA) is compactly generated. This property carries
over to S(A) since Iλ sends a set of compact generators of K(InjA) to a set of compact generators
of S(A). The functor Qλ identifies D(A) with the localizing subcategory of K(InjA) which is
generated by all compact objects in the image ofQλ. Now apply the localization theorem of Neeman–
Ravenel–Thomason–Trobaugh–Yao [Nee92]. This result describes the category of compact objects
of the quotient S(A), up to direct factors, as the quotient of the compact objects in K(InjA) modulo
those from the localizing subcategory. To be precise, F is fully faithful and every object in Sc(A) is
a direct factor of some object in the image of F .

Corollary 5.5. The composite

A can−−→ D(A)
Iλ ◦Qρ−−−−→ S(A)

preserves all coproducts and annihilates the objects in A ∩Dc(A).

Proof. The diagram in Proposition 5.3 shows that Iλ ◦Qρ annihilates A ∩ Dc(A). To show that
Iλ ◦Qρ preserves all coproducts, observe that Qρ sends an object in A to an injective resolution.
A coproduct of injective resolutions is again an injective resolution, and the left adjoint Iλ preserves
all coproducts. This finishes the proof.
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Using the stabilization functor S : D(A) → S(A), we define for objects X,Y in D(A) and n ∈ Z

the stable cohomology group

ExtnA(X,Y ) = HomK(A)(SX,Σ
n(SY )).

Note that in both arguments, each exact sequence in A induces a long exact sequence in stable
cohomology. We do not go into detail, but refer to our discussion of Tate cohomology in § 7. In fact,
both cohomology theories coinciding in case A satisfies some appropriate Gorenstein property, and
we shall see explicit formulae for the Tate cohomology groups.

Example 5.6. Suppose that A is a module category. Then the stabilization functor annihilates all
finitely generated projective modules, and all coproducts of such, by Corollary 5.5. Hence, it annihi-
lates all projective modules. Since Iλ ◦Qρ is an exact functor vanishing on projectives, it annihilates
all bounded complexes of projective modules. In particular, all modules of finite projective dimen-
sion are annihilated. Similarly, if A is a category of quasi-coherent sheaves, then the stabilization
functor annihilates all sheaves having a finite resolution with locally free sheaves.

Given a noetherian scheme X, the stable derived category S(Qcoh X) vanishes if X is regular.
Nonetheless, a classical result of Bernstein et al. [BGG78] shows that stable derived categories are
relevant when one studies regular schemes. This is sketched in the following example.

Example 5.7. Let Λ be a Koszul algebra and Λ! its Koszul dual. Then, under appropriate assump-
tions, we have an equivalence K(Inj Λ) ∼→ K(Inj Λ!) which induces an equivalence Db(modΛ) ∼→
Db(modΛ!) when restricted to the full subcategories of compact objects [BGS96, Kel94]. Note that
we consider the categories of graded modules over Λ and Λ!, respectively. The classical example is
the symmetric algebra Λ = SV of a d-dimensional space V over a field k, where Λ! is the exterior
algebra

∧
V ∗ of the dual space V ∗. The equivalence K(InjΛ) ∼→ K(InjΛ!) takes an injective res-

olution ik of Λ0 = k to Λ! and identifies the localizing subcategory K generated by ik with the
localizing subcategory generated by Λ!, which is D(Mod Λ!). Note that the quotient K(InjΛ)/K
identifies with the derived category of the quotient Mod Λ/(Mod Λ)0, where (Mod Λ)0 denotes the
subcategory of torsion modules. This quotient is equivalent to Qcoh P

d−1
k by Serre’s Theorem. Thus,

we obtain an equivalence

D(Qcoh P
d−1
k ) ∼−→ S(Mod∧kd).

Note that S(Mod∧kd) is equivalent to the stable module category Mod∧kd because the exterior
algebra is self-injective; see Example 7.16. Passing to the subcategory of compact objects, one
obtains the equivalence

Db(coh P
d−1
k ) ∼−→ mod∧kd

of Bernstein et al. [BGG78], where mod∧kd denotes the stable category of all finite-dimensional
∧kd-modules. This example generalizes to non-commutative algebras, for instance, to Artin–Schelter
regular algebras [Jor03].

6. Extending derived functors

An additive functor F : A → B between locally noetherian Grothendieck categories admits a right
derived functor RF : D(A) → D(B). In this section, we extend this to a functor R̂F : K(InjA) →
K(InjB) and investigate its right and left adjoints. As an application, we consider for F the direct
image functor f∗ : Qcoh X → Qcoh Y corresponding to a morphism f : X → Y between noetherian
schemes. We use the following functors

J : K(InjA) inc−→ K(A) and Q : K(InjA) inc−→ K(A) can−→ D(A)
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simultaneously for A and B. Moreover, we use the fact that both functors have left and right
adjoints.

Theorem 6.1. Let F : A → B be an additive functor between locally noetherian Grothendieck
categories. Suppose that D(A) and D(B) are compactly generated. Then the composite

R̂F : K(InjA) J−→ K(A)
K(F )−→ K(B) Jλ−→ K(InjB)

makes the following diagram commutative.

D(A)

Qρ

��

RF �� D(B)

K(InjA) R̂F �� K(InjB)

Q

��

(1) Suppose F preserves coproducts. Then R̂F preserves coproducts and therefore has a right
adjoint (R̂F )ρ.

(2) Suppose F and RF preserve coproducts. Then RF has a right adjoint (RF )ρ making the
following diagrams commutative.

D(A)

Qλ

��

RF �� D(B) D(B)

Qρ

��

(RF )ρ
�� D(A)

K(InjA) R̂F �� K(InjB)

Q

��

K(InjB)
(R̂F )ρ

�� K(InjA)

Q

��

Proof. The composite

K(A) Jλ−→ K(InjA)
Q−→ D(A)

is naturally isomorphic to the canonical functor K(A) → D(A); see Remark 3.7. Clearly, J ◦Qρ is
its right adjoint. We denote by RF the right derived functor of F and have

RF = Q ◦ Jλ ◦K(F ) ◦ J ◦Qρ.

Using the definition R̂F = Jλ ◦K(F ) ◦ J , we obtain RF = Q ◦ R̂F ◦Qρ.

(1) Suppose that F preserves coproducts. Then K(F ) preserves coproducts. It follows that R̂F
preserves coproducts since J and Jλ preserve coproducts. Now apply Proposition 3.3 to obtain a
right adjoint for R̂F .

(2) Suppose that F and RF preserve coproducts. Then RF has a right adjoint by Proposition 3.3.
Next we show that

Q ◦ R̂F ◦Qλ
∼= Q ◦ R̂F ◦Qρ.

We have a natural transformation Qλ → Qρ which is induced from the natural transformation
Qλ ◦Q→ Qρ ◦Q. Now apply Q ◦ R̂F to get a natural transformation

µ : Q ◦ R̂F ◦Qλ −→ Q ◦ R̂F ◦Qρ.

