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Abstract  Theorems on the Fredholm alternative and well-posedness of the characteristic initial-value

problem
2u(t,z
T8 g (t,2) + alt,0),
u(t,c) = p(t) for t € [a,b], u(a,z) =¢P(z) for x € [c,d],

are established, where ¢ : C(D;R) — L(D;R) is a linear bounded operator, ¢ € L(D;R), ¢ : [a,b] — R,
¥ : [e,d] — R are absolutely continuous functions and D = [a, b] X [c, d]. Some solvability conditions of
the problem considered are also given.
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1. Introduction

On the rectangle D = [a,b] X [c,d], we consider the linear partial functional-differential
equation ,

% =Ll(u)(t,x) + q(t, z), (1.1)
where ¢ : C(D;R) — L(D;R) is a linear bounded operator and ¢ € L(D;R). As usual,
C(D;R) and L(D;R) denote the Banach spaces of continuous and Lebesgue integrable
functions, respectively, equipped with the standard norms.

A function u € C*(D;R) is said to be a solution to Equation (1.1) if it satisfies the
equality (1.1) almost everywhere on the set D.

Various initial- and boundary-value problems for hyperbolic differential equations and
their systems have been studied in the literature (see, for example, [3,6,7,9-12, 16,
19-21] and the references therein). We shall consider the so-called characteristic initial-
value problem (Darboux problem). In this case, the values of the solution u of (1.1) are
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prescribed on both characteristics ¢ = a and = = ¢, i.e. the initial conditions are
u(t,c) = p(t) fort € [a,b], u(a,x) =(x) for z € [c,d], (1.2)

where ¢ : [a,b] = R, ¢ : [¢,d] — R are absolutely continuous functions such that
o) = B(c).

The aim of the paper is to prove the Fredholm alternative and well-posedness of prob-
lem (1.1), (1.2) (see §§4 and 6). Moreover, in §5 some conditions are given under which
problem (1.1), (1.2) has a unique solution. The results obtained are applied for the equa-
tion with deviating arguments

Ou(t, x)
o0tox
where p,q € L(D;R) and 7: D — [a,b], u : D — [¢, d] are measurable functions.

Let us note that analogous results for the ‘ordinary’ functional-differential equations
and their systems are given in [1,8,13,14].

= p(t,x)u(r(t,z), p(t, ) + q(t, ), (1'1l)

2. Notation and definitions

The following notation is used throughout the paper.
N is the set of all natural numbers; R is the set of all real numbers; Ent(x) denotes the
entire part of the number z € R.
D = [a,b] x [¢,d], where —00 < a < b < +00 and —o0 < ¢ < d < +00.
C(D;R) is the Banach space of continuous functions v : D — R equipped with the
norm
lvllc = max{|v(t, z)| : (¢t,z) € D}.

C([e, B];R), where —co < o < 3 < 400, is the set of absolutely continuous functions
u: o, f] = R.
C*(D;R) is the set of functions v : D — R admitting the representation

v(t,z) = v1(t) + va(x) —|—/ /I h(s,nm)dnds for (¢t,z) € D,

where v; € C([a,b],R), vy € C([¢,d],R) and h € L(D;R). Equivalent definitions of the
class C*(D;R) are given in Remark 2.2, below.
L(D;R) is the Banach space of Lebesgue integrable functions p : D — R equipped

with the norm
Il = // Ip(t, z)| dt da.
D

L(D) is the set of linear bounded operators £ : C(D;R) — L(D;R).

The Lebesgue measure of the set A C R? is denoted by meas A.

If X, Y are Banach spaces and T : X — Y is a linear bounded operator, then |||
denotes the norm of the operator T, i.e.

IT]| = sup{[|T(2)[ly : z € X, [[2]lx <1}
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Definition 2.1. An operator £ € L(D) is said to be an (a,c)—Volterra operator if, for
arbitrary rectangle [a, to] X [¢, 9] C D and function v € C(D;R) such that
v(t,x) =0 for (¢t,x) € [a,to] X [¢, zg],
the relation
L()(t,x) =0 for a.e. (t,x) € [a,to] X [c, x0)
is fulfilled.

Remark 2.2. One can verify (see, for example, [5,18]) that v € C*(D;R) if and only
if the function v satisfies the following conditions:

(i) v(-,z) € C([a,b],R) for every = € [¢,d], v(a,-) € C([c,d],R);
(ii) v¢(t,-) € C([e, d], R) for almost all t € [a, b];
(iil) v € L(D;R).

Using Fubini’s theorem, it is clear that the order of the integration can be changed in
the integral representation of the function v € C*(D;R) and thus the conditions stated
above can be replaced by the following symmetric ones:

(i) v(-,c) € C([a,b],R), v(t,-) € C([e,d], R) for every t € [a, b];
(it") va(-,2) € C([a,b], R) for almost all z € [c, d];
(iil’) vyt € L(D;R).

Note also that the set C*(D;R) coincides with the class of functions of two variables,
which are absolutely continuous on D in Carathéodory’s sense (see, for example, [2,5,
15,20]).

