
Ergod. Th. & Dynam. Sys. (1984), 4,1-23
Printed in Great Britain

Fat baker's transformations
J. C. ALEXANDER AND J. A. YORKE

Department of Mathematics, University of Maryland, College Park, MD 20742, USA;
Institute for Physical Science and Technology, University of Maryland, College Park,

MD 20742, USA

(Received 5 May 1982 and revised 2 December 1982)

Abstract. We investigate a variant of the baker's transformation in which the mapping
is onto but is not one-to-one. The Bowen-Ruelle measure for this map is investigated.

1. Introduction

Baker's transformations. Consider the strip

R x [ - l , l] = {(x, y): -oo<x<oo, -1 < y < 1}

and for 0</3 < 1, consider the transformation Tp of this strip:

-B),2y-\) ifj'SO,
B), 2y + \) if}><0.

Note that the square [—1, 1] x[—1,1] is invariant and that the iterates of any (x, y)
are either eventually in the square or (for a countable set of y) approach the square.
Thus the attractor of Tp is contained in the square. Our investigations bear mostly
on the structure of the attractor; we use the same notation for the restriction of T0

to the square. The x-axis is a set of measure zero and the definition of Tp for y = 0
can be altered without affecting any results. In other words, Tp vertically stretches
the top (resp. bottom) half of the square to the full height of the square, shrinks it
by a factor B in the horizontal direction, and shifts the resulting rectangle horizontally
to the right (resp. left) as far as possible in the square.

If B = j , the transformation Tp is the classic baker's transformation. Accordingly
we call Tp a generalized baker's transformation. A generalized baker's transformation
is piecewise linear, with expansion by a factor of 2 in the vertical direction and
compression by a factor B in the horizontal direction. If B < \ we call Tp a skinny
baker's transformation; a skinny baker's transformation on the square is one-to-one
and its structure is fairly easy to understand. In particular the attractor is the product
of the vertical line [-1, 1] with a Cantor set in the x-direction. On the other hand,
if B > \, the transformation Tp is not one-to-one and its structure is considerably
more interesting. This is the case on which we concentrate in this paper. We call
Tp for B > \ &fat baker's transformation. The attractor of a fat baker's transformation
is the whole square. We find there is (at least) a countable closed set of B, \ < B < 1
for which every invariant measure is totally singular with respect to Lebesgue
measure and for which the attractor has an information-theoretic dimension (defined
below) strictly less than two.
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2 /. C. Alexander and J. A. Yorke

This study is part of a larger programme to understand relations between the
dynamics of transformations denned on manifolds and certain measure and informa-
tion-theoretic aspects of their attractors. Generalized baker's transformations are
simple enough that explicit computations are possible, yet they exhibit behaviour
commonly seen in transformations with strange attractors.

Bowen-Ruelle measures. The stochastic behaviour of the transformation is captured
by a measure first studied in [5] (see also [4]) for axiom A systems. Let M be a
manifold, and T: M -* M a continuous transformation. Suppose there is a set Mo c M
of Lebesgue measure zero such that for all xe M\M0 and for every continuous
/ : M-»/? the limit

N-.cc TV + 1 n = 0

exists and is independent of x e M\M0. Then/-*/ is a continuous linear functional
on the space of bounded continuous functions with the sup-norm topology and thus
determines a Borel measure /x such that

JM

The measure (i is automatically invariant; we call it the Bowen-Ruelle measure, if
T is also ergodic with respect to the Bowen—Ruelle measure, we say T is Bowen-
Ruelle ergodic. Note that the Bowen-Ruelle measure is supported on the attractor
of T. The Bowen-Ruelle measure is the one 'seen' on a computer simulation of T.
If the computer selects a random point xe M and plots the iterates of x, the result
is a study in shades of grey. The deepness of the grey indicates the concentration
of (i.

In § 4 (theorem 1) we study Bowen-Ruelle measures of generalized baker's
transformations. The method is to study the effect of Tp on the Fourier-Stieltjes
transforms of measures. For the reader's convenience, the relevant probability theory
is summarized in § 2. The Bowen-Ruelle measure of Tp is the product of the uniform
measure in the ^-direction and a measure in the x-direction we call an infinitely
convolved Bernoulli measure (ICBM). These ICBM's have been studied for half a
century, although their relation with dynamics has not been noted before (they were
originally studied as interesting examples in harmonic analysis). A survey of these
measures is given in § 3.

The Bowen-Ruelle measure describes the stochastic behaviour of a transformation
T in the sense of time averages. One could also investigate ensemble averages. In
§ 5 (theorem 2) we prove a result of this form; we show that for a large class of
measures Mo on Rx[ -1 , 1], the iterates Tlfi0 converge in distribution to scalar
multiples of the Bowen-Ruelle measure. Again the machinery involves Fourier-
Stieltjes transforms. A consequence of this is that generalized baker's transformations
are (strongly) mixing. Hence they are Bowen-Ruelle ergodic. (By completely different
methods, which we do not pursue in this paper, we can show that generalized baker's
transformations are factors of Bernoulli shifts, hence fc-endomorphisms.)
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Fat baker 's transformations are (area) expanding. The Bowen-Ruelle measures

of one-dimensional piecewise smooth expanding transformations are absolutely

continuous with respect to Lebesgue measure [6]. If T is piecewise analytic on the

square in R2 and expands the length of every vector, the Bowen-Ruelle measure of

each Lebesgue ergodic piece is absolutely continuous with respect to Lebesgue

measure [19]. In contrast, there exists an infinite number of /3 > \ (e.g. /} =

( - l W 5 ) / 2 ) such that the Bowen-Ruelle measure of Tp is totally singular with

respect to Lebesgue measure. The Bowen-Ruelle measures of skinny baker 's trans-

formations are all products of Cantor measures with the uniform measure in the

_y-direction, and so are clearly totally singular.