It is shown in Lemma 5.2 that Qλ → Qρ is an isomorphism when restricted to compact objects
in D(A). On the other hand, Q ◦ R̂F ◦Qλ and Q ◦ R̂F ◦Qρ both preserve coproducts by our
assumption on RF . It follows that µ is an isomorphism since D(A) is compactly generated. Clearly,
Q ◦(R̂F )ρ ◦Qρ is a right adjoint for Q ◦ R̂F ◦Qλ. This completes the proof.

The extended derived functor and its right adjoint admit some alternative description.
The author is indebted to Bernhard Keller for providing this remark.
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Remark 6.2. It is possible to express R̂F as the tensor functor and its right adjoint (R̂F )ρ as the
Hom functor with respect to a bimodule of DG categories; see [Kel94, § 6.4]. This depends on
the appropriate choice of DG categories A0 and B0 such that K(InjA) ∼= Ddg(A0) and K(InjB) ∼=
Ddg(B0), respectively.

Next we consider the following diagram

K(InjA)

Q

��

R̂F �� K(InjB)

Q

��

D(A) RF �� D(B)

and ask when it is commutative.

Lemma 6.3. Keep the assumptions from Theorem 6.1. There is a natural transformation Q ◦ R̂F →
RF ◦Q which is an isomorphism if and only if F sends every acyclic complex of injective objects to
an acyclic complex.

Proof. We apply the localization sequence

Kac(InjA) I �� K(InjA)
Q

�� D(A)

from Proposition 3.6. Let X be an object in K(InjA) and consider the triangle

(I ◦ Iρ)X −→ X −→ (Qρ ◦Q)X −→ Σ(I ◦ Iρ)X

in K(InjA). Now apply Q ◦ R̂F which gives a map

(Q ◦ R̂F )X −→ (RF ◦Q)X

since Q ◦ R̂F ◦Qρ
∼= RF , by Theorem 6.1. Clearly, this map is an isomorphism if and only if Q ◦ R̂F

annihilates (I ◦ Iρ)X.

We include a simple example which illustrates the preceding lemma.

Example 6.4. Let k be a field and Λ = k[t]/(t2). We take the functor

F : Mod Λ −→ Mod k, X �→ HomΛ(k,X),

and observe that the following diagram does not commute.

K(Inj Λ)

Q
��

R̂F �� K(Inj k)

� Q
��

D(Mod Λ) RF �� D(Mod k)

For instance, we have QX = 0 and (R̂F )X �= 0 if we take for X the acyclic complex

· · · t−→ Λ t−→ Λ t−→ Λ t−→ · · ·
in K(Inj Λ).

Now we specialize and consider as an example a morphism f : X → Y between separated noethe-
rian schemes. Let f∗ : Qcoh X → Qcoh Y denote the direct image functor. Note that the right derived
functor Rf∗ : D(Qcoh X) → D(Qcoh Y) preserves coproducts [Nee96, Lemma 1.4]. Thus, Rf∗ and
its right adjoint Grothendieck duality functor f ! extend to functors between K(InjX) and K(Inj Y),
by Theorem 6.1. This is the statement of Theorem 1.4 from the introduction. In fact, in this case
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the situation is much nicer. The author is grateful to Amnon Neeman for pointing out that the
functor R̂f∗ and its right adjoint (R̂f∗)ρ make the following diagrams commutative.

K(Inj X)

Q
��

R̂f∗
�� K(Inj Y)

Q
��

K(InjY)
(R̂f∗)ρ

�� K(InjX)

D(Qcoh X)
Rf∗

�� D(Qcoh Y) D(Qcoh Y)

Qρ

��

f !
�� D(Qcoh X)

Qρ

��

(6.1)

This is essentially the statement of Theorem 1.5 from the introduction. The proof which is due to
Neeman goes as follows.

Proof of Theorem 1.5. We need to show that both squares in (6.1) commute. Then we use the
localization sequence

S(Qcoh X) I �� K(InjX)
Q

�� D(Qcoh X)

from Proposition 3.6 and obtain from R̂f∗ and (R̂f∗)ρ an adjoint pair of functors between S(Qcoh X)
and S(Qcoh Y).

In order to show the commutativity of (6.1), we apply Lemma 6.3 and need to show that f∗
sends an acyclic complex X of injective objects to an acyclic complex. The question is local in Y

and we may assume Y affine. Cover X by a finite number of affines. Then f∗ can be computed using
the Čech cohomology of the cover. If there are n open sets in the cover, then for any quasi-coherent
sheaf A we have

Rn+1f∗A = 0.

Now take our acyclic complex X of injective sheaves on X. Then the sequence

0 −→ X0 −→ X1 −→ X2 −→ · · ·

is an injective resolution of the kernel A of the map X0 → X1. Applying f∗, the sequence computes
Rif∗A for us, which vanishes if i � n+ 1. Thus, f∗X is acyclic above degree n, but by shifting we
conclude that it is acyclic everywhere.

Having shown the commutativity of the left-hand square, the commutativity of the right-hand
square follows, because it is obtained by taking right adjoints. Thus, the proof is complete.

Next we investigate for an exact functor F : A → B an extension L̂F of the derived functor
LF : D(A) → D(B). For this we need some assumptions, and it is convenient to introduce the
following notation. As before, A and B denote locally noetherian Grothendieck categories. Let
f : noethA → noethB be an additive functor. Then there is, up to isomorphism, a unique functor
f∗ : A → B which extends f and preserves filtered colimits. This has a right adjoint f∗ : B → A if
and only if f is right exact. Note that f is exact if and only if f∗ is exact if and only if f∗ sends
injective objects to injective objects. We now give an example.

Example 6.5. Let f : X → Y be a morphism between noetherian schemes. Then the inverse image
functor f∗ : Qcoh Y → Qcoh X sends coherent sheaves to coherent sheaves and preserves filtered
colimits. Moreover, the direct image functor f∗ is a right adjoint of f∗. Our notation is therefore
consistent if we identify the morphism f : X → Y with the functor coh Y → coh X.

Theorem 6.6. Let A and B locally noetherian Grothendieck categories such that D(A) and D(B)
are compactly generated. Let f : noethA → noethB be an exact functor. Then R̂f∗ has a left
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adjoint L̂f∗ which induces a functor Sf∗ making the following diagram commutative.

Kc(InjA)
��

�������������

∼ ��

��

Db(noethA)
��

������������

Db(f)

��

S(A) I ��

Sf∗

��

K(InjA)
Q

��

L̂f∗

��

D(A)

Lf∗

��

Kc(InjB)
��

�������������

∼ �� Db(noethB)
��

������������

S(B) I �� K(InjB)
Q

�� D(B)

(6.2)

If Rf∗ preserves coproducts, then, in addition, the following diagram commutes.

Db(noethA)/Dc(A)
FA

���������������

Db(f)

��

Kc(InjA)

��

��
��

�������������
Dc(A)

��

��
��

�����������

S(A)

Sf∗

��

K(InjA)
Iλ��

L̂f∗

��

D(A)
Qλ��

Lf∗

��

Db(noethB)/Dc(B)
FB

���������������
Kc(InjB)��

��

�������������
Dc(B)��
��

�����������

S(B) K(InjB)
Iλ�� D(B)

Qλ��

Note that FA and FB induce, up to direct factors, equivalences onto the full subcategories of
compact objects in S(A) and S(B) respectively. Thus, Db(f) determines the functor Sf∗.