3. Auxiliary statements

The following proposition plays a crucial role in the proofs of statements given in §§ 4-6.
Proposition 3.1. Let £ € L£(D). Then the operator T : C(D;R) — C(D;R) defined
by
T(v) (¢, x) &ef /t /I L(v)(s,m)dnds for (t,x) € D, v e C(D;R) (3.1)
is completely continuous. o

The statement above can easily be proved in the case where the operator £ is strongly
bounded, i.e. if there exists a function n € L(D; R ) such that

[e(v)(t, )| < n(t,z)||v]|c for a.e. (t,z) € D and all v € C(D;R). (3.2)

Schaefer proved, however, that there exists an operator ¢ € £(D) which is not strongly
bounded (see [17]). To prove Proposition 3.1 without the additional requirement (3.2)
we need a number of notions and statements from functional analysis. Note here that
the proof is analogous to the proof of Proposition 2.9 in [8].
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Definition 3.2. Let X be a Banach space and let X* be its dual space.

We say that a sequence {xn %1 € X is weakly convergent if there exists € X such
that f(z) = limp— 400 f(Tn) for every f € X*. The element z is said to be a weak limit
of this sequence.

A set M C X is called weakly relatively compact if every sequence of elements from
M contains a subsequence which is weakly convergent in X.

A sequence {z,}, > of elements from X is said to be weakly fundamental if the
sequence {f(r,)} > is fundamental in R for every f € X*.

We say that the space X is weakly complete if every weakly fundamental sequence of
elements from X possesses a weak limit in X.

Definition 3.3. Let X and Y be Banach spaces, and let T : X — Y be a linear
bounded operator. The operator T is said to be weakly completely continuous if it maps
a unit ball of X into a weakly relatively compact subset of Y.

Definition 3.4. We say that a set M C L(D;R) has an absolutely continuous integral
property if, for every € > 0, there exists § > 0 such that the relation

//E p(t,x)dt dx

is true whenever a measurable set £ C D is such that meas F < §.

<e foreverype M

The following three lemmas can be found in [4].
Lemma 3.5 (Theorem IV.8.6). The space L(D;R) is weakly complete.

Lemma 3.6 (Theorem VI.7.6). A linear bounded operator mapping the space
C(D;R) into a weakly complete Banach space is weakly completely continuous.

Lemma 3.7 (Theorem IV.8.11). Ifaset M C L(D;R) is weakly relatively compact

then it has a property of absolutely continuous integral.

Proof of Proposition 3.1. Let M C C(D;R) be a bounded set. We will show that the
set T(M) = {T(v) : v € M} is relatively compact in C(D;R). According to the Arzela—
Ascoli lemma, it is sufficient to show that the set T'(M) is bounded and equicontinuous.

(i) Boundedness. It is clear that

Tl < [ [ s mlanas <l <) lole

for (t,x) € D and every v € M. Therefore, the set T'(M) is bounded in C(D;R).

(ii) Equicontinuity. Let £ > 0 be arbitrary but fixed. Lemmas 3.5 and 3.6 yield that
the operator ¢ is weakly completely continuous, that is, the set {(M) = {£(v) : v € M}
is weakly relatively compact subset of L(D;R). Therefore, Lemma 3.7 guarantees that
there exists § > 0 such that the relation

Lo

holds for every measurable set E C D satisfying meas F < max{b — a,d — c}d.

<ile forveM (3.3)
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On the other hand, for (t1,1), (t2,22) € D and v € M, we have

ty
sndnds—/ / L(v)(s,m)dnds

< ' / [ 1) dsdn| +| [t asa]

where measurable sets E1, F5 C D are such that meas F1 < (d—c¢)|t2 —t1]| and meas F2 <
(b — a)|za — x1|. Hence, by virtue of (3.3), we get

ta
|T(U)(t27l'2) —T( tl,.’El

T(v)(t2,z2) — T(v)(t1,21)] <€
for (t1,$1), (tg,l‘g) S D, |t2 — tl‘ + |J)2 — 1‘1| <dandwv € ]\47

i.e. the set T(M) is equicontinuous in C(D;R). O

4. Fredholm property

The main result of this section is the following statement on the Fredholmity of prob-
lem (1.1), (1.2).

Theorem 4.1. For the unique solvability of problem (1.1), (1.2) it is sufficient and
necessary that the homogeneous problem

O*u(t,x)
u(t,c) =0 fort € [a,b], u(a,z) =0 forz € lc,d], (1.29)

has only the trivial solution.

Proof. Let u be a solution to problem (1.1), (1.2). It is clear that u is a solution to
the equation

=T()+ f (4.1)
in the space C(D;R), where the operator T is given by (3.1) and

f(t ) e —p(a) + o(t) + () +/ /m q(s,n)dnds for (t,z) € D. (4.2)

Conversely, if v € C(D;R) is a solution to Equation (4.1) with f given by (4.2), then
v € C*(D;R) and v is a solution to problem (1.1), (1.2). Hence, problem (1.1), (1.2) and
Equation (4.1) are equivalent in this sense.