Lyapunov dimension. The Lyapunov exponents (characteristic exponents) of a trans-

formation, which we denote A, > A 2 > • • • > Am, were defined in [21]. They depend

on an ergodic measure. If T is Bowen-Ruelle ergodic and the measure in question

is the Bowen-Ruelle measure, define the Lyapunov dimension of T, denoted dLyaP( T)

as follows [16]. Let

k = max {i: A] +• • • + A, > 0 }

(orO if A , < 0 ) . Then

0 if A: = 0,

A , + - • -+Afc
k H : : if 1 < k < m,

m if k= m.

All of this can be made to work for piecewise C 1 transformations, with a straight-

forward modification. Suppose the manifold M is divided into a finite number of

regions Ru...,Rk bounded by a finite number of codimension 1 submanifolds

Nt,..., NL. If T is C 1 on each region Rk, is Bowen-Ruelle ergodic, and if the

Bowen-Ruelle measure of the inverse images at the boundaries U « T~"({J N,) is

zero, then the appropriate Lyapunov exponents and the Lyapunov dimension can

be defined.

In particular, since generalized baker 's transformations are piecewise linear, it is

easy to compute the Lyapunov exponents. We find that for Tp

A, = log 2 A2 = logj3

and thus

f, , log2
 fl<-

L2 j S a i

For a transformation T that is not Lebesgue ergodic, it may be useful on occasion

to replace M by a small neighbourhood of a piece of the attractor on which T is

Lebesgue ergodic.

Information dimension. The Lyapunov dimension is a property of the dynamics of

a transformation T; in particular it measures something about the expansion rates

of T. We turn now to a dimension of a set with a measure essentially first defined
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in [1]. In particular, when the measure is the Bowen-Ruelle measure of a transforma-
tion, we call the dimension the information dimension of T. It measures in some
sense the infinitesimal complexity of the attractor of T. We then discuss a conjecture
that relates the Lyapunov dimension and the information dimension.

First we discuss the heuristics of the information dimension. Consider again the
computer plot of a transformation T discussed above. Ideally, it is a picture of the
attractor of T together with the Bowen-Ruelle measure on the attractor. We study
this picture with some degree of visual acuity. The information dimension measures
the asymptotic rate of growth of the information we can obtain about (alternately,
needed to specify) the plot as our acuity becomes arbitrarily fine.

More precisely, let X be a metric space with a Borel probability measure fi. If
K is a finite partition of X, let the diameter of K, denoted diam K, be the maximum
of the diameters of the elements of K. Let

«K0) = 0

be the information function. Define

the absolute value of the logarithm of the geometric mean of the measures of the
A e K. For e > 0, let

hip,, e) = M{h(fi, K): diam K < e}.

Then we define upper and lower information dimensions:

and if they are equal dinfo((i) denotes the common value. These quantities do not
involve any dynamics, only a measure. If fi is the Bowen-Ruelle measure of a
transformation T, we call these quantities the (upper, lower) information dimensions
of (the attractor of) T and denote them dinfo(T), dinfo(T), dinfo(T), respectively.

Main conjecture. The main conjecture states that the equality

holds most of the time. More precisely, consider the space of C2 maps of a manifold
M to itself with compact attractors. The conjecture is that the set of Bowen-Ruelle
ergodic transformations which do not satisfy (*) is of infinite codimension in this space.

A conjecture of this form was first stated in [16] and refined in [10]. The present
form is a further refinement. In [20] it is shown the right-hand side of (*) always
dominates the left-hand side. The value of (*) is that dLyap(T) can be computed in
terms of the dynamics of T; indeed, it can be estimated by computer calculations
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[2]. On the other hand, d,nfo(T) gives geometric measure-theoretic information about
the complexity of the attractor of T. The conjecture can be extended in the obvious
way for piecewise C2 transformations. There are a variety of other ways of defining
information-type dimensions; it seems they should be equal for 'most' Bowen-Ruelle
ergodic transformations. See [27].

We remark that in order to define the terms in (*), T must be Bowen-Ruelle
ergodic. The conjecture is non-trivial in that the set of Bowen-Ruelle ergodic
transformations contains open sets. Two transformations T, 7" are topologically
conjugate if there is a homeomorphism h such that T' = h~]Th. If T and T are
topologically conjugate and T is Bowen-Ruelle ergodic, so is T'. (If h is C1, the
Lyapunov and information dimensions of T and T' are equal.) There exist struc-
turally stable Bowen-Ruelle ergodic transformations (e.g. ergodic axiom A systems
[5], diffeomorphisms of surfaces [27], and the examples of [17]).

Further examples and evidence for the conjecture may be found in [16], [10], [9]
and the references therein. More recently, L-S. Young has shown that (*) holds for
diffeomorphisms of two dimensional manifolds provided the Lyapunov exponents
A,, A2 # 0 and the measure theoretic entropy equals A, [27]. (This proviso is true for
generalized baker's transformations; they can be shown to have entropy log 2.) A
class of transformations of a three-dimensional manifold is investigated in [17] for
which the attractor is a two-dimensional topological torus, but dLyap>2. Here
capacity rather than information dimension is studied. The formula corresponding
to (*) is shown to hold except for a set of transformations of infinite codimension
(and in these exceptions the torus is smooth and so has capacity 2).