Proof. The exactness of f implies the exactness of f∗. Thus, f∗ sends injective objects to injective
objects and we have the following commutative diagram.

K(InjB) �� J ��

R̂f∗
��

K(B)

K(f∗)
��

K(InjA) �� J �� K(A)

(6.3)

The right adjoint f∗ preserves products and we therefore have a left adjoint for R̂f∗, by
Proposition 3.3, which we denote by L̂f∗. We obtain the following diagram

K(A)
Jλ ��

K(f∗)
��

K(InjA)
Q

��

L̂f∗
��

D(A)

Lf∗
��

K(B)
Jλ �� K(InjB)

Q
�� D(B)

and claim it is commutative. The left-hand square commutes because it is obtained from (6.3) by
taking left adjoints. The outer square commutes because the composite Q ◦Jλ is naturally isomorphic
to the canonical functor K(A) → D(A); see Remark 3.7. We conclude the commutativity of the
right-hand square using that Jλ ◦J ∼= IdK(InjA). Clearly, L̂f∗ sends acyclic complexes to acyclic
complexes and we obtain the functor Sf∗ making the diagram (6.2) commutative. Finally, observe
that L̂f∗ preserve compactness because its right adjoint R̂f∗ preserve coproducts; see Lemma 3.5.
Thus, every square in the diagram (6.2) commutes.
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Now assume in addition that Rf∗ preserves coproducts. We use again the fact that a left adjoint
preserves compactness if the right adjoint preserves coproducts; see Lemma 3.5. Thus, Lf∗ and L̂f∗

preserve compactness. Note that Qλ identifies D(A) with the localizing subcategory of K(InjA)
which is generated by

Dc(A) ⊆ Db(noethA) ∼= Kc(InjA) ⊆ K(InjA).

Of course, the same applies for B. We obtain the following diagram

S(A)

S
��

K(InjA)
Iλ��

L̂f∗
��

D(A)
Qλ��

Lf∗
��

S(B) K(InjB)
Iλ�� D(B)

Qλ��

(6.4)

where the right-hand square commutes. The horizontal sequences are localization sequences by
Theorem 4.2, and L̂f∗ induces a functor S : S(A) → S(B) making the left-hand square commutative.
Moreover, we have

S = S ◦ Iλ ◦ I = Iλ ◦ L̂f∗ ◦ I = Iλ ◦ I ◦Sf∗ = Sf∗.

The functors FA and FB are both induced by Iλ, and the commutativity

Sf∗ ◦FA = FB ◦Db(f)

is easily checked; see Corollary 5.4. This completes the proof.

The author is grateful to the referee for pointing out possible generalizations.

Remark 6.7. Let f : X → Y be a morphism between noetherian schemes and suppose that f∗ is exact.
Then Sf∗ is the left adjoint of Sf∗ which appears in Theorem 1.5. In fact, this theorem suggests that
parts of Theorem 6.6 can be generalized. For instance, the right-hand square in diagram (6.4) does
not need any assumption on the morphism f because it is simply the left adjoint of a commutative
square in Theorem 1.5.

Next we investigate the inclusion f : X → Y of an open subscheme. In this case, the adjoint pair
of functors f∗ and f∗ between Qcoh X and Qcoh Y restricts to an adjoint pair of functors between
InjX and Inj Y; see [Gabb62, § VI]. Moreover, f∗ ◦ f∗ ∼= IdQcohX. Thus, we can identify R̂f∗ = f∗
and L̂f∗ = f∗. Note that both functors send acyclic complexes with injective components to acyclic
complexes. This is clear for f∗ because it is exact, and follows for f∗ from Theorem 1.5, or by looking
at the right adjoint of the right-hand square in diagram (6.4). For each sheaf A in Qcoh Y we denote
by SuppA the support of A and observe that f∗ annihilates A if and only SuppA is contained in
Y \ X. In fact, the natural map A→ (f∗ ◦ f∗)A induces a split exact sequence

0 −→ A′ −→ A −→ (f∗ ◦ f∗)A −→ 0

if A is injective. In particular, the support of A′ is contained in Y \ X, whereas the support of
(f∗ ◦ f∗)A is contained in X.

Now fix a complex X in K(InjY). The support of X is by definition

SuppX =
⋃
n∈Z

SuppXn,

where X is assumed to be homotopically minimal; see Proposition B.2. We write XX = (f∗ ◦ f∗)X,
and the natural map X → XX induces an exact triangle

XY\X −→ X −→ XX −→ Σ(XY\X) (6.5)

in K(InjY) where the support of XY\X is contained in Y \ X.
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Lemma 6.8. Let Y be a separated noetherian scheme and f : X → Y be the inclusion of an open
subscheme. If X is a complex in K(Inj Y), then f∗X = 0 if and only if the support of X is contained
in Y \ X.

Proof. We have f∗X = 0 if and only if the first map in the triangle (6.5) is an isomorphism.

It is well known that f∗ induces an equivalence

D(Qcoh Y)/DY\X(Qcoh Y) ∼−→ D(Qcoh X),

where DY\X(Qcoh Y) denotes the full subcategory of all complexes in D(Qcoh Y) such that the
support of the cohomology is contained in Y\X. We obtain an analogue for K(Inj Y) and S(Qcoh Y)
if we define

KY\X(Inj Y) = {X ∈ K(Inj Y) | SuppX ⊆ Y \ X},
SY\X(Qcoh Y) = {X ∈ S(Qcoh Y) | SuppX ⊆ Y \ X}.

Proposition 6.9. Let Y be a separated noetherian scheme and f : X → Y be the inclusion of an
open subscheme. Then f∗ induces equivalences

K(Inj Y)/KY\X(Inj Y) ∼−→ K(Inj X),

S(Qcoh Y)/SY\X(Qcoh Y) ∼−→ S(Qcoh X).

Proof. We have f∗ ◦ f∗ ∼= IdQcohX, and this carries over to complexes of injectives. On the other
hand, we have for X in K(InjY) a natural map X → (f∗ ◦ f∗)X which induces an isomorphism
in K(InjY)/KY\X(Inj Y), by Lemma 6.8. This gives the first equivalence. The second equivalence
follows from the first, because f∗ and f∗ restrict to functors between S(Qcoh Y) and S(Qcoh X).
This is clear for f∗ because it is exact. For f∗ this follows from Theorem 1.5.

Let us give a more elaborate formulation of Proposition 6.9. The functor R̂f∗ = f∗ : K(Inj X) →
K(Inj Y) admits a left and a right adjoint. Therefore R̂f∗ induces a recollement

K(Inj X) �� K(InjY) ��
��
�� KY\X(InjY).��

��

This recollement is compatible with the recollement

S(Qcoh Y) �� K(Inj Y) ��
��
�� D(Qcoh Y),��

��

and we obtain the following diagram.