Note also that u is a solution to the homogeneous problem (1.1g), (1.2¢) if and only if
u is a solution to the homogeneous equation

v="T(v) (4.3)

in the space C(D;R).
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According to Proposition 3.1, the operator T is completely continuous. It follows from
the Riesz—Schauder theory that Equation (4.1) is uniquely solvable for every f € C(D;R)
if and only if the homogeneous Equation (4.3) has only the trivial solution. Therefore,
the assertion of the theorem is true. O

Definition 4.2. Let the problem (1.1p), (1.29) have only the trivial solution. An
operator {2 : L(D;R) — C(D;R) which assigns to every ¢ € L(D;R) the solution u of
the problem (1.1), (1.2¢) is called the Darboux operator of the problem (1.1p), (1.20).

Remark 4.3. It is clear that the Darboux operator {2 is linear.

If the homogeneous problem (1.1p), (1.2¢) has a non-trivial solution then, by virtue of
Theorem 4.1, there exist functions ¢, ¢ and ¢ such that problem (1.1), (1.2) has either no
solution or infinitely many solutions. However, as follows from the proof of Theorem 4.1,
a stronger assertion can be shown in this case.

Propositi0n~4.4. Let problem (1;10), (1.2y) have a non-trivial solution. Then, for
arbitrary ¢ € C([a,b],R) and ¢ € C([c,d],R) satisfying ¢(a) = 1(c), there exists a
function q € L(D;R) such that problem (1.1), (1.2) has no solution.

Proof. Let ug be a non-trivial solution to the problem (1.1p), (1.29) and let ¢ €
C([a,b],R) and 9 € C([¢,d],R) be such that ¢(a) = (c).

It follows from the proof of Theorem 4.1 that ug is also a non-trivial solution to
the homogeneous Equation (4.3). Therefore, by the Riesz—Schauder theory, there exists
f € C(D;R) such that Equation (4.1) has no solution.

Then problem (1.1), (1.2) has no solution for ¢ = ¢(z), where

2(t,2) = f(t,2) + p(a) — p(t) —(x) for (t,z) € D.

Indeed, if the problem indicated has a solution u, then the function u + z is a solution
to Equation (4.1), which is a contradiction. O

5. Existence and uniqueness theorems

In this section, we shall establish some efficient condition guaranteeing the unique solv-
ability of the problems (1.1), (1.2) and (1.1"), (1.2). We will prove, in particular, that
problem (1.1), (1.2) has a unique solution provided that the operator ¢ is an (a,c)—
Volterra one. We first formulate all the results; their proofs are given later.

We introduce the following notation.

Notation 5.1. Let ¢ € L(D). Define operators ¥ : C(D;R) — C(D;R), k =
0,1,2,..., by setting
Bo(v) ¥ v, 0n(v) ¥ T(W,_1(v)) for ve C(D;R), k€N, (5.1)

where the operator T is given by (3.1).
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Theorem 5.2. Let there exist m € N and « € [0, 1] such that the inequality

[0m(u)llc < allulle (5.2)

is satisfied for every solution w of the homogeneous problem (1.1y), (1.2y). Then prob-
lem (1.1), (1.2) is uniquely solvable.

Remark 5.3. The assumption that o € [0,1] in the previous theorem cannot be
replaced by the assumption that « € [0,1] (see Example 7.1).

Corollary 5.4. Let there exist j € N such that

//Dpj(t,x) dtdz < 1, (5.3)

where p; = |p| and

T(t,x) pp(t,z)
Pr+1(t, x) o |p(t,x)|/ / pr(s,m)dnds for a.e. (t,x) € D, ke N. (54)
a c

Then the problem (1.1'), (1.2) is uniquely solvable.

Remark 5.5. Example 7.1 shows that the strict inequality (5.3) in Corollary 5.4
cannot be replaced by the non-strict one.

Theorem 5.6. Let ¢ be an (a,c)—Volterra operator. Then problem (1.1), (1.2) has a
unique solution.

Corollary 5.7. Let
lp(t, )|(T(t,z) —t) <O for a.e. (t,x) €D (5.5)
and
[p(t, 2)|(u(t,x) —2) <0 for a.e. (t,z) € D. (5.6)

Then problem (1.1'), (1.2) has a unique solution.

5.1. Proofs

Proof of Theorem 5.2. According to Theorem 4.1, it is sufficient to show that the
homogeneous problem (1.1p), (1.29) has only the trivial solution.
Let u be a solution to the problem (1.1p), (1.29). Then it is clear that

t T
u(t,z) = / / 0(u)(s,n) dnds = T(u)(t, ) = 01 (u)(t,z) for (t,z) € D.
Using the above relation, we get
u(t,x) = T(91(u))(t,x) = Ja(uw)(t,x) for (¢, z) € D,
and thus u = ¥ (u) for every k € N. Therefore, (5.2) implies that
lulle = l[Im(w)llc < allulle,

which guarantees u = 0. |
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Proof of Corollary 5.4. Let ¢ € £(D) be defined by
() (t, 2) E plt, 2)v(r(t,2), ut,z)) for ae. (t,) €D and all v € C(D;R).  (5.7)
It is clear that
91 (v) \// [p(s, )41 () (5, ), (s m))| d s
< Hv||c/ / pe(s,m)dnds for (t,2) €D, k€N, v e C(D:R),

Therefore, the assumptions of Theorem 5.2 are satisfied with m = j and

a://Dpj(t,ac)dtdx.