The present paper is an investigation of another type of example. The computation
of the Lyapunov dimension is trivial. In § 6 we consider the information dimension.
The equality (*) is valid for many fat baker's transformations, in particular all those
with absolutely continuous Bowen-Ruelle measures. On the other hand, there are
an infinite number of fat baker's transformations for which (*) is false. In [12] a
type of entropy is defined for ICBM's and shown to be strictly less than 1 for a
countable set of /3> {. In § 8 we show that for these /3, dinfo(Tp) equals Garsia's
entropy invariant plus 1. _

One of these exceptional values is {} = (-1 W5)/2. In § 7, we exhibit numerical
calculations to estimate dinro(Tp) for this /3. The calculations have only an heuristic
foundation, but they seem to indicate that for this /3,

dinUTp) = 1.99571312 ± 0.00000005.
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2. Fourier transforms
We recall some basic standard facts about Fourier transforms of measures, and
develop a convergence result we need. Let fi be a measure on the real line and
FM(x) = /u.(-oo, x) be its distribution function. We define the Fourier-Stieltjes trans-
form (characteristic function) <f>(a)) = <£M(a>) of fi by

- J : exp (iwx) dF^(x). (2.1)

Every measure is determined by its characteristic function. If ft, is supported on the
finite interval [—a, a] , we write the formal Fourier-Stieltjes expansion of dF^:

dF*(x)~ I tf>("0 exp (imxa). (2.2)
m = —oo

Here the </>(w) are the Fourier-Stieltjes coefficients of |t (or t/FM) defined by

Every measure is determined by its Fourier-Stieltjes expansion. A sequence of
measures fin (with distribution functions Fn) converges weakly (or in distribution)
to fi (with distribution function F) if:

for each continuous / Such convergence is known to be equivalent to any of the
following:

(i) convergence of Fn(x)-» F(x) at every continuity point x of F ;
(ii) convergence of /j.n(E)-> fi(E) for every Borel set E with fi(dE) = 0;
(iii) pointwise convergence of <£„(«)-» </>(w), where <pn (resp. <j>) are the charac-

teristic functions of /j.n (resp. ft);
(iv) convergence of each (f>n(m)-> <f>(m), where <f>n(m) (resp. <^(m)) are the

Fourier-Stieltjes coefficients of fin (resp. ft), if the coefficients are defined over a
finite interval which supports all the /*.„, (i.

If the measure fi is defined on higher-dimensional Euclidean space (say R2 =
{(x, y)}), everything is formally the same. The distribution function is

Frix, y) = /i{(-oo, x) x(-oo, y)}.

It is convenient for us to use the following (mixed) Fourier-Stieltjes transform of
ft.. In the x-direction we form the Fourier-Stieltjes transform; in the ^-direction we
calculate the Fourier-Stieltjes coefficients (with respect to the interval [ -1 , 1]).

Thus we let

1 f°° f<t>(co, « ) = - exp (iwx - in-rry) dF^x, y). (2.4)
•̂  Jx = — oo J y = — 1

where w ranges over the reals and n over the integers.
Then weak convergence is defined as above and is equivalent to (i), (ii) above.

We combine (iii), (iv) into the following:
(v) convergence of 4>n((o, m)-» 4>((o, m) for each <o, m.
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This is almost a standard fact (it is standard for the higher-dimensional characteristic
functions). One uses the Cramer-Wald argument [3, pp. 334-335] to reduce it to
the one-dimensional case. More precisely, let 6 be the polar angle in the (x, y)-plane.
Consider the half-space measure at angle 6, O < 0 < T T . If 05*0, <£n(m cot 6, m),
4>(m cot 6, m) are the Fourier-Stieltjes coefficients of the half-space measures deter-
mined by nm fi, respectively. Similarly for 6-0, <£„(«, 0), </>(<», 0) are the characteris-
tic functions of the horizontal half-space measures. If (v) is true, each of these, with
fixed 6, converges; hence the distribution functions

Fn(y cot 6, y) -» F(y cot 6, y), Fn(x, 0 ) - F(x, 0),

at each point of continuity of F(y cot 6, y), F(x, 0) respectively. Hence Fn(x, y)-»
F(x, y) at each point of continuity of F, so fin -> /A.

3. The component measures
The Bowen-Ruelle measure of a fat baker's transformation is the product of measures
in the x and ^-directions. In this section we discuss the component measures.

To exploit the symmetries in the transformation, it is convenient to use signed
dyadic expansions on [-1, 1]. Any real number y, 0 < ^ < 1 has a dyadic expansion

The 00(r) are the dyadic digits. They are uniquely defined except when y is a dyadic
rational, in which case a choice must be made between the terminating and non-
terminating expansion.

Similarly any real number y, -1 < y < 1 has a signed dyadic expansion

^ I W r , C)r = - l o r + l . (3-1)
r= 1

The coefficients (y)r are called the signed dyadic digits of y. They can be determined
by forming the dyadic expansion of y' = ̂ (y +1) and letting (y)r = 1 - 2(y')(r). Again
a choice must be made for dyadic rationals. The dyadic rationals form a set of
measure zero and any choice is immaterial to our discussion of measure. For
definiteness, we choose a tail of - l ' s over a tail of +l's, except for y= +1 which
is expanded

y=l (+1)2-.
r = l

(Another, more symmetric, possibility is to allow tails of 0's for dyadic rationals,
except for y = ±\. Then the (y)t are the Rademacher functions of | ( j + l) if

Let T : [ - 1 , l]-»[-l, 1] denote the doubling map:

j > - l , y>0
700 " U + i, ^ o , (3-2)

or
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The transformation T obviously preserves Lebesgue measure. Also (Ty)r = (y)r+i;
this represents r a s a one-sided Bernoulli shift.

We now consider the component measures on the x-axis. We describe them in
several ways. Fix p, 0</3 < 1. We denote the measure by vp.