S(Qcoh X)

��

�� K(Inj X)

��

��
��
�� D(Qcoh X)

��

��
��

S(Qcoh Y)

��

�� ��

�� K(Inj Y)

��

��

�� ��

��
�� D(Qcoh Y)

��

�� ��

��
��

SY\X(Qcoh Y)

�� ��

�� KY\X(InjY) ��

�� ��

��
�� DY\X(Qcoh Y)

�� ��

��
��

In this diagram, each row and each column is a recollement. Moreover, the diagram is commutative
if one restricts to arrows in the south and east directions. All other commutativity relations follow
by taking left adjoints or right adjoints.

Proposition 6.9 tells us precisely when the inclusion of a subscheme induces an equivalence for
the stable derived category. In [Orl03], Orlov observed that the bounded stable derived category of
a noetherian scheme depends only on the singular points. We extend this result to the unbounded
stable derived category, using a completely different proof.
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Corollary 6.10. Let Y be a separated noetherian scheme of finite Krull dimension. If f : X → Y

denotes the inclusion of an open subscheme which contains all singular points of Y, then
Sf∗ : S(Qcoh Y) → S(Qcoh X) is an equivalence.

Proof. We apply Proposition 6.9 and need to show that SY\X(Qcoh Y) = 0. However, this is clear
from our assumptions on X and Y.

Orlov’s result [Orl03, Proposition 1.14] is an immediate consequence if one restricts the equiva-
lence Sf∗ to compact objects; see Theorem 6.6.

Corollary 6.11. Let Y be a separated noetherian scheme of finite Krull dimension. If f : X → Y

denotes the inclusion of an open subscheme which contains all singular points of Y, then f∗ induces
(up to direct factors) an equivalence

Db(coh Y)/Dperf(coh Y) −→ Db(coh X)/Dperf(coh X).

7. Gorenstein injective approximations and Tate cohomology

Let A be a locally noetherian Grothendieck category and suppose that the derived category D(A)
is compactly generated. In this section, we study the category of complete injective resolutions.
We assign functorially to each complex of injectives a complete resolution. This yields Gorenstein
injective approximations and Tate cohomology groups for objects in A. The classical definition of
Tate cohomology is based on complete projective resolutions. Our approach is essentially the same,
however using resolutions with injective instead of projective components. Another aspect in this
section is the interplay between the stable derived category S(A) and the stable category A modulo
injective objects, which is obtained from A by identifying two maps if their difference factors through
some injective object. Given objects A,B in A, we write

HomA(A,B) = HomA(A,B).

The functor

K(InjA) −→ A, X �→ Z0X = Ker(X0 → X1)

provides a link between the stable categories S(A) and A. In particular, we obtain an explicit
description of the stabilization functor

S : A can−−→ D(A)
Iλ ◦Qρ−−−−→ S(A)

provided that A has some appropriate Gorenstein property.
Most of the concepts in this section are classical, but seem to be new in this setting and this

generality. We refer to the end of this section for historical remarks and references to the literature.
Let us start with the relevant definitions. A complex X in InjA is called totally acyclic if

HomA(A,X) and HomA(X,A) are acyclic complexes of abelian groups for all A in InjA. We denote
by Ktac(InjA) the full subcategory of all totally acyclic complexes in K(InjA). Following [EJ95],
we call an object A in A Gorenstein injective if it is of the form Z0X for some X in Ktac(InjA).
We write GInjA for the full subcategory formed by all Gorenstein injective objects.

Lemma 7.1. Let A be an abelian category and let X,Y be objects in K(InjA). Suppose that
HnX = 0 for all n > 0 and Y is totally acyclic. Then the canonical map

σX,Y : HomK(InjA)(X,Y ) −→ HomA(Z0X,Z0Y )

is bijective.

1150

https://doi.org/10.1112/S0010437X05001375 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001375


The stable derived category of a noetherian scheme

Proof. Fix a map α : Z0X → Z0Y in A. We need to extend α to a chain map ᾱ : X → Y such that
Z0ᾱ = α. We use the assumption on X to extend α in non-negative degrees, and the assumption on
Y allows to extend α in negative degrees. Thus, σX,Y is surjective. To show that σX,Y is injective, let
φ : X → Y be a chain map such that Z0φ factors through some injective object. A similar argument
as before yields a chain homotopy X → Y which shows that φ is null homotopic. Thus, the proof
is complete.

Let us denote by GInjA the full subcategory of A formed by the objects in GInjA. Observe that
GInjA is a Frobenius category with respect to the class of exact sequences from A. With respect
to this exact structure, an object A in GInjA is projective if and only if A is injective if and only
if A belongs to InjA. Thus, the category GInjA carries a triangulated structure. The shift takes
an object A to the cokernel ΣA of a monomorphism A → E into an injective object E. The exact
triangles are induced from short exact sequences in A.

Proposition 7.2. Let A be an abelian category. Then the functor

Ktac(InjA) −→ GInjA, X �→ Z0X,

is an equivalence of triangulated categories.

Proof. We need to show that the functor is fully faithful and surjective on isomorphism classes of
objects. The last property is clear from the definition of GInjA. The functor is fully faithful by
Lemma 7.1. Finally, observe that an exact triangle of complexes comes, up to isomorphism, from a
sequence of complexes which is split exact in each degree. Thus, we obtain an exact sequence in A
and an exact triangle in A if we apply Z0.

The following lemma is crucial because it provides the existence of complete injective resolutions.
Let us write

G : Ktac(InjA) −→ K(InjA)
for the inclusion functor.

Lemma 7.3. Let A be a locally noetherian Grothendieck category and suppose that D(A) is com-
pactly generated. Then the inclusion G : Ktac(InjA) → K(InjA) has a left adjoint

Gλ : K(InjA) −→ Ktac(InjA).

Proof. The inclusion I : Kac(InjA) → K(InjA) has a left adjoint Iλ by Theorem 4.2. Thus, it is
sufficient to show that the inclusion Ktac(InjA) → Kac(InjA) has a left adjoint. Let us denote by
E the coproduct of a representative set of all indecomposable injective objects in A. By definition,
Ktac(InjA) consists of all objects X in Kac(InjA) such that

HomK(InjA)(Σ
nE,X) ∼= HomKac(InjA)(Iλ(ΣnE),X)

vanishes for all n ∈ Z. The category Kac(InjA) is compactly generated by Corollary 5.4, and we
can apply Proposition 3.4 to obtain a left adjoint for the inclusion Ktac(InjA) → Kac(InjA).

Given an object A in A with injective resolution iA, we call the natural map

iA −→ GλiA

a complete injective resolution of A. If we apply the functor Z0 to this map, we obtain a Gorenstein
injective approximation of A.

Theorem 7.4. Let A be a locally noetherian Grothendieck category and suppose that D(A) is
compactly generated. Then the inclusion GInjA → A has a left adjoint

T : A −→ GInjA.
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Thus, for each object A in A we have a natural map A→ TA which induces a bijection

HomA(TA,B) ∼−→ HomA(A,B) for all B ∈ GInjA.