O
To prove Theorem 5.6 we need the following lemma.
Lemma 5.8. Let ¢ € L(D) be an (a,c)—Volterra operator. Then
im0 =0, (5.8)

where the operators ¥, are defined by (5.1).

Proof. Let ¢ € ]0,1[. According to Proposition 3.1, the operator ¥; is completely
continuous. Therefore, by virtue of the Arzela—Ascoli lemma, there exists § > 0 such
that

t1
‘/ / sndndsf/ / w)(s,n)dnds| <

for (t1,x1), (t2,x2) € D, |ta — t1] + |22 — 21| < J, w € C(D;R). (5.9)

elwllc

Put
2(b — 2(d —
n = max< Ent (b—a) ,Ent ( ¢) ,
é 6
b— d—
ti:a—i—in_’_ci, xi:c+in+i fori=0,1,...,n+1,
D; =la,t;] X [c,x;] fori=1,2,....,n+1.
It is clear that, for any j,r7 =0,1,...,n, we have

|£2 — 51‘ + |i‘2 — i‘1| < for (7?1,531), (EQ,.%Q) € [tj,tj_H] X [.Ifr,l‘T_H]. (510)
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If w € C(D;R), then we define

|lwll; = [|lwlc@,;r)y fori=1,2,...,n+1.

Let v € C(D;R) be arbitrary but fixed. We shall show that the relation
19e(0) i < as(k)e* ol for k€N

holds for every i =1,2,...,n+ 1, where

ai(k) = k™ forkeN, i=1,2,...,n+1,

a; =1, i1 =1+ 14+1ia; fori=1,2,....n

249

(5.11)

(5.12)

(5.13)

By virtue of (5.9) and (5.10), it is easy to verify that, for any w € C(D;R), we have

(s,m)dnds| < min{j,r}el|lwl|c for j,r=10,1,...,n+ 1.

[ e

Firstly, note that

n+ 1.

191 (v) [l <
Indeed, according to (5.9), (5.10) and (5.14), it is obvious that

9:(0) 1 = ma{ | / t / " 4(w) (s, m) dnds
ST

< \ / i / @) dnds = [ / " ) (5,m) dnds

/ e / " o) (s,m) dn ds

icljv||lc fori=1,2,...,

((t,x) € DZ}

(s,m)dnds

+

ellvlle + (i = Dellvlle

=ie|v)lc fori=1,2,...,n+1,
where (tf,2}) € D; and
tr—t tr—t
i~ 0 g if —— 2 N,
L i —to 1— %o
Jolt) = tr—t
Ent ( +——2 otherwise,
t1 —to
* *
LTy % T o,
. 1 — Zo 1 — Zo
roli) = T —x
Ent (’O) otherwise.
1 — X9
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Furthermore, on account of (5.9) and the fact that ¢ is an (a, ¢c)—Volterra operator, we
have

t T
it =| [ [ e ras| <l
for (t,x) € D; and k € N. Hence, by virtue of (5.15), we get
k() <"l for k€N,

ie. (5.11) is true for ¢ = 1.

Now suppose that the relation (5.11) holds for some i € {1,2,...,n}. We will show
that the relation indicated is true also for ¢ + 1. With respect to (5.9), (5.10), (5.14) and
the fact that £ is an (a, ¢)—Volterra operator, we obtain

19p1 (@)llis1 = max{\ / t / " 04(0)) (5, m) dnds
- \ / § / " U(000)) () s
< ] / " / " 00 (0)) ) dnds — / o / T 940 (5,m) dnds

tio(k)  [Tro(k)
+\ [ o manas

((t,x) € Di+1}

el Ok ()lli+1 + e[ Ok (0)lli
el O (v)lli41 + iai (k)" Jollc for k € N,

where (¢5,z}) € Dix1 and jo(k), ro(k) are given by (5.16). Whence, we get
[Oh41(0)li+1 < (el Ip—1(0)[lit1 + i (k — D)e¥||vlle) + ici (k)" o] ¢ for k € N.
To continue this procedure, on account of (5.15), we obtain
Wt @)1 < G+ 1+ i(0(D) + -+ as(k)FH olle for ke N (5.17)
With respect to (5.12) and (5.13), it is easy to verify that

i+ 14i(a(1) + -+ ai(k) =i + 14+, (17 -+ k7
<i+1+iakk™!
=i+ 1+ ia;k"
< (14 1+ i)k
= ai+1ki
< aip1(k+1).
Therefore, (5.15) and (5.17) imply that

[0k(0)[li+1 < @ipr(k)e®lvflc for k € N.
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Thus, by induction, we have proved that the relation (5.11) is true for every i =
1,2,...,n+ 1.
Now it is already clear that, for any k € N, the estimate

195l = [0%(v)lln41 < ans1k™e"|lv]lc for v e C(D;R)

holds. Therefore,
9% < apy1kme®  for ke N.