Let an, n = 0 ,1 ,2 , . . . , be a sequence of independent random variables, each with
the values ± 1 with probability i Let Fp be the distribution function of the random
variable

XP=l aM-W- (3-3)

Such a random variable /} is a type of Rademacher series. The measure vp is the
measure with distribution function Fp.

In other words, vp measures the density of points of the form £^=0 ±(1 - j3)/3".
For any interval (a, b) and any integer N>0, let vpN(a, b) denote the proportion
of points of the form S^o ±(1 —>3)/3" that lie in (a, b). That is

= 2-N#\x:x = I
1

a<x<b\ (3.4)
J

where # denotes counting with multiplicity. Then

vp(a, b)= lim wftN(a, b). (3.5)

Equivalently ^ can be expressed as an infinite convolution. Let fc(£) denote the
measure with two atoms, each of weight \, at the points ±£ Such a measure is called
a Bernoulli measure. The measure vp can be expressed as the infinite convolution

These measures have been studied for more than 40 years, and they are not yet
completely understood. They have been called by a variety of names; we call them
infinitely convolved Bernoulli measures (ICBM's). Consider two examples. If /3 = |,
the expressions Yl^Zl ±(5)"+l are signed binary expansions. Thus

for -1 < a < fe< l,and vp is the uniform probability measure. If fi =j, let z = j(x +
If

n=0

with each an = ± 1, then

As the {an} range over all sequences of ±1, the z range over all numbers without
l's in their triadic expansions. Thus vp is (an affine copy of) the Cantor measure.
More generally, if /? < \, the support of vp is a Cantor set and vp is totally singular.
If fi > \ every open set has positive measure.
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Consider now the characteristic function of vp. The characteristic function of the
Bernoulli measure fc(£) is cos £,u>. Since the characteristic function of a convolution
is the product of the characteristic functions of the components, the characteristic
function <f>^ of vp is

^(a»)=ilcos[(l-/3)/3ra>]. (3.6)
r = 0

Convolved Bernoulli measures have been studied since the 1930's, especially for
/3 < 5, in no small measure because they are interesting examples of phenomena in
harmonic analysis. For our purposes, we recall the following results. The measures
and their characteristic functions are well-defined; i.e. all the limiting processes
above converge [14]. The Vp are continuous and are either absolutely continuous
or totally singular [14]. For /3 the n'th root of 5, vp is absolutely continuous (and
indeed, progressively smoother as n is increased) [26].

Thus it was suspected that all pp, ft >^ might be absolutely continuous. However,
P. Erdos showed there were values of )3, e.g. /? = (-1 W5)/2, such that vp is totally
singular [7]. The key fact he used is that j8~' is an algebraic integer, all of whose
conjugates lie inside the unit circle in the complex plane. This allowed him to
estimate the characteristic function <f>p(<i>) for large u> and show it did not approach
zero as o>->oo. Thus by the Riemann-Lebesgue lemma, vp cannot be absolutely
continuous. A year later, again by using estimates on the asymptotics of the charac-
teristic function, he showed there is a y < 1 such that for almost all /3 with y < (i < 1,
the measure pp is absolutely continuous [8].

Real numbers which are algebraic integers whose conjugates lie within the unit
circle were evidently originally mentioned by Hardy. They were studied by his
student Vijayarghavan, by Pisot, by R. Salem and others and have come to be known
as PV (Pisot-Vijayarghavan) numbers. When y is a PV number, y" is nearly an
integer; if d(y") denotes the distance from y" to the nearest integer, then X =̂o ^(y")
converges. There is an extensive literature concerning them and their generalizations,
mostly in the context of algebraic number theory. In particular, Salem showed the
set of PV numbers is a closed (obviously countable) subset of the reals and that 1
is an isolated element [22]. He also showed that j8~' being a PV number is neces-
sary and sufficient for <t>p((o) not to approach zero as w-»oo. C. L. Siegel showed
that the smallest PV number larger than 1 is the positive root 0,-1.324718,
(0r'~.7548777), of x3-x-l, that the next in order is the root 02~ 1.3802777,
(0J1 -.7244918), of x4-x3- 1, that both_of these PV numbers are isolated, and that
all other PV numbers are larger than V2 [24].

The reciprocals of PV numbers are the only j 8 ^ | for which vp is known to be
totally singular. It is possible (but thought unlikely) that vp is absolutely continuous
for all other /3 > i The only quadratic /3 of this type is /3 = (-1 W5)/2, the root of
x2+x-l. The only such /? satisfying a cubic equation are the real roots of the
following four polynomials: x3+x2+x—l, x3+x2-\, x3+x-l, x3 — x2+2x—l,
with 0 = .7548777, .5436898, .6823278, .5698403, resp. We also note that there is a
sequence of such /3 approaching 3 from above, namely roots of the polynomials
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A. Garsia discovered a family of algebraic /3 for which vp is absolutely continuous
[11]. These and the roots of 5 are the only explicit p for which vp is known to
be absolutely continuous, although by Erdos's result there are uncountably many
such /3.

For more expository treatments of some of the above material, see [23], [15], [18].

4. Bowen—Ruelle measure
Let a = ap be the measure on R x [ - 1 , 1 ] which is the product of the infinitely
convolved Bernoulli measure vp on the x-axis and the uniform probability measure
(with density 5) on the y-axis. The purpose of this section is to prove that trp is the
Bowen-Ruelle measure for the generalized baker's transformation Tp. As indicated
in the introduction, we need to show that for almost all points (x, y) (with respect
to Lebesgue measure), the measures

~T Z ~̂* $(x,y)
+ 1 JV=O

converge weakly to ap, where 5(Xi>) is the atomic probability measure at (x, y). We
prove this by studying the effect of Tp on the Fourier transform of 8(x_y).