Proof. Fix an object A in A and choose an injective resolution iA. We put

TA = Z0(GλiA),

and this induces a functor T : A → GInjA. Let B in GInjA and fix a totally acyclic complex tB
such that Z0tB = B. The natural map iA→ GλiA induces a map A→ TA in A which makes the
following square commutative.

HomK(InjA)(GλiA, tB)

Z0

��

∼ �� HomK(InjA)(iA, tB)

Z0

��

HomA(TA,B) �� HomA(A,B)

The vertical maps are bijective by Lemma 7.1, and we conclude that T is a left adjoint for the
inclusion GInjA → A.

Next we use complete injective resolutions to define Tate cohomology groups for objects in A.

Definition 7.5. Given objects A,B in A and n ∈ Z, the Tate cohomology group is

Êxt
n

A(A,B) = Hn HomA(A,GλiB)

Remark 7.6. The correct term for this cohomology theory would be ‘injective Tate cohomology’ in
order to distinguish it from the usual ‘projective Tate cohomology’, which is defined via complete
projective resolutions. For simplicity, we drop the extra adjective ‘injective’. Note that confusion is
not possible because we do not consider projective Tate cohomology in this paper.

Tate cohomology is natural in both arguments because the formation of complete injective
resolutions is functorial. In addition, we have a comparison map

ExtnA(A,B) −→ Êxt
n

A(A,B),

which is induced by the map iB → GλiB. There is an alternative description of Tate cohomology
which is based on the left adjoint T : A → GInjA.

Proposition 7.7. Given objects A,B in A and n ∈ Z, there is a natural isomorphism

Êxt
n

A(A,B) ∼= HomA(A,Σn(TB)).

Proof. Using Lemmas 2.1 and 7.1, we have the following sequence of isomorphisms

Hn HomA(A,GλiB) ∼= HomK(A)(A,Σ
n(GλiB))

∼= HomK(A)(iA,Σ
n(GλiB))

∼= HomA(A,Σn(TB)).

We have a more conceptual definition of Tate cohomology for objects in D(A) which uses the
composite

U : D(A)
Gλ ◦Qρ−−−−−→ Ktac(InjA).

Thus, for objects X,Y in D(A) and n ∈ Z we define

Êxt
n

A(X,Y ) = HomK(A)(UX,Σ
n(UY )).

Note that this definition is consistent with the original definition of Tate cohomology if we take
objects in A and view them as complexes concentrated in degree 0. This follows from the fact

1152

https://doi.org/10.1112/S0010437X05001375 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001375


The stable derived category of a noetherian scheme

that QρX is simply an injective resolution of X0 when X is concentrated in degree 0. From now
on, we use one of the alternative descriptions of Tate cohomology whenever this is convenient.

Next we show that each exact sequence in A induces a long exact sequence in Tate cohomology.
This is based on the following simple lemma.

Lemma 7.8. The left adjoint T : A → GInjA has the following properties.

(1) An exact sequence 0 → A′ → A→ A′′ → 0 in A induces an exact triangle

TA′ −→ TA −→ TA′′ −→ Σ(TA′) in GInjA.
(2) Let A,B be in A and n ∈ Z. The natural map A→ TA induces an isomorphism

Êxt
n

A(TA,B) ∼= Êxt
n

A(A,B).

Proof. (1) We have an exact triangle A′ → A → A′′ → Σ(A′) in D(A). Now use that the exact
functor Z0 ◦Gλ ◦Qρ computes T .

(2) The adjointness property of T implies HomA(TA, TB) ∼= HomA(A,TB).

Proposition 7.9. Let 0 → B′ → B → B′′ → 0 be an exact sequence in A. Then we have for A
and C in A the following long exact sequences

· · · −→ Êxt
n

A(A,B′) −→ Êxt
n

A(A,B) −→ Êxt
n

A(A,B′′)

−→ Êxt
n+1

A (A,B′) −→ Êxt
n+1

A (A,B) −→ Êxt
n+1

A (A,B′′) −→ · · ·

· · · −→ Êxt
n

A(B′′, C) −→ Êxt
n

A(B,C) −→ Êxt
n

A(B′, C)

−→ Êxt
n+1

A (B′′, C) −→ Êxt
n+1

A (B,C) −→ Êxt
n+1

A (B′, C) −→ · · · .

Proof. We apply Lemma 7.8 and use the fact that HomA(TA,−) and HomA(−, TC) are cohomo-
logical functors.

We compute Tate cohomology for Gorenstein injective objects.

Proposition 7.10. Let A,B be objects in A and suppose that B is Gorenstein injective. Then the
comparison map

Extn
A(A,B) −→ Êxt

n

A(A,B)
is an isomorphism for n > 0 and induces an isomorphism

HomA(A,B) ∼−→ Êxt
0

A(A,B) for n = 0.

Proof. Our assumption implies TB = B. The case n = 0 is clear. For n = 1, choose an exact
sequence 0 → B → E → ΣB → 0 with E injective and apply HomA(A,−). The cokernel of

HomA(A,E) −→ HomA(A,ΣB)

is isomorphic Ext1A(A,B); it is isomorphic to HomA(A,ΣB) since B is Gorenstein injective.
For n > 1, use dimension shift.

Next we describe those objects A in A such that Êxt
∗
A(A,−) vanishes. For instance, Tate coho-

mology vanishes for all objects having finite projective or finite injective dimension.

Proposition 7.11. For an object A in A, the following are equivalent.

(1) Êxt
∗
A(A,−) = 0.

(2) Êxt
0

A(A,A) = 0.
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(3) Êxt
∗
A(−, A) = 0.

(4) Ext1A(A,B) = 0 for all B ∈ GInjA.

(5) HomA(A,B) = 0 for all B ∈ GInjA.

Proof. Use the isomorphism Êxt
∗
A(−,−) ∼= Hom∗

A(T−, T−) and the fact that Êxt
1

A(−, B) can be
computed via Ext1A(−, TB).

The following result formulates our analogue of the maximal Cohen–Macaulay approximation in
the sense of Auslander and Buchweitz [AB89]. Note that a Gorenstein injective object is the ‘dual’
of a maximal Cohen–Macaulay object which one defines in a category with enough projectives. Let

X = {A ∈ A | Ext1A(A,B) = 0 for all B ∈ GInjA} and Y = GInjA.

Theorem 7.12. Let A be a locally noetherian Grothendieck category and suppose that D(A) is
compactly generated.

(1) Every object A in A fits into exact sequences

0 → YA → XA → A→ 0 and 0 → A→ Y A → XA → 0

in A with XA,X
A in X and YA, Y

A in Y.

(2) The map A �→ XA induces a right adjoint for the inclusion X → A.

(3) The map A �→ Y A induces a left adjoint for the inclusion Y → A.

(4) X ∩ Y = InjA.

Note that this is essentially the statement of Theorem 1.3 from the introduction, since X is
precisely the subcategory of objects A in A such that the Tate cohomology functor Êxt

∗
A(A,−)

vanishes.