Since we suppose that e € ]0, 1], the last relation yields (5.8). O

Proof of Theorem 5.6. According to Lemma 5.8, there exists my € N such that
[l9me |l < 1. Moreover, it is clear that

[mo (V)| < ([ Fm, || |v]lc for v e C(D;R),

because the operator ¥,,, is bounded. Therefore, the assumptions of Theorem 5.2 are
satisfied with m = mg and a = ||, |- O

Proof of Corollary 5.7. The assumptions (5.5) and (5.6) guarantee that the operator
¢ given by (5.7) is an (a, c)—Volterra one. Therefore, the validity of the corollary follows
immediately from Theorem 5.6. ]

6. Well-posedness

In this part, the well-posedness of the problems (1.1), (1.2) and (1.1), (1.2) is investi-
gated. We first formulate all the results; their proofs are given later.
For any k € N, along with problem (1.1), (1.2) we consider the perturbed problem

PO ) (t.0) + aslr,2), (11
u(t,c) = pp(t) fort € [a,b], u(a, ) = Yp(z) for z € [e,d], (1.2%)

where ¢, € L(D), qx € L(D;R) and ¢, € C([a,b];R), ¥ € C([c,d];R) are such that
or(a) = vr(c).

We introduce the following notation.

Notation 6.1. Let ¢ € L(D). Denote by M (¢) the set of all functions y € C*(D;R)
admitting the representation

y(t,z) = —z(a,c) +/ /x £(z)(s,n)dnds for (t,z) € D,

where z € C(D;R) and ||z||c = 1.

Theorem 6.2. Let problem (1.1), (1.2) have a unique solution u,

lim A =0, (6.1)

k—4o00
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where

A =sup{]/:/;<ek<y><s,n>—ay)(s,n))dnds (o) €D yeM@)| Prken,

and let

e+ lal) [ [ s — s aras =0
uniformly on D for every y € C*(D;R). (6.2)

lim
k——+oo

Moreover, let

t T
klir+n (1 + |1€]l) / / (qr(s,m) —q(s,n))dnds =0 uniformly on D (6.3)
—r+00 a c

and
klim L+ IeDller — ¢llc =0, lim (1 + [|€[))][von — ¥llc = 0. (6.4)
——+o0 k——+o00

Then there exists kg € N such that, for every k > kg, the problem (1.1j), (1.2x) has a
unique solution uy, and
li — =0. 6.5
L e —ulle (6.5)

If we suppose that the operators ¢ are uniformly bounded in the sense of (6.6), then
we obtain the following statement.
Corollary 6.3. Let problem (1.1), (1.2) have a unique solution u, let there exist a
function w € L(D;R,) such that
|k (y)(t, 2)| < w(t,x)||yllc  for a.e. (t,x) € D and all y € C(D;R), k €N, (6.6)

and let .
lim / / (Lr(y)(s,n) —L(y)(s,m))dnds =0 uniformly on D (6.7)

k—+oo

for every y € C*(D;R). Moreover, let

t T
lim / / (gr(s,m) —q(s,m))dnds =0 uniformly on D, (6.8)
k—+oo J, Je
and
Jm flor —elle =0, lim [l —flc =0. (6.9)

Then the conclusion of Theorem 6.2 holds.

Remark 6.4. Assumption (6.6) in the previous corollary is essential and cannot be
omitted (see Example 7.2).

Corollary 6.3 yields the following.
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Corollary 6.5. Let the homogeneous problem (1.1y), (1.2y) have only the trivial
solution. Then the Darboux operator® of the problem (1.1y), (1.2y) is continuous.

Now we shall give a statement on the well-posedness of the problem (1.17), (1.2). For
any k € N, along with Equation (1.1") we consider the perturbed equation

82u(t,:r) B
otow Pk

where pg,qr € L(D;R) and 7 : D — [a, b], ux : D — [c, d] are measurable functions.

(tvx)u(’rk(tvx)nu'k(ta .’E)) +Qk(t7x)v (ll;g)

Theorem 6.6. Let the problem (1.1'), (1.2) have a unique solution u, let there exist
a function w € L(D;R) such that

lpr(t, )| < w(t,x) for (t,z) € D, k €N, (6.10)

and let P
lim / / (pr(s,m) —p(s,n))dnds =0 uniformly on D. (6.11)
a c

k—-+o0

Moreover, let conditions (6.8) and (6.9) be satisfied and let

lim ess sup{|mx(t,z) — 7(¢,x)| : (t,z) € D} =0, (6.12)
k— o0
kliI_P ess supq|ux(t,z) — pu(t,x)| : (t,z) € D} = 0. (6.13)
— 400

Then there exists ko € N such that, for every k > ko, problem (1.1}), (1.2;) has a unique
solution uy and (6.5) holds.

Remark 6.7. Assumption (6.10) in the previous theorem is essential and cannot be
omitted (see Example 7.2).

6.1. Proofs
To prove Theorem 6.2 we need the following lemma.

Lemma 6.8. Let problem (1.1y), (1.2y) have only the trivial solution and let condi-
tion (6.1) be satisfied. Then there exist kg € N and r¢o > 0 such that

zllc < ropr(2)  for k > ko, z € C*(D;R), (6.14)

where

() = Jo(a, e)| + 1+ 1) Tk ()]l for v € C*(D;R) (6.15)

and

I (v)(t, z) défv(t,c)—l—v(a,x)—&—/ / <ag£;;7m—€k(v)(s,n)) dnds (6.16)

for (t,z) € D and v € C*(D;R).