Using signed dyadic notation (3.1), we write T= Tp as

T(x, y) = (/3x +(>0i(l — )3), 2y — (y){) (4.1)

for x e R , - 1 <>>< 1. For any measure y on R x [ - l , 1], let <t>y(oj, n) be the mixed
Fourier transform (2.4) of y. Then

1 P fT^4>y((o, n) = -I exp (iwx - miry) dFTty(x, y)
J* Jx = 00 J y = 1

exp (i<w/3x) exp (—2inny)
x=-cc J y —— 1

exp (z'0>)i(l -P)<o) exp (i(y)\n7ry) dFy(x, y)

— - \
*• Jx = —OO J y = — l

\ exp (iw/3x) exp (-2iniry)
*• J J

• exp (.(yMl -p)a>) dFy(x, y). (4.2)

Thus

[
> J y=-l

r=0

The Fourier transform of cr = crp is clearly

x = -<X> J y=

exp(i(y)N-r(l-P)l3ra>)dFy(x,y). (4.3)

n=O,
(4.4)
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Using (4.2) (and integrating first in the y- direction), we can easily check that <f>a

and thus a is invariant under the action of T.

THEOREM 1. For almost all y in [—1, 1],

1 " N

+ 1 N=0

converges weakly to a for all xeU.

Proof. Let S = S{xy). We can assume |x| s 1. We show

, n) (4.5)

pointwise for almost all y. Fix u>, n and e >0. The left-hand side of (4.5) is, by (4.3),
(—1)" i M N~l

Z exP('&>/3Nx)exp(—2Niirny) ]1 exp(i(_v);v-r(l — )3)y3rw). (4.6)
2 M + l |V=O r = 0

Choose M, so that if M > M,,

|l-exp(iw)3M)|<E and

Choose M2 > M, so that

1 - ft exP(/(l-y3)y3ro>)
r=M,+l

Af-M,
M + l <

if M>M2. Write (4.6) as
t (-1)" M>

2 M + 1 N

r=M,

exp(«(y)N_r(l -

i / M —Mi \ f—n" M

2\ M+l / M - M | N = M, + I

1
+-

(—1)"
I exp(-2Ni«77>') [1 exp(«(>')N_r(l-^))3rco).

2 M ~ M , N = M,+1 r=0
(4.7)

Each of the first four terms is less than e/2 if M > M2. We consider the last term.
Note that exp(—2Niirny) does not depend on the first N signed dyadic digits
O0i> • • •, (y)s of y. Indeed, using the doubling operator T of (3.2),

exp (-2Ni7rny) = exp (-iim(TNy)) = exp (-mnrN-M'(rM'y)).

Thus if we let

https://doi.org/10.1017/S0143385700002236 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002236


12 J. C. Alexander and J. A. Yorke

the last term of (4.7) can be written

(-1)" M

M - M , JV=MI+I

Now T preserves the uniform measure and is ergodic. By Birkhoff's ergodic theorem
[25], for almost all y,

g(y)dy
Af - Af, N=M,+I J-i

M,- l

exp (-2M|i7rnj>) f] exp ('O0M,-r(l - P)Pro) <fy,
I r = 0

as Af -» oo. Consider the subintervals

4 = [-1 +(k - l)2~M'+l, - 1 + fc • 2"M'+I), fc = 1 , . . . , 2"'.

On each Ik, F I ^ ' exp (i(y)Mt_r(l -/8)/3rcu) is a constant Ck. Indeed as fc runs over
the 2M> subintervals, the sequences (y)M,-r, r = 0 , . . . , Af, - 1, run over all 2M|

possibilities. On each Ik,

Therefore

With our choice of

1 - El cos(l-)8))8rcu <£.

r=M,

Therefore, for almost all y, l im M _ a o ( l /M+ 1 ) £ A , = 0 T^<ps(w, n) is within 3e of
<f>s(<o, n). This proves the theorem. •

Remark. By the converse of the ergodic theorem, theorem 1 proves that a is ergodic.
In the next section, we prove a different result which implies cr is strongly mixing.

5. Ensemble averages
In this section we show that for many probability measures fi on R x [ - 1 , 1] (in
particular, any absolutely continuous measure), the weak limit of T%y. is <r. No
averaging over N is needed.

THEOREM 2. Let p. be any measure whose projection nfi on the y-axis is absolutely
continuous with respect to Lebesgue measure. Then

where |/x| = /x(R x[— 1, 1]) is the total mass of ft.

Proof. Suppose |/x | = 1. Note that T+ is an isometry on measures. We can approximate
H by measures with compact support with absolutely continuous projections to the
_y-axis. Thus we can suppose without loss of generality that /A is supported on
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Fat baker's transformations 13

[-K,K]x[-l,l]. We show

T^M(a>,n)->^(o>,«)

pointwise. Fix u, n and e > 0. Choose L so that

|l-exp(/wis:/3N)|<e (5.1)

for N> L. Suppose J*=_K dF^x, y) = J!., /(j>) dy, where/(y) e L'[-1,1]. From (4.3)
and (5.1), for N> L, T£<£M(a>, n) is within \e of

exp (-2Ninny) "u exp (iC)N-r(l -P)(3rco)f(y) dy. (5.2)

Choose M so large that

1 - [I exP(i(l-j8)/3r6>) <e. (5.3)

Let / ( j ) (obtained by chopping off the peaks of / ) be a non-negative bounded
function so that

\ \f(y)-f(y)\<j dy<e (5.4)

and

J^/OO^sl. (5.5)

Write (5.2) as

5—^ exp (-2^11^) n exp(i(y)iv-,(l-i8)/8r«X/O')-/(y))dy

+ ^ T - I exp(-2Nm7ry)Mnlexp(«(y)N_r(l-^)/3^)/(>')^
^ Jy=-I r = 0

(_))" f M-l
+ ^ exp(-2Nifiny) n cxp(i(y)N_r(l-^)/8'«

I J V = - 1 r = 0

• \"n exp(i(y)»-r(l-p)Pr«>)-l]Ay)dy. (5.6)

By (5.4) and (5.3), the first and third terms of (5.6) are bounded by {e. Given P,
consider the 2P subintervals Ik of [-1, 1];

Ik = [-l +(k- l )2" p + l , - 1 + k • 2-p+l), • k = 1 , . . . , 2P.