Proof. We use the basic properties of Tate cohomology.
(1) Fix an object A in A and a complete injective resolution

iA −→ GλiA = yA.

We complete this map to an exact triangle

iA −→ yA −→ xA −→ Σ(iA). (7.1)

in K(InjA) and therefore have a sequence 0 → iA → yA → xA → 0 of complexes which is split
exact in each degree. Applying Z0 : K(InjA) → A produces an exact sequence

0 −→ A
α−→ Y A β−→ XA −→ 0

in A. Clearly, Y A belongs to Y. On the other hand, Êxt
∗
A(α,−) is an isomorphism. Thus,

Êxt
∗
A(XA,−) vanishes and XA belongs to X . The second sequence ending in A is obtained by

rotating the triangle (7.1).
(2) We consider the exact sequence

0 −→ YA
µ−→ XA

ν−→ A −→ 0

and need to show that HomA(X, ν) is bijective for all X in X . To see this, let φ : X → A be a
map with X in X . The map φ factors through ν since Ext1A(X,YA) = 0. Therefore, HomA(X, ν) is
surjective. To show that HomA(X, ν) is injective, let ψ : X → XA be a map such that ν ◦ψ has a

factorization X
φ′
→ E

φ′′
→ A with injective E. We obtain a factorization φ′′ = ν ◦χ, since E belongs

to X . We have ν ◦(ψ − χ ◦φ′) = 0, and ψ − χ ◦φ′ needs to factor through µ. Therefore, ψ − χ ◦φ′
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factors through some injective object, since HomA(X,YA) = 0. We conclude that ψ factors through
an injective object. Thus, the map HomA(X, ν) is bijective.

(3) We consider the exact sequence

0 −→ A
α−→ Y A β−→ XA −→ 0

and need to show that HomA(α, Y ) is bijective for all Y in Y. However, this is clear from the long

exact sequence for Tate cohomology, since HomA(−, Y ) ∼= Êxt
0

A(−, Y ) and Êxt
∗
A(XA,−) vanishes.

(4) Clearly, InjA is contained in X ∩ Y. Now let A be in X ∩ Y. Thus,

HomA(A,A) ∼= Êxt
0

A(A,A) = 0.

Therefore, the identity map A → A factors through an injective object. We conclude that A is
injective.

Let us comment on the interplay between the stable category A and the stable derived category
S(A). We have already seen that the definition of Tate cohomology is possible in both settings. It
is more elementary in A, but more conceptual using the category of complete injective resolutions
Ktac(InjA) which is a subcategory of S(A). The same phenomenon appears when one studies
Gorenstein injective approximations. The proof of Theorem 7.12 we have given uses the category
of complexes K(InjA). There is an alternative proof which avoids complexes and instead uses the
left adjoint T : A → GInjA.

Gorenstein rings and schemes play an important role in applications and have a number of
interesting homological properties. It is therefore important to formulate a Gorenstein property for
a locally noetherian Grothendieck category A. Let us denote by Σ∞A the full subcategory of objects
A in A which fit into an exact sequence

· · · −→ E2 −→ E1 −→ E0 −→ A −→ 0

with En injective for all n. We say that A has the injective Gorenstein property if the equivalent
conditions in the following proposition are satisfied. This property has been studied by Beligiannis
in [Bel00].

Proposition 7.13. Let A be a locally noetherian Grothendieck category and suppose that D(A)
is compactly generated. Then the following are equivalent.

(1) Ext1A(A,B) = 0 for all A ∈ InjA and B ∈ Σ∞A.

(2) Every acyclic complex in InjA is totally acyclic.

(3) GInjA = Σ∞A.

(4) S : A can−−→ D(A)
Iλ ◦Qρ−−−−→ S(A) annihilates all injective objects.

(5) S induces an equivalence GInjA → S(A).

Proof. Conditions (1)–(3) are pairwise equivalent. This follows from the formula

ExtnA(A,Z0Y ) ∼= HomK(A)(A,Σ
nY ) ∼= Hn HomA(A,Y )

where A is any object in A and Y is an acyclic complex in InjA. The first isomorphism is valid for
all n � 1, and the second for all n ∈ Z.

Now observe that Iλ annihilates precisely those objects X in K(InjA) such that

HomK(InjA)(X,Y ) = 0

for every acyclic complex Y in InjA. On the other hand, A → D(A) and Qρ are faithful. Thus
(1)–(3) are equivalent to (4). Also, (5) implies (4). So, it remains to show that (1)–(4) imply (5).
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Suppose (2) and (4) hold. We have already seen in Proposition 7.2 that

S(A) −→ GInjA, X �→ Z0X,

is an equivalence, since every acyclic complex is totally acyclic. On the other hand, S annihilates all
injective objects and therefore induces a functor A → S(A). The composite with Z0 : S(A) → GInjA
is precisely the right adjoint of the inclusion GInjA → A constructed in Theorem 7.4. Thus,
(Z0 ◦S)A ∼= A for all A in GInjA.

Corollary 7.14. Let A be a locally noetherian Grothendieck category and suppose that D(A) is
compactly generated. If A has the injective Gorenstein property, then the composite

GInjA inc−−→ A can−−→ D(A)
Iλ ◦Qρ−−−−→ S(A) Z0

−−→ GInjA
is naturally isomorphic to the canonical projection GInjA → GInjA.

We are now in a position to describe the stabilization functor S : A → S(A), provided that
A has the injective Gorenstein property. We use the left adjoint T : A → GInjA of the inclusion
GInjA → A. For A in A, choose any acyclic complex X of injective objects such that Z0X ∼= TA.
Then SA ∼= X.

Example 7.15. Let Λ be a ring and suppose Λ is Gorenstein; that is, Λ is two-sided noetherian
and Λ has finite injective dimension as left and right Λ-module. In this case, the category Mod Λ
has the injective Gorenstein property. This follows from the fact that every injective Λ-module
has finite projective dimension if Λ is Gorenstein; see Example 5.6. Given a Λ-module A, Tate
cohomology Êxt

∗
Λ(A,−) vanishes if and only if A has finite injective dimension if and only if A has

finite projective dimension. Note that for Gorenstein rings, the classical Tate cohomology defined via
complete projective resolutions coincides with our Tate cohomology, which is defined via complete
injective resolutions; see [BR02].

Example 7.16. Let Λ be a ring and suppose that projective and injective Λ-modules coincide. Then
every Λ-module is Gorenstein injective. In particular, S(Mod Λ) is equivalent to the stable category
A of A = Mod Λ. Given a Λ-module A, there is an exact triangle

pA −→ iA −→ tA −→ Σ(pA)

in K(InjA) where pA denotes a projective, iA an injective, and tA a Tate resolution of A.
This triangle is isomorphic to the canonical triangle

(Qλ ◦Q)Ā −→ Ā −→ (I ◦ Iλ)Ā −→ Σ(Qλ ◦Q)Ā

where Ā = QρA.