* The notion of Darboux operator is given in Definition 4.2.
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Proof. Let T, T}, : C(D;R) — C(D;R) be operators defined by (3.1) and
t T
T (v)(t, 2) dzef/ / (e(0)(s,m) dnds for (t,z) €D, ve C(D:R), keN.  (6.17)

Obviously,
ITu)llc < [l lylc  fory e C(D;R), k eN.

Therefore, the operators Ty, k € N, are linear and bounded and the relation
ITll < [1€x]] for ke N (6.18)
holds. Moreover, the condition (6.1) can be rewritten in the form
sup{||Tx(y) —TW)|lc:y € M(lx)} — 0 as k — +oo. (6.19)

Assume that, on the contrary, the assertion of the lemma is not true. Then there
exist an increasing sequence {k,,};*°°, of natural numbers and a sequence {z,,}>° of
functions from C*(D;R) such that

lzmllc > mpk,, (zm) for m € N. (6.20)

For any m € N and (t,z) € D, we set

Zm (t, x)
l2mllc’

ym(t,z) = (6.21)

mlts) =um(t:0) + o) + [ [ (P8 gy s ans, 022

Yom (t, ) = ym (¢, ) — v (¢, ), (6.23)
win(t, ) = Th,, (Yom ) (t, ©) = T'(yom) (¢, ) + Th,, (0m) (¢, 7). (6.24)
Obviously,
lymllc =1 form €N, (6.25)
Yom (t, ) = —ym(a,¢) + Tk, (ym)(t,z) for (t,x) € D, m € N, (6.26)
and

Yom (t, ) = —ym(a, ¢) + T (Yom)(t, ) + w (t,x) for (t,z) € D, m € N. (6.27)

On the other hand, from (6.15), (6.16), (6.18), (6.21) and (6.22), by virtue of (6.20), we

get
Pk (2m) 1
. < - < for m € N, 6.28
|| mHC’ H2m||0(1+ Hgka) m(1+ ||€km||) ( )
14k, |l 1
- . T . SR 7 | N, 6.29
1T (om)lle < i Hlomlle < ST gy <7 frme o
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and

m 1
lym(a, )| < PemBm) — formeN. (6.30)

[zmllc
The relations (6.25) and (6.26) guarantee that yom, € M (y,,) for m € N and, therefore,

in view of (6.19), we obtain

im ||, (yom) — T'(yom)llc = 0. (6.31)

m——+o0

According to (6.29) and (6.31), it follows from (6.24) that

hIJIrloo lwmllc =0, (6.32)

m—r

and, by virtue of (6.25) and (6.28), the equality (6.23) implies
[Yomlle < llymlle + lvmllc <2 for m € N.

Since the sequence {||yom [l };-% is bounded and the operator T is completely continuous

(see Proposition 3.1), there exists a subsequence of {T'(yo,,)},->°, which is convergent.

Without loss of generality we can assume that the sequence {T(yom )}, is convergent,
i.e. there exists yo € C(D;R) such that

lim ||7(yom) — yollc = 0.

m——+oo

Then it is clear that

lim  ||yom — yollc =0 (6.33)

m——+o0

because the functions yo,, admit the representation (6.27) and (6.30) and (6.32) are
satisfied.
However, the estimate (6.28) holds for v, and, thus, the equality (6.23) yields

lim ||ym - yOHC =0,

m——+00

which, together with (6.25), guarantees that

llyollc = 1.

Since the operator T is continuous and the conditions (6.30), (6.32) and (6.33) are ful-
filled, the representation (6.27) of yo, results in

yo(t,z) = T(yo)(t,x) for (t,x) € D.

Consequently, yg € C*(D;R) and yo is a non-trivial solution to the problem (1.1p),
(1.29). However, this is a contradiction because, according to our assumption, the problem
indicated has no non-trivial solution. O
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Proof of Theorem 6.2. Let ry > 0 and ky € N be numbers appearing in Lemma 6.8.
If, for some k € N, ug is a solution to the equation

2u(t, o
% =l (u)(t, z) (6.331)

satisfying (1.29), then pp(ug) = 0, where pj, is given by (6.15) and (6.16). Therefore,
Lemma 6.8 guarantees that, for every k > ko, the homogeneous problem (6.33;), (1.29)
has only the trivial solution. Hence, for every k > kg, the problem (1.1;), (1.2;) has
a unique solution ug. We shall show that (6.5) is satisfied, where u is a solution to
problem (1.1), (1.2).

For any k > ko, we set

vp(t, ) = u(t,x) —u(t,z) for (¢,z) € D.
Then it is clear that v, € C*(D;R) for k > ko,

v (t, x)

o Li(vk)(t, ) + G (t,x) for ae. (t,z) € D, k > ko, (6.34)
and .
vg(t,c) = gzjk(t) for t € [a,b], k> ko,} (6.35)
vg(a, x) = Yi(z) for « € [e,d], k > ko,
where
qk( x) = Lp(u)(t,z) — L(u)(t,x) + qr(t,z) — q(t,x) for a.e. (t,x) € D, k > ko,
Pr(t) = pr(t) — o(t) for t € [a, b], k > ko,
Ur(x) = Yi(z) — ¥(x) for x € [e, d], k> kg.