Define

f f{y)dy

(

Then fP(y)-*f(y) in L'[- l , 1], so choose P so that

I
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14 J. C. Alexander and J. A. Yorke

From (5.4), (5.5) we see

By the choice of P, we see that T̂ </>M(w, n) is within 2e of
M - l

exp(—2Niirny) \[ exp(i(y)N-r(l—P)pra>)fP_M+[(y) dy

(5.7)

(—\)n r
2. k J lk

exp(-2Ni™>>) [1 exp(i{y)N.r{\ -p)prw)fP.M+l(y) dy

|
J lk

exp(iC)N_r(l - (5.8)

Let N> P. In 4 consider subintervals 7̂ / of length 2~N+I. On each IK,

r = 0
exp(i(y)N-r(l-P)prw)

is constant. Therefore

I exp {-2Nmny) ftexp (iC)jv-,(lft'
r=o

J M - l

^CF 11 COs(l-)8)/3ra, if #1=0,

if n ̂  0.

Therefore

(-1)(-1)" f'
2 Jy__, exp(i(y)N_r(l -p)Pr<o)fP.M+l(y) dy

Note that

I! cos (\~P)pra> if n=0,
r = 0

if n * 0.

1- n cos(l-/3)^r
W

Therefore for N>P, T"^(w, «) is within 3e of ^(w, n). This completes the
proof. •

Recall [25] that a measure-preserving transformation T on a measure space (X, fj.)
is called strongly mixing if for every measurable A, B c X,

lim / j ( r N A n B ) = ^(/4)Jn(B). (5.9)
N->oo

This is a stronger condition than ergodicity. Property (5.9) need be checked only
for A, B in an algebra generating the measure algebra of X (in our case, on
rectangles).

COROLLARY. Te, operating on U x [ - l , 1] with measure o-p, is strongly mixing.
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Fat baker's transformations 15

Proof. For any Borel set B, let nB(A) = cr(A D B). Then

( T J V B X A ) = MB(T- N A) = cr(T-NA n B).

Since /iB is absolutely continuous with respect to a, its projection 7r/u.fl is absolutely
continuous on the j'-axis. Thus for any rectangle A

lim a(T AnB)= lim T* L
N-»oo N-»oo

by (ii) of § 2 and the fact that o~ is continuous. •

COROLLARY. Suppose vB is totally singular. Then any measure invariant under T is
totally singular.

Proof. Let /* be an invariant measure. Write

where /is ing and /tabs are the singular and absolutely continuous parts of ft. Apply
T% and let N-*<x>; we find fiabs = O. •

6. Dimensions of fat baker's transformations
Recall from the introduction that the Lyapunov dimension of a fat baker's transfor-
mation TB is dLysip(TB) = 2. In this section we compute in some sense the information
dimension of fat baker's transformations. In particular we can show that (*) is not
true for B the reciprocal of a PV number. For such B the information dimension
is strictly less than 2. We also note that for many B>\, the value dinfo(TB) = 2. In
particular, by [7] for almost all B near 1, the Bowen-Ruelle measure is absolutely
continuous. We also have the following result (see also [1]).

PROPOSITION. If fi is an absolutely continuous measure on a compact domain in
d-dimensional Euclidean space, then

Proof. We use a result of Young [27, prop. 4.3] which states that if there is a constant
a0 such that for almost all x (with respect to /*),

,. . Jog n(Bp(x))
lim inf > a0,p-o log p

then

Here B^x) denotes the ball of radius p centred at x If n is absolutely continuous,
it has a density, say/ Almost every point x is a regular point of/; thus for almost
all x,

P-0 p

That is for each such x, given 77 > 0

-fix) <7J
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16 J.C. Alexander and J. A. Yorke

for p small enough. Thus

where \d\< 1. For almost all x (with respect to /*.),/(*) >0. For such x, log p.(Bp(x)) =
d log p+Q, where Q is bounded independently of p, so that

logM(*,(»))= < | +_g_
log p log p

as p -» 0. Setting a0 = d, the proof is complete. •

Our computation of information dimensions is in terms of an entropy invariant
introduced by Garsia in [12]. He considered the entropies of the distributions of
the random variables (3.3) and related them to the singularity or continuity of the
ICBM's vp. Recall

is the information function. Garsia considers points of the form

*= I ±(l-/8)/r (6.2)
r = 0

and weights them according to multiplicity. Thus he has a discrete probability space
PN = PN(P) w^h measure vN; let

HN= Z <KM*)) (6-3)

denote its entropy. He then considers the limit

G=Gp=Yim-£?- (6.4)

which he shows exists and is the innmum of the HN/ N + 1. If there are no
coincidences among the points x, then HN = N +1 and Gp = 1. If on the other hand
there are coincidences, then Ge < 1. Thus Gp is a measure of how fast the points
are piling up. In particular he shows that if

then vp is totally singular, and in particular, if /3 is the reciprocal of a PV number,
then (6.5) is true [12, theorem 1.2]. We might note that our results in this section
furnish another, completely different proof, that vp is totally singular if (6.5) holds.
We can now state our result.