Example 7.17. Let X be a noetherian scheme and suppose that every injective object E in Qcoh X

admits a finite resolution

0 −→ Lr −→ · · · −→ L2 −→ L1 −→ L0 −→ E −→ 0

with Ln locally free for each n. Then the category Qcoh X has the injective Gorenstein property.

Historical remarks
Gorenstein injective approximations and Tate cohomology have a long history. Auslander and
Bridger [AB69] introduced the stable module category and assigned to each module a G-dimension.
Over Gorenstein rings, the modules of G-dimension 0 are precisely the maximal Cohen–Macaulay
or Gorenstein projective modules. Auslander and Buchweitz established maximal Cohen–Macaulay
approximations in [AB89], and there is an alternative unpublished approach by Buchweitz [Buc87]
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which involves the derived category. Enochs and his collaborators dropped finiteness conditions
on modules and proved the existence of Gorenstein projective and Gorenstein injective approxi-
mations for arbitrary modules, for instance over Gorenstein rings [EJ00]. Further generalizations
can be found in work of Beligiannis [Bel00]. Jørgensen [Jor01] constructed Gorenstein projective
approximations for artin algebras via Bousfield localization, using the category of complete
projective resolutions. Hovey [Hov02] and Beligiannis and Reiten [BR02] employed the formalism
of model category structures and cotorsion pairs.

The exposition of Buchweitz [Buc87] discussed the close connection between maximal Cohen–
Macaulay approximations and Tate cohomology over Gorenstein rings. For more general settings,
we refer to the work of Beligiannis and Reiten [BR02]. A paper of Mislin explained Tate cohomology
via satellites [Mis94]. A comparison of Tate cohomology via projectives and injectives was carried
out in [Nuc98]. Another exposition of Tate cohomology over noetherian rings can be found in a
paper of Avramov and Martsinkovsky [AM02].

8. Tensor products in modular representation theory

Let G be a finite group and k be a field. The stable module category Mod kG of the group algebra
kG plays an important role in modular representation theory. In this section, we show that this
category is equivalent to the stable derived category S(Mod kG) and study its tensor product.

It is convenient to work in a slightly more general setting. Thus, we fix a finite-dimensional
cocommutative Hopf algebra Λ over a field k and consider the module category A = Mod Λ. Note
that projective and injective modules over Λ coincide. The tensor product ⊗k over k induces a
tensor product on A which extends to a tensor product on K(A). Similarly, Homk(−,−) induces
products on A and K(A). Note that we have a natural isomorphism

HomK(A)(X ⊗k Y,Z) ∼= HomK(A)(X,Homk(Y,Z)) (8.1)

for all X,Y,Z in K(A). The subcategories K(InjA) and S(A) inherit tensor products from K(A)
because of the following elementary fact.

Lemma 8.1. The subcategories K(InjA) and S(A) are tensor ideals in K(A). More precisely:

(1) X ∈ K(InjA) and Y ∈ K(A) imply X ⊗k Y ∈ K(InjA);
(2) X ∈ S(A) and Y ∈ K(A) imply X ⊗k Y ∈ S(A).

Now consider k as a Λ-module and view it as a complex concentrated in degree zero; it is the
unit of the tensor product in K(A). This complex fits into exact triangles

ak −→ k −→ ik −→ Σ(ak) and pk −→ ik −→ tk −→ Σ(pk)

in K(A), where ik denotes an injective resolution and pk a projective resolution of k in A. We
consider the canonical maps k → ik and pk → ik. Thus, ak and tk are acyclic complexes. In fact,
tk is a Tate resolution of k which is obtained by splicing together pk and ik.

We have seen in previous sections that the inclusions

S(A) −→ K(InjA) and K(InjA) −→ K(A)

have left adjoints. Next we provide explicit descriptions of these adjoints. In particular, we see that
they preserve the tensor product ⊗k. Note that Hovey et al. pointed out the relevance of these
categories in their work on axiomatic stable homotopy theory [HPS97]; we refer to this work for
further details and applications.

Theorem 8.2. Let Λ be a finite-dimensional cocommutative Hopf algebra over a field k, and let
A = Mod Λ.
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(1) The functor

−⊗k ik : K(A) −→ K(InjA)

is a left adjoint for the inclusion K(InjA) → K(A).

(2) The functor

−⊗k tk : K(InjA) −→ S(A)

is a left adjoint for the inclusion S(A) → K(InjA).

(3) The functor

A can−−→ K(A) −⊗tk−−−→ S(A)

induces an equivalence A → S(A) with quasi-inverse Z0 : S(A) → A.

Proof. (1) Fix an object X in K(A). The map X ∼= X⊗k k → X⊗k ik induces for all Y in K(InjA)
an isomorphism

HomK(A)(X ⊗k ik, Y ) −→ HomK(A)(X,Y ).

This follows from Lemma 2.1, in addition using the formula (8.1).
(2) Fix an object X in K(InjA). The map X ∼= X ⊗k ik → X ⊗k tk induces for all Y in S(A)

an isomorphism

HomK(A)(X ⊗k tk, Y ) −→ HomK(A)(X,Y ).

To see this, consider the exact triangle

X ⊗k pk −→ X ⊗k ik −→ X ⊗k tk −→ Σ(X ⊗k pk).

Now use that

HomK(A)(X ⊗k pk, Y ) ∼= HomK(A)(pk,Homk(X,Y )) = 0

since Homk(X,Y ) is acyclic.
(3) We apply Proposition 7.13. First observe that every object in A is Gorenstein injective.

The functor

A can−−→ K(A) −⊗tk−−−→ S(A)

is naturally isomorphic to the stabilization functor S : A → S(A). This follows from the fact that
A⊗k ik is an injective resolution in A for each object A. Thus,

SA ∼= (A⊗k ik) ⊗k tk ∼= A⊗k tk.

In Proposition 7.13, it is shown that S induces an equivalence A → S(A), with quasi-inverse Z0.

Remark 8.3. The unit of the product in K(InjA) is ik, and its graded endomorphism ring is the
cohomology ring H∗(Λ, k). The unit of the product in S(A) is tk, and its graded endomorphism
ring is the Tate cohomology ring Ĥ∗(Λ, k).

Appendix A. The DG category of noetherian objects

Let A be a locally noetherian Grothendieck category. We give an alternative description of the
homotopy category K(InjA) as the derived category of some DG category. Here, we follow closely
Keller’s exposition in [Kel94].

Let C be a small DG category. We recall the definition of the derived category Ddg(C) of C.
The category Cdg(C) of cochain complexes by definition has all DG C-modules as objects. A map
in Cdg(C) is a map of DG C-modules which is homogeneous of degree zero and commutes with
the differential. The homotopy category Kdg(C) is obtained from Cdg(C) by identifying homotopy
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equivalent maps, where f, g : X → Y are homotopy equivalent if there exists a map s : X → Y of
graded modules which is homogeneous of degree −1 and satisfies

(f − g)n = sn+1 ◦ d+ d ◦ sn for all n ∈ Z.

Finally, the derived category of C is obtained from Kdg(C) as the localization

Ddg(C) = Kdg(C)[Q−1]

with respect to the class Q of all maps f which induce an isomorphism H∗f .
Given two cochain complexes X and Y in A, we define the cochain complex HomA(X,Y ).