For any k > kg, we set

(5k:(1+||€k|)max{ t) + e (z / / dr(s,m)dnds| : (¢, x)ED}
Assumptions (6.2), (6.3) and (6.4) yield
kginoo 0, =0 and kgrfoo lvk(a, )| = 0. (6.36)

On the other hand, using Lemma 6.8, we get

lvelle < ropr(vk) = ro(|ve(a, )| + 6x) for k > k. (6.37)
Therefore, (6.36) and (6.37) result in

li =
Jm Juelle =0,

i.e. the relation (6.5) is satisfied. O
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Proof of Corollary 6.3. We will show that the assumptions of Theorem 6.2 are
satisfied. Indeed, the relation (6.6) yields

k]l < |lw|lp for k € N.

Therefore, it is clear that, by virtue of (6.7)—(6.9), the assumptions (6.2)—(6.4) of Theo-
rem 6.2 are fulfilled. It remains to show that the condition (6.1) is true.
Assume that, on the contrary, the condition (6.1) does not hold. Then there exist

g9 > 0, an increasing sequence {k,,},-%° of natural numbers and a sequence {ym,}:->°
such that

Ym € M(Ly,) formeN (6.38)
and

max {] / t [ o)) =) s s

(t,x) € D} >¢gy form e N. (6.39)

From (6.38) and Notation 6.1 we get

t x
Ym(t, ) = —2zm(a,c) —l—/ / Uk, (zm)(s,m)dnds for (t,z) € D, m € N,

where z,, € C(D;R) and ||z;]|c = 1 for m € N. Since we suppose that the operators ¢,
are uniformly bounded in the sense of condition (6.6), we obtain

lymllc <1+ |jw| for meN.

Furthermore, for any (¢1, 1), (t2,22) € D and m € N, we get

|ym (t2, T2) — ym (t1, 21 |—‘/ / Ly, (zm)(s,m dnds—/ / Ly, (zm)(s,m) dnds

<// w(s,n)dsdn+// w(s,n)dsdn,
El E2

where the measurable sets Ey1, Fs C D are such that meas Ey < (d — ¢)|ta — t1] and
meas Fy < (b— a)|zg — x1]-

Consequently, the sequence {y,,, }:7°°, is bounded and equicontinuous in C(D;R). Thus,
according to the Arzela—Ascoli lemma, we can assume without loss of generality that the
sequence indicated is convergent. Therefore, there exists py € N such that

€0
2(Jwllz + [1€] + 1)

[ym = Ypollc < for m > po. (6.40)

Since yp, € C*(D;R) and the relation (6.7) holds, there exists p; € N such that

D(t,z) € D} <iey fork>p
(6.41)

max{| [ [ atum ) — ) s s
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Now choose a number M € N satisfying M > pg and kp; > p1. Then

max{y/t/mcmM<MWXan>—é@mﬂ(&n»dnds

< (lwllz + 1D yar = ypo llo

(t,x) € D}

+mw{//éwwom>aMmmmm«wmeﬂ
co lwllz 1€l | eo
2 flwle+lef+1 2
< €o,
which contradicts (6.39). O

To prove Theorem 6.6 we need the following statement, which is a two-dimensional
analogy of the well-known Krasnoselskii-Krein lemma.

Lemma 6.9. Let p,px € L(D;R) and let a, i, : D — R be measurable and essentially
bounded functions for k € N. Assume that the relations (6.10) and (6.11) are satisfied
and that

lim ess sup{|ax(t,z) — a(t,z)|: (t,z) € D} = 0. (6.42)
k—+o00

Then

¢
lim / / (pr(s,m)ar(s,n) —p(s,n)a(s,n))dnds =0 uniformly on D.  (6.43)

k——+oo a

Proof. Without loss of generality we can assume that
Ip(t,z)| < w(t,z) for a.e. (t,z) € D. (6.44)
Let ¢ > 0 be arbitrary but fixed. According to (6.42), there exists kg € N such that

// w(t,z)|ag(t,z) — a(t,z)|dtds < e for k > ko. (6.45)
D

Since the function « is measurable and essentially bounded, there exists a function w €
C(D;R), which has continuous derivatives up to second order and such that

//D w(t,z)|a(t, z) — w(t,z)|dtdz < fe. (6.46)

For any k € N, we set

t x
fe(t,x) = / / (pr(s,n) —p(s,n))dnds for (t,z) € D.
Clearly, (6.11) can be rewritten in the form

li =0. A4
Jimlfille =0 (6.47)
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It can be verified by direct computation that

// pr(s,m) — p(s,m)w(s,n)dnds

= fi(t, z)w(t, ) /fksx Sxd—/f )dn

//fksn )dnds for (t,z) € D, k € N.