THEOREM 3. For any /3, 0</3 < 1,

r - % T + i- (6-6)

If (3 is the reciprocal of a PV number, then
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Fat baker's transformations 17

Proof. The addition of 1 in the formulae is from the uniform measure in the
y-direction. Accordingly we show that for any /3, 0</3 < 1,

^ (6.8)<Jinfo(^)< ^ p r ,
log/3

and for /3 the reciprocal of a PV number,

( 6-9 )

Given a Borel subset E of the real line, and constants y > 0 , x, let yE + x denote
{y = yz +x; ze E}. Fix /3. For any Borel measure /A on the real line, define

For any fi, let J((j.) denote its support interval; i.e. the smallest closed interval which
supports /x. Let |/u,| = /x(/(/i,)). We consider T^n the sum of two measures with
support intervals /3J(/x)±(l -/?). Iterating we consider T£/A as the sum of 2"
measures which are translates of each other, each a small copy of /J. ; call them the
components of T^/A.

Suppose now that n is a probability measure with J(/x) = [— 1, 1]. Then the centres
of the support intervals of the components of T£/z are the points

n-\

x= I ±(l-0)/3r;
r = 0

their lengths are 2/1". If some of the points x are equal, some of the components
of Tin are equal. Amalgamate such equal components by adding; denote the
resulting measures / i , , . . . , ftk. Since |/x.j = 1,

tfn-i=X<KN)- (6.10)
i=l

We say that two support intervals overlap if they contain a common subinterval.
Many of the support intervals J(fja), i=l,. ..,k may overlap. We cut them up and
redistribute the /A, to eliminate overlaps. Suppose /(/*,), J(nj) overlap. If one support
interval is contained in the other assume J(fn) ^ J(pj)> otherwise assume |/x,| a |/x,-|.
Construct two measures /x'h Hj by defining for any Borel set E:

Then J(fi'(), J(fij) do not overlap, so we have eliminated at least one overlap.
Moreover the following properties are satisfied;

(6.12)

M^lMfclsl/*;!, k = ij. (6.i3)

Since ip is concave, we obtain from (6.13) that

| | | - (6.14)
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18 J. C. Alexander and J. A. Yorke

Iterating this process, we eventually obtain a finite number of measures
with the properties

I 6 = 1 M, = 7>;

/(6) and /(6) do not overlap if i

length 7(6) ̂  2/3" for each i.

Now we specialize to v=ve. Since o^ is invariant under (Tp)t, we find T^vp = ^ .
Thus T%vp = Pf, and ",3(./(6)) = |6l- In other words, the •/(£) are a partition of [-1, 1]
of diameter <2/3n. Therefore

For 2/3 "+l < £<2j8", / i (^ , e)< h(vp, 2/3"); therefore

hmsup _. =hmsup—-^—TTT- hm = G0.
c^o log e n^oo n\og(5 »-»« «

This proves (6.8).
To prove (6.9) we need more precise information about the function i// of (6.1)

and information about the spacing of the points (6.2) when fi is the reciprocal of
a PV number.

Consider numbers p} > 0 for j = 1 , . . . , /. Suppose

p o = £ p , < l . (6.15)

Then

I <K;>,)-/>o l o g / s ,/,(/>„) ̂  I HPj)- (6.16)

This is shown by using Lagrange multipliers to find the maximum of J\_, ifripj)
subject to the constraint (6.14). The maximum occurs when all p, =pJJ. With this,
and induction on /, the minimum occurs when all but one Pj are zero. This gives
the second inequality in (6.15). If all pj =pJJ,

which gives the first inequality. Let pt, i = 1 , . . . , / , ptj, i = 1 , . . . , /, j = 1 , . . . , J(i) be

the two finite sets of non-negative numbers with

I Pi = U

•/(•")

Z Pij=Pi for each i. (6.17)
J = I

Suppose each J(i)^g for some g. Then (6.15) implies

X<M/>,y)-logg<L </<(/>,) ̂ X.M/'y)- (6-18)
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If K and K' are two finite partitions of [-1, 1], K' is a refinement of K if each
interval in K' is a subinterval of one of the intervals of K. If each interval of K
contains at most g intervals of K', we call K' a g-moderate refinement of K. Recalling
the definition in the introduction of h(/j., K) for M a probability measure, and using
(6.18), we find if K' is a g-moderate refinement of K, then

hfjjL, K)< h(fi, X ' )< /2(M, X) +log g. (6.19)

Let —1 = K0 < K| < • • • < Kfe+1 = 1 be the end-points of the intervals in a partition K.
If Kj+i — K, :£ e for each i, then K is an e-partition; diam K < e. If also K,+ 2~ «, > e
for all i, we say K is a moderate e-partition. For any partition K', points K\ can be
deleted to form a moderate e-partition K. Therefore the infimum in the definition
of /I(/A, e) can be taken over all moderate e-partitions.