The nth component is ∏
p∈Z

HomA(Xp, Y n+p)

and the differential is given by

d(fp) = d ◦ fp − (−1)nfp+1 ◦ d.

Now fix a class C of objects in A. We obtain a DG category C̄ by taking as objects for each A
in C an injective resolution Ā, and as maps

HomC̄(Ā, B̄) = HomA(Ā, B̄).

Proposition A.1. Let A be a locally noetherian Grothendieck category, and let C be a class
of noetherian objects which generate Db(noethA); that is, there is no proper thick subcategory
containing C. Then the functor

K(InjA) −→ Ddg(C̄), X �→ HomA(−,X)|C̄ ,
is an equivalence of triangulated categories.

Proof. The functor is exact. To see that it preserves coproducts, fix an object A in C and a family
of objects Xi in K(InjA). Then for every n ∈ Z we have

Hn
∐

i

HomA(Ā,Xi) ∼=
∐

i

Hn HomA(Ā,Xi) ∼=
∐

i

HomK(InjA)(Σ
−nĀ,Xi)

∼= HomK(InjA)

(
Σ−nĀ,

∐
i

Xi

)
∼= Hn HomA

(
Ā,

∐
i

Xi

)
since Ā is compact in K(InjA) by Lemma 2.1. Thus, the canonical map∐

i

HomA(−,Xi)|C̄ −→ HomA

(
−,

∐
i

Xi

)∣∣∣∣
C̄

is an isomorphism. Furthermore, the functor induces for objects A and B in C bijections

HomK(InjA)(Ā,Σ
nB̄) ∼= Hn HomA(Ā, B̄) ∼= Hn HomC̄(Ā, B̄) ∼= HomDdg(C̄)(Ā

∧,ΣnB̄∧),

where Ā∧ denotes the free module HomC̄(−, Ā). Using infinite dévissage, we conclude that the
functor is fully faithful since C generates K(InjA). The functor is, up to isomorphism, surjective on
objects since the image contains the free C̄-modules which generate Ddg(C̄).

Corollary A.2. Viewing noethA as a DG category, we have an equivalence

K(InjA) ∼−→ Ddg(noethA).

We remark that the proof of Proposition A.1 works for any homotopy category. To be precise,
let X be an additive category with arbitrary coproducts and let C be a set of objects in K(X ) which
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are compact (when viewed as objects in the localizing subcategory generated by C). Define C̄ as
before by

HomC̄(A,B) = HomX (A,B)
for A and B in C. Then the functor

K(X ) −→ Ddg(C̄), X �→ HomX (−,X)|C̄ ,
induces an equivalence between the localizing subcategory which is generated by C, and Ddg(C̄).

Appendix B. Homotopically minimal complexes

A complex X in some additive category is called homotopically minimal, if every map φ : X → X of
complexes is an isomorphism provided there is a map ψ : X → X such that φ ◦ψ and ψ ◦φ are chain
homotopic to the identity map idX . In this appendix, we show that each complex with injective
components admits a decomposition X = X ′ �X ′′ such that X ′ is homotopically minimal and X ′′

is null homotopic.
Let A be an abelian category, and suppose that A admits injective envelopes. Given a complex

X in A with injective components, we construct for each n ∈ Z a new complex X(n) as follows. Let
Un ⊆ Xn be the injective envelope of ZnX. We get a decomposition Xn = Un � V n. Let V n+1 be
the image of V n under the differential Xn → Xn+1, and let V p = 0 otherwise. This gives a complex
V which is null homotopic. The canonical map ι : V → X is a split monomorphism in each degree.
Thus, ι has a left inverse and we obtain a decomposition X = U � V . We put X(n) = V .

Lemma B.1. Let A be an abelian category, and suppose that A admits injective envelopes.
Then the following are equivalent for a complex X in A with injective components.

(1) The complex X is homotopically minimal.

(2) The complex X has no non-zero direct factor which is null homotopic.

(3) The canonical map ZnX → Xn is an injective envelope for all n ∈ Z.

Proof. (1) ⇒ (2) Let X = X ′ �X ′′ and suppose that X ′ is null-homotopic. The idempotent map
ε : X → X with Ker ε = X ′ = Coker ε induces an isomorphism in the homotopy category. Thus (1)
implies X ′ = 0.

(2) ⇒ (3) Fix n ∈ Z. Then we have a decomposition X = X(n) � U such that X(n) is null
homotopic. Our assumption implies X(n) = 0, and we conclude that the map ZnX → Xn is an
injective envelope.

(3) ⇒ (1) Let φ : X → X be a map with inverse ψ such that ψ ◦φ and φ ◦ψ are chain homotopic
to the identity idX . Thus, we have a family of maps ρn : Xn → Xn−1 such that

idXn = (ψ ◦φ)n + δn−1 ◦ ρn + ρn+1 ◦ δn.

We claim that Kerφ = 0. In fact, we show that K = Ker(ψ ◦φ) = 0. Let Ln = Kn ∩ ZnX. Then
ρn identifies Ln with ρn(Ln), and ρn(Ln) ∩ Zn−1X = 0, since (δn−1 ◦ ρn)Ln = Ln. The assumption
on Zn−1X implies Ln = 0. The same assumption on ZnX implies Kn = 0. Let C = Coker φ. The
sequence 0 → X

φ−→ X → C → 0 is split exact in each degree because X has injective components.
It follows that the sequence is split exact in the category of complexes, because C is null homotopic
by our assumption on φ. Let φ′ : X → X be a left inverse of φ. Then Kerφ′ ∼= C. On the other
hand, φ′ is invertible in the homotopy category of complexes and therefore Kerφ′ = 0 by the first
part of this proof. Thus φ is an isomorphism.

Proposition B.2. Let A be an abelian category, and suppose that A admits injective envelopes.
Then every complex X in A with injective components has a decomposition X = X ′ � X ′′ such
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that X ′ is homotopically minimal and X ′′ is null homotopic. Given a second decomposition X =
Y ′ � Y ′′ such that Y ′ is homotopically minimal and Y ′′ is null homotopic, then the canonical map
X ′ � X � Y ′ is an isomorphism.

Proof. TakeX ′′ =
∐

n∈ZX(n). This complex is null homotopic and the canonical map ι :
∐

n∈ZX(n)
→ X is a split monomorphism in each degree. Thus, ι has a left inverse and we obtain a decompo-
sition X = X ′�X ′′. The construction of each X(n) shows that the inclusion Zn(X ′) → (X ′)n is an
injective envelope. Thus, X ′ is homotopically minimal, by Lemma B.1.

Now let X = Y ′�Y ′′ be a second decomposition such that Y ′ is homotopically minimal and Y ′′

is null homotopic. The canonical map φ : X ′ � X � Y ′ induces an isomorphism in the homotopy
category, since X ′′ and Y ′′ are null homotopic. Thus, φ is an isomorphism of complexes, since X ′

and Y ′ are homotopically minimal. This completes the proof.
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