Consequently, using (6.47), we get

lim / / pr(s,m) —p(s,m)w(s,n)dnds =0 uniformly on D.

k— 400

Hence, there exists k1 > kg such that

(pr(s,m) — p(s,n))w(s,n)dnds| < 2e  for (t,z) € D, k > k. (6.48)

On the other hand, it is clear that, for any (t,2) € D and k € N,

Iy (o5, ma(s.m) — p(s,m)as,m)) d ds

= [ [ mtemients.n ~ ats.m) dnas
// Pr(s,m) s,m))w(s,n)dnds

# [ [ tntosn = s mtato.m) ~ ws ) ands.

Therefore, in view of (6.10), (6.44)—(6.46) and (6.48), we get

(pr(s,max(s,n) — p(s,n)a(s,n)) dnds

< / /D w(s,m)ak(s,m) — als, m)] dids + (pi(5,1) — p(s, m))w(s, n) dn ds

+2 / | w(sn)lats.n) = wls,m] dnds
D
<4248
4 4 4
=¢ for ( ) €D, k> kq,
that is, the relation (6.43) holds. O

Proof of Theorem 6.6. Let ¢ € L(D) be defined by (5.7). For any k € N, we set

Li(v)(t, x) def pr(t, v)v(ti(t, ), ux(t,x)) for a.e. (t,z) € D and all v € C(D;R).
(6.49)
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We will show that (6.7) is satisfied for every y € C*(D;R). Indeed, let y € C*(D;R) be
arbitrary but fixed. For any k € N, we set

ak(tvx) = y(Tk(tax)a /.Lk(t, x))? Oé(t,l‘) = y(T(tal‘)aM(tJ)) for (t7$) eD.

Then it is clear that (6.12) and (6.13) guarantee the condition (6.42). Therefore, it follows
from Lemma 6.9 that the condition (6.43) holds, i.e. the condition (6.7) is true.
Consequently, the assumptions of Corollary 6.3 are satisfied. (]

7. Counter-examples

Example 7.1. Let p € L(D;R.) be such that

//Dp(t,m)dtdx =1

L(v)(t, z) def p(t,z)v(b,d) for a.e. (t,z) € D and all v € C(D;R).

and let £ € £(D) be defined by

Then the condition (5.2) with o = 1 is satisfied for every m € N and v € C(D;R).
Moreover,

// pj(s,m)dnds =1 for every j € N,
D

where p; is given by (5.4).
On the other hand, the problem (1.1y), (1.29) has a non-trivial solution

t T
u(t, x) :/ / p(s,n)dnds for (t,x) € D.

This example shows that the assumption « € [0, 1[ in Theorem 5.2 cannot be replaced
by the assumption a € [0, 1], and the strict inequality (5.3) in Corollary 5.4 cannot be
replaced by the non-strict one.

Example 7.2. Let

gr(t) = kcos(k®t), hi(t) = ksin(k*t) fort >0, k€N, (7.1)
and
t (2 (2
yr(t) = —k:/ exp (sm(: b_ sm(: S)> sin(k?s)ds fort >0, k € N. (7.2)
0

It is not difficult to verify that, for every k € N,
Y (t) = gr(t)yr(t) + hi(t) fort >0 (7.3)

and
lye(t)| < 1+e+te* fort >0, (7.4)
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because
yr(t) = %cos(th) - %exp (Sin(:%)) + % /Ot exp (Sin(:%) - Sin(:QS)) ds
+ ;/Ot exp <sin(:2t) — sin(:25)> cos(2k?s)ds fort >0. (7.5)
Moreover,
kgrfoo ye(t) =1t fort>0. (7.6)

Now, let p=0,¢=0,9=0,9% =0 and
T(t,x) =t, p(t,x)=a for (t,x)eD.
For any k € N, we set ¢ =0, ¢, =0,

pr(t,x) = gr(t —a)gr(z —¢) for (t,z) € D,
qx(t, ) = hi(t — a)yp(z — ¢) + yp(t — a)hp(x — ¢) — hy(t — a)hy.(x — ¢) for (t,z) € D,

and
(t,z) =1t, wpp(t,z) ==z for (t,z) € D.

According to (7.1), (7.3) and (7.4), it is clear that the assumptions of Theorem 6.6
are satisfied except for (6.10). Let ¢, ¢;, € L(D) be operators defined by (5.7) and (6.49),
respectively. Then it is not difficult to verify that the assumptions of Corollary 6.3 are
satisfied except for (6.6).

On the other hand,

u(t,z) =0 for (t,z) € D

and
up(t,z) = yr(t — a)yp(z —¢) for (t,z) € D, k € N,

are solutions to problems (1.1), (1.2) and (1.1}, (1.2), respectively, as well as problems
(1.1), (1.2) and (1.1) and (1.2;), respectively. However, in view of (7.6), we get

lim (ug(t,z) —u(t,z)) = lim yp(t —a)yx(z —c)

k—+oo k—+4oco

_(t—a(z—9 for (t,2) € D,
4
that is, the relation (6.5) is not true.
This example shows that the assumptions (6.6) in Corollary 6.3 and (6.10) in Theo-

rem 6.6 are essential and they cannot be omitted.
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