Suppose K, K' are two moderate e-partitions. Then each interval in K intersects
at most three intervals of K', and vice-versa. Let K u K' be the partition whose
intervals are intersections at those of K and those of K'. Then K u K' is a 3-moderate
refinement of both K, K'. Thus from (6.19)

, K U K')-log 3< JC(M, K)<h{n, K u X'),

, /C u X' ) - log 3 < /KM, K ' ) S MM, K U K'),
and so

|/.(M,A:)-/i(M,^')|slog3. (6.20)

We turn now to a property of /3, the reciprocal of a PV number. Let

I Mr (6-21)

be a polynomial in /3 with each ar = 0 or ±1. There exists y > 0 (depending on /3
but independent of N) such that if A(P) ^ 0, then

This is the statement of [12, lemma 1.51] for this case. Now consider two numbers
x, x' of the form (6.2). Then x-x' = 2A(j8) for A of the form (6.21). Thus if x -x' # 0,

x-x'\>y/3N. (6.22)

Let g be the smallest integer sy"1 . Let X be the partition defined by

- l = x o < x , <• • -<xk<xk + ] = 1,

where the x, are the points of (6.2). Our key claim is that for Hn as in (6.3)

\h(vp,K)- Hn_,|< log 2g. (6.23)

To prove (6.23) we let qt be the measure of x, in the space Pn. Let v\n) be one of
the components of T^vp centred at x,. By the invariance of vp under T^, we see

vP = 1 q,"?*. (6.24)

Let

P,j = q^"\xj, xj+l). (6.25)
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20 /. C. Alexander and J. A. Yorke

The following are immediate:

I Py = <?, for each i, (6.26)
j

I Pij = vp[xj, xJ+i) for each j , (6.27)

Pij = 0 unless i-g<j< i+g-l. (6.28)

Therefore, from (6.18)

L <K/>,) - log 2g < ! « * < ! ,/,(/>,),
•J i U

L iKAy) - lOg 2g < £ ,«^[X;, X; + 1)) ̂  X <M/>,).
<J J U

Since £,. 4, = //„_, and £_,. ̂ (^[x, , x,+1)) = / i (^ , 1C), we obtain (6.23).
For jS^I any open set has positive v$ measure. The length of the support interval

of any /u.jn) is 2/3". Therefore

Thus K is an e -partition. By deleting some of the xh it can be coarsened to a
moderate /3" partition K'. Moreover K is a g-moderate refinement of K'. For any
other moderate ^"-partition K', we combine (6.18), (6.20) and (6.23) to obtain

Thus

. Iog6g2

l o g / 3 - n log 18- ^ '• ( 6 - 2 9 )

As before we can take the limit over /3" instead of e and we find from (6.29) that

This proves (6.9). •

7. Numerical calculations
In the last section we have seen that one plus a certain limit of entropies defined
by Garsia equals the information dimension of Tp when /3 is the reciprocal of a
PV number. Moreover Garsia showed this limit is strictly less than one; thus the
information dimension is strictly less than 2. Numerical calculations were made to
determine this dimension in the particular case /8 = (-1 +V5)/2 = 0.61803399. In
this case our best estimate is

Calculations for other such /3 were not so definitive. However there is some indication
that for /3 the root of x3 +x2 +x - 1 (/3 ~0.54368981), the value of dinfo(Tp) is about
1.98.

For (3 = - 1+75 /2 , the finite probability space Pn has a straightforward com-
binatorial structure. Computer calculations were done up through n =30(23O> 109).
The results are exhibited in tabular form so the convergence may be observed.

The first column is n. The second column is the number of distinct points in the
finite probability space Pn^,. Note that if one is added to each of these entries, the
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P- 2

n

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

Number of

points in /*„_,

2
4
7
12
20

33
54
88
143
232

376
609
986

1 596

2 583

4 180

6 764

10 945

17710

28 656

46 367

75 024

121 392

196417

317810

514 228

832 039

1 346 268

2 178 308

3 524 577

ilog/3"1

.4404200

.4404200

1.3203850

1.2603675

1.2107650

1.17769684

1.15217936

1.13304124

1.11785968

1.10571443

1.09572759

.08740522

.08035438

1.07431081

.06907141

.06448695

.06044151

.05684558

.05362809

.05073236

.04811240

.04573062

.04355595

.04156250

.03972852

.03803562

.03646812

.03501259

.03365743

.03239262

Estimate of

CP=4nfo(^)

1.4404200

1.4404200

1.0803150

1.0803151

1.0123551

1.01235605

0.99907446

0.99907447

0.99640716

0.99640716

0.99585917

0.99585916

0.99574435

0.99574436

0.99571990

0.99571990

0.99571462

0.99571461

0.99571345

0.99571346

0.99571320

0.99571320

0.99571315

0.99571314

0.99571313

0.99571313

0.99571313

0.99571313

0.99571312

0.99571312

Fibonacci sequence obtains. That this is so is straightforward from the combinatorial
structure of Pn_, (and is related to the fact that p is the golden ratio). The values
in this column were computed on the computer and serve as an error check on the
program. For n > 6 the values in the third and fourth column were computed in
double precision and truncated to 8 decimal places. The value Hn_,/« log/3"' in
the third column is exact up to round-off error (which should not affect the exhibited
digits). The value in the fourth column is an extrapolation to n — 00. If the entries
in this column are denoted Gn_i, the formula is

G n _,= ; (7.1)
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22 J. C. Alexander and J. A. Yorke

The heuristic justification is the following. We knov that

Assume that the error term is the same at the «th and (n - l)st row. That is

(7.2)

Solving for G@, we obtain (7.1). As a check on the consistency of this procedure,
we note that if e is calculated from (7.2), its value varies slowly from 1.100305+ at
n = 12 to 1.10038504 at n = 29 and 1.10038499 at n = 30. These last two values differ
by 5 x 10~8 and it is not unreasonable to accept this difference as an estimate of the
error.

For similar numerical calculations to estimate capacities of sets, see [13].
At the rate of convergence in the table, the value of //„_,/« log /3~' drops below

1 at the 257th iteration (which requires, in the heuristics of the introduction, an
acuity of about 4 parts in 1054 in discern).